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Abstract

We study online multiclass classification under bandit feedback. We extend the results of Daniely
and Helbertal (2013) by showing that the finiteness of the Bandit Littlestone dimension is neces-
sary and sufficient for bandit online learnability even when the label space is unbounded. Moreover,
we show that, unlike the full-information setting, sequential uniform convergence is necessary but
not sufficient for bandit online learnability. Our result complements the recent work by Hanneke,
Moran, Raman, Subedi, and Tewari (2023) who show that the Littlestone dimension character-
izes online multiclass learnability in the full-information setting even when the label space is un-
bounded.
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1. Introduction

In the standard online multiclass classification model, a learner plays a repeated game against an
adversary. In each round ¢ € [T'], an adversary picks a labeled instance (z, y¢) € X x ) and reveals
x; to the learner. Using access to a hypothesis class # C V¥, the learner makes a possibly random
prediction g € ). The adversary then reveals the true label 3; and the learner then suffers the loss
1{y: # 9. }. Overall, the goal of the learner is to output predictions such that its expected cumulative
loss is not too much larger than the smallest cumulative loss amongst all fixed hypothesis in 4. This
standard setting of online multiclass classification is commonly referred to as the full-information
setting because the learner gets to observe the true label y; at the end of each round. Perhaps a
more practical setting is the bandit feedback setting, where the learner does not get to observe the
true label at the end of each round, but only the indication 1{y; # y;} of whether its prediction
was correct or not (Kakade, Shalev-Shwartz, and Tewari, 2008). One application of this setting is
online advertising where the advertiser recommends an ad (label) to a user (instance), but only gets
to observe whether the user clicked on the ad or not.
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Unlike the full-information setting, where online learnability of a hypothesis class H has been
fully characterized in both the realizable and agnostic settings, less is known about online learnabil-
ity under bandit feedback. Indeed, the first work on characterizing bandit online learnability is due
to Daniely, Sabato, Ben-David, and Shalev-Shwartz (2011). They introduce a dimension named
the Bandit Littlestone dimension (BLdim), and show that it exactly characterizes the bandit online
learnability of deterministic learners in the realizable setting. Even prior to that, Auer and Long
(1999) related the Bandit Littlestone dimension (which is the optimal deterministic mistake bound
with bandit feedback) to the multiclass extension of the Littlestone dimension (Ldim) (Littlestone,
1987; Daniely et al., 2011) and showed that BL(#) = O(|)|log(|Y|)L(#)), where BL(H) is the
BLdim of #, L(#) is the Ldim of H, and || denotes the size of the label space ). Following the
work of Daniely et al. (2011), Daniely and Helbertal (2013) studies the price of bandit feedback by
quantifying the ratio between optimal error rates of the two feedback models in the realizable and
agnostic settings. Using the inequality L(#) < BL(H) = O(|Y|log(|]Y|)L(H)), they infer that
BLdim characterizes realizable online learnability under bandit feedback when || is finite. Later,
Long (2017) and Geneson (2021) proved that this upperbound on BLdim is the best possible up to
a leading constant. They also found the exact optimal leading constant.

Moving beyond the realizable setting, Daniely and Helbertal (2013) give an agnostic online

learner whose expected regret, under bandit feedback, is at most O (\/ L(H)|Y|T log(T|y])). As

a corollary, when || is finite, they infer that the BLdim qualitatively characterizes agnostic bandit
online learnability. In addition, Daniely and Helbertal (2013) note a gap of O(\/m ) between
their upperbound in the bandit setting and the known lowerbound of Q(y/L(H)T) in the full-
information setting (Ben-David, Pal, and Shalev-Shwartz, 2009). Accordingly, they ask whether a
tighter quantitative characterization of bandit learnability is possible in the agnostic setting. In fact,
it is unclear whether BLdim characterizes bandit online learnability when |)| is unbounded.

Along this direction, there has been a recent surge of interest in characterizing learnability when
the label space is unbounded. For example, in a recent breakthrough result, Brukhim, Carmon,
Dinur, Moran, and Yehudayoff (2022) show that the Daniely-Schwartz (DS) dimension, defined by
Daniely and Shalev-Shwartz (2014), characterizes multiclass learnability in the PAC setting even
when the label space in unbounded. Following this work, Hanneke, Moran, Raman, Subedi, and
Tewari (2023) show that the multiclass extension of the Littlestone dimension, originally proposed
by Daniely, Sabato, Ben-David, and Shalev-Shwartz (2011), continues to characterize online multi-
class learnability under full-information feedback when the label space is unbounded. Motivated by
these results, we ask whether the BLdim continues to characterize bandit online learnability even
when the label space is unbounded. In particular, can the optimal expected regret in the realizable
and agnostic settings, under bandit feedback, be expressed as a function of the BLdim without a
dependence on |)|?

In this paper, we resolve this question by showing that the finiteness of BLdim is necessary and
sufficient for bandit online learnability, in both the realizable and agnostic settings, even when the
label space is unbounded.

Theorem 1 Let H C V¥ and Cy; := sup,cx |[{h(z) : h € H}|. The following statements are
equivalent:

1. H is bandit online learnable.

2. BL(H) < 0.
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3. Cy < ooand L(H) < oc.

We prove (2) = (1), (3) = (2) in Section 3, and (1) = (3) in Section 4. The proof
of (2) = (1) is given by an agnostic online learner whose expected regret under bandit feedback
can be expressed as a function of BLdim without any dependence on |)|.

Theorem 2 For any H C V¥, there exists an agnostic online learner whose expected regret, under
bandit feedback, is at most

8v/L(H)BL(H)T log(T).

Theorem 2 provides an improvement over the upperbound given by Daniely and Helbertal
(2013) when |Y| > BL(H). In fact, the gap between || and BL(#) can be arbitrary. Consider the
case where ) = N but || < oco. Then, its not hard to see that BL(H) < |#| but || = cc.

In addition to characterizing learnability, there has been recent interest in showing a separa-
tion between uniform convergence and learnability. For example, Montasser, Hanneke, and Srebro
(2019) show that while uniform convergence is sufficient for adverarsially robust PAC learnabil-
ity, it is not necessary. Likewise, for online mutliclass learning under full-information feedback,
Hanneke et al. (2023) give a class that is learnable, but the online analog of uniform convergence
(Rakhlin, Sridharan, and Tewari, 2015b), termed Sequential Uniform Convergence (SUC), does not
hold. Towards this end, we ask whether there is a separation between SUC and bandit online learn-
ability. We answer this question affirmatively: while SUC is necessary for bandit learnability, it is
not sufficient.

Theorem 3 [f a hypothesis class is online learnable under bandit feedback, then it enjoys the SUC
property. However, there exists a class which satisfies the SUC property, but is not online learnable
under bandit feedback.

Theorem 3 is in contrast to the full information setting where SUC is sufficient, but not necessary
for online learnability (Hanneke et al., 2023). We note that Theorem 3 along with Example 1 from
Hanneke et al. (2023) also shows a separation in online learnability between the full-information
and bandit feedback settings. Figure 1 visualizes the landscape of learnability for online multiclass
problems.

2. Preliminaries

Let X denote the instance space, ) be the label space, and H C V¥ denote a hypothesis class. In
this paper, we place no assumptions on the size of the label space ). Given an instance z € X', we
let H(x) := {h(x) : h € H} denote the projection of H onto x. As usual, [N] is used to denote
{1,2,...,N}.

2.1. Online Learning

In online multiclass classification with bandit feedback, an adversary plays a sequential game with
the learner over 7" rounds. In each round ¢ € [T], an adversary selects a labeled instance (z:, y:) €
X x Y and reveals x; to the learner. The learner makes a (potentially randomized) prediction ¢; € ).
Finally, the adversary reveals to the learner its loss 1{J; # .}, but not the true label y;. Given a



RAMAN RAMAN SUBEDI MEHALEL TEWARI

SG(H) <

BL(H) < o0

Figure 1: Landscape of multiclass online learnability. The Sequential Graph (SG) dimension (see
Definition 9) characterizes SUC.

hypothesis class 7 C V¥, the goal of the learner is to output predictions §j; under bandit feedback
such that its expected regret

T T
E Z {ge # ye} — ﬁgiz 1{h(xe) # w}

t=1 t=1
is small. A hypothesis class H is said to be bandit online learnable if there exists an algorithm
such that for any sequence of labeled examples (z1,y1), ..., (z7, yr), its expected regret, under
bandit feedback, is a sublinear function of 7". In this paper, we consider the oblivious setting where
the adversary selects the entire sequence of labeled instances (x1,y1), ..., (x7, y7) before the game
begins. Thus, we treat the stream of labeled instances as a non-random, deterministic quantity.

Definition 4 (Bandit Online Learnability) A hypothesis class H is bandit online learnable, if
there exists an (potentially randomized) algorithm A such that its expected regret,

T

T
35140 A ] - ot 3 0t £ )
t=1

RA(T,H) := sup (E
Tryr) =1

(@1,51)505(

while only receiving bandit feedback, is a non-decreasing sub-linear function of T

If it is guaranteed that the learner always observes a sequence of examples labeled by some
hypothesis h € H, then we say that we are in the realizable setting.

Littlestone (1987) and Ben-David, Pal, and Shalev-Shwartz (2009) showed that a combinato-
rial parameter called the Littlestone dimension characterizes online learnability of binary hypoth-
esis classes under full-information feedback, in both the realizable and agnostic settings, respec-
tively. Later, Daniely et al. (2011) defined a multiclass extension of the Littlestone dimension and
showed that it tightly characterizes online learnability of multiclass hypothesis classes under full-
information feedback in both the realizable and agnostic settings. The Littlestone dimension, in
both the binary and multiclass case, is defined in terms of trees, a combinatorial object that captures
the temporal dependence inherent in online learning.
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Given an instance space X and a set of objects M, an X'-valued, M-ary tree 7 of depth 7" is
a complete rooted tree such that (1) each internal node v is labeled by an instance z € X and (2)
for every internal node v and object m € M, there is an outgoing edge e} indexed by m. Such
a tree can be identified by a sequence (77, ..., 77) of labeling functions 7; : M!~! — X which
provide the labels for each internal node. A path of length T' is given by a sequence of objects
m = (mq,....,my) € MT. Then, T;(mq,...,m;_1) gives the label of the node by following the
path (my, ..., my_1) starting from the root node, going down the edges indexed by the m;’s. We let
71 € X denote the instance labeling the root node. For brevity, we define m<; = (mq,...,my_1)
and therefore write T¢(my1, ...,m—1) = T¢(m<). Analogously, we let m<; = (my, ..., m). Using
this notation, we define the extension of the Littlestone dimension to the multiclass setting proposed
by Daniely et al. (2011).

Definition 5 (Littlestone dimension (Littlestone, 1987; Daniely et al., 2011)) Let T be a complete,
X-valued, {£1}-ary tree of depth d such that the edges from a single parent node to its child
nodes are each labeled with a different element of Y. The tree T is shattered by H C Y% if
for every path ¢ = (01,...,04) € {£1}Y, there exists a hypothesis hy € H such that for all
t € [d, ho(Ti(0<t)) = y(o<t), where y(o<t) is the label of the edge between the the nodes
(Ti(o<t), (Te+1(0<t))). The Littlestone dimension of H, denoted L(H), is the maximal depth of a
tree T that is shattered by H. If there exist shattered trees of arbitrarily large depth, we say that
L(H) = oc.

In the same work, Daniely et al. (2011) defined a combinatorial parameter called the Bandit
Littlestone dimension (BLdim) and showed that it characterizes bandit online learnability of deter-
ministic learners in the realizable setting.

Definition 6 (Bandit Littlestone dimension (Daniely et al., 2011)) Let T be a complete, X -valued,
Y-ary tree of depth d. The tree T is shattered by H C Y~ if for every path y = (y1, ..., yq) € V<,
there exists a hypothesis hy € H such that for all t € [d), hy(Ti(y<¢)) # yi. The Bandit Littlestone
dimension of H, denoted BL(H), is the maximal depth of a tree T that is shattered by H. If there
exist shattered trees of arbitrarily large depth, we say that BL(H) = oc.

In particular, Daniely et al. (2011) show a matching upper and lowerbound on the realizable
error rate of deterministic learners in terms of the BLdim.

Theorem 7 (Realizable Learnability (Daniely et al., 2011)) In the realizable setting, for any H C
VX, there exists a deterministic online learner whose cumulative loss on the worst-case sequence,
under bandit feedback, is at most BL(H). Also, the cumulative loss of any deterministic online
learner on the worst-case sequence, under bandit feedback, is at least BL(H).

In the agnostic setting, Daniely and Helbertal (2013) gave an upperbound on the expected regret
under bandit feedback, in terms of || and Ldim.

Theorem 8 (Agnostic Learnability (Daniely and Helbertal, 2013)) For any H C V¥, there ex-
ists an online learner A such that

RA(T, H) < ey/L(H)|YIT log(T|V)).
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In Section 3, we show that || in Theorem 8 can be replaced with BL(#). Note that this both
qualitatively and quantitatively improves over Theorem 8. Qualitatively, it shows that finite BL(#)
suffices for bandit online learnability, without any requirements on |Y|. Furthermore, there is no
better qualitative characterization, since as we show in Section 4, finite BL(#) is also necessary for
learnability. A quantitative improvement is achieved in cases where | Y| > BL(H).

2.2. Online Learnability and Uniform Convergence

The relationship between learnability and uniform convergence has a rich history in learning the-
ory. For binary classification in the PAC setting, the seminal work by Vapnik and Chervonenkis
(1974) shows that uniform convergence and PAC learnability are equivalent. Likewise, for online
binary classification, an online analog of uniform convergence, termed Sequential Uniform Con-
vergence (SUC), is equivalent to online learnability (Rakhlin, Sridharan, and Tewari, 2015b; Alon,
Ben-Eliezer, Dagan, Moran, Naor, and Yogev, 2021). However, this equivalence between uniform
convergence and learnability breaks down for multiclass classification. Indeed, in the PAC setting,
it was shown that while uniform convergence suffices for multiclass learnability, it is not neces-
sary (Natarajan, 1989). Recently, Hanneke et al. (2023) extended this separation to the online,
full-information feedback setting by showing that SUC is sufficient but not necessary for multiclass
learnability. Instead, they show that SUC is characterized by a different combinatorial parameter
termed the Sequential Graph dimension (SGdim).

Definition 9 (Sequential Graph dimension (Hanneke et al., 2023)) Let H C VY and o H =
{(z,y) — 1{h(x) # y} : h € H} be its loss class. Then, the Sequential Graph dimension of H,
denoted SG(H), is defined as SG(H) = L(£ o H).

In particular, a hypothesis class ‘H enjoys the SUC property if and only if its SGdim is finite.

Theorem 10 (Hanneke et al. (2023); Rakhlin et al. (2015a)) For any hypothesis class H C yr,
the SUC property holds for H if and only if SG(H) < oc.

In fact, there is a quantitative relation between SGdim and Ldim when the label space is bounded.

Theorem 11 (Hanneke et al. (2023)) For any H C Y% such that |Y| < oo, we have SG(H) =
O(L(H) log(|Y])).

A combination of Theorem 11 and a result due to Alon et al. (2021), Hanneke et al. (2023)
derives a new upperbound on the best achievable expected regret under full-information feedback.

Theorem 12 (Hanneke et al. (2023); Alon et al. (2021)) For any H C V¥ such that SG(H) <
o0, there exists an online learner whose expected regret under full-information feedback is at most

O(\/SGH)T).

In this work, we also investigate the relationship between bandit online learnablity and SUC.
In Section 3, we show that finite BLdim implies finite SGdim, and more precisely that SG(H) =
O(L(H)log(BL(#))). On the other hand, in Section 4, we exhibit a class where SUC holds, but is
not bandit online learnable. Together, these results imply that SUC is necessary, but not sufficient,
for bandit online learnability.
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3. BLdim is Sufficient for Bandit Online Learnability

In this section we prove Theorem 2, which implies direction (2) = (1) in Theorem 1. We also
prove (3) = (2) towards the end of the section. The first ingredient of this proof is the following
result which shows that the BLdim provides a uniform upperbound on the size of the projection of
‘H on any instance x € X.

Lemma 13 For any H C Y, we have sup,¢ v |H(z)| < BL(H) + 1.

Proof Suppose that |H(z)| > BL(H) + 2 for some x € X. We will prove the lemma by contra-
diction, constructing a BLdim tree of depth BL(#) + 1 that is shattered by . Let 7 be a BLdim
tree of depth BL(7) + 1 with every internal node labeled by x. Without loss of generality, suppose
that H(z) = {1,2,...,BL(#) + 2}, and let there be h1, ..., hp(3)42 € H such that h;(x) = i for
all 1 < ¢ < BL(H) + 2. We now show that 7 shatters 7. Consider any path down 7. Since 7 has
depth BL(#) + 1, there can only be BL(#H) + 1 different labels on that path. Since there are at least
BL(#H) + 2 hypotheses in #, there is a hypothesis h; € H such that h;(x) is not equal to any of the
labels on the path. Since the path is arbitrary, the tree is shattered by H according to Definition 6.
By contradiction, |H(z)| < BL(#H) + 1 forallz € X. [

A uniform upperbound C' on the projection size of # is a strong property: it allows us to
effectively reduce the label space from ) to [C]. Lemma 14 makes this precise. For a bandit
algorithm A, let A(x) be its prediction on x, given the history of the game so far (for the sake of
readability, we omit the information received prior to instance x from the notation).

Lemma 14 Let H C V¥ such that sup,cy |H(x)| < C. Then, there exists a hypothesis class
H C [C)? such that

() L(H) = L(H).
(i) SG(H) = SG(H).

(iii) For every bandit algorithm A for H such that A( ) € :l:[( ) at all times, there exists a
bandit algorithm A for H such that R4(T,H) = R (T, H) for all T. Furthermore, if A is
deterministic, then so is A.

(iv) BL(H) = BL(H).

Proof Let % C Y7 be such that sup,cy [H(z)| < C. For every z € X, define a function
¢z H(z) — [|[H(x)|] such that ¢, is one-to-one. Finally, consider the following hypothesis class
H = {x — ¢.(h(x)) : h € H}. Clearly, we have that H C [C]* and we now show that H also
satisfies the four properties above.

Property (i) follows from observing that any non-empty shattered Ldim tree for 7{ can be trans-
formed into a shattered Ldim tree for H, since the the outgoing edges of any internal node labeled
by = must be labeled using elements of [|#(z)|]. Thus, the inverse mapping ¢, : [|H(z)|] — H(z)
can be used to transform this tree into an Ldim tree of the same depth for 4. Likewise, one can use
the forward mapping ¢, to transform any non-empty shattered Ldim tree for H into a non-empty
shattered Ldim tree for . The equality trivially holds if no non-empty Ldim tree exists.
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Property (ii) follows from the fact that every internal node in a non-empty shattered Ldim tree
for the loss class {(z,y) — 1{h(z) # y} : h € H} must be labeled using elements of {(x,y) : y €
H(z)}. Thus the mapping function ¢, can be used to transform any non-empty shattered Ldim tree
for the loss class {(z,y) — 1{h(x) # y} : h € H} into a non-empty shattered Ldim tree for the
loss class {(z,y) — 1{h(x) # y} : h € H}. The reverse direction follows analogously by using
the inverse mapping function ¢, *.

To prove property (iii), suppose that A is a bandit algorithm for # such that on any instance
r € X, the prediction of A always lies in (). Algorithm 1 uses A in a black-box fashion to
construct a bandit learner A for H.

Algorithm 1 Bandit algorithm A

Input: Hypothesis class #, bandit algorithm A for H

fort=1,...,Tdo
Receive example x4

Query g = A(x)

Predict j; = qs;tl (Tt) )

Observe loss 1{y; # §:} and pass along the indication to A
end

We claim that the expected regret of Algorithm A is R ;(T,H). To see this, fix 7' € N and let
S = (x1,11),. .., (@, yr) € (X x )T be the sequence of examples to be passed to A. We show
that there exists a sequence of examples S” € (X x [C] U {x})T for A such that

min 3 L{h(e) £y} =min > 1{(@) # ). (1)
(we,yt)€S (ze,y0)€S’

E| Y MA@@)#y}| =E| Y I{A(z) £y}, )
(we,ye)€S (we,y))€S’

and (3) the feedback that A provides to A matches the feedback that A would have received if it
was executed on S’

Combining (1), (2), and (3) and the regret guarantee R A(T,?-_[) for A immediately implies
property (iii). It remains to construct S’ for which all three statements hold. For every ¢ €
[T), let y; = ¢a, () 1{yr € H(x)} + x1{ys ¢ H(x:)}. Consider the following stream S’ =
(21,Y)), -y (27, ¥%) € (X x [C] U {x})T. To see that (1) holds, observe that for every h € H we
have that

T
Y Uh(z) Ayt = D> W) #Fud+ Y Hhlw) # ul
t=1 tys €H(xt) t:ys ¢ H(xt)
= Y b (h@) £ b} Y e (b)) £ 5}
tys €H(xt) tyeEH (@)
T —
= Z {h(zy) # yz’t}
t=1
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To see (2), note that

T

Z 1{A(xt) # ye}

t=1

E

r T
=E Z 1{¢;,! (5:) # yt}]
[=1

=E Z ]l{cf);tl(ﬂt) Fuyt+ Z ]l{ﬁf);tl(gt) # Yt}

|ty €H(xt) tyr ¢ H(we)

=E| > HA@)#oa@)}+ Y WA #+)

L t:ye€H(2t) Ly ¢ H(wt)

=E | 1{A(z;) # yé}] :

t=1

Finally, to prove (3), it suffices to show that 1{y; # 9} = 1{y; # A(xy)}. If 1{y; # 9:} = 0,
then y; = ¢! (%) and A(x¢) = ¢y, () = yj as needed. If 1{y; # §:} = 1 and y; € H(x;), then
Ut # ¢z, (yt) = ;. Lastly, if 1{y; # %} = 1 and y; ¢ H(x:), we get that ; # y; = x since
A(xt) € H(xt). The “furthermore” part of the property is straightforward by the construction of A.

Let us move on to Property (iv). The direction BL(#) < BL(#H) follows from Property (iii).
Indeed, let A be the optimal BSOA deterministic learner defined in (Daniely et al., 2011) for H
under the assumption of realizability. For every round , the algorithm A never predicts y ¢ H ()
by its definition. Therefore, by Property (iii) there exists a deterministic learner A for H having the
same guarantees as of A. Therefore BL(H) < BL(H). The reverse direction BL(#H) > BL(H)
follows by considering the realizable setting and the bandit algorithm for 7 that, given any instance
xt, passes 2 to the BSOA for H, receives its prediction g; € )/, makes the prediction g, = ¢4, (4:) €
[C], and upon receiving the feedback 1{y; # y: }, passes the same feedback to the BSOA. The same
analysis as in Property (iii) can be used to show that this algorithm makes at most BL(#) mistakes
on any realizable stream. |

In order to use Property (iii) of Lemma 14, we need to construct a bandit learner A which on any
instance x € X', makes a prediction that lies in H (x) and achieves a sublinear regret bound whenever
BL(H) < oc. Unfortunately, the generic bandit learner witnessing the proof of Theorem 8 does not
guarantee that its predictions always lie in the projection of . Fortunately, the following lemma,
whose proof can be found in Appendix A, shows that a slight modification of the bandit learner used
to prove Theorem 8 can achieve the same regret bound, while ensuring that the predictions always
lie in the projection of H.

Lemma 15 Forany H C VX, there exists an online learner A such that

RA(T,H) < e/L(H)|VIT log(T|Y]),

while ensuring that A(xt) € H(xt) almost surely.

We are now ready to prove Theorem 2, which implies that finitness of BLdim is sufficient for
bandit online learnability even when the label space is unbounded. This proves direction (2) =
(1) in Theorem 1.
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Proof (of Theorem 2) We first prove a stronger result and then show that Theorem 2 follows. Let
H C V¥ be such that BL(H) < oo. Then, by Lemmas 14 and 15, there exists an online learner
whose expected regret in the agnostic setting under bandit feedback is at most e/L(H)CT log(T'C)
where C' = sup,cy |H(x)|. Since Lemma 13 states that C' < BL(H) + 1 < 2BL(#), we can
further upperbound the expected regret by 2e+/L(H)BL(H)T log(T BL(H)). There are now two
cases to consider. If 7" < BL(?H), the expected regret of any bandit online learner can be trivially
upperbounded by 7. Noting that 8/L(H)BL(H)T log(T) > T when T < BL(#) completes this
case. If ' > BL(?H), then we can upperbound the expected regret of the bandit online learner by

2e/L(H)BL(H)T log(T BL(H)) < 2e+/2L(H)BL(H)T log(T) < 8y/L(H)BL(#)T log(T),
matching the upperbound given in the statement of Theorem 2. This completes the proof. |

In online learning theory, upperbounds on the minimax expected regret are traditionally derived
in terms of the single combinatorial dimension that characterizes learnability. However, our up-
perbound in Theorem 2 is in terms of both the Ldim and BLdim. To get a bound depending only
on the BLdim, one can trivially use the fact that L(H) < BL(#) to get a suboptimal upperbound
of 8BL(H)+/T log(T) on the minimax expected regret. However, as an intermediate step to our
upperbound in Theorem 2, we show that the minimax expected regret can actually be upperbounded
by e\/L(H)CT log(T'C), and thus it is natural to ask whether there is an upperbound on \/L(H)C
that is significantly better than BL(#). Unfortunately, the following example shows that this is not
the case.

Example 1. Fix d,C € N. Define the instance space X = {xo, ..., 24} and the label space
Y ={0,....,C —1}. Let H; = {0,130} and Hy = {z — yl{z = z0} : y € V}.
Consider the hypothesis class H = H; U Ha. Clearly, L(H) > L(H1) = BL(#1) = d. Moreover,
BL(H2) < C' — 1. We now give an upperbound on BL(7) by constructing a deterministic learner
for H. Consider the learning algorithm that predicts O until its first mistake, removes inconsistent
hypotheses, and plays the Bandit Standard Optimal Algorithm (BSOA) from Daniely et al. (2011)
on future rounds. We now show that this algorithm makes at most 1 + max{d, C' — 1} mistakes on
any realizable stream. There are two cases to consider. Suppose the algorithm makes its first mistake
on xg. Then, by construction of 7, the true hypothesis must be in Ho and thus the BSOA makes
no more than BL(#2) < C — 1 mistakes in all future rounds. On the other hand, if the algorithm
makes its first mistake on x € {z1, ..., x4}, then the true hypothesis must be in #; and thus the
BSOA makes at most BL(#;) = d mistakes on all future rounds. Overall, the algorithm makes at
most 1 + max{d, C'— 1} mistakes. Since the BLdim lowerbounds the number of mistakes made by
any deterministic learner under bandit feedback, we must have that BL(#) < 1 4+ max{d, C' — 1}.
Taking C' = d + 1, we have that BL(#) < 1 +d < 1+ /L(H)C, which completes the example.

We leave it as an interesting open question to derive optimal lower and upper bounds on the
minimax expected regret in terms of only the BLdim (see Section 5). Lemma 14 can also be used
to sharpen the relationship between BLdim and Ldim. In particular, due to (Auer and Long, 1999;
Daniely and Helbertal, 2013; Long, 2017), there exists a deterministic online learner in the real-
izable setting whose number of mistakes, under bandit feedback, is at most O(L(H)|Y|log(|V]))-
Since the BLdim lowerbounds the number of mistakes made by any deterministic online learner
in the realizable setting, Lemma 14 immediately implies that when sup,.c v |H(z)| < C, we have
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BL(H) = O(L(#H)C'log C), proving direction (3) = (2) in Theorem 1. In Section 4, we show
that finiteness of both C' and L(#) is also necessary for learnability (direction (1) = (3)).

We end this section with Corollary 16, which shows that SUC is necessary for a hypothesis class
to be bandit online learnable.

Corollary 16 IfBL(H) < oo, then SG(H) = O(L(H) log(BL(H))).

Proof Let H C Y% such that BL( ) < oo. Then by Lemmas 13 and 14, there exists a class
H C [BL(H) + 1] such that L(H) = L(#) and SG(?-_[) = SG(H). Since BL(H) + 1 < oo,
Theorem 11 implies that SG(H) = O(L(H) log(BL(H))) = O(L(H) log(BL(H))). [ |

Since BL(H) < oo implies that L(#H) < oo, Corollary 16 and Theorem 10 taken together prove
the first half of Theorem 3, showing that H enjoys SUC when BL(H) < oco. Moreover, when
BL(H) < oo, Corollary 16 along with Theorem 12 implies a slightly sharper upperbound on the
optimal expected regret in the agnostic setting under full-information feedback.

Corollary 17 Let H C VY such that BL(H) < oc. Then, there exists an agnostic online learner
whose expected regret, under full-information feedback, is at most

O (VL(H)Tlog(BL(H))) .

Proof Let H be such that BL(H) < oo. Then, by Corollary 16, SG(H) = O(L(H) log(BL(H))).
Also, by Theorem 12, we have that under full-information feedback, there exists a online learner
whose expected regret is at most O(/7 SG(H)). Combining these two results gives the stated
claim. |

Namely, Corollary 17 improves upon the upperbound on expected regret given by (Hanneke
et al., 2023, Theorem 1) by replacing the log(ﬁ) factor with log(BL(H)).

4. Finite BLdim is Necessary for Bandit Online Learnability

In this section, we complement the results of Section 3, and deduce that finiteness of BLdim is neces-
sary for bandit online learnability in the realizable setting even when the label space is unbounded.
Since agnostic learnability implies realizable learnability, this also implies that finiteness of the
BLdim is necessary for agnostic learnability, completing the proof of the direction (1) = (2) in
Theorem 1. This will also imply (1) = (3), which completes the proof of Theorem 1.

Lemma 18 Let H C Y and C = sup,cy |H(x)| Then, for every bandit online learner A:

1. There exists a realizable stream with expected regret at least 401 & if T > L(H) and at
least T /2 otherwise.

2. There exists a realizable stream with expected regret at least % if T > C, and at least %
otherwise.

11
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Proof Let us start with the first item. A well-known result by Ben-David et al. (2009) states
that there exists a realizable stream of length 7' = L(7{) such that in expectation, .A makes at
least I.(?)/2 mistakes under full information feedback. On the other hand, by Long (2017) and
Lemma 14 we have BL(H) < 2L(#)ClogC, implying the item for the case 7' > L(#H). If
T < L(H), we employ the lower bound on T instead of on L(# ), concluding this item. The second
item follows immediately from (Daniely and Helbertal, 2013, Claim 2). |

Lemma 18 implies that finiteness of BLdim is necessary for bandit online learnability in the
realizable setting. Recall that BL(H) > C — 1 due to Lemma 13. Now, if C = oo (where
C :=sup,cy |H(x)|), then Lemma 18 implies that the expected regret of any online learner under
bandit feedback and in the realizable setting, is at least %, a linear function of 7". On the other
hand, if BL(H) = oo and C < oo, then the bound BL(H) = O(L(#)Clog C) implies that
L(H) = oo, and then Lemma 18 implies a lowerbound of % on the expected regret. This proves the
direction (1) = (2) in Theorem 1. Using the fact that BL(#) > L(?) and Lemma 13 shows
that (2) = (3), completing the proof of Theorem 1.

Furthermore, if C' is a constant, then taken together with Theorem 7, Lemma 18 implies that the
BLdim characterizes the optimal expected mistake bound of randomized learners in the realizable

setting up to constant factors. In the agnostic setting, the full-information lowerbound of % on

the expected regret can also be a tight lowerbound under bandit feedback up to logarithmic factors in
T For example, for every class H C Y such that sup, ¢y |H ()| < 2, Theorem 8 and Lemma 14
imply the existence of a bandit online learner whose expected regret is at most 8/L(H )T log(T).

Finally, Lemma 18 together with Lemma 19 shows that neither the finitness of Ldim nor the
finiteness of SGdim is sufficient for bandit online learnability.

Lemmal19 Let X = {0}, Y = Nand H = {hq : a € N} where h,(0) = a. Then, L(H) =
SG(H) = 1 but BL(H) = oo.

Proof The equality BL(#) = oo follows from the fact that |7{(0)] = oo and Lemma 13. We
have L(#) = 1 because for any labeled instance (0,y) € X x ), there only exists one hypothesis
h € H such that h(0) = y (namely h,). Lastly, SG(#H) = 1 because for any labeled instance
(0,y) € X x Y there exists only one function in the loss class {(0,y) — L1{h(0) # y} : h € H}
that achieves loss 0. |

Lemma 19 completes the proof of Theorem 3, since we have exhibited a class for which SUC
holds but is not bandit online learnable.

5. Discussion and Open Questions

In this paper, we revisited multiclass online learnability under bandit feedback and showed that,
when ) is unbounded: (1) the Bandit Littlestone dimension, originally proposed by Daniely et al.
(2011), continues to characterize bandit online learnability, and (2) while SUC is necessary for
bandit online learnability, it is not sufficient.

Moving forward, there are still many interesting open questions. By Theorem 2, in the agnostic
setting there is a gap of \/BL(#)log(T') between the upper and lowerbounds on the optimal ex-
pected regret under bandit feedback. Is this gap between the upper and lowerbound unavoidable?

12
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Using the fact that BL(H) < 4C'log(C)L(H), one can get a lowerbound of 2 ( E‘Lh()?()CT)) on the

expected regret in the agnostic setting, where C' = sup,cy |H(z)|. Is it possible to remove the
dependence on C' and improve this lowerbound to Q(y/BL(#) T')?

While the BLdim provides a sharp quantitative characterization of deterministic learnability
in the realizable setting, it is unclear whether it provides a tight quantitative characterization of
randomized learnability in both the realizable and agnostic settings. Recently, Filmus, Hanneke,
Mehalel, and Moran (2023) gave a combinatorial parameter called the Randomized Littlestone di-
mension and showed that it exactly quantifies the optimal expected mistake bound for randomized
learners in the realizable setting under full-information feedback. Is there a modification of this
dimension that can exactly quantify the optimal expected mistake bound for randomized learners in
the realizable setting under bandit feedback? Can such a dimension also be used to give a sharper
upperbound on the expected regret in the agnostic setting?
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Appendix A. Proof of Lemma 15

To prove Lemma 15, we slightly modify the generic agnostic learner witnessing the proof of The-
orem 8. Recall that the agnostic learner in Theorem 8 first constructs a sufficiently small set of
experts I such that for every hypothesis h € H, there exists an expert £, € E whose predictions
exactly match h over the stream. Then, the learner runs the non-mixing version of EXP4 (see Figure
4.1 and Theorem 4.2 in Bubeck and Cesa-Bianchi (2012)) with this set of experts E on the stream,
for an appropriately chosen learning rate. Unfortunately, in all rounds ¢ € [T'], some of the experts
constructed by this learner output predictions lying outside of H(x;). Thus, EXP4 with this set of
experts does not satisfy the constraint imposed by Lemma 15, that its predictions on x; must lie
in H(x¢). To fix this issue, we modify each expert £ € E such that for every ¢t € [T], we have
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that £(x;) € H(z;) while still maintaining the property of the expert set of Daniely and Helbertal
(2013): for every h € H, there exists an expert £, € E that predicts exactly like A over the stream.
Our modification is simple: in contrast to the experts constructed by Daniely and Helbertal (2013),
our experts may predict using the “covering function” ¢ (as defined in Daniely and Helbertal (2013))
only if its value lies in H(x;). Running the EXP4 algorithm using this new set of experts gives the
claimed regret guarantee. We now formalize this construction.

Let (x1,91), .., (x7,y1) € (X x V)T denote the stream of instances to be observed by the
learner and h* € arg ming,c4 Zle 1{h(x¢) # y;} denote the optimal hypothesis in hindsight. As
stated before, our high-level strategy will be to construct a set of experts £ and then run EXP4 using
E over the stream. Crucially, we will guarantee that £(x;) € H(x) for every € € E.

Given the time horizon 7', let Ly = {L C [T];|L| < L(#)} denote the set of all possible
subsets of [T'] of size at most L(#). For every L € Ly, let ¢ : L — ) denote a function mapping
time points in L to a label in ). Let &y = YL denote all such functions ¢. Foreach L € Ly
and ¢ € @, we define an expert &7, 4. As presented below in Algorithm 2, expert &7, 4 uses the
Standard Optimal Algorithm (SOA) (Littlestone, 1987) to make its prediction in rounds ¢ where
t ¢ L. Whent € L, there are two cases. If ¢(t) € H(x;), the expert £, , uses the function ¢
to compute a labeled instance to predict and update the SOA with. Otherwise, the expert chooses
an arbitrary label in #(z:) to predict and update SOA with. Let E' = U1, Uyes, €L,¢ denote
the set of all Experts parameterized by subsets L € Ly and ¢ € ®;. Crucially, observe that by
definition of SOA, for every time point ¢ € [T] and expert £ € E, it holds that £(x;) € H(zy).
Finally, note that |E| < (T|Y|)~*).

Algorithm 2 Expert &7,

Input: Independent copy of SOA
fort=1,...,T do
Receive example x4
Let y: = SOA(.%'LL)
ift € Land ¢(t) €

| Predict g, = ¢(t
elseif t € L and ¢(t) ¢ H(x¢) then

| Predict arbitrary label g; € H(x)
else

| Predict g4 = ¥
Update SOA by passing (z¢, §)

H(z:) then
)

end

We claim that there exists an expert Er+ 4» € E such that h*(x;) = Epx ¢ (¢) for all t € [T7].
To see this, consider the hypothetical stream of instances labeled by the optimal hypothesis S* =
(x1,h*(x1)), ..., (xp, h*(x7)). Let L* = {t1,t2,...} be the indices on which the SOA algorithm
would have made a mistake had it run on S*. By the guarantees of the SOA (Littlestone, 1987),
we have that |L*| < L(#). Consider the function ¢* : L* — Y such that for all t € L*, we have
¢*(t) = h*(x;). By construction of F, there exists an expert £+ o« € E parameterized by L*
and ¢*. We claim that for all ¢ € [T, we have £+ ¢+ (2¢) = h*(x;). This follows by observing
that £7~ 4+ predicts and updates its copy of SOA using exactly the stream of instances labeled by
h*. Since by definition of L* the predictions of SOA match that of h* outside of L*, we have
Erx ¢+ (x1) = SOA(xy) = h*(xy) for all t ¢ L*. Moreover, for those time points ¢ € L*, we

15



RAMAN RAMAN SUBEDI MEHALEL TEWARI

have that £7» 4« (x¢) = ¢*(t) = h*(x;) by definition of ¢*(t). Thus, for all t € [T], we have that
Epr g (1) = b (24).
Consider the agnostic online learner A that runs the non-mixing version of EXP4 (see Fig. 4.1

and Theorem 4.2 in Bubeck and Cesa-Bianchi (2012)) using the set of experts E with learning rate
— /InlE]
1=\ Ty

. By the guarantees of the EXP4 algorithm, it follows that

T T
E [Z L A(xr) # yt}] < inf ST UHE@) # u} + e/ THIIIE]
t=1

t=1

T
< S e o (@) # wik + e/ LEOVIT T
t=1

T
=" 1" (@) # wi} + eV/LH) VT I (T]Y)).

Finally, observing that for all t € [T], Ugep{E(z¢)} C H(x:) together with the fact that EXP4
algorithm in Figure 4.1 of Bubeck and Cesa-Bianchi (2012) samples a label using a distribution
supported only over Ugcp{&(z:)} ensures that A(x;) € H(x;) almost surely (equivalently, the
EXP4 algorithm samples an expert £ € E and uses its prediction). This completes the proof of
Lemma 15.
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