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Abstract

Recently, Montasser et al. [2019] showed that finite VC dimension is not sufficient
for proper adversarially robust PAC learning. In light of this hardness, there is a
growing effort to study what type of relaxations to the adversarially robust PAC
learning setup can enable proper learnability. In this work, we initiate the study of
proper learning under relaxations of the adversarially robust loss. We give a family
of robust loss relaxations under which VC classes are properly PAC learnable with
sample complexity close to what one would require in the standard PAC learning
setup. On the other hand, we show that for an existing and natural relaxation of the
adversarially robust loss, finite VC dimension is not sufficient for proper learning.
Lastly, we give new generalization guarantees for the adversarially robust empirical
risk minimizer.

1 Introduction

As deep neural networks become increasingly ubiquitous, their susceptibility to test-time adversarial
attacks has become more and more apparent. Designing learning algorithms that are robust to these
test-time adversarial perturbations has garnered increasing attention by machine learning researchers
and practitioners alike. Prior work on adversarially robust learning has mainly focused on learnability
under the worst-case adversarially robust risk [Montasser et al., 2019, Attias et al., 2021, Cullina
et al., 2018],

RU (h;D) := E
(x,y)∼D

[
sup

z∈U(x)

1{h(z) ̸= y}

]
,

where U(x) ⊂ X is an arbitrary but fixed perturbation set (for example ℓp balls). In practice, worst-
case robustness is commonly achieved via Empirical Risk Minimization (ERM) of the adversarially
robust loss or some convex surrogate [Madry et al., 2017, Wong and Kolter, 2018, Raghunathan et al.,
2018, Bao et al., 2020]. However, a seminal result by Montasser et al. [2019] shows that any proper
learning rule, including ERM, even when trained on an arbitrarily large number of samples, may
not return a classifier with small adversarially robust risk. These high generalization gaps for the
adversarially robust loss have also been observed in practice [Schmidt et al., 2018]. Even worse,
empirical studies have shown that classifiers trained to achieve worst-case adversarial robustness
exhibit degraded nominal performance [Dobriban et al., 2020, Raghunathan et al., 2019, Su et al.,
2018, Tsipras et al., 2018, Yang et al., 2020, Zhang et al., 2019, Robey et al., 2022].

In light of these difficulties, there has been a recent push to study when proper learning, and more
specifically, when learning via ERM is possible for achieving adversarial robustness. The ability to
achieve test-time robustness via proper learning rules is important from a practical standpoint. It
aligns better with the current approaches used in practice (e.g. (S)GD-trained deep nets), and proper
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learning algorithms are often simpler to implement than improper ones. In this vain, Ashtiani et al.
[2022] and Bhattacharjee et al. [2022] consider adversarial robust learning in the tolerant setting,
where the error of the learner is compared with the best achievable error with respect to a slightly
larger perturbation set. They show that the sample complexity of tolerant robust learning can be
significantly lower than the current known sample complexity for adversarially robust learning and
that proper learning via ERM can be possible under certain assumptions. Additionally, Ashtiani
et al. [2020] provide some sufficient conditions under which proper robust learnability of VC classes
becomes possible under a PAC-type framework of semi-supervised learning. More recently, Attias
et al. [2022] show that finite VC dimension is sufficient for proper semi-supervised adversarially
robust PAC learning if the support of the marginal distribution on instances is known. On the other
hand, Attias and Hanneke [2023] study the adversarially robust PAC learnability of real-valued
functions and show that every convex function class is properly learnable.

In a different direction, several works have studied the consistency of various surrogates of the
adversarially robust loss ℓU (h, (x, y)) = supz∈U(x) 1{h(z) ̸= y} [Awasthi et al., 2022a,b, 2023,
Mao et al., 2023], while others have considered relaxing its worst-case nature [Robey et al., 2022, Li
et al., 2020, 2021, Laidlaw and Feizi, 2019, Rice et al., 2021]. However, the PAC learnability of these
relaxed notions of the adversarially robust loss has not been well-studied.

In this paper, we study relaxations of the worst-case adversarially robust learning setup from a
learning-theoretic standpoint. We classify existing relaxations of worst-case adversarially robust
learning into two approaches: one based on relaxing the loss function and the other based on relaxing
the benchmark competitor. Much of the existing learning theory work studying relaxations of
adversarial robustness focus on the latter approach. These works answer the question of whether
proper PAC learning is feasible if the learner is evaluated against a stronger notion of robustness.
In contrast, we focus on the former relaxation and pose the question: can proper PAC learning be
feasible if we relax the adversarially robust loss function itself? In answering this question, we make
the following main contributions:

• We show that the finiteness of the VC dimension is not sufficient for properly learning a
natural relaxation of the adversarially robust loss proposed by Robey et al. [2022]. Our
proof techniques involve constructing a VC class that is not properly learnable.

• We give a family of adversarially robust loss relaxations that interpolate between average-
and worst-case robustness. For these losses, we use Rademacher complexity arguments
relying on the Ledoux-Talagrand contraction to show that all VC classes are learnable via
ERM.

• We extend a property implicitly appearing in margin theory (e.g., see Mohri et al. [2018,
Section 5.4]), which we term “Sandwich Uniform Convergence” (SUC), to show new
generalization guarantees for the adversarially robust empirical risk minimizer.

2 Preliminaries and Notation

Throughout this paper we let [k] denote the set of integers {1, ..., k}, X denote an instance space,
Y = {−1, 1} denote our label space, and D be any distribution over X × Y . Let H ⊆ YX denote a
hypothesis class mapping examples in X to labels in Y .

2.1 Problem Setting

In the standard adversarially robust learning setting, the learner, during training time, picks a set
G ⊆ XX 1 of perturbation functions g : X → X against which they wish to be robust. At test time,
an adversary intercepts the labeled example (x, y), exhaustively searches over the perturbation set to
find the worst g ∈ G, and then passes the perturbed instance g(x) to the learner. The learner makes
a prediction ŷ and then suffers the loss 1{ŷ ̸= y}. The goal of the learner is to find a hypothesis
h ∈ YX that minimizes the adversarially robust risk RG(h;D) = E(x,y)∼D [ℓG(h, (x, y))] where
ℓG(h, (x, y)) := supg∈G 1{h(g(x)) ̸= y} is the adversarially robust loss.

1We highlight that our use of perturbation functions G instead of perturbation sets U is without loss of
generality (see Appendix A for an equivalence).
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In practice, however, such a worst-case adversary may be too strong and unnatural, especially in
high-dimension. Accordingly, we relax this model by considering a lazy, computationally-bounded
adversary that is unable to exhaustively search over G, but can randomly sample a perturbation
function g ∼ µ given access to a measure µ over G. In this setup, the learner picks both a perturbation
set G and a measure µ over G. At test-time, the lazy adversary intercepts the labeled example (x, y),
randomly samples a perturbation function g ∼ µ, and then passes the perturbed instance g(x) to
the learner. From this perspective, the goal of the learner is to output a hypothesis such that the
probability that the lazy adversary succeeds in sampling a bad perturbation function, for any labeled
example in the support of D, is small. In other words, the learner strives to be robust to most, but not
all, perturbation functions in G.

We highlight that the set G and the measure µ are fixed and chosen by the learner at training time.
As a result, the measure µ does not depend on the unperturbed point x. Allowing the measure to
depend on the unperturbed point x is an interesting future direction that lies between our model and
adversarial robustness. Nevertheless, fixing the measure µ is still relevant from a practical standpoint
and non-trivial from a theoretical standpoint. Indeed, a popular choice for G and µ are ℓp balls and
the uniform measure respectively. These choices have been shown experimentally to strike a better
balance between robustness and nominal performance [Robey et al., 2022]. Moreover, in Section 3,
we show that even when the measure µ is fixed apriori, there are learning problems for which ERM
does not always work. This parallels the hardness result from Montasser et al. [2019], who prove an
analogous result for adversarially robust PAC learning.

2.2 Probabilistically Robust Losses and Proper Learnability

Given a perturbation set G and measure µ, we quantify the probabilistic robustness of a hypothesis
h on a labeled example (x, y) by considering losses that are a function of Pg∼µ[h(g(x)) ̸= y]. For
a labeled example (x, y) ∈ X × Y , Pg∼µ [h(g(x)) ̸= y] measures the fraction of perturbations in
G for which the classifier h is non-robust. Observe that Pg∼µ [h(g(x)) ̸= y] =

1−yEg∼µ[h(g(x))]
2

is an affine transformation of quantity yEg∼µ [h(g(x))], the probabilistically robust margin of h
on (x, y) with respect to (G, µ). Thus, we focus on loss functions that operate over the margin
yEg∼µ [h(g(x))]. One important loss function is the ρ-probabilistically robust loss,

ℓρG,µ(h, (x, y)) := 1{Pg∼µ (h(g(x)) ̸= y) > ρ},

where ρ ∈ [0, 1) is selected apriori. The ρ-probabilistically robust loss was first introduced by
Robey et al. [2022] for the case when X = R

d, gc(x) = x + c, and the set of perturbations
G = {gc : c ∈ ∆} for some ∆ ⊂ Rd. In this paper, we generalize this loss to an arbitrary instance
space X and perturbation set G. As highlighted by Robey et al. [2022], this notion of robustness is
desirable as it nicely interpolates between worst- and average-case robustness via an interpretable
parameter ρ, while being more computationally tractable compared to existing relaxations.

In this work, we are primarily interested in understanding whether probabilistic relaxations of the
adversarially robust loss enable proper learning. That is, given a hypothesis class H, perturbation set
and measure (G, µ), loss function ℓG,µ(h, (x, y)) = ℓ(yEg∼µ [h(g(x))]), and labeled samples from
an unknown distribution D, our goal is to design a learning algorithm A : (X × Y)∗ → H such that
for any distribution D over X × Y , the algorithm A, given a sample of labeled examples from D,
finds a hypothesis h ∈ H with low risk with regards to ℓG,µ(h, (x, y)).

Definition 1 (Proper Probabilistically Robust PAC Learnability). Let ℓG,µ(h, (x, y)) denote an
arbitrary probabilistically robust loss function. For any ϵ, δ ∈ (0, 1), the sample complexity of
probabilistically robust (ϵ, δ)-learning H with respect to ℓG,µ, denoted n(ϵ, δ;H, ℓG,µ) is the smallest
number m ∈ N for which there exists a proper learning rule A : (X × Y)∗ → H such that for every
distribution D over X × Y , with probability at least 1− δ over S ∼ Dm,

ED [ℓG,µ(A(S), (x, y))] ≤ inf
h∈H

ED [ℓG,µ(h, (x, y))] + ϵ.

We say that H is proper probabilistically robustly PAC learnable with respect to ℓG,µ if ∀ϵ, δ ∈ (0, 1),
n(ϵ, δ;H, ℓG,µ) is finite.
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An important class of proper learning rules is ERMs which simply output the hypothesis h ∈ H that
minimizes the loss ℓG,µ over the training sample. In this paper, we ultimately show that for a wide
family of probabilistically robust loss functions, ERM is a proper learner according to Definition 1.
On the other hand, in Section 3, we show that proper probabilistically robust PAC learning is not
always possible for the loss function ℓρG,µ(h, (x, y)).

2.3 Complexity Measures

Under the standard 0-1 risk, the Vapnik-Chervonenkis dimension (VC dimension) plays an important
role in characterizing PAC learnability, and more specifically, when ERM is possible. A hypothesis
class H is PAC learnable with respect to the 0-1 loss if and only if its VC dimension is finite [Vapnik
and Chervonenkis, 1971].
Definition 2 (VC dimension). A set {x1, ..., xn} ∈ X is shattered by H, if ∀y1, ..., yn ∈ Y , ∃h ∈ H,
such that ∀i ∈ [n], h(xi) = yi. The VC dimension of H, denoted VC(H), is defined as the largest
natural number n ∈ N such that there exists a set {x1, ..., xn} ∈ X that is shattered by H.

One sufficient condition for proper learning, based on Vapnik’s “General Learning" [Vapnik, 2006],
is the finiteness of the VC dimension of a binary loss class

LH := {(x, y) 7→ ℓ(h, (x, y)) : h ∈ H}

where ℓ(h, (x, y)) is some loss function mapping to {0, 1}. In particular, if the VC dimension of the
loss class LH is finite, then H is PAC learnable with respect to ℓ using ERM with sample complexity
that scales linearly with VC(LH). In this sense, if one can upper bound VC(LH) in terms of VC(H),
then finite VC dimension is sufficient for proper learnability. Unfortunately, for adversarially robust
learning, Montasser et al. [2019] show that there can be an arbitrary gap between the VC dimension
of the adversarially robust loss class LH

G := {(x, y) 7→ ℓG(h, (x, y)) : h ∈ H} and the VC dimension
of H. Likewise, in Section 3, we show that for the ρ-probabilistically robust loss ℓρG,µ, there can also
be an arbitrarily large gap between the VC dimension of the loss class and the VC dimension of the
hypothesis class.

As many of the loss functions we consider will actually map to values inR, the VC dimension of the
loss class will not be well-defined. Instead, we can capture the complexity of the loss class via the
empirical Rademacher complexity.
Definition 3 (Empirical Rademacher Complexity of Loss Class). Let ℓ be a loss function, S =
{(x1, y1), ..., (xn, yn)} ∈ (X×Y)∗ be any sequence of examples, and LH = {(x, y) 7→ ℓ(h, (x, y)) :
h ∈ H} be a loss class. The empirical Rademacher complexity of LH is defined as

R̂m(LH) = Eσ

[
sup

f∈LH

(
1

n

m∑
i=1

σif(xi, yi)

)]
where σ1, ..., σm are independent Rademacher random variables.

A standard result relates the empirical Rademacher complexity to the generalization error of hypothe-
ses in H with respect to a real-valued bounded loss function ℓ(h, (x, y)) [Bartlett and Mendelson,
2002].
Theorem 2.1 (Rademacher-based Uniform Convergence). Let D be a distribution over X × Y and
ℓ(h, (x, y)) ≤ c be a bounded loss function. With probability at least 1− δ over the sample S ∼ Dm,
for all h ∈ H simultaneously,

∣∣∣ED[ℓ(h(x), y)]− ÊS [ℓ(h(x), y)]
∣∣∣ ≤ 2R̂m(F) +O

c

√
ln( 1δ )

n


where ÊS [ℓ(h(x), y)] =

1
|S|
∑

(x,y)∈S ℓ(h(x), y) is the empirical average of the loss over S.

3 Not All Robust Loss Relaxations Enable Proper Learning

Recall the ρ-probabilistically robust loss
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ℓρG,µ(h, (x, y)) := 1{Pg∼µ (h(g(x)) ̸= y) > ρ},

and its corresponding risk Rρ
G,µ(h;D) := E(x,y)∼D

[
ℓρG,µ(h, (x, y))

]
. At a high-level, proper learn-

ing under the ℓρG,µ requires finding a hypothesis h ∈ H that is robust to at least a 1− ρ fraction of the
perturbations in G for each example in the support of the data distribution D.

Which hypothesis classes are properly learnable with respect to ℓρG,µ according to Definition 1? In
Appendix B.1, we show that if G is finite, then finite VC dimension is sufficient for proper learning
with respect to ℓρG,µ. On the other hand, in this section, we show that if G is allowed to be arbitrary,
VC dimension is not sufficient for proper learning with respect to ℓρG,µ, let alone learning via ERM.

Theorem 3.1. There exists (G, µ) such that for every ρ ∈ [0, 1), there exists a hypothesis class
H ⊆ YX with VC(H) ≤ 1 such that H is not properly probabilistically robust PAC learnable with
respect to ℓρG,µ.

To prove Theorem 3.1, we fix X = R
d, G = {gδ : δ ∈ Rd, ||δ||p ≤ γ} such that gδ(x) = x + δ

for all x ∈ X for some γ > 0, and µ to be the uniform measure over G. In other words, we
are picking our perturbation sets to be ℓp balls of radius γ and our perturbation measures to be
uniform over each perturbation set. Note that by construction of G, a uniform measure µ over G also
induces a uniform measure µx over G(x) := {gδ(x) : gδ ∈ G} ⊂ Rd. We start by showing that for
every ρ ∈ [0, 1), there can be an arbitrary gap between the VC dimension of H and the loss class
LH,ρ
G,µ := {(x, y) 7→ ℓρG,µ(h, (x, y)) : h ∈ H}.

Lemma 3.2. For every ρ ∈ [0, 1) and m ∈ N, there exists a hypothesis class H ⊆ YX such that
VC(H) ≤ 1 but VC(LH,ρ

G,µ ) ≥ m.

The proof of Lemma 3.2 is found in Appendix B.2. We highlight two key differences between Lemma
3.2 and its analog, Lemma 2, in Montasser et al. [2019]. First, we need to provide both a perturbation
set and a perturbation measure. The interplay between these two objects is not present in Montasser
et al. [2019] and, apriori, it is not clear that these would indeed be ℓp balls and the uniform measure.
Second, in order for a hypothesis to be probabilistically non-robust there needs to exist a large enough
region of perturbations over which it makes mistakes. This is in contrast to Montasser et al. [2019],
where a hypothesis is adversarially non-robust as long as there exists one non-robust perturbation.
Constructing a hypothesis class that achieves all possible probabilistically robust loss behaviors while
also having low VC dimension is non-trivial - we need hypotheses to be expressive enough to have
large regions of non-robustness while not being too expressive such that VC dimension increases.

Next, we show that the hypothesis class construction in Lemma 3.2 can be used to show the existence
of a hypothesis class that cannot be learned properly. Lemma 3.3 is similar to Lemma 3 in Montasser
et al. [2019] and is proved in Appendix B.3.
Lemma 3.3. For every ρ ∈ [0, 1) and m ∈ N there exists H ⊆ YX with VC(H) ≤ 1 such that
for any proper learner A : (X × Y)∗ → H: (1) there is a distribution D over X × Y and a
hypothesis h∗ ∈ H where Rρ

G,µ(h
∗;D) = 0 and (2) with probability at least 1/7 over S ∼ Dm,

Rρ
G,µ(A(S);D) > 1/8.

Finally, the proof of Theorem 3.1 uses Lemma 3.3 and follows a similar idea as its analog in Montasser
et al. [2019] (Theorem 1). However, since our hypothesis class construction in Lemma 3.2 is different,
some subtle modifications need to be made. We include a complete proof in Appendix B.4.

4 Proper Learnability Under Relaxed Losses

Despite the fact that VC classes are not ρ-probabilistically robust learnable using proper learning
rules, our framework still enables us to capture a wide range of relaxations to the adversarially robust
loss for which proper learning is possible.

In particular, consider robust loss relaxations of the form ℓG,µ(h, (x, y)) = ℓ(yEg∼µ [h(g(x))])
where ℓ(t) : R → R is a L-Lipschitz function. This class of loss functions is general, capturing
many natural robust loss relaxations like the hinge loss 1 − yEg∼µ [h(g(x))], squared loss (y −
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Eg∼µ [h(g(x))])
2 = (1− yEg∼µ [h(g(x))])

2, and exponential loss e−yEg∼µ[h(g(x))]. Furthermore,
the class of Lipschitz functions ℓ : R → R on the margin yEg∼µ [h(g(x))] enables us to capture
levels of robustness between the average- and worst-case. For example, taking ℓ(t) = 1−t

2 results
in the loss ℓG,µ(h, (x, y)) = ℓ(yEg∼µ [h(g(x))]) = Pg∼µ [h(g(x)) ̸= y], corresponding to average-
case robustness, or data augmentation. On the other hand, taking ℓ(t) = min( 1−t

2ρ , 1) for some
ρ ∈ (0, 1), results in the loss

ℓG,µ(h, (x, y)) = ℓ(yEg∼µ [h(g(x))]) = min

(
Pg∼µ [h(g(x)) ̸= y]

ρ
, 1

)
which corresponds to a notion of robustness that becomes stricter as ρ approaches 0. We note that
some of the losses in our family were studied by Rice et al. [2021]. However, their focus was on
evaluating robustness, while ours is about (proper) learnability.

Lemma 4.1 shows that for hypothesis classes H with finite VC dimension, for any (G, µ), all
L-Lipschitz loss functions ℓG,µ(h, (x, y)) enjoy the uniform convergence property.
Lemma 4.1 (Uniform Convergence of Lipschitz Loss). Let H be a hypothesis class with finite VC
dimension, (G, µ) be a perturbation set and measure, and ℓG,µ(h, (x, y)) = ℓ (yEg∼µ [h(g(x))])
such that ℓ : R→ R is a L-Lipschitz function. With probability at least 1− δ over a sample S ∼ Dn

of size n = O
(

VC(H)L2 ln(L
ϵ )+ln( 1

δ )

ϵ2

)
, for all h ∈ H simultaneously,∣∣∣ED [ℓG,µ(h, (x, y))]− ÊS [ℓG,µ(h, (x, y))]

∣∣∣ ≤ ϵ.

Proof. Let VC(H) = d and S = {(x1, y1), ..., (xm, ym)} be a set of examples drawn i.i.d from
D. Define the loss class LH

G,µ = {(x, y) 7→ ℓG,µ(h, (x, y)) : h ∈ H}. Observe that we can
reparameterize LH

G,µ as the composition of a L-Lipschitz function ℓ(x) and the function class
FH

G,µ = {(x, y) 7→ yEg∼µ [h(g(x))] : h ∈ H}. By Proposition 2.1, to show the uniform convergence
property of ℓG,µ(h, (x, y)), it suffices to upper bound R̂m(LH

G,µ) = R̂m(ℓ ◦ FH
G,µ), the empirical

Rademacher complexity of the loss class. Since ℓ is L-Lipschitz, by Ledoux-Talagrand’s contraction
principle [Ledoux and Talagrand, 1991], it follows that R̂m(LH

G,µ) = R̂m(ℓ◦FH
G,µ) ≤ L·R̂m(FH

G,µ).

Thus, it actually suffices to upperbound R̂m(FH
G,µ) instead. Starting with the definition of the

empirical Rademacher complexity:

R̂m(FH
G,µ) =

1

m
Eσ∼{±1}m

[
sup
h∈H

(
m∑
i=1

σiyiEg∼µ [h(g(xi))]

)]

=
1

m
Eσ∼{±1}m

[
sup
h∈H

(
Eg∼µ

[
m∑
i=1

σih(g(xi))

])]

≤ Eg∼µ

[
1

m
Eσ∼{±1}m

[
sup
h∈H

m∑
i=1

σih(g(xi))

]]
,

where the last inequality follows from Jensen’s inequality and Fubini’s Theorem. Note that the
quantity 1

mEσ∼{±1}m [suph∈H
∑m

i=1 σih(g(xi))] is the empirical Rademacher complexity of the
hypothesis class H over the sample {g(x1), ..., g(xm)} drawn i.i.d from the distribution defined by
first sampling from the marginal data distribution, x ∼ DX , and then applying the transformation

g(x). By standard VC arguments, R̂m(H) ≤ O

(√
d ln(m

d )

m

)
, which implies that R̂m(FH

G,µ) ≤

Eg∼µ

[
R̂m(H)

]
≤ O

(√
d ln(m

d )

m

)
. Putting things together, we get R̂m(LH

G,µ) = R̂m(ℓ ◦ FH
G,µ) ≤

O

(√
dL2 ln(m

d )

m

)
. Proposition 2.1 then implies that with probability 1− δ over a sample S ∼ Dm

of size m = O
(

dL2 ln(L
ϵ )+ln( 1

δ )

ϵ2

)
, we have∣∣∣ED [ℓG,µ(h, (x, y))]− ÊS [ℓG,µ(h, (x, y))]

∣∣∣ ≤ ϵ
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for all h ∈ H simultaneously.

Uniform convergence of Lipschitz-losses immediately implies proper learning via ERM.
Theorem 4.2. Let ℓG,µ(h, (x, y)) = ℓ(yEg∼µ [h(g(x))]) such that ℓ : R → R is a L-Lipschitz
function. For every hypothesis class H, perturbation set and measure (G, µ), and (ϵ, δ) ∈ (0, 1)2, the
proper learning rule A(S) = argminh∈H ÊS [ℓG,µ(h, (x, y))], for any distribution D over X × Y ,

achieves, with probability at least 1−δ over a sample S ∼ Dn of size n ≥ O
(

VC(H)L2 ln(L
ϵ )+ln( 1

δ )

ϵ2

)
,

the guarantee
ED [ℓG,µ(A(S), (x, y))] ≤ inf

h∈H
ED [ℓG,µ(h, (x, y))] + ϵ.

At a high-level, Theorem 4.2 shows finite VC dimension is sufficient for achieving robustness between
the average- and worst-case using ERM. In fact, the next theorem, whose proof can be found in
Appendix C.2, shows that finite VC dimension may not even be necessary for this to be true. The proof
of Theorem 4.3 involves considering the well-known infinite VC class H = {x 7→ sign(sin(wx)) :
w ∈ R} and picking (G, µ) such that Eg∼µ [h(g(x))] is essentially constant in x for all hypothesis
h ∈ H.
Theorem 4.3. Let ℓG,µ(h, (x, y)) = ℓ(yEg∼µ [h(g(x))]) such that ℓ : R → R is a L-Lipschitz
function. There exists H and (G, µ) such that VC(H) = ∞ but H is still properly learnable with
respect to ℓG,µ(h, (x, y)).

Together, Theorems 4.2 and 4.3 showcase an interesting trade-off. Theorem 4.3 indicates that by
carefully choosing (G, µ), the complexity of H can be essentially smoothed out. On the other hand,
Theorem 4.2 shows that any complexity in (G, µ) can be smoothed out if H has finite VC dimension.
This interplay between the complexities of H and (G, µ) closely matches the intuition of Chapelle
et al. [2000] in their work on Vicinal Risk Minimization. Note that the results in this section do not
contradict that of Section 3 because ℓρG,µ(h, (x, y)) is a non-Lipschitz function of yEg∼µ [h(g(x))].

We end this section by noting that Lipschitzness of ℓG,µ is sufficient but, in full generality, not
necessary for proper learnability. For example, the loss function that completely ignores (G, µ) and
just computes the 0-1 loss is not Lipschitz, however, it is learnable via ERM when the VC dimension
of H is finite.

5 Proper Learnability Under Relaxed Competition

The results of Section 3 show that relaxing the adversarially robust loss may not always enable proper
learning, even for very natural robust loss relaxations. In this section, we show that this bottleneck can
be alleviated if we also allow the learner to compete against a slightly stronger notion of robustness.
Furthermore, we expand on this idea by exploring other robust learning settings where allowing the
learner to compete against a stronger notion of robustness enables proper learnability. We denote
this type of modification to the standard adversarially and probabilistically robust leaning settings as
robust learning under relaxed competition. Prior works on Tolerantly Robust PAC Learning [Ashtiani
et al., 2022, Bhattacharjee et al., 2022] mentioned in the introduction fit under this umbrella.

Our main tool in this section is Lemma 5.1, which we term as Sandwich Uniform Convergence
(SUC). Roughly speaking, SUC provides a sufficient condition under which ERM outputs a predictor
that generalizes well with respect to a stricter notion of loss. A special case of SUC has implicitly
appeared in margin theory (e.g., see Mohri et al. [2018, Section 5.4]), where one evaluates the 0-1
risk of the output hypothesis against the optimal margin 0-1 risk.
Lemma 5.1 (Sandwich Uniform Convergence). Let ℓ1(h, (x, y)) and ℓ2(h, (x, y)) be bounded, non-
negative loss functions such that for all h ∈ H and (x, y) ∈ X × Y , we have ℓ1(h, (x, y)) ≤
ℓ2(h, (x, y)) ≤ 1. If there exists a loss function ℓ̃(h, (x, y)) such that ℓ1(h, (x, y)) ≤ ℓ̃(h, (x, y)) ≤
ℓ2(h, (x, y)) and ℓ̃(h, (x, y)) enjoys the uniform convergence property with sample complexity n(ϵ, δ),
then the learning rule A(S) = infh∈H ÊS [ℓ2(h, (x, y))] achieves, with probability 1 − δ over a

sample S ∼ Dm of size m ≥ n(ϵ/2, δ/2) +O
(

ln( 1
δ )

ϵ2

)
, the guarantee

ED [ℓ1(A(S), (x, y))] ≤ inf
h∈H

ED [ℓ2(h, (x, y))] + ϵ.

7



Proof. Let A(S) = infh∈H ES [ℓ2(h, (x, y))]. By uniform convergence of ℓ̃(h, (x, y)), we have that
for sample size m = n( ϵ2 ,

δ
2 ), with probability at least 1 − δ

2 , over a sample S ∼ Dm, for every
hypothesis h ∈ H simultaneously,

ED

[
ℓ̃(h, (x, y))

]
≤ ÊS

[
ℓ̃(h, (x, y))

]
+

ϵ

2
.

In particular, this implies that for ĥ = A(S), we have

ED

[
ℓ̃(ĥ, (x, y))

]
≤ ÊS

[
ℓ̃(ĥ, (x, y))

]
+

ϵ

2
.

Since, ℓ1(h, (x, y)) ≤ ℓ̃(h, (x, y)) ≤ ℓ2(h, (x, y)), we have that

ED

[
ℓ1(ĥ, (x, y))

]
≤ ÊS [ℓ2(h

∗, (x, y))] +
ϵ

2

where h∗ = infh∈H ED [ℓ2(h, (x, y))]. It now remains to upper bound ÊS [ℓ2(h
∗, (x, y))] with high

probability. However, a standard Hoeffding bound tells us that with probability 1− δ
2 over a sample S

of size O(
ln( 1

δ )

ϵ2 ), ÊS [ℓ2(h
∗, (x, y))] ≤ ED [ℓ2(h

∗, (x, y))] + ϵ
2 . Thus, by union bound, we get that

with probability at least 1− δ, ED

[
ℓ1(ĥ, (x, y))

]
≤ ED [ℓ2(h

∗, (x, y))] + ϵ, using a sample of size

n(ϵ/2, δ/2) +O(
ln( 1

δ )

ϵ2 ).

Lemma 5.1 only requires the existence of such a sandwiched loss function that enjoys uniform
convergence—we do not actually require it to be computable. In the next two sections, we ex-
ploit this fact to give three new generalization guarantees for the empirical risk minimizer over
the adversarially robust loss ℓG(h, (x, y)) and ρ-probabilistically robust loss ℓρG,µ(h, (x, y)), here-
after denoted by RERM(S;G) := argminh∈H ÊS [ℓG(h, (x, y))] and PRERM(S; (G, µ), ρ) :=

argminh∈H ÊS

[
ℓρG,µ(h, (x, y))

]
respectively.

5.1 (ρ, ρ∗)-Probabilistically Robust PAC Learning

In light of the hardness result of Section 3, we slightly tweak the learning setup in Definition 1 by
allowing A to compete against the hypothesis minimizing the probabilistic robust risk at a level
ρ∗ < ρ. Under this further relaxation, we show that proper learning becomes possible, and that too, via
PRERM. In particular, Theorem 5.2 shows that while VC classes are not properly ρ-probabilistically
robust PAC learnable, they are properly (ρ, ρ∗)-probabilistically robust PAC learnable.
Theorem 5.2 (Proper (ρ, ρ∗)-Probabilistically Robust PAC Learner). Let 0 ≤ ρ∗ < ρ. Then, for
every hypothesis class H, perturbation set and measure (G, µ), and (ϵ, δ) ∈ (0, 1)2, the proper
learning rule A(S) = PRERM(S; (G, µ), ρ∗), for any distribution D over X × Y , achieves, with

probability at least 1 − δ over a sample S ∼ Dn of size n ≥ O

( VC(H)

(ρ−ρ∗)2
ln( 1

(ρ−ρ∗)ϵ
)+ln( 1

δ )

ϵ2

)
, the

guarantee
Rρ

G,µ(A(S);D) ≤ inf
h∈H

Rρ∗

G,µ(h;D) + ϵ.

In contrast to Section 3, where proper learning is not always possible, Theorem 5.2 shows that if we
compare our learner to the best hypothesis for a slightly stronger level of probabilistic robustness, then
not only is proper learning possible for VC classes, but it is possible via ERM. Our main technique
to prove Theorem 5.2 is to consider a different probabilistically robust loss function that is (1) a
Lipschitz function of yEg∼µ [h(g(x)) ̸= y] and (2) can be sandwiched in between ℓρ

∗

G,µ and ℓρG,µ.
Then, Theorem 5.2 follows from Lemma 5.1. The full proof is in Appendix D.1.

5.2 (ρ,G)-Probabilistically Robust PAC Learning

Can measure-independent learning guarantees be achieved if we instead compare the learner’s
probabilistically robust risk Rρ

G,µ to the best adversarially robust risk RG over H? We answer this in
the affirmative by using SUC. We show that if one wants to compete against the best hypothesis for
the worst-case adversarially robust risk, it is sufficient to run RERM.
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Theorem 5.3 (Proper (ρ,G)-Probabilistically Robust PAC Learner). For every hypothesis class H,
perturbation set G, and (ϵ, δ) ∈ (0, 1)2, the proper learning rule A(S) = RERM(S;G), for any
measure µ over G and any distribution D over X × Y , achieves, with probability at least 1− δ over

a sample S ∼ Dn of size n ≥ O

(
VC(H)

ρ2
ln( 1

ρϵ )+ln( 1
δ )

ϵ2

)
, the guarantee

Rρ
G,µ(A(S);D) ≤ inf

h∈H
RG(h;D) + ϵ.

The proof of Theorem 5.3 can be found in Appendix D.2, which follows directly from Lemma 5.1 by
a suitable choice of the sandwiched loss ℓ. We make a few remarks about the practical importance
of Theorem 5.3. Theorem 5.3 implies that for any pre-specified perturbation function class G (for
example ℓp balls), running RERM is sufficient to obtain a hypothesis that is probabilistically robust
with respect to any fixed measure µ over G. Moreover, the level of robustness of the predictor output
by RERM, as measured by 1− ρ, scales directly with the sample size - the more samples one has, the
smaller ρ can be made. Alternatively, for a fixed sample size m, desired error ϵ and confidence δ, one
can use the sample complexity guarantee in Theorem 5.3 to back-solve the robustness guarantee ρ.

We highlight that the generalization bound in Theorem 5.3, is a measure-independent guarantee. This
means that ρ does not quantify the level of robustness of the output hypothesis with respect to any one
particular measure, but for any measure. This is desirable, as in contrast to the previous section, the ρ
here more succinctly quantifies the level of robustness achieved by the output classifier. Lastly, we
highlight that while the sample complexity of adversarially robust PAC learning can be exponential
in the VC dimension of H [Montasser et al., 2019], this is not the case for (ρ,G)-probabilistically
robust PAC learning, where we only get a linear dependence on VC dimension.

5.3 Tolerantly Robust PAC Learning

In Tolerantly Robust PAC Learning [Bhattacharjee et al., 2022, Ashtiani et al., 2022], the learner’s
adversarially robust risk under a perturbation set G is compared with the best achievable adversarially
robust risk for a larger perturbation set G′ ⊃ G. Ashtiani et al. [2022] study the setting where both G
and G′ induce ℓp balls with radius r and (1 + γ)r respectively. In the work of Bhattacharjee et al.
[2022], G is arbitrary, but G′ is constructed such that it induces perturbation sets that are the union
of balls with radius γ that cover G. Critically, Bhattacharjee et al. [2022] show that, under certain
assumptions, running RERM over a larger perturbation set G′ is sufficient for Tolerantly Robust PAC
learning. In this section, we take a slightly different approach to Tolerantly Robust PAC learning.
Instead of having the learner compete against the best possible risk for a larger perturbation set, we
have the learner still compete against the best possible adversarially robust risk over G, but evaluate
the learner’s adversarially robust risk using a smaller perturbation set G′ ⊂ G.

For what G′ ⊂ G is Tolerantly Robust PAC learning via RERM possible? As an immediate result
of Lemma 5.1 and Vapnik’s “General Learning”, finite VC dimension of the loss class LH

G′ =

{(x, y) 7→ ℓG′(h, (x, y)) : h ∈ H} is sufficient. Note that finite VC dimension of LH
G′ implies that

the loss function ℓG′(h, (x, y)) enjoys the uniform convergence property with sample complexity

O

(
VC(LG′

H )+ln( 1
δ )

ϵ2

)
. Thus, taking ℓ1(h, (x, y)) = ℓ̃(h, (x, y)) = ℓG′(h, (x, y)) and ℓ2(h, (x, y)) =

ℓG(h, (x, y)) in Lemma 5.1, we have that if there exists a G′ ⊂ G such that VC(LG′

H ) < ∞, then with

probability 1− δ over a sample S ∼ Dn of size n = O

(
VC(LH

G′ )+ln( 1
δ )

ϵ2

)
,

RG′(A(S);D) ≤ inf
h∈H

RG(h;D) + ϵ,

where A(S) = RERM(S;G).

Alternatively, if G′ ⊂ G such that there exists a finite subset G̃ ⊂ G where ℓG′(h, (x, y)) ≤
ℓG̃(h, (x, y)), then Tolerantly Robust PAC learning via RERM is possible with sample complexity

that scales according to O
(

VC(H) log(|G̃|)+ln( 1
δ )

ϵ2

)
. This result essentially comes from the fact that

the VC dimension of the loss class for any finite perturbation set G̃ incurs only a log(|G̃|) blow-up
from the VC dimension of H (see Lemma 1.1 in Attias et al. [2021]). Thus, finite VC dimension of
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H implies finite VC dimension of the loss class LG̃
H which implies uniform convergence of the loss

ℓG̃(h, (x, y)), as needed for Lemma 5.1 to hold.

We now give an example where such a finite approximation of G′ is possible. In order to do so, we
will need to consider a metric space of perturbation functions (G, d) and define a notion of “nice”
perturbation sets, similar to“regular” hypothesis classes from Bhattacharjee et al. [2022].

Definition 4 (r-Nice Perturbation Set). Let H be a hypothesis class and (G, d) a metric space of
perturbation functions. Let Br(g) := {g′ ∈ G : d(g, g′) ≤ r} denote a closed ball of radius r
centered around g ∈ G. We say that G′ ⊂ G is r-Nice with respect to H, if for all x ∈ X , h ∈ H, and
g ∈ G′, there exists a g∗ ∈ G, such that g ∈ Br(g

∗) and h(g(x)) = h(g′(x)) for all g′ ∈ Br(g
∗).

Definition 4 prevents a situation where a hypothesis h ∈ H is non-robust to an isolated perturbation
function g ∈ G′ for any given labelled example (x, y) ∈ X × Y . If a hypothesis h is non-robust
to a perturbation g ∈ G′, then Definition 4 asserts that there must exist a small ball of perturbation
functions in G over which h is also non-robust. Next, we define the covering number.

Definition 5 (Covering Number). Let (M, d) be a metric space, let K ⊂ M be a subset, and r > 0.
Let Br(x) = {x′ ∈ M : d(x, x′) ≤ r} denote the ball of radius r centered around x ∈ M. A subset
C ⊂ M is an r-covering of K if K ⊂

⋃
c∈C Br(c). The covering number of K, denoted Nr(K, d), is

the smallest cardinality of any r-covering of K.

Finally, let G′
2r =

⋃
g∈G′ B2r(g) denote the union over all balls of radius 2r with centers in G′.

Theorem 5.4 then states that if there exists a set G′ ⊂ G that is r-Nice with respect to H, then Tolerantly
Robust PAC learning is possible via RERM with sample complexity that scales logarithmically with
Nr(G′

2r, d).

Theorem 5.4 (Tolerantly Robust PAC learning under Nice Perturbations). Let H ⊆ YX be a
hypothesis class and (G, d) be a metric space of perturbation functions. Given a subset G′ ⊂ G such
that G′ is r-Nice with respect to H, then the proper learning rule A(S) = RERM(S;G), for any
distribution D over X × Y , achieves, with probability at least 1− δ over a sample S ∼ Dn of size
n ≥ O

(
VC(H) log(Nr(G′

2r,d))+ln( 1
δ )

ϵ2

)
, the guarantee

RG′(A(S);D) ≤ inf
h∈H

RG(h;D) + ϵ.

In Appendix D, we give a full proof and show that ℓp balls are r-Nice perturbation sets for robustly
learning halfspaces. Note that Theorem 5.4 does not require apriori knowledge of the r-Nice
perturbation set G′, but just its existence. Therefore, Theorem 5.4 applies to the largest possible
r-Nice perturbation subset of G. This is important from a practical standpoint as computing an r-Nice
perturbation set might not be computationally tractable. Accordingly, while RERM may not be a
proper adversarially robust PAC learner [Montasser et al., 2019], Theorem 5.4 shows that RERM is a
proper tolerantly robust PAC learner.

6 Discussion

In this work, we show that there exists natural relaxations of the adversarially robust loss for which
finite VC dimension is still not sufficient for proper learning. On the other hand, we identify a large
set of Lipschitz robust loss relaxations for which finite VC dimension is sufficient for proper learning.
In addition, we give new generalization guarantees for RERM. As future work, we are interested
in understanding whether our robust loss relaxations can be used to mitigate the tradeoff between
achieving adversarial robustness and maintaining high nominal performance. In addition, it is also
interesting to find a combinatorial characterization of proper probabilistically robust PAC learning
with respect to ℓρG,µ.
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A Equivalence between Adversarial Robustness Models

We show that the perturbation set and perturbation function models are equivalent.

Theorem A.1 (Equivalence between G and U). Let X be an arbitrary domain. There exists a
perturbation set U : X → 2X if and only if there exists a set of perturbation functions G such that
G(x) = {g(x) : g ∈ G} = U(x) for all x ∈ X .

Proof. We first show that every set of perturbation functions G induces a perturbation set U . Let
G be an arbitrary set of perturbation functions g : X → X . Then, for each x ∈ X , define
U(x) := {g(x) : g ∈ G}, which completes the proof of this direction.

Now we will show the converse - every perturbation set U induces a point-wise equivalent set G
of perturbation functions. Let U be an arbitrary perturbation set mapping points in X to subsets
in X . Assume that U(x) is not empty for all x ∈ X . Let z̃x denote an arbitrary perturbation from
U(x). For every x ∈ X , and every z ∈ U(x), define the perturbation function gxz (t) = z1{t =
x}+ z̃t1{t ̸= x} for t ∈ X . Observe that gxz (x) = z ∈ U(x) and gxz (x

′) = z̃x′ ∈ U(x′). Finally, let
G =

⋃
x∈X

⋃
z∈U(x){gxz }. To verify that G = U , consider an arbitrary point x′ ∈ X . Then,

G(x′) =
⋃
x∈X

⋃
z∈U(x)

{gxz (x′)}

=

 ⋃
z∈U(x′)

{gx
′

z (x′)}

 ∪

 ⋃
x∈X\x′

⋃
z∈U(x)

{gxz (x′)}


=

 ⋃
z∈U(x′)

{z}

 ∪

 ⋃
x∈X\x′

⋃
z∈U(x)

{z̃x′}


= U(x′) ∪ z̃x′

= U(x′).

as needed.

B Proofs for Section 3

B.1 Proper ρ-Probabilistically Robust PAC Learning for finite G

We show that if G is finite then VC classes are ρ-probabilistically robustly learnable.

Theorem B.1 (Proper ρ-Probabilistically Robust PAC Learner). For every hypothesis class H,
threshold ρ ∈ [0, 1), perturbation set G, and perturbation measure µ such that |G| ≤ K, there exists
a proper learning rule A : (X × Y)n → H such that for every distribution D over X × Y , with
probability at least 1− δ over S ∼ Dn, algorithm A achieves

Rρ
G,µ(A(S);D) ≤ inf

h∈H
Rρ

G,µ(h;D) + ϵ

with

n(ϵ, δ, ρ;H,G, µ) = O

(
VC(H) ln(K) + ln( 1δ )

ϵ2

)
samples.

Proof. Fix ρ ∈ (0, 1). Our main strategy will be to upper bound the VC dimension of the ρ-
probabilistically robust loss class by some function of the VC dimension of H. Then, finite VC
dimension of H implies finite VC dimension of the loss class, which ultimately implies uniform
convergence over the ρ-probabilistically robust loss. Finally, uniform convergence of ℓρG,µ(h, (x, y))
implies that ERM is sufficient for ρ-probabilistically robust PAC learning. To that end, let

LH,ρ
G,µ = {(x, y) 7→ 1{Pg∼µ (h(g(x)) ̸= y) > ρ} : h ∈ H}
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be the ρ-probabilistically robust loss class of H. Let S = {(x1, y1), ...., (xn, yn)} ∈ (X × Y)n be
an arbitrary labeled sample of size n. Inflate S to SG by adding for each labelled example (x, y) ∈ S
all possible perturbed examples (g(x), y) for g ∈ G. That is, SG =

⋃
(x,y)∈S{(g(x), y) : g ∈ G}.

Note that |SG | ≤ nK. Let LH,ρ
G,µ (S) denote the set of all possible behaviors of functions in LH,ρ

G,µ on S.
Likewise, let H(SG) denote the set of all possible behaviors of functions in H on the inflated set SG .
Note that each behavior in LH,ρ

G,µ (S) maps to at least 1 behavior in H. Therefore |LH,ρ
G,µ (S)| ≤ |H(SG)|.

By Sauer-Shelah’s lemma, |H(SG)| ≤ (nK)VC(H). Solving for n such that (nK)VC(H) < 2n gives
that n = O(VC(H) ln(K)), ultimately implying that VC(LH,ρ

G,µ ) ≤ O(VC(H) ln(K)) (see Lemma
1.1 in Attias et al. [2021]).

Since for VC classes, the VC dimension of LH,ρ
G,µ is bounded, by Vapnik’s “General Learning", we

have that for VC classes the loss function ℓρG,µ(h, (x, y)) enjoys the uniform convergence property.

Namely, let D be a distribution over X × Y . For a sample of size n ≥ O(
VC(H) ln(K)+ln( 1

δ )

ϵ2 ), we
have that with probability at least 1− δ over S ∼ Dn, for all h ∈ H

|ED

[
ℓρG,µ(h, (x, y))

]
− ÊS

[
ℓρG,µ(h, (x, y))

]
| ≤ ϵ.

Standard arguments yield that the proper learning rule A(S) = argminh∈H ÊS

[
ℓρG,µ(h, (x, y))

]
is

a ρ-probabilistically robust PAC learner with sample complexity O(
VC(H) ln(K)+ln( 1

δ )

ϵ2 ).

B.2 Proof of Lemma 3.2

Proof. Fix ρ ∈ [0, 1) and let m ∈ N. Pick m center points c1, ..., cm in X such that for all i, j ∈ [m],
G(ci) ∩ G(cj) = ∅. For each center ci, consider 2m−1 + 1 disjoint subsets of its perturbation set
G(ci) which do not contain ci. Label 2m−1 of these subsets with a unique bitstring b ∈ {0, 1}m
fixing bi = 1. Let Bb

i denote the subset labeled by bitstring b and let Bi denote the single remaining
subset that was not labeled. Furthermore, for each i ∈ [m] and b ∈ {{0, 1}m|bi = 1}, pick Bi and
Bb
i ’s such that µci(Bi) = ρ and 0 < µci(Bb

i ) ≤
1−ρ
2m . If bi = 0, let Bb

i = ∅. If ρ = 0, let Bi = ∅ for
all i ∈ [m]. Finally, define B =

⋃m
i=1

⋃
b∈{0,1}m Bb

i ∪ Bi as the union of all the subsets. Crucially,
observe that for all i ∈ [m], µci

(
Bi ∪

(⋃
b Bb

i

))
≤ 1+ρ

2 < 1.

For bitstring b ∈ {0, 1}m, define the hypothesis hb as

hb(z) =

{
−1 if z ∈

⋃m
i=1 Bb

i ∪ Bi

1 otherwise

and consider the hypothesis class H = {hb|b ∈ {0, 1}m} which consists of all 2m hypothesis, one
for each bitstring. We first show that H has VC dimension at most 1. Consider two points x1, x2 ∈ X .
We will show case by case that every possible pair of points cannot be shattered by H. First, consider
the case where, wlog, x1 /∈ B. Then, ∀h ∈ H, h(x1) = 1, and thus shattering is not possible. Now,
consider the case where both x1 ∈ B and x2 ∈ B. If either x1 or x2 is in

⋃m
i=1 Bi, then every

hypothesis h ∈ H will label it as −1, and thus these two points cannot be shattered. If x1 ∈ Bb
i and

x2 ∈ Bb
j for i ̸= j, then hb(x1) = hb(x2) = −1, but ∀h ∈ H such that h ̸= hb, h(x1) = h(x2) = 1.

If x1 ∈ Bb1
i and x2 ∈ Bb2

j for b1 ̸= b2, then there exists no hypothesis in H that can label (x1, x2) as
(−1,−1). Thus, overall, no two points x1, x2 ∈ X can be shattered by H.

Now we are ready to show that the VC dimension of the loss class is at least m. Specifically,
given the sample of labelled points S = {(c1, 1), ..., (cm, 1)}, we will show that the loss behavior
corresponding to hypothesis hb on the sample S is exactly b. Since H contains all the hypothesis
corresponding to every single bitstring b ∈ {0, 1}m, the loss class of H will shatter S. In order to
prove that the loss behavior of hb on the sample S is exactly b, it suffices to show that the probabilistic
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loss of hb on example (ci, 1) is bi, where bi denotes the ith bit of b. By definition,

ℓρG,µ(hb, (ci, 1)) = 1{Pg∼µ (hb(g(ci)) ̸= 1) > ρ}
= 1{Pz∼µci

(hb(z) = 0) > ρ}

= 1{Pz∼µci

(
z ∈ Bb

i ∪ Bi

)
> ρ}

= 1{µci(Bb
i ∪ Bi) > ρ}

= bi.

Thus, the loss behavior of hb on S is b, and the total number of distinct loss behaviors over each
hypothesis in H on S is 2m, implying that the VC dimension of the loss class is at least m. This
completes the construction and proof of the claim.

B.3 Proof of Lemma 3.3

Proof. (of Lemma 3.3) This proof closely follows Lemma 3 from Montasser et al. [2019]. In fact,
the only difference is in the construction of the hypothesis class, which we will describe below.

Fix ρ ∈ [0, 1). Let m ∈ N. Construct a hypothesis class H0 as in Lemma 3.2 on 3m centers
c1, ..., c3m based on ρ. By the construction in Lemma 3.2, we know that LH,ρ

G,µ shatters the sample
C = {(c1, 1), ..., (c3m, 1)}. Instead of keeping all of H0, we will only keep a subset H of H0,
namely those classifiers that are probabilistically robustly correct on subsets of size 2m of C. More
specifically, recall from the construction in Lemma 3.2, that each hypothesis hb ∈ H0 is parameterized
by a bitstring b ∈ {0, 1}3m where if bi = 1, then hb is not robust to example (ci, 1). Therefore,
H = {hb ∈ H0 :

∑3m
i=1 bi = m}. Now, let A : (X × Y)∗ → H be an arbitrary proper learning

rule. Consider a set of distributions D1, ...,DL where L =
(
3m
2m

)
. Each distribution Di is uniform

over exactly 2m centers in C. Critically, note that by our construction of H, every distribution Di is
probabilistically robustly realizable by a hypothesis in H. That is, for all Di, there exists a hypothesis
h∗ ∈ H such that Rρ

G,µ(h
∗;Di) = 0. Observe that this satisfies the first condition in Lemma 3.3. For

the second condition, at a high-level, the idea is to use the probabilistic method to show that there
exists a distribution Di where ES∼Dm

i

[
Rρ

G,µ(A(S);D)
]
≥ 1

4 and then use a variant of Markov’s

inequality to show that with probability at least 1/7 over S ∼ Dm, Rρ
G,µ(A(S);D) > 1/8.

Let S ∈ Cm be an arbitrary set of m points. Let C be a uniform distribution over C. Let P be a
uniform distribution over D1, ...,DT . Let ES denote the event that S ⊂ supp(Di) for Di ∼ P . Given
the event ES , we will lower bound the expected probabilistic robust loss of the hypothesis the proper
learning rule A outputs,

EDi∼P

[
Rρ

G,µ(A(S);Di)|ES

]
= EDi∼P

[
E(x,y)∼Di

[1{Pg∼µ (A(S)(g(x)) ̸= y) > ρ}] |ES

]
.

Conditioning on the event that (x, y) /∈ S, denoted, E(x,y)/∈S ,

E(x,y)∼Di
[1{Pg∼µ (A(S)(g(x)) ̸= y) > ρ}] ≥ P(x,y)∼Di

[
E(x,y)/∈S

]
×E(x,y)∼Di

[
1{Pg∼µ (A(S)(g(x)) ̸= y) > ρ}|E(x,y)/∈S

]
Since Di is supported over 2m points and |S| = m, P(x,y)∼Di

[
E(x,y)/∈S

]
≥ 1

2 since in the worst-
case S ⊂ supp(Di). Thus, we obtain the lower bound,

EDi∼P

[
Rρ

G,µ(A(S);Di)|ES

]
≥ 1

2
EDi∼P

[
E(x,y)∼Di

[
1{Pg∼µ (A(S)(g(x)) ̸= y) > ρ}|E(x,y)/∈S

]
|ES

]
.

Unravelling the expectation over the draw from Di given the event ES , we have,
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E(x,y)∼Di

[
1{Pg∼µ (A(S)(g(x)) ̸= y) > ρ}|E(x,y)/∈S

]
≥ 1

m

∑
(x,y)∈supp(Di)\S

1{Pg∼µ (A(S)(g(x)) ̸= y) > ρ}

Observing that EDi∼P [1{(x, y) ∈ supp(Di)}|ES ] ≥ 1
2 yields,

EDi∼P
[
E(x,y)∼Di

[
1{Pg∼µ (A(S)(g(x)) ̸= y) > ρ}|E(x,y)/∈S

]
|ES

]
≥ 1

2m

∑
(x,y)/∈S

1{Pg∼µ (A(S)(g(x)) ̸= y) > ρ}.

Since A(S) ∈ H, by construction of H, there are at least m points in C where A is not probabilisti-
cally robustly correct. Therefore,

1

2m

∑
(x,y)/∈S

1{Pg∼µ (A(S)(g(x)) ̸= y) > ρ} ≥ 1

2
,

from which we have that, EDi∼P

[
Rρ

G,µ(A(S);Di)|ES

]
≥ 1

4 . By the law of total expectation, we
have that

EDi∼P

[
ES∼Dm

i

[
Rρ

G,µ(A(S);Di)
]]

= ES∼C

[
EDi∼P|ES

[
Rρ

G,µ(A(S);Di)
]]

= ES∼C

[
EDi∼P

[
Rρ

G,µ(A(S);Di)|ES

]]
≥ 1/4

Since the expectation over D1, ...,DT is at least 1/4, there must exist a distribution Di where
ES∼Dm

i

[
Rρ

G,µ(A(S);Di)
]
≥ 1/4. Using a variant of Markov’s inequality, gives

PS∼Dm
i

[
Rρ

G,µ(A(S);Di) > 1/8
]
≥ 1/7

which completes the proof.

B.4 Proof of Theorem 3.1

Proof. (of Theorem 3.1) Fix ρ ∈ [0, 1). Let (Cm)m∈N be an infinite sequence of disjoint sets such
that each set Cm contains 3m distinct center points from X , where for any ci, cj ∈

⋃∞
m=1 Cm such

that ci ̸= cj , we have G(ci) ∩ G(cj) = ∅. For every m ∈ N, construct Hm on Cm as in Lemma 3.2.
In addition, a key part of this proof is to ensure that the hypothesis in Hm are non-robust to points
in Cm′ for all m′ ̸= m. To do so, we will need to adjust each hypothesis hb ∈ Hm carefully. By
definition, for every m ∈ N, Hm consists of 23m hypothesis of the form

hb(z) =

{
−1 if z ∈

⋃3m
i=1 Bb

i ∪ Bi

1 otherwise

for each bitstring b ∈ {0, 1}3m. Note that the same set
⋃3m

i=1 Bi is shared across every hypothesis
hb ∈ Hm. For each m ∈ N, let Bm =

⋃3m
i=1 Bi be exactly the union of these 3m sets. Next, from the

construction in Lemma 3.2, for every center ci ∈ Cm, µci

(
Bi ∪

(⋃
b Bb

i

))
≤ 1+ρ

2 < 1. Thus, there
exists a set B̃i ⊂ G(ci) such that µci(B̃i) > 0 and B̃i ∩

(
Bi ∪

(⋃
b Bb

i

))
= ∅. Consider one such

subset B̃i from each of the 3m centers in Cm and let B̃m =
⋃3m

i=1 B̃i. Finally, make the following
adjustment to each hb ∈ Hm,

hb(z) =

{
−1 if z ∈

⋃3m
i=1 Bb

i ∪ Bi or z ∈ Bm′ ∪ B̃m′
for m′ ̸= m

1 otherwise
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One can verify that every hypothesis in Hm has a non-robust region (i.e. Bm′ ∪ B̃m′
for m′ ̸= m)

with mass strictly bigger than ρ in every center in Cm′ for every m′ ̸= m. Thus, the hypotheses in
Hm are non-robust to points in Cm′ for all m′ ̸= m. Finally, as we did in Lemma 3.3, for each m, we
only keep the subset of hypothesis H′

m = {hb ∈ Hm :
∑3m

i=1 bi = m}. Note that for each m ∈ N,
the hypothesis class H′

m behaves exactly like the hypothesis class from Lemma 3.3 on Cm.

Let H :=
⋃∞

m=1 H′
m and G(Cm) :=

⋃3m
i=1 G(ci). Since we have modified the hypothesis class, we

need to reprove that its VC dimension is still at most 1. Consider two points x1, x2 ∈ X . If either x1

or x2 is not in
⋃∞

m=1 G(Cm) and not in
⋃∞

m=1 Bm ∪ B̃m, then all hypothesis predict x1 or x2 as 1.
If both x1 and x2 are in Bm ∪ B̃m for some m ∈ N, then:

• if either x1 or x2 are in Bm, every hypothesis in H labels either x1 or x2 as −1.

• if both x1 and x2 are in B̃m, we can only get the labeling (1, 1) from hypotheses in Hm and
the labeling (−1,−1) from the hypotheses in Hm′ for m′ ̸= m.

In the case both x1 and x2 are in G(Cm) \ (Bm ∪ B̃m), then, they cannot be shattered by Lemma 3.2.
In the case x1 ∈ Bm ∪ B̃m and x2 ∈ G(Cm) \ (Bm ∪ B̃m):

• if x1 is in Bm, every hypothesis in H labels x1 as −1.

• if x1 is in B̃m then, we can never get the labeling (−1,−1).

If x1 ∈ Bi ∪ B̃i and x2 ∈ Bj ∪ B̃j for i ̸= j, then:

• if either x1 or x2 are in Bi or Bj respectively, every hypothesis in H labels either x1 or x2

as −1.

• if both x1 and x2 are in B̃i and B̃j respectively, we can never get the labeling (1, 1).

In the case x1 ∈ Bi ∪ B̃i and x2 ∈ G(Cj) \ (Bj ∪ B̃j) for j ̸= i, then we cannot obtain the labeling
(1,−1). If x1 ∈ G(Ci) \ (Bi ∪ B̃i) and x2 ∈ G(Cj) \ (Bj ∪ B̃j) for i ̸= j, then we cannot obtain
the labeling (−1,−1). Since we shown that for all possible x1 and x2, H cannot shatter them,
VC(H) ≤ 1.

We now use the same reasoning in Montasser et al. [2019], to show that no proper learning rule works.
By Lemma 3.3, for any proper learning rule A : (X ×Y)∗ → H and for any m ∈ N, we can construct
a distribution D over Cm (which has 3m points from X ) where there exists a hypothesis h∗ ∈ H′

m that
achieves Rρ

G,µ(h
∗;D) = 0, but with probability at least 1/7 over S ∼ Dm, Rρ

G,µ(A(S);D) > 1/8.
Note that it suffices to only consider hypothesis in H′

m because, by construction, all hypothesis in
H′

m′ for m′ ̸= m are not probabilistically robust on Cm, and thus always achieve loss 1 on all points
in Cm. Thus, rule A will do worse if it picks hypotheses from these classes. This shows that the
sample complexity of properly probabilistically robustly PAC learning H is arbitrarily large, allowing
us to conclude that H is not properly learnable.

C Proofs for Section 4

C.1 Proof of Theorem 4.2

Proof. (of Theorem 4.2) Let VC(H) = d and S = {(x1, y1), ..., (xm, ym)} an i.i.d. sample of
size m from D. Consider the learning algorithm A(S) = argminh∈H ÊS [ℓG,µ(h, (x, y))]. Note
that A is a proper learning algorithm. Let ĥ = A(S) denote hypothesis output by A and h∗ =
infh∈HED [ℓG,µ(h, (x, y))].

We now show that if the sample size m = O
(

dL2 ln(L
ϵ )+ln( 1

δ )

ϵ2

)
, then ĥ achieves the stated general-

ization bound with probability 1 − δ. By Lemma 4.1, if m = O
(

dL2 ln(L
ϵ )+ln( 1

δ )

ϵ2

)
, we have that
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with probability 1− δ, for all h ∈ H simultaneously,∣∣∣ED [ℓG,µ(h, (x, y))]− ÊS [ℓG,µ(h, (x, y))]
∣∣∣ ≤ ϵ

2
.

This means that both ED

[
ℓG,µ(ĥ, (x, y))

]
− ÊS

[
ℓG,µ(ĥ, (x, y))

]
≤ ϵ

2 and ÊS [ℓG,µ(h
∗, (x, y))]−

ED [ℓG,µ(h
∗, (x, y))] ≤ ϵ

2 . By definition of ĥ, note that ÊS

[
ℓG,µ(ĥ, (x, y))

]
≤

ÊS [ℓG,µ(h
∗, (x, y))]. Putting these observations together, we have that

ED

[
ℓG,µ(ĥ, (x, y))

]
− (ED [ℓG,µ(h

∗, (x, y))] +
ϵ

2
) ≤ ED

[
ℓG,µ(ĥ, (x, y))

]
− ÊS [ℓG,µ(h

∗, (x, y))]

≤ ED

[
ℓG,µ(ĥ, (x, y))

]
− ÊS

[
ℓG,µ(ĥ, (x, y))

]
≤ ϵ

2
,

from which we can deduce that

ED

[
ℓG,µ(ĥ, (x, y))

]
− inf

h∈H
ED [ℓG,µ(h, (x, y))] ≤ ϵ.

Thus, A achieves the stated generalization bound with sample complexity m = O
(

dL2 ln(L
ϵ )+ln( 1

δ )

ϵ2

)
,

completing the proof.

C.2 Proof of Theorem 4.3

For the proof in this section, it will be useful to define the (G, µ)-smoothed hypothesis class H:

FH
G,µ := {Eg∼µ [h(g(x))] : h ∈ H}.

Proof. (of Theorem 4.3) Let X = R and H = {sign(sin(ωx)) : ω ∈ R}. Without loss of generality,
assume sign(sin(0)) = 1. For every x ∈ X and c ∈ [−1, 1], define gc(x) = cx. Then, let
G = {gc : c ∈ [−1, 1]} and µ be uniform over G. First, VC(H) = ∞ as desired. Next, to show
learnability, it suffices to show that the loss

ℓG,µ(h, (x, y)) = ℓ(yEg∼µ [h(g(x))]).

enjoys the uniform convergence property despite VC(H) = ∞. By Theorem 2.1 and similar
to the proof of Lemma 4.1, it suffices upperbound the Rademacher complexity of the loss class
LH
G,µ = {(x, y) 7→ ℓG,µ(h, (x, y)) : h ∈ H}. Since for every fixed y, ℓG,µ(h, (x, y)) is L-Lipschitz

with respect to the real-valued function Eg∼µ [h(g(x))], by Ledoux-Talagrand’s contraction principle
R̂m(LH

G,µ) ≤ L·R̂m(FH
G,µ) where FH

G,µ is the (G, µ)-smoothed hypothesis classed defined previously.
Thus, it suffices to upper-bound R̂m(FH

G,µ) by a sublinear function of m to show that ℓG,µ(h, (x, y))
enjoys the uniform convergence property. But for every hω ∈ H,

Eg∼µ [hω(g(x))] = Ec∼Unif(−1,1) [sign(sin(ω(cx))] =
1

2

∫ 1

−1

sign(sin(c(ωx)))dc.

Since sin(ax) is an odd function, sign(sin(ax)) is also odd, from which it follows that for all hω ∈ H:

Eg∼µ [hω(g(x))] =

{
0 if x ̸= 0 and ω ̸= 0

1 otherwise
.

Therefore, FH
G,µ = {f1, f2} where f1(x) = 1 for all x ∈ R and f2(x) = 1 if x = 0 and f2(x) = 0 if

x ̸= 0. Since FH
G,µ is finite, by Massart’s Lemma [Mohri et al., 2018], R̂m(FH

G,µ) is upper-bounded by
a sublinear function of m such that ℓG,µ(h, (x, y)) enjoys the uniform convergence property with sam-

ple complexity O(
L2+ln( 1

δ )

ϵ2 ). Therefore, (H,G, µ) is PAC learnable with respect to ℓG,µ(h, (x, y))

by the learning rule A(S) = argminh∈H ÊS [ℓG,µ(h, (x, y))] with sample complexity that scales

according to O(
L2+ln( 1

δ )

ϵ2 ).
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Figure 1: Comparison of probabilistic robust ramp loss to probabilistic robust losses of hypothesis h
on example (x, y). The probabilistic robust losses at ρ and ρ∗ sandwich the probabilistic robust ramp
loss at ρ, ρ∗.

D Proofs for Section 5

D.1 Proof of Theorem 5.2

Proof. (of Theorem 5.2) Fix 0 ≤ ρ∗ < ρ < 1 and let H be a hypothesis class with VC(H) = d. Let
(G, µ) be an arbitrary perturbation set and measure, D be an arbitrary distribution over X × Y , and
S = {(x1, y1), ..., (xm, ym)} an i.i.d. sample of size m. Let A(S) = PRERM(S; (G, µ), ρ∗).
By Lemma 5.1, it suffices to show that there exists a loss function ℓ(h, (x, y)) such that
ℓρG,µ(h, (x, y)) ≤ ℓ(h, (x, y)) ≤ ℓρ

∗

G,µ(h, (x, y))) and ℓ(h, (x, y)) enjoys the uniform convergence

property with sample complexity n = O

(
d

(ρ−ρ∗)2
ln( 1

(ρ−ρ∗)ϵ
)+ln( 1

δ )

ϵ2

)
. Consider the probabilistically

robust ramp loss:

ℓρ,ρ
∗

G,µ (h, (x, y)) = min(1,max(0,
Pg∼µ [h(g(x)) ̸= y]− ρ∗

ρ− ρ∗
)).

Figure 1 visually showcases how the probabilistic robust losses at ρ and ρ∗ sandwich the probabilistic
ramp loss at ρ, ρ∗.

Its not too hard to see that ℓρG,µ(h, (x, y)) ≤ ℓρ,ρ
∗

G,µ (h, (x, y)) ≤ ℓρ
∗

G,µ(h, (x, y))). Further-

more, since ℓρ,ρ
∗

G,µ (h, (x, y)) is O( 1
ρ−ρ∗ )-Lipschitz in yEg∼µ [h(g(x)) ̸= y], by Lemma 4.1, we

have that ℓρ,ρ
∗

G,µ (h, (x, y)) enjoys the uniform convergence property with sample complexity

O

(
d

(ρ−ρ∗)2
ln( 1

(ρ−ρ∗)ϵ
)+ln( 1

δ )

ϵ2

)
. This completes the proof, as the conditions for Lemma 5.1 have

been met, and therefore the learning rule A(S) = PRERM(S;G, ρ∗) enjoys the stated generalization
guarantee with the specified sample complexity.

D.2 Proof of Theorem 5.3

Proof. (of Theorem 5.3) Fix 0 < ρ and let H be a hypothesis class with VC(H) = d. Let G be an
arbitrary perturbation set, D be an arbitrary distribution over X×Y , and S = {(x1, y1), ..., (xm, ym)}
an i.i.d. sample of size m. Let A(S) = RERM(S;G).
Fix a measure µ over G. By Lemma 5.1, it suffices to show that there exists a loss function
ℓ(h, (x, y)) such that ℓρG,µ(h, (x, y)) ≤ ℓ(h, (x, y)) ≤ ℓG(h, (x, y))) and ℓ(h, (x, y)) enjoys the
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uniform convergence property with sample complexity n = O

(
d
ρ2

ln( 1
ρϵ )+ln( 1

δ )

ϵ2

)
. Recall the

probabilistically robust ramp loss:

ℓρ,ρ
∗

G,µ (h, (x, y)) = min(1,max(0,
Pg∼µ [h(g(x)) ̸= y]− ρ∗

ρ− ρ∗
)).

Letting ρ∗ = 0, its not too hard to see that ℓρG,µ(h, (x, y)) ≤ ℓρ,0G,µ(h, (x, y)) ≤ ℓG(h, (x, y))).
Furthermore, since ℓρ,0G,µ(h, (x, y)) is O( 1ρ )-Lipschitz in yEg∼µ [h(g(x)) ̸= y], by Lemma 4.1,

we have that ℓρ,0G,µ(h, (x, y)) enjoys the uniform convergence property with sample complexity

O

(
d
ρ2

ln( 1
ρϵ )+ln( 1

δ )

ϵ2

)
. This completes the proof, as the conditions for Lemma 5.1 have been met, and

therefore the learning rule A(S) enjoys the stated generalization guarantee with the specified sample
complexity.

D.3 Proof of Theorem 5.4

Proof. (of Theorem 5.4) Assume that there exists a subset G′ ⊂ G, that is r-Nice with respect
to H. By Lemma 5.1, it is sufficient to find a perturbation set G̃ such that (1) ℓG′(h, (x, y)) ≤
ℓG̃(h, (x, y)) ≤ ℓG(h, (x, y)) and (2) ℓG̃(h, (x, y)) enjoys the uniform convergence property

with sample complexity O
(

VC(H) log(Nr(G′
2r,d)) ln(

1
ϵ ) +ln( 1

δ )

ϵ2

)
. Let G̃ ⊂ G be the minimal r-

cover of G′
2r with cardinality Nr(G′

2r, d). By Lemma 1.1 of Attias et al. [2021], the loss class
LG̃
H has VC dimension at most O(VC(H) log(|G̃|)) = O(VC(H) log(Nr(G′

2r))), implying that
ℓG̃(h, (x, y)) enjoys the uniform convergence property with the previously stated sample complex-

ity O
(

VC(H) log(Nr(G′
2r,d)) ln(

1
ϵ ) +ln( 1

δ )

ϵ2

)
. Now, it remains to show that for our choice of G̃, we

have ℓG′(h, (x, y)) ≤ ℓG̃(h, (x, y)) ≤ ℓG(h, (x, y)). Since, G̃ ⊂ G ,the upperbound is trivial.
Thus, we only focus on proving the lowerbound, ℓG′(h, (x, y)) ≤ ℓG̃(h, (x, y)) for all h ∈ H and
(x, y) ∈ X × Y . Fix h ∈ H and (x, y) ∈ X × Y . If ℓG′(h, (x, y)) = 1, then there exists a g ∈ G′

such that h(g(x)) ̸= y. Let g denote one such perturbation function. By the r-Niceness property of
G′ with respect to H, there must exist Br(g

∗) centered at some g∗ ∈ G such that g ∈ Br(g
∗) and

h(g(x)) = h(g′(x)) for all g′ ∈ Br(g
∗). This implies that h(g′(x)) ̸= y for all g′ ∈ Br(g

∗). Further-
more, since B2r(g) is the union of all balls of radius r that contain g, we have that Br(g

∗) ⊂ B2r(g).
From here, its not too hard to see that Br(g

∗) ⊂ G′
2r by definition. Finally, since G̃ is an r-cover of

G′
2r, it must contain at least one function from Br(g

∗). This completes the proof as we have shown
that there exists a perturbation function ĝ ∈ G̃ such that h(ĝ(x)) ̸= y.

D.4 ℓp balls are r-Nice perturbation sets for linear classifiers

In this section, we give a concrete example of a hypothesis class H and metric space of perturbation
functions (G, d) for which there exists an r-nice perturbation subset G′ ⊂ G. Let X = Rq and fix
r ∈ R≥0. For the hypothesis class, consider the set of homogeneous halfspaces, H = {hw|w ∈ Rq},
where hw(x) = wTx. Let Ĝ = {gδ : δ ∈ Rq, ||δ||p ≤ 3r} where gδ(x) = x + δ for all x ∈ X
and consider any perturbation set G such that G ⊃ Ĝ. That is, Ĝ(x) = {g(x) : g ∈ Ĝ} induces
a ℓp ball of radius 3r around x. We will accordingly consider the distance metric d(gδ1 , gδ2) =

supx∈X ||gδ1(x) − gδ2(x)||p. Restricted to the set Ĝ, this distance metric reduces to d(gδ1 , gδ2) =

||δ1−δ2||p = ℓp(δ1, δ2) for gδ1 , gδ2 ∈ Ĝ. Finally, consider G′ = {gτ : τ ∈ Rq, ||τ ||p ≤ r} ⊂ Ĝ ⊂ G
which induces an ℓp ball of radius r around x.

We will now show that G′ is r-nice perturbation set with respect to H. Let x ∈ X , hw ∈ H, and
gτ ∈ G′. Let c = h(gτ (x)) ∈ {±1}. Consider the function gτ+ crw

||w||p
. By definition, we have that

gτ ∈ Br(gτ+ crw
||w||p

) ⊂ Ĝ ⊂ G. To see this, observe that ||τ + crw
||w||p ||p ≤ 2r by the triangle inequality.

Finally, it remains to show that for every g′ ∈ Br(gτ+ crw
||w||p

) = {gτ+ crw
||w||p

+κ|κ ∈ Rd, ||κ||p ≤ r},
hw(g

′(x)) = hw(gτ (x)) = c. Let c = +1 and consider the function g′τ+ rw
||w||p

+κ ∈ Br(gτ+ rw
||w||p

).

20



Note that wT (x+τ+ rw
||w||p +κ) = wT (x+τ)+r||w||p+wTκ. By Cauchy-Schwartz, we can lower

bound wTκ ≥ −||w||p||κ||p ≥ −r||w||p. Therefore, we have that wT (x+ τ + rw
||w||p +κ) ≥ wT (x+

τ) > 0, where the last inequality comes from the fact that +1 = c = hw(gτ ) = sign(wT (x+ τ)).
Therefore, h(g′τ+ rw

||w||p
+κ(x)) = sign(wT (x + τ + rw

||w||p + κ)) = sign(wT (x + τ)) = h(gτ (x))

as desired. A similar proof holds when c = −1. Therefore, we have shown that G′ is a r-nice
perturbation set with respect to H.

We now can use Theorem 5.4 to provide sample complexity guarantees on Tolerantly Robust PAC
Learning with G′ and G. The main quantity of interest is log(Nr(G′

2r, d)). However, note that
G′
2r = Ĝ. Therefore, we just need to compute log(Nr(Ĝ, d)) = log(Nr({gδ : δ ∈ Rq, ||δ||p ≤

3r}, d)). However, this is equal to log(Nr({δ ∈ Rq : ||δ||p ≤ 3r}, ℓp)) using the ℓp distance metric
since gδ maps one-to-one to δ. Using standard arguments, log(Nr({δ ∈ Rq : ||δ||p ≤ 3r}, ℓp)) =
log(N 1

3
({δ ∈ Rq : ||δ||p ≤ 1}, ℓp)) = O(q) (Bartlett [2013]). Thus, overall, H is tolerantly PAC

learnable with respect to (G,G′) with sample complexity close to what one would require in the
standard PAC setting.

21


	Introduction
	Preliminaries and Notation
	Problem Setting
	Probabilistically Robust Losses and Proper Learnability
	Complexity Measures

	Not All Robust Loss Relaxations Enable Proper Learning
	Proper Learnability Under Relaxed Losses
	Proper Learnability Under Relaxed Competition
	(, *)-Probabilistically Robust PAC Learning
	(, `3́9`42`"̇613A``45`47`"603AG)-Probabilistically Robust PAC Learning
	Tolerantly Robust PAC Learning

	Discussion
	Equivalence between Adversarial Robustness Models
	Proofs for Section 3
	Proper -Probabilistically Robust PAC Learning for finite G
	Proof of Lemma 3.2
	Proof of Lemma 3.3
	Proof of Theorem 3.1

	Proofs for Section 4
	Proof of Theorem 4.2
	Proof of Theorem 4.3

	Proofs for Section 5
	Proof of Theorem 5.2
	Proof of Theorem 5.3
	Proof of Theorem 5.4
	p balls are r-Nice perturbation sets for linear classifiers


