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Abstract

We consider the problem of sequential prediction and provide tools to study the minimax
value of the associated game. Classical statistical learning theory provides several useful
complexity measures to study learning with i.i.d. data. Our proposed sequential complex-
ities can be seen as extensions of these measures to the sequential setting. The developed
theory is shown to yield precise learning guarantees for the problem of sequential predic-
tion. In particular, we show necessary and sufficient conditions for online learnability in
the setting of supervised learning. Several examples show the utility of our framework: we
can establish learnability without having to exhibit an explicit online learning algorithm.

1. Introduction

This paper is concerned with sequential prediction problems where no probabilistic assump-
tions are made regarding the data generating mechanism. Our viewpoint is expressed well
by the following quotation from Cover and Shenhar (1977):

“We are interested in sequential prediction procedures that exploit any ap-
parent order in the sequence. We do not assume the existence of any underlying
distributions, but assume that the sequence is an outcome of a game against a
malevolent intelligent nature.”

We will, in fact, take the game theoretic viewpoint seriously. All our investigations will
proceed by analyzing the minimax value of a repeated game between a player or learner
and a “malevolent intelligent nature”, or the adversary.

Even though we have the setting of prediction problems in mind, it will be useful to
develop the theory in a somewhat abstract setting. Towards this end, fix the sets F and
Z, as well as a loss function ` ∶ F × Z → R, and consider the following T -round repeated
two-player game, which we term the online learning or sequential prediction model. On
round t ∈ {1, . . . , T}, the learner chooses ft ∈ F , the adversary picks zt ∈ Z, and the learner
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suffers loss `(ft, zt). At the end of T rounds we define regret

R(f1∶T , z1∶T ) ≜
T

∑
t=1

`(ft, zt) − inf
f∈F

T

∑
t=1

`(f, zt)

as the difference between the cumulative loss of the player and the cumulative loss of the
best fixed decision. For the given pair (F ,Z), the problem is said to be online learnable
if there exists an algorithm for the learner such that regret grows sublinearly in the time
horizon T , no matter what strategy the adversary employs.

The origin of the online learning (or sequential prediction) model can be traced back to
the work of Robbins (1950) on compound statistical decision problems. Some of the earliest
sequential prediction algorithms were proposed by Blackwell (1956a,b) and Hannan (1957).
Blackwell’s method was based on his celebrated approachability theorem whereas Hannan’s
was based on minimizing a randomly perturbed sum of previous losses. Hannan’s ideas
were to later resurface in the influential Follow-the-Perturbed-Leader family (Kalai and
Vempala, 2005) of online learning algorithms. The seminal ideas in the work of Robbins,
Blackwell and Hannan led to further developments in many different fields. Cover (1967),
Davisson (1973), Ziv and Lempel (1977), Rissanen (1984), Feder et al. (1992), and others laid
the foundation of universal coding, compression and prediction in the Information Theory
literature. Within Computer Science, Littlestone and Warmuth (1994), Cesa-Bianchi et al.
(1997), Vovk (1998), and others studied the online learning model and the prediction with
expert advice framework. The connections between regret minimization and convergence
to equilibria was studied in Economics by Foster and Vohra (1997), Hart and Mas-Colell
(2000) and others.

We have no doubt left out many interesting works above. But even our partial list will
convince the reader that research in online learning and sequential prediction has benefited
from contributions by researchers from a variety of fields including Computer Science, Eco-
nomics, Information Theory, and Statistics. For an excellent synthesis and presentation of
results from these different fields we refer the reader to the book by Cesa-Bianchi and Lugosi
(2006). Many of the ideas in the field are constructive, resulting in beautiful algorithms,
or algorithmic techniques, associated with names such as Follow-the-Regularized-Leader,
Follow-the-Perturbed-Leader, Weighted Majority, Hedge, and Online Gradient Descent.
However, analyzing specific algorithms has obvious disadvantages. The algorithm may not
be “optimal” for the task at hand. Even if it is optimal, one cannot prove that fact unless
one develops tools for analyzing the inherent complexity of the online learning problem.

Our goal is precisely to provide such tools. We will begin by defining the minimax value
of the game underlying the abstract online learning model. Then we will develop tools for
controlling the minimax value resulting in a theory that parallels statistical learning theory.
In particular, we develop analogues of combinatorial dimensions, covering numbers, and
Rademacher complexities. We will also provide results relating these complexities.

Note that our approach is non-constructive: controlling the sequential complexities
mentioned above will only guarantee the existence of a good online learning algorithm but
will not explicitly create one. However, it turns out that that the minimax point of view
can indeed lead to constructive algorithms as shown by Rakhlin et al. (2012).
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2. Minimax Value and Online Learnability

To proceed further in our analysis of the minimax value of the repeated game between the
learner and the adversary, we need to make a few technical assumptions. We assume that
F is a subset of a separable metric space. Let Q be the set of probability measures on F
and assume that Q is weakly compact. In order to allow randomized prediction, we allow
the learner to choose a distribution qt ∈ Q on every round. The minimax value of the game
is then defined as

VT (F ,Z) ≜ inf
q1∈Q

sup
z1∈Z

E
f1∼q1

⋯ inf
qT ∈Q

sup
zT ∈Z

E
fT ∼qT

[
T

∑
t=1

`(ft, zt) − inf
f∈F

T

∑
t=1

`(f, zt)] . (1)

Henceforth, the notation Ef∼q stands for the expectation operator integrating out the ran-
dom variable f with distribution q. We consider here the adaptive adversary who gets to
choose each zt based on the history of moves f1∶t−1 and z1∶t−1.

The first key step in the study of the value of the game is to appeal to the minimax
theorem and exchange the pairs of infima and suprema in (1). This dual formulation is
easier to analyze because the choice of the player comes after the choice of the mixed
strategy of the adversary. We remark that the minimax theorem holds under a very general
assumption of weak compactness ofQ and lower semi-continuity of the loss function.1 Under
these conditions, we can appeal to Theorem 1 stated below, which is adapted for our needs
from the work of Abernethy et al. (2009).

Theorem 1 Let F and Z be the sets of moves for the two players, satisfying the necessary
conditions for the minimax theorem to hold. Denote by Q and P the sets of probability
measures (mixed strategies) on F and Z, respectively. Then

VT (F ,Z) = sup
p1

E
z1∼p1

⋯ sup
pT

E
zT ∼pT

[
T

∑
t=1

inf
ft∈F

E
zt∼pt

[`(ft, zt)] − inf
f∈F

T

∑
t=1

`(f, zt)] , (2)

where suprema over pt range over all distributions in P.

The question of learnability in the online learning model is now reduced to the study of
VT (F ,Z), taking Eq. (2) as the starting point.

Definition 2 A class F is said to be online learnable with respect to the given Z and ` if

lim sup
T→∞

VT (F ,Z)
T

≤ 0 .

Note that our notion of learnability is related to, but distinct from, Hannan consistency
(Hannan, 1957; Cesa-Bianchi and Lugosi, 2006). The latter notion requires the iterated
game to go on for an infinite number of rounds and is formulated in terms of almost sure
convergence. In contrast, we consider a distinct game for each T and look at expected regret.
Nevertheless, it is possible to obtain Hannan consistency using the techniques developed in
this paper by considering a slightly different game (Rakhlin et al., 2011).

1. We refer to Appendix A for a precise statement of the minimax theorem, as well as sufficient conditions.
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We also remark that the statements in this paper extend to the case when the learner
is allowed to make decisions in a larger set G, while the best-in-hindsight term in the regret
definition is computed with respect to F ⊆ G. Such a setting—interesting especially with
regard to computational concerns—is termed improper learning. For example, prediction
with side information (or, the supervised learning problem) is one such case, where we
choose Y ⊂ R, Z = X × Y, F ⊆ YX = G and `(f, (x, y)) = ∣f(x) − y∣. This setting will be
studied later in the paper. Note that in the proper learning scenario, VT (F ,Z) ≥ 0 (e.g.
since all zt’s can be chosen to be the same), and thus the “lim sup” in Definition 2 can be
simply replaced with the limit being equal to zero.

This paper is aimed at understanding the value of the game VT (F ,Z) for various func-
tion classes F . Since our focus is on the complexity of F , we shall often write VT (F) keeping
the dependence on Z (and `) implicit. As we show, the sequential complexity notions—
that were shown by Rakhlin et al. (2014) to characterize uniform martingale Laws of Large
Numbers—also give us a handle on the value VT (F). In the next section, we briefly define
these sequential complexity notions and mention some of the key relations between them.
A more detailed account of the relationships between sequential complexity measures along
with complete proofs can be found in (Rakhlin et al., 2014).

3. Sequential Complexities

Unlike the well-studied statistical learning scenario with i.i.d. data, the online learning
problem possesses a certain sequential dependence. Such dependence cannot be captured
by classical notions of complexity that are based on a batch of data given as a tuple of T
examples. A basic unit that does capture temporal dependence is a binary tree. Surprisingly,
for the sequential prediction problems considered in this paper, one need not look further
than binary trees to capture the relevant complexity.

A Z-valued tree z of depth T is a complete rooted binary tree with nodes labeled by
elements of Z. Such a tree z is identified with the sequence (z1, . . . ,zT ) of labeling functions
zi ∶ {±1}i−1 → Z which provide the labels for each node. Therefore, z1 ∈ Z is the label for
the root of the tree, while zi for i > 1 is the label of the node obtained by following the
path of length i−1 from the root, with +1 indicating ‘right’ and −1 indicating ‘left’. A path
of length T is given by the sequence ε = (ε1, . . . , εT ) ∈ {±1}T . For brevity, we shall often
write zt(ε), where ε = (ε1, . . . , εT ), but it is understood that zt depends only on the prefix
(ε1, . . . , εt−1).

Now, let ε1, . . . , εT be independent Rademacher random variables. Given a Z-valued tree
z of depth T , we define the sequential Rademacher complexity of a function class G ⊆ RZ
on a Z-valued tree z as

RT (G,z) ≜ E [sup
g∈G

1

T

T

∑
t=1

εtg(zt(ε))] ,

and we denote by RT (G) = supzRT (G,z) its supremum over all Z-valued trees of depth T .
The importance of the introduced notion stems from the following result (Rakhlin et al.,
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2014, Theorem 2): for any distribution over a sequence (Z1, . . . , ZT ), we have

E [sup
g∈G

1

T

T

∑
t=1

(E [g(Zt)∣Zt−1] − g(Zt))] ≤ 2RT (G) , (3)

where Zt−1 = (Z1, . . . , Zt−1). In other words, the martingale version of the uniform devi-
ations of means from expectations is controlled by the worst-case sequential Rademacher
complexity. A matching lower bound also holds for the supremum over distributions on
sequences in ZT . It then follows that a uniform martingale Law of Large Numbers holds
for G if and only if RT (G) → 0. For i.i.d. random variables, a similar statement can be
made in terms of the classical Rademacher complexity, and so one might hope that many
other complexity notions from empirical process theory have martingale (or we may say,
sequential) analogues. Luckily, this is indeed the case (see Rakhlin et al. (2014)). As we
show in this paper, these generalizations of the classical notions also give a handle on (as
well as necessary and sufficient conditions for) online learnability, thus painting a picture
that completely parallels statistical learning theory. But before we present our main results,
let us recall some key definitions and results from (Rakhlin et al., 2014).

In providing further upper bounds on sequential Rademacher complexity, the following
definitions of an “effective size” of a function class generalize the classical notions of a
covering number. A set V of R-valued trees of depth T is a (sequential) α-cover (with
respect to `p norm) of G ⊆ RZ on a tree z of depth T if

∀g ∈ G, ∀ε ∈ {±1}T , ∃v ∈ V s.t. ( 1

T

T

∑
t=1

∣vt(ε) − g(zt(ε))∣p)
1/p

≤ α.

The (sequential) covering number of a function class G on a given tree z is defined as

Np(α,G,z) ≜ min{∣V ∣ ∶ V is an α-cover w.r.t. `p norm of G on z} .

It is straightforward to check that Np(α,G,z) ≤ Nq(α,G,z) whenever 1 ≤ p ≤ q ≤∞.
Further define Np(α,G, T ) = supzNp(α,G,z), the maximal `p covering number of G over

depth T trees. For a class G of binary-valued functions, we also define a so-called 0-cover
(or, cover at scale 0), denoted by N (0,G,z), as equal to any Np(0,G,z). The definition of
a 0-cover can be seen as the correct analogue of the size of a projection of G onto a tuple of
points in the i.i.d. case. The size of this projection in the i.i.d. case was the starting point
of the work of Vapnik and Chervonenkis.

When G ⊆ [−1,1]Z is a finite class of bounded functions, one can show (Rakhlin et al.,
2014, Lemma 1) that

RT (G,z) ≤
√

2 log ∣G∣
T

, (4)

a bound that should (correctly) remind the reader of the Exponential Weights regret bound.
With the definition of an α-cover with respect to `1 norm, one can easily extend (4) beyond
the finite case. Immediately from the definition of `1 covering number, it follows that for
any G ⊆ [−1,1]Z , for any α > 0,

RT (G,z) ≤ α +
√

2 logN1(α,G,z)
T

(5)
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(Rakhlin et al., 2014, Eq. (9)). A tighter control is obtained by integrating the covering
numbers at different scales. To this end, consider the following analogue of the Dudley
entropy integral bound. For p ≥ 1, the integrated complexity of a function class G ⊆ [−1,1]Z
on a Z-valued tree of depth T is defined as

Dp
T (G,z) ≜ inf

α≥0
{4α + 12√

T
∫

1

α

√
log Np(δ,G,z) dδ} (6)

and Dp
T (G) = supzD

p
T (G,z), with D2

T (G,z) denoted simply by DT (G,z). We have previously
shown (Rakhlin et al., 2014, Theorem 3) that, for any function class G ⊆ [−1,1]Z and any
Z-valued tree z of depth T ,

RT (G,z) ≤DT (G,z). (7)

We next turn to the description of sequential combinatorial parameters. A Z-valued
tree z of depth d is shattered by a function class G ⊆ {±1}Z if for all ε ∈ {±1}d, there exists
g ∈ G such that g(zt(ε)) = εt for all t ∈ [d]. The Littlestone dimension Ldim(G,Z) is the
largest positive integer d such that G shatters a Z-valued tree of depth d (Littlestone, 1988;
Ben-David et al., 2009). The scale-sensitive version of Littlestone dimension is defined as
follows. A Z-valued tree z of depth d is α-shattered by a function class G ⊆ RZ if there
exists an R-valued tree s of depth d such that

∀ε ∈ {±1}d, ∃g ∈ G s.t. ∀t ∈ [d], εt(g(zt(ε)) − st(ε)) ≥ α/2.

The tree s will be called a witness to shattering. The (sequential) fat-shattering dimension
fatα(G,Z) at scale α is the largest d such that G α-shatters a Z-valued tree of depth d.

The notions introduced above can be viewed as sequential generalizations of the VC
dimension and the fat-shattering dimension where tuples of points get replaced by complete
binary trees. In fact, one recovers the classical notions if the tree z in the above definitions is
restricted to have the same values within a level (hence, no temporal dependence). Crucially,
the sequential combinatorial analogues provide control for the growth of sequential covering
numbers, justifying the definitions.

First, let G ⊆ {0, . . . , k}Z be a class of functions with fat2(G) = d. Then, it can be shown
that (Rakhlin et al., 2014, Theorem 4), for any T ≥ 1,

N∞(1/2,G, T ) ≤
d

∑
i=0

(T
i
)ki ≤ (ekT )d .

For the second result (Rakhlin et al., 2014, Corollary 1), suppose G is a class of [−1,1]-valued
functions on Z. Then, for any α > 0, and any T ≥ 1,

N∞(α,G, T ) ≤ (2eT

α
)

fatα(G)
. (8)

Finally, we recall a bound on the size of the 0-cover in terms of the fat1 combinatorial
parameter (Rakhlin et al., 2014, Theorem 5). For a class G ⊆ {0, . . . , k}Z with fat1(G) = d,
we have

N (0,G, T ) ≤
d

∑
i=0

(T
i
)ki ≤ (ekT )d . (9)
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In particular, for k = 1 (that is, binary classification) we have fat1(G) = Ldim(G). The
inequality (9) is therefore a sequential analogue of the celebrated Vapnik-Chervonenkis-
Sauer-Shelah lemma.

4. Structural Properties

For the examples developed in this paper, it will be crucial to exploit a number of useful
properties that RT (G) satisfies. These properties allow one to establish online learnability
for complex function classes even if no explicit learning algorithms are available.

We first state some properties that are easily proved but are nevertheless very useful.

Lemma 3 Let F ,G ⊆ RZ and let conv(G) denote the convex hull of G. Let z be any Z-
valued tree of depth T . Then the following properties hold.

1. If F ⊆ G, then RT (F ,z) ≤RT (G,z).

2. RT (conv(G),z) =RT (G,z)

3. RT (cG,z) = ∣c∣RT (G,z) for all c ∈ R.

4. For any h ∶ Z → R, RT (G + h,z) =RT (G,z) where G + h = {g + h ∶ g ∈ G}.

These properties match those of the classical Rademacher complexity (Bartlett and Mendel-
son, 2003) and can be proved in essentially the same way (we therefore skip the straight-
forward proofs).

The next property is a key tool for many of the applications: it allows us to bound the
sequential Rademacher complexity for the Cartesian product of function classes composed
with a Lipschitz mapping in terms of complexities of the individual classes.

Lemma 4 Let G = G1 × . . . × Gk where each Gj ⊆ [−1,1]Z . Further, let φ ∶ Rk × Z → R be
such that φ(⋅, z) is L-Lipschitz with respect to ∥ ⋅ ∥∞ for all z ∈ Z, and let

φ ○ G = {z ↦ φ((g1(z), . . . , gk(z)), z) ∶ gj ∈ Gj} .

Then we have
RT (φ ○ G) ≤ 8L (1 + 4

√
2 log3/2(eT 2))∑kj=1 RT (Gj)

as long as RT (Gj) ≥ 1/T for each j.

Let us explicitly state the more familiar contraction property, an immediate corollary
of the above result.

Corollary 5 Fix a class G ⊆ [−1,1]Z with RT (G) ≥ 1/T and a function φ ∶ R × Z → R.
Assume φ(⋅, z) is L-Lipschitz for all z ∈ Z. Then

RT (φ ○ G) ≤ 8L (1 + 4
√

2 log3/2(eT 2)) ⋅RT (G)

where φ ○ G = {z ↦ φ(g(z), z) ∶ g ∈ G}.

We state another useful corollary of Lemma 4.
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Corollary 6 For a fixed binary function b ∶ {±1}k → {±1} and classes G1, . . . ,Gk of {±1}-
valued functions,

RT (b(G1, . . . ,Gk)) ≤ O (log3/2(T ))∑kj=1 RT (Gj)

Note that, in the classical case, the Lipschitz contraction property holds without any
extra poly-logarithmic factors in T (Ledoux and Talagrand, 1991). It is an open question
whether the poly-logarithmic factors can be removed in the results above. It is worth
pointing out ahead of time that Theorem 8 below—in the setting of supervised learning with
convex Lipschitz loss—does allow us to avoid the extraneous factor that would otherwise
appear from a combination of Theorem 7 and Corollary 5.

5. Main Results

We now relate the value of the game to the worst case expected value of the supremum
of an empirical process. However, unlike empirical processes that involve i.i.d. sums, our
process involves a sum of martingale differences. In view of (3), the expected supremum
can be further upper-bounded by the sequential Rademacher complexity.

Theorem 7 The minimax value is bounded as

1

T
VT (F) ≤ sup

P
E sup
g∈`(F)

[ 1

T

T

∑
t=1

(E[g(Zt)∣Z1, . . . , Zt−1] − g(Zt))] ≤ 2RT (`(F))

where `(F) = {`(f, ⋅) ∶ f ∈ F} and the supremum is taken over all distributions P over
(Z1, . . . , ZT ).

We can now employ the tools developed earlier in the paper to upper bound the value of
the game. Interestingly, any non-trivial upper bound guarantees existence of a prediction
strategy that has sublinear regret irrespective of the sequence of the moves of the adversary.
This complexity-based approach of establishing learnability should be contrasted with the
purely algorithm-based approaches found in the literature.

5.1 Supervised Learning

In this subsection we study the supervised learning problem mentioned earlier in the paper.
In this improper learning scenario, the learner at time t picks a function ft ∶ X → R and the
adversary provides the input target pair zt = (xt, yt) ∈ X × Y where Y ⊂ R. In particular,
the binary classification problem corresponds to the case Y = {±1}. Let F ⊆ YX and let us
fix the absolute value loss function `(ŷ, y) = ∣ŷ − y∣. While we focus on the absolute loss, it
is easy to see that all the results hold (with modified rates) for any loss `(ŷ, y) such that
for all ŷ and y, φ(`(ŷ, y)) ≤ ∣ŷ − y∣ ≤ Φ(`(ŷ, y)) where Φ and φ are monotonically increasing
functions. For instance, the squared loss (ŷ − y)2 is a classic example.

We now observe that the value of the improper supervised learning game can be equiv-
alently written as

VS
T (F) = sup

x1
inf
q1∈Q̃

sup
y1

E
ŷ1∼q1

⋯ sup
xT

inf
qT ∈Q̃

sup
yT

E
ŷT ∼qT

[
T

∑
t=1

`(ŷt, yt) − inf
f∈F

T

∑
t=1

`(f(xt), yt)] (10)

8



where Q̃ denotes the set of probability distributions over Y and ŷt has distribution qt. This
equivalence is easy to verify: we may view the choice ft ∶ X → Y as pre-specifying predictions
ft(x) for all the possible x ∈ X , while alternatively we can simply make the choice ŷt ∈ Y
having observed the particular move xt ∈ X . The advantage of rewriting the game in the
form (10) is that the minimax theorem only needs to be applied to the pair ŷt and yt, given
the fixed choice xt. The minimax theorem then holds even if weak compactness cannot be
shown for the set of distributions on the original space of functions of the type X → Y.

An examination of the proof of Theorem 7 reveals that the value (10) is upper bounded
in exactly the same way, and the side information simply appears as an additional tree x
in sequential Rademacher complexity, giving us:

1

T
VS
T (F) ≤ 2 sup

x,y
E [sup

f∈F

1

T

T

∑
t=1

εt`(f(xt(ε)),yt(ε))] . (11)

However, for the supervised learning setting, we can strengthen Theorem 7. The following
theorem allows us to remove any convex Lipschitz loss (including the absolute loss) before
passing to the sequential Rademacher complexity.

Theorem 8 Let Y = [−1,1] and suppose, for any y ∈ Y, `(⋅, y) is convex and L-Lipschitz.
Then the minimax value of a supervised learning problem is upper bounded as

1

T
VST (F) ≤ 2LRT (F).

We remark that the contraction property for sequential Rademacher complexity, stated in
Section 4, yields an extraneous logarithmic factor when applied to (11); here, we achieve
the desired bound by removing the Lipschitz function directly during the symmetrization
step.

Armed with the theorem, we now prove the following result.

Proposition 9 Consider the supervised learning problem with a function class F ⊆ [−1,1]X
and absolute loss `(ŷ, y) = ∣ŷ − y∣. Then, for any T ≥ 1, we have

1

4
√

2
sup
α

⎧⎪⎪⎨⎪⎪⎩
α

√
min{fatα, T}

T

⎫⎪⎪⎬⎪⎪⎭
≤RT (F) ≤ 1

T
VST (F) ≤ 2RT (F) ≤ 2DT (F)

≤ 2 inf
α

⎧⎪⎪⎨⎪⎪⎩
4α + 12√

T
∫

1

α

√
fatβ log (2eT

β
) dβ

⎫⎪⎪⎬⎪⎪⎭
, (12)

where fatα = fatα(F).

The proposition above implies that finiteness of the fat-shattering dimension at all scales
is necessary and sufficient for online learnability of the supervised learning problem. Fur-
ther, all the complexity notions introduced so far are within a poly-logarithmic factor from
each other whenever the problem is learnable. These results are summarized in the next
theorem:

Theorem 10 For any function class F ⊆ [−1,1]X , the following statements are equivalent
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1. Function class F is online learnable in the supervised setting with absolute loss.

2. Sequential Rademacher complexity satisfies limT→∞RT (F) = 0.

3. For any α > 0, the scale-sensitive dimension fatα(F) is finite.

Moreover, if the function class is online learnable, then the value of the supervised game
VST (F), the sequential Rademacher complexity RT (F), and the integrated complexity DT (F)
are within a multiplicative factor of O(log3/2 T ) of each other.

Remark 11 Additionally, the three statements of Theorem 10 are equivalent to F satisfy-
ing a martingale version of the uniform Law of Large Numbers. This property is termed
Sequential Uniform Convergence by Rakhlin et al. (2014), and we refer to their paper for
more details.

For binary classification, we write VBinary
T for VS

T . This case has been investigated
thoroughly by Ben-David et al. (2009) and indeed served as a key motivation for this paper.
As a consequence of Proposition 9 and Eq. (9), we have a tight control on the value of
the game for the binary classification problem. Note that the absolute loss in the binary
classification setting is simply the 0-1 loss `(ŷ, y) = 1{ŷ ≠ y}, where 1{U} is 1 if U is true
and 0 otherwise.

Corollary 12 For the binary classification problem with function class F and the 0-1 loss,
we have

K1

√
T min{Ldim(F), T} ≤ VBinary

T (F) ≤K2

√
T Ldim(F) logT

for some universal constants K1,K2 > 0.

Both the upper and the lower bound in the above result were originally derived in Ben-
David et al. (2009). Notably, we achieved the same bounds non-constructively through
purely combinatorial and covering number arguments.

It is natural to ask whether being able to learn in the online model is different from
learning in the i.i.d. model (in the distribution-free supervised setting). The standard
example that exhibits a gap between the two frameworks (see, e.g., Littlestone (1988);
Ben-David et al. (2009)) is binary classification using the class of step functions

F = {fθ(x) = 1{x ≤ θ} ∶ θ ∈ [0,1]}

on [0,1]. This class has VC dimension 1, but is not learnable in the online setting. Indeed,
it is possible to verify that the Littlestone dimension is infinite. Interestingly, the closely-
related class of “ramp” functions with slope L > 0

FL = {fθ(x) = 1{x ≤ θ} + (1 −L(x − θ))1{θ < x ≤ θ + 1/L} ∶ θ ∈ [0,1]}

is learnable (say for supervised learning using absolute loss) in the online setting (and hence
also in the i.i.d. case). Furthermore, the larger class of all bounded L-Lipschitz functions
on a bounded interval is also online learnable (see Eq. (14) and proof of Proposition 18).
Once again, we are able to make these statements from purely complexity-based considera-
tions, without exhibiting an algorithm. Further examples where we can demonstrate online
learnability are explored in Section 6.
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5.2 Online Convex Optimization

Over the past decade, Online Convex Optimization (OCO) has emerged as a unified on-
line learning framework (Zinkevich, 2003; Shalev-Shwartz, 2011). Various methods, such
as Exponential Weights, can be viewed as instances of online mirror descent, solving the
associated OCO problem. Much research effort has been devoted to understanding this
abstract and simplified setting. It is tempting to say that any problem of online learning,
as defined in the Introduction, can be viewed as OCO (in fact, online linear optimization)
over the set of probability distributions; however, one should also recognize that by lineariz-
ing the problem, any interesting structure is lost and one instead suffers from the possibly
unnecessary dependence on the number of functions in the class F . Nevertheless, OCO
is a central part of the recent literature, and we will study this scenario using techniques
developed in this paper.

The standard setting of online convex optimization is as follows. The set of moves of
the learner F is a bounded closed convex subset of a Banach space (B, ∥ ⋅ ∥) with ∥f∥ ≤ D
for all f ∈ F (the reader can think of Rd equipped with an `p norm for simplicity). Let ∥ ⋅ ∥⋆
be the dual norm. The adversary’s set Z consists of convex G-Lipschitz (with respect to
∥ ⋅ ∥⋆) functions over F :

Z = Zcvx = {g ∶ F → R ∶ g convex and G-Lipschitz w.r.t. ∥ ⋅ ∥⋆} .

Let the loss function be `(f, g) = g(f), the evaluation of the adversarially chosen function
at f . For the particular case of online linear optimization, we instead take

Z = Zlin = {f ↦ ⟨f, z⟩ ∶ ∥z∥⋆ ≤ G}

with Z now a subset of the dual space. It is well-known (see, e.g., Abernethy et al. (2008))
that the online convex optimization problem (without further assumptions on the functions
in Zcvx) is as hard as the corresponding linear optimization problem with Zlin if one considers
deterministic algorithms. The same trivially extends to randomized methods:

Lemma 13 Suppose F ,Zcvx,Zlin be defined as above. Then we have

VT (F ,Zcvx) = VT (F ,Zlin) .

We will now show how to use the above result to derive minimax regret guarantees for
OCO. The reader may wonder why we do not directly try to bound the value VT (F ,Zcvx)
by RT (F ,Zcvx). In fact, this proof strategy cannot give a non-trivial bound if F is a subset
of a high-dimensional (or infinite-dimensional) space (Shalev-Shwartz et al., 2009, Sec. 4.1).
Instead, we use the lemma above to bound the value of the game where adversary plays
convex functions with that of the game where adversary plays linear functions.

A function Ψ ∶ F → R is (σ, q)-uniformly convex (for q ∈ [2,∞)) on F with respect to a
norm ∥ ⋅ ∥ if, for all θ ∈ [0,1] and f1, f2 ∈ F ,

Ψ(θf1 + (1 − θ)f2) ≤ θΨ(f1) + (1 − θ)Ψ(f2) −
σ θ (1 − θ)

q
∥f1 − f2∥q .

A (σ,2)-uniformly convex function will be called σ-strongly convex.
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We will give examples shortly but we first state a proposition that is useful to bound
the sequential Rademacher complexity of linear function classes. The crucial duality fact
exploited in its proof is that Ψ is (σ, q)-uniformly convex with respect to ∥ ⋅ ∥ if and only if
Ψ⋆ is (1/σ, p)-uniformly smooth with respect to ∥ ⋅ ∥⋆ where 1/p + 1/q = 1.

Proposition 14 (Rakhlin et al. (2014)) Let F be a subset of some Banach space B with
norm ∥ ⋅ ∥ and let Z be a subset of the dual space B⋆ equipped with norm ∥ ⋅ ∥⋆. Suppose that
Ψ ∶ F → R is (σ, q)-uniformly convex with respect to ∥ ⋅ ∥ and 0 ≤ Ψ(f) ≤ Ψmax for all f ∈ F .
Then we have

RT (F) ≤ Cp∥Z∥⋆ (
Ψp−1

max

σ T p−1
)

1/p

,

where ∥Z∥⋆ = supz∈Z ∥z∥⋆, p is such that 1/p + 1/q = 1, and Cp = (p/(p − 1))
p−1
p .

Using the above Proposition in conjunction with Lemma 13 and Theorem 7, we can
immediately conclude that

VT (F ,Zcvx) ≤ 2T RT (F) ≤ 2G

√
2 Ψmax T

σ

for any non-negative function Ψ ∶ F → R that is σ-strongly convex w.r.t. ∥ ⋅ ∥. Note that,
typically, Ψmax will depend on D. For example, in the particular case when ∥ ⋅∥ = ∥ ⋅∥⋆ = ∥ ⋅∥2,
we can take Ψ(u) = 1

2∥u∥
2
2 and the above bound becomes 2GD

√
T and recovers the guarantee

for the online gradient descent algorithm. In general, for ∥ ⋅ ∥ = ∥ ⋅ ∥p and ∥ ⋅ ∥⋆ = ∥ ⋅ ∥q, we

can use Ψ(u) = 1
2∥u∥

2
p to get a bound of 2GD

√
T /(p − 1) since Ψ is (p − 1)-strongly convex

w.r.t. ∥ ⋅ ∥p. These O(
√
T ) regret rates are not new but we re-derive them to illustrate the

usefulness of the tools we developed.

6. Further Examples

Now we present some further applications of the tools we have developed in this paper for
some specific learning problems. To begin, we show how to bound the sequential Rade-
macher complexity of functions computed by neural networks. Then, we derive margin
based regret bounds in a fairly general setting. The classical analogues of these margin
bounds have played a big role in the modern theory of supervised learning where they help
explain the success of linear classifiers in high dimensional spaces (see, for example, Schapire
et al. (1997); Koltchinskii and Panchenko (2002)). We then study the complexity of classes
formed by decision trees, analyze the setting of transductive learning, and consider an on-
line version of the Isotron problem. Finally, we make a connection to the seminal work
of Cesa-Bianchi and Lugosi (1999) by re-deriving their bound on the minimax regret in a
static experts game in terms of the classical Rademacher averages.

6.1 Neural Networks

We provide below a bound on the sequential Rademacher complexity for classic multi-layer
neural networks thus showing they are learnable in the online setting. The model of neural
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networks we consider below and the bounds we provide are analogous to the ones considered
in the i.i.d. setting by Bartlett and Mendelson (2003).

Consider a k-layer 1-norm neural network, defined by a base function class F1 and,
recursively, for each 2 ≤ i ≤ k,

Fi =
⎧⎪⎪⎨⎪⎪⎩
x↦∑

j

wijσ (fj(x)) ∣ ∀j fj ∈ Fi−1, ∥wi∥1 ≤ Bi
⎫⎪⎪⎬⎪⎪⎭
,

where σ is a Lipschitz transfer function, such as the sigmoid function.

Proposition 15 Suppose σ ∶ R→ [−1,1] is L-Lipschitz with σ(0) = 0. Then it holds that

RT (Fk) ≤ (
k

∏
i=2

16Bi)Lk−1 (1 + 4
√

2 log3/2(eT 2))
k
RT (F1).

In particular, for the case of

F1 = {x↦ ∑j w1
jxj ∣ ∥w∥1 ≤ B1}

and X ⊂ Rd we have the bound

RT (Fk) ≤ (
k

∏
i=1

16Bi)Lk−1 (1 + 4
√

2 log3/2(eT 2))
k
X∞

√
2 log d

T

where X∞ is such that ∀x ∈ X , ∥x∥∞ ≤X∞.

Our result is a non-constructive guarantee, and, to the best of our knowledge, no algorithms
for learning neural networks within the online learning model exist. It is not clear if the
above bounds could be obtained via computationally efficient methods.

6.2 Margin Based Regret

In the classical statistical setting, margin bounds provide guarantees on the expected zero-
one loss of a classifier based on the empirical margin zero-one error. These results form
the basis of the theory of large margin classifiers (see Schapire et al. (1997); Koltchinskii
and Panchenko (2002)). Recently, in the online setting, bounds of a similar flavor have
been shown through the concept of margin via the Littlestone dimension (Ben-David et al.,
2009). We show that our machinery can easily lead to margin bounds for binary classification
problems for general function classes F based on their sequential Rademacher complexity.
We use ideas from (Koltchinskii and Panchenko, 2002) to do this.

Proposition 16 For any function class F ⊂ [−1,1]X , there exists a randomized prediction
strategy given by τ such that for any sequence z1, . . . , zT where each zt = (xt, yt) ∈ X × {±1},

T

∑
t=1

Eŷt∼τt(z1∶t−1) [1{ŷtyt < 0}]

≤ inf
γ>0

{ inf
f∈F

T

∑
t=1

1{f(xt)yt < 2γ} + 16

γ
(1 + 4

√
2 log3/2(eT 2))TRT (F) + 2

√
T (1 + log log (1

γ
))}
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To interpret the above bound, suppose that the sequence of yt’s is predicted with a margin 2γ
by some function f ∈ F . The upper bound guarantees that there exists a strategy (that does
not need to know the value of γ) with cumulative loss given by the sequential Rademacher
complexity of F divided by the margin, up to poly-logarithmic factors. Crucially, the bound
does not directly depend on the dimensionality of the input space X .

6.3 Decision Trees

We consider here the binary classification problem where the learner competes with a set
of decision trees of depth no more than d. The function class F for this problem is defined
as follows. Each f ∈ F is defined by choosing a rooted binary tree of depth no more than
d and associating to each node a binary valued decision function from a set H ⊆ {±1}X . A
binary value for a given x can be obtained by traversing the tree from the root according
to the value of the decision function at each node and then reading off the label of the
leaf. Importantly, x “reaches” only one leaf of the tree. Alternatively, for any leaf l, the
membership of x is given by the conjunction

∏
i

1{hl,i(x) = 1}

where hl,i is either the decision function at node i along the path to the leaf l, or its negation.
To complete the definition of f , we choose weights wl > 0, ∑lwl = 1, along with the value
σl ∈ {±1} of the function on each leaf l. The resulting function f can be written as

f(x) =∑
l

wlσl∏
i

1{hl,i(x) = 1}

where the sum runs over all the leaves of the tree.

The following proposition is the online analogue of a result about decision tree learning
that Bartlett and Mendelson (2003) proved in the i.i.d. setting.

Proposition 17 Denote by F the class of decision trees of depth at most d with decision
functions in H. There exists a randomized strategy τ for the learner such that for any
sequence of instances z1, . . . , zT , with zt = (xt, yt) ∈ X × {±1},

T

∑
t=1

Eŷt∼τt(z1∶t−1) [1{ŷt ≠ yt}] ≤ inf
f∈F

T

∑
t=1

1{f(xt) ≠ yt}

+O (∑
l

min (C(l), d log3(T ) T R(H)) +
√
T log(N))

where C(l) denotes the number of instances that reach the leaf l and are correctly classified
in the decision tree f that minimizes ∑Tt=1 1{ytf(xt) ≤ 0}, with N > 2 being the number of
leaves in this tree.

It is not clear whether computationally feasible online methods exist for learning decision
trees, and this represents an interesting avenue of further research.
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6.4 Transductive Learning

Let F be a class of functions from X to R. Let

N̂∞(α,F) = min{∣G∣ ∶ G ⊆ RX s.t. ∀f ∈ F ∃g ∈ G satisfying ∥f − g∥∞ ≤ α} (13)

be the `∞ covering number at scale α, where the cover is pointwise on all of X . It is easy
to verify that

∀T, N∞(α,F , T ) ≤ N̂∞(α,F) . (14)

Indeed, let G be a minimal cover of F at scale α. We claim that for any X -valued tree of
depth T , the set V = {vg = g ○x ∶ g ∈ G} of R-valued trees is an `∞ cover of F on x. Fix any
ε ∈ {±1}T and f ∈ F , and let g ∈ G be such that ∥f − g∥∞ ≤ α. Clearly ∣vgt (ε)− f(xt(ε))∣ ≤ α
for any 1 ≤ t ≤ T , concluding the proof.

This simple observation can be applied in several situations. First, consider the problem
of transductive learning, where the set X = {x1, . . . , xn} is a finite set. To ensure online
learnability, it is sufficient to consider an assumption on the dependence of N̂∞(α,F) on α.
An obvious example of such a class is a VC-type class with N̂∞(α,F) ≤ (c/α)d for some c
which can depend on n. Assume that F ⊂ [−1,1]X . Substituting this bound on the covering
number into Eq. (6) and choosing α = 0, we observe that the value of the supervised game
is upper bounded by 2DT (F) ≤ 48

√
dT log c by Proposition 9. It is easy to see that if n

is fixed and the problem is learnable in the batch (i.e. i.i.d.) setting, then the problem is
learnable in the online transductive model.

In the transductive setting considered by Kakade and Kalai (2006), it is assumed that
n ≤ T and F consists of binary-valued functions. If F is a class with VC dimension d, the
Sauer-Shelah lemma ensures that the `∞ cover is smaller than (en/d)d ≤ (eT /d)d. Using
the previous argument with c = eT , we obtain a bound of 4

√
dT log(eT ) for the value of

the game, matching the bound of Kakade and Kalai (2006) up to a constant factor.

6.5 Isotron

Kalai and Sastry (2009) introduced a method called Isotron for learning Single Index Models
(SIM). These models generalize linear and logistic regression, generalized linear models, and
classification by linear threshold functions. For brevity, we only describe the Idealized SIM
problem considered by the authors. In its “batch” version, we assume that the data are
revealed at once as a set {(xt, yt)}Tt=1 ∈ Rd×R where yt = u(⟨w,xt⟩) for some unknown w ∈ Rd
of bounded norm and an unknown non-decreasing u ∶ R → R with a bounded Lipschitz
constant. Given this data, the goal is to iteratively find the function u and the direction
w, making as few mistakes as possible. The error is measured as 1

T ∑
T
t=1(fi(xt) − yt)2,

where fi(x) = ui(⟨wi, x⟩) is the iterative approximation found by the algorithm on the ith
round. The elegant computationally efficient method presented by Kalai and Sastry (2009)
is motivated by Perceptron, and a natural open question posed by the authors is whether
there is an online variant of Isotron. Before even attempting a quest for such an algorithm,
we can ask a more basic question: is the (Idealized) SIM problem even learnable in the
online framework? After all, most online methods deal with convex functions, but u is only
assumed to be Lipschitz and non-decreasing. We answer the question easily with the tools
we have developed.
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We are interested in online learnability of

H = {f(x, y) = (y − u(⟨w,x⟩))2 ∣ u ∶ [−1,1]→ [−1,1] 1-Lipschitz , ∥w∥2 ≤ 1} (15)

in the supervised setting, over X = B2 (the unit Euclidean ball in Rd) and Y = [−1,1]. In
particular, we prove the result for Lipschitz, but not necessarily non-decreasing functions.
It is evident that H is a composition with three levels: the squared loss, the Lipschitz non-
decreasing function, and the linear function. The proof of the following proposition shows
that the covering number of the class does not increase much under these compositions.

Proposition 18 The class H defined in (15) is online learnable in the (improper) super-
vised learning setting. Moreover, the minimax regret is

O(
√
T log3/2(T )).

Once again, it is not clear whether a computationally efficient method attaining the
above guarantee exists.

6.6 Prediction of Individual Sequences with Static Experts

We also consider the problem of prediction of individual sequences, which has been studied
both in information theory and in learning theory. In particular, in the case of binary
prediction, Cesa-Bianchi and Lugosi (1999) proved upper bounds on the minimax value in
terms of the (classical) Rademacher complexity and the (classical) Dudley integral. One of
the assumptions made by Cesa-Bianchi and Lugosi (1999) is that experts are static. That is,
their prediction only depends on the current round, not on the past information. Formally,
we define static experts as vectors f̄ = (f1, . . . , fT ) ∈ [0,1]T , and let F denote a class of
such experts. Let Y = {0,1}, putting us in the scenario of binary classification with no side
information. Then regret on a particular sequence y1, . . . , yT can be written as

T

∑
t=1

`t(f̄t, yt) − inf
f̄∈F
∑
t=1

`t(f̄ , yt)

where f̄t is the expert chosen by the learning algorithm at time t. Observe that the proof
of Theorem 7 does not require the loss to be time independent. In the case of absolute loss,
the Rademacher complexity appearing on the right hand side in Theorem 7 becomes

sup
y

Eε
⎡⎢⎢⎢⎢⎣
sup
f̄∈F

T

∑
t=1

εt`t(f̄ ,yt(ε))
⎤⎥⎥⎥⎥⎦
= sup

y
Eε

⎡⎢⎢⎢⎢⎣
sup
f̄∈F

T

∑
t=1

εt∣ft − yt(ε)∣
⎤⎥⎥⎥⎥⎦
.

where the supremum is over all Y-valued trees of depth T . Noting that for f ∈ [0,1], y ∈
{0,1}, ∣f − y∣ can be written as (1 − 2y)f + y, the above equals

sup
y

Eε
⎡⎢⎢⎢⎢⎣

⎛
⎝

sup
f̄∈F

T

∑
t=1

εt(1 − 2yt(ε))ft
⎞
⎠
+

T

∑
t=1

εtyt(ε)
⎤⎥⎥⎥⎥⎦
= sup

y
Eε

⎡⎢⎢⎢⎢⎣
sup
f̄∈F

T

∑
t=1

εt(1 − 2yt(ε))ft
⎤⎥⎥⎥⎥⎦
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It can be easily verified that the joint distribution of {εt(1 − 2yt(ε))}Tt=1 is still i.i.d. Rade-
macher and hence the value of the game is upper bounded by

2Eε
⎡⎢⎢⎢⎢⎣
sup
f̄∈F

T

∑
t=1

εtft

⎤⎥⎥⎥⎥⎦
,

recovering the upper bound of Theorem 3 in (Cesa-Bianchi and Lugosi, 1999). We note that
for this particular scenario, the factor of 2 (that appears because of symmetrization) is not
needed. This factor is the price we pay for deducing the result from the general statement
of Theorem 7.

7. Discussion

The tools provided in this paper allow us to establish existence of regret minimization
algorithms by working directly with the minimax value. The non-constructive nature of
our results is due to the application of the minimax theorem: the dual strategy does not
give a handle on the primal strategy. Furthermore, by passing to upper bounds on the
dual formulation (2) of the value of the game, we remove the dependence on the dual
strategy altogether. After the original paper (Rakhlin et al., 2010) appeared, the algorithmic
approach has been developed by Rakhlin et al. (2012) who showed that the prediction for
round t can be obtained by appealing to the minimax theorem for rounds t + 1 to T , yet
keeping the minimax expression for round t as is. The notion of a relaxation (in the spirit of
approximate dynamic programming) then allowed the authors to develop a general recipe
for deriving computationally feasible prediction methods. The techniques of the present
paper form the basis for the algorithmic developments in (Rakhlin et al., 2012). We refer
the reader to (Rakhlin and Sridharan, 2014; Rakhlin et al., 2012) for details.
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Appendix A. A Minimax Theorem

The minimax theorem is one of this paper’s main workhorses. For completeness, we state
a general version of this theorem — the von Neumann-Fan minimax theorem — due to
Borwein (2014) (see also (Borwein and Zhuang, 1986)).

Theorem 19 (Borwein (2014)) Let A and B be Banach spaces. Let A ⊂ A be nonempty,
weakly compact, and convex, and let B ⊂ B be nonempty and convex. Let g ∶ A × B → R be
concave with respect to b ∈ B and convex and lower-semicontinuous with respect to a ∈ A,
and weakly continuous in a when restricted to A. Then

sup
b∈B

inf
a∈A

g(a, b) = inf
a∈A

sup
b∈B

g(a, b). (16)
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In the proof of Theorem 1, the minimax theorem is invoked to assure that

inf
qt∈Q

sup
pt∈P

E [`(ft, zt) + ξ(zt)] = sup
pt∈P

inf
qt∈Q

E [`(ft, zt) + ξ(zt)] (17)

where ξ(zt) is a rather complicated function that includes the repeated infima and suprema
from steps t + 1 to T of regret expression that includes the variable zt (but not ft). The
expectation in (17) is with respect to ft ∼ qt and zt ∼ pt. To apply (16), we take g to be
the bilinear form in qt and pt, with A = Q and B = P. Equipped with the total variation
distance, Q and P can be seen as subsets of a Banach space of measures on F and Z,
respectively. In terms of conditions, it is enough to check weak compactness of Q and
assume continuity of the loss function (lower semi-continuity can be used as well).

Weak compactness of the set of probability measures on a complete separable metric
space is equivalent to uniform tightness by the fundamental result of Prohorov (see e.g.
(Bogachev, 2007, Theorem 8.6.2.), (van der Vaart and Wellner, 1996)). If F itself is compact,
then the set ∆(F) of probability measures on F is tight, and hence (under the continuity
of the loss) the minimax theorem holds. If F is not compact, tightness can be established
under the following general condition. According to Example 8.6.5 (ii) in Bogachev (2007),
a family ∆(F) of Borel probability measures on a separable reflexive Banach space E is
uniformly tight (under the weak topology) precisely when there exists a function V ∶ E →
[0,∞) continuous in the norm topology such that

lim
∥f∥→∞

V (f) =∞ and sup
q∈∆(F)

Ef∼qV (f) <∞.

As an example, if F is a subset of a ball in E, it is enough to take V (f) = ∥f∥.
Finally, we remark that in the supervised learning case by considering the improper

learning scenario we allow xt to be observed before the choice ŷt is made. Therefore, we do
not need to invoke the minimax theorem on the space of functions F , but rather (see the
proof of Theorem 8) for two real-valued decisions in a bounded interval. This makes the
application of the minimax theorem straightforward.

Appendix B. Proofs

Proof [of Theorem 1] For brevity, denote ψ(z1∶T ) = inff∈F ∑Tt=1 `(f, zt). The first step in
the proof is to appeal to the minimax theorem for every couple of inf and sup:

VT (F) = inf
q1

sup
p1

Ef1∼q1
z1∼p1

. . . inf
qT

sup
pT

EfT ∼qT
zT ∼pT

{
T

∑
t=1

`(ft, zt) − ψ(z1∶T )}

= sup
p1

inf
q1

Ef1∼q1
z1∼p1

. . . sup
pT

inf
qT

EfT ∼qT
zT ∼pT

{
T

∑
t=1

`(ft, zt) − ψ(z1∶T )}

= sup
p1

inf
f1

Ez1∼p1 . . . sup
pT

inf
fT

EzT ∼pT {
T

∑
t=1

`(ft, zt) − ψ(z1∶T )}

where qt and pt range over Q and P, the sets of distributions on F and Z, respectively.
From now on, it will be understood that zt has distribution pt. By moving the expectation
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with respect to zT and then the infimum with respect to fT inside the expression, we arrive
at

sup
p1

inf
f1

E
z1
. . . sup

pT−1
inf
fT−1

E
zT−1

sup
pT

{
T−1

∑
t=1

`(ft, zt) + [inf
fT

E
zT

`(fT , zT )] − E
zT

ψ(z1∶T )}

= sup
p1

inf
f1

E
z1
. . . sup

pT−1
inf
fT−1

E
zT−1

sup
pT

E
zT

{
T−1

∑
t=1

`(ft, zt) + [inf
fT

E
zT

`(fT , zT )] − ψ(z1∶T )} (18)

Let us now repeat the procedure for step T − 1. The above expression is equal to

sup
p1

inf
f1

E
z1
. . . sup

pT−1
inf
fT−1

E
zT−1

{
T−1

∑
t=1

`(ft, zt) + sup
pT

E
zT

[inf
fT

E
zT

`(fT , zT ) − ψ(z1∶T )]}

which, in turn, is equal to

sup
p1

inf
f1

E
z1
. . . sup

pT−1
{
T−2

∑
t=1

`(ft, zt) + [ inf
fT−1

E
zT−1

`(fT−1, zT−1)]

+ E
zT−1

sup
pT

E
zT

[inf
fT

E
zT

`(fT , zT ) − ψ(z1∶T )]}

= sup
p1

inf
f1

E
z1
. . . sup

pT−1
E
zT−1

sup
pT

E
zT

{
T−2

∑
t=1

`(ft, zt) + [ inf
fT−1

E
zT−1

`(fT−1, zT−1)]

+ [inf
fT

E
zT

`(fT , zT )] − ψ(z1∶T )}

Continuing in this fashion for T − 2 and all the way down to t = 1 proves the theorem.

Proof [of Lemma 4] Without loss of generality assume that the Lipschitz constant L = 1,
as the general case follows by scaling φ. Fix a Z-valued tree z of depth T . We first claim
that

log N2(β,φ ○ G,z) ≤
k

∑
j=1

log N∞(β,Gj ,z) .

Suppose V1, . . . , Vk are minimal β-covers with respect to `∞ for G1, . . . ,Gk on the tree z.
Consider the set

V φ = {vφ ∶ v ∈ V1 × . . . × Vk}

where vφ is the tree such that vφt (ε) = φ(vt(ε),zt(ε)). Then, for any g = (g1, . . . , gk) ∈ G
and any ε ∈ {±1}T , with representatives (v1, . . . ,vk) ∈ V1 × . . . × Vk, we have,

¿
ÁÁÀ 1

T

T

∑
t=1

(φ(g(zt(ε)),zt(ε)) − vφt (ε))
2
≤ max
t∈[T ]

∣φ(g(zt(ε)),zt(ε)) − vφt (ε)∣

= max
t∈[T ]

∣φ(g(zt(ε)),zt(ε)) − φ(vt(ε),zt(ε))∣ ≤ max
j∈[k]

max
t∈[T ]

∣gj(zt(ε))) − vjt (ε)∣ ≤ β
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Thus we see that V φ is an β-cover with respect to `∞ for φ ○ G on z. Hence

log N2(β,φ ○ G,z) ≤ log(∣V φ∣) =
k

∑
j=1

log(∣Vj ∣) =
k

∑
j=1

log N∞(β,Gj ,z). (19)

For any g ∈ G and z ∈ Z, the value φ(g(z), z) is contained in the interval [−1 + φ(0, z),+1 +
φ(0, z)] by the Lipschitz property. Consider the R-valued tree φ(0, ⋅) ○ z. We now center
by this tree and consider the set of trees

{φ(g(⋅), ⋅) ○ z − φ(0, ⋅) ○ z ∶ g ∈ G}

The centering does not change the size of the cover calculated in (19), but allows us to
invoke (7) since the function values are now in [−1,1]:

RT (φ ○ G,z) ≤ inf
α

⎧⎪⎪⎪⎨⎪⎪⎪⎩
4α + 12√

T
∫

1

α

¿
ÁÁÁÀ

k

∑
j=1

log N∞(β,Gj ,z) dβ
⎫⎪⎪⎪⎬⎪⎪⎪⎭

≤ inf
α

⎧⎪⎪⎨⎪⎪⎩
4α + 12√

T

k

∑
j=1
∫

1

α

√
log N∞(β,Gj ,z) dβ

⎫⎪⎪⎬⎪⎪⎭
(20)

We substitute the upper bound on covering numbers in (8) for each Gj and arrive at an
upper bound of

inf
α

⎧⎪⎪⎨⎪⎪⎩
4α + 12√

T

k

∑
j=1
∫

1

α

√
fatβ(Gj) log(2eT /β)dβ

⎫⎪⎪⎬⎪⎪⎭
. (21)

Lemma 2 in (Rakhlin et al., 2014) implies that for any β > 2RT (Gj),

fatβ(Gj) ≤
32T RT (Gj)2

β2
.

Let j∗ = argmax
j

RT (Gj). Substituting this together with the value of α = 2RT (Gj∗) into

(21) yields an upper bound

8 RT (Gj∗) + 48
√

2
k

∑
j=1

RT (Gj)∫
1

2RT (Gj∗)

1

β

√
log(2eT /β)dβ

Using the fact that for any b > 1 and α ∈ (0,1)

∫
1

α

1

β

√
log(b/β)dβ = ∫

b/α

b

1

x

√
logxdx = 2

3
log3/2(x)∣

b/α

b
≤ 2

3
log3/2(b/α) (22)

we obtain a further upper bound of

8 RT (Gj∗) + 32
√

2
k

∑
j=1

RT (Gj) log3/2 ( eT

RT (Gj∗)
) .
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Replacing the first term by 8∑jRT (Gj), we conclude that

RT (φ ○ G,z) ≤ 8 (1 + 4
√

2 log3/2(eT 2))
k

∑
j=1

RT (Gj)

as long as RT (Gj) ≥ 1/T for each j. The statement is concluded by observing that z was
chosen arbitrarily.

Proof [of Corollary 6] We first extend the binary function b to a function b̄ to any x ∈ Rk
as follows :

b̄(x) = { (1 − ∥x − a∥∞)b(a) if ∥x − a∥∞ < 1 for some a ∈ {±1}k
0 otherwise

First note that b̄ is well-defined since all points in the k-cube are separated by L∞ distance
2. Further note that b̄ is 1-Lipschitz w.r.t. the L∞ norm and so applying Lemma 4 we
conclude the statement of the corollary.

Proof [of Theorem 7] Let Et−1[⋅] = E[⋅∣Z1, . . . , Zt−1] denote the conditional expectation.
Using Theorem 1 we have,

VT (F) = sup
p1

E
Z1∼p1

. . . sup
pT

E
ZT ∼pT

[
T

∑
t=1

inf
ft∈F

Et−1`(ft, ⋅) − inf
f∈F

T

∑
t=1

`(f,Zt)]

= sup
p1

E
Z1∼p1

. . . sup
pT

E
ZT ∼pT

[sup
f∈F

{
T

∑
t=1

inf
ft∈F

Et−1`(ft, ⋅) −
T

∑
t=1

`(f,Zt)}]

≤ sup
p1

E
Z1∼p1

. . . sup
pT

E
ZT ∼pT

[sup
f∈F

{
T

∑
t=1

Et−1`(f, ⋅) −
T

∑
t=1

`(f,Zt)}] (23)

The upper bound is obtained by replacing each infimum by a particular choice f . This step
also holds if the choice ft of the learner comes from a larger set G, as long as F ⊆ G. The
proof is concluded by appealing to (3).

Proof [of Theorem 8]
Let Q̃ denote the set of distributions on Y = [−1,1]. By convexity,

T

∑
t=1

`(ŷt, yt) − inf
f∈F

T

∑
t=1

`(f(xt), yt) ≤ sup
f∈F

T

∑
t=1

`′(ŷt, yt) (ŷt − f(xt))

where `′(ŷt, yt) is a subgradient of the function y ↦ `(⋅, yt) at ŷt. Then the minimax value
(10) can be upper bounded as

VST (F) ≤ sup
x1

inf
q1∈Q̃

sup
y1

E
ŷ1∼q1

. . . sup
xT

inf
qT ∈Q̃

sup
yT

EŷT ∼qT [sup
f∈F

T

∑
t=1

`′(ŷt, yt) (ŷt − f(xt))]
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By the Lipschitz property of `, we can replace each subgradient `′(ŷt, yt) with a number
st ∈ [−L,L] to obtain the upper bound

sup
x1

inf
q1∈Q̃

sup
y1

E
ŷ1∼q1

sup
s1∈[−L,L]

. . . sup
xT

inf
qT ∈Q̃

sup
yT

E
ŷT ∼qT

sup
sT ∈[−L,L]

{sup
f∈F

T

∑
t=1

st (ŷt − f(xt))}

Since yt’s no longer appear in the optimization objective, we can simply write the above as

sup
x1

inf
q1∈Q̃

E
ŷ1∼q1

sup
s1∈[−L,L]

. . . sup
xT

inf
qT ∈Q̃

E
ŷT ∼qT

sup
sT ∈[−L,L]

{sup
f∈F

T

∑
t=1

st (ŷt − f(xt))}

= sup
x1

inf
ŷ1∈[−1,1]

sup
s1∈[−L,L]

. . . sup
xT

inf
ŷT ∈[−1,1]

sup
sT ∈[−L,L]

{sup
f∈F

T

∑
t=1

st (ŷt − f(xt))}

where the equality follows because infima are obtained at point distributions. By the same
reasoning, we now pass to distributions over st’s:

sup
x1

inf
ŷ1∈[−1,1]

sup
p1

E
s1∼p1

. . . sup
xT

inf
ŷT ∈[−1,1]

sup
pT

EsT ∼pT [
T

∑
t=1

st ⋅ ŷt − inf
f∈F

T

∑
t=1

stf(xt)] (24)

From now on, it will be understood that the supremum over pt ranges over all distributions
supported on [−L,L], for any t, and st has distribution pt. Now note that

EsT [
T

∑
t=1

st ⋅ ŷt − inf
f∈F

T

∑
t=1

st ⋅ f(xt)]

is concave (linear) in pT and is convex in ŷT and hence by the minimax theorem,

inf
ŷT ∈[−1,1]

sup
pT

EsT [
T

∑
t=1

st ⋅ ŷt − inf
f∈F

T

∑
t=1

stf(xt)] = sup
pT

inf
ŷT ∈[−1,1]

EsT [
T

∑
t=1

st ⋅ ŷt − inf
f∈F

T

∑
t=1

stf(xt)]

=
T−1

∑
t=1

st ⋅ ŷt + sup
pT

EsT
⎡⎢⎢⎢⎣

inf
ŷT ∈[−1,1]

EsT [sT ] ⋅ ŷT − inf
f∈F

T

∑
t=1

stf(xt)
⎤⎥⎥⎥⎦

where the last step is similar to the one in the proof of Theorem 1, specifically Eq.(18).
Similarly note that the term

EsT−1
⎡⎢⎢⎢⎣

T−1

∑
t=1

st ⋅ ŷt + sup
pT ,xT

EsT
⎡⎢⎢⎢⎣

inf
ŷT ∈[−1,1]

EsT [sT ] ⋅ ŷT − inf
f∈F

T

∑
t=1

stf(xt)
⎤⎥⎥⎥⎦

⎤⎥⎥⎥⎦
is concave (linear) in pT−1 and is convex in ŷT−1 and hence again by the minimax theorem,

inf
ŷT−1∈[−1,1]

sup
pT−1

E
sT−1

⎡⎢⎢⎢⎢⎣

T−1

∑
t=1

st ⋅ ŷt + sup
pT ,xT

E
sT

⎡⎢⎢⎢⎣
inf

ŷT ∈[−1,1]
EsT [sT ] ⋅ ŷT − inf

f∈F

T

∑
t=1

stf(xt)
⎤⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎦

= sup
pT−1

inf
ŷT−1∈[−1,1]

E
sT−1

⎡⎢⎢⎢⎢⎣

T−1

∑
t=1

st ⋅ ŷt + sup
pT ,xT

EsT
⎡⎢⎢⎢⎣

inf
ŷT ∈[−1,1]

EsT [sT ] ⋅ ŷT − inf
f∈F

T

∑
t=1

stf(xt)
⎤⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎦

=
T−2

∑
t=1

st ⋅ ŷt + sup
pT−1

E
sT−1

sup
pT ,xT

EsT
⎡⎢⎢⎢⎣

T

∑
t=T−1

inf
ŷt∈[−1,1]

Est [st] ⋅ ŷt − inf
f∈F

T

∑
t=1

stf(xt)
⎤⎥⎥⎥⎦
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Proceeding in similar fashion and using this in Eq.(24) we conclude that,

VST (F) ≤ sup
x1

inf
ŷ1∈[−1,1]

sup
p1

E
s1∼p1

. . . sup
xT

inf
ŷT ∈[−1,1]

sup
pT

EsT ∼pT [
T

∑
t=1

st ⋅ ŷt − inf
f∈F

T

∑
t=1

stf(xt)]

= sup
x1

sup
p1

E
s1∼p1

. . . sup
xT

sup
pT

E
sT ∼pT

⎡⎢⎢⎢⎣

T

∑
t=1

inf
ŷt∈[−1,1]

Est∼pt [st] ⋅ ŷt − inf
f∈F

T

∑
t=1

stf(xt)
⎤⎥⎥⎥⎦

≤ sup
x1

sup
p1

E
s1∼p1

. . . sup
xT

sup
pT

EsT ∼pT [sup
f∈F

T

∑
t=1

(Est∼pt [st] − st) f(xt)]

where we replaced each ŷt with a potentially suboptimal choice f(xt). Passing the expec-
tation past the suprema we obtain an upper bound

sup
x1

sup
p1

E
s1,s′1∼p1

. . . sup
xT

sup
pT

EsT ,s′T ∼pT [sup
f∈F

T

∑
t=1

(s′t − st) f(xt)] (25)

= sup
x1

sup
p1

E
s1,s′1∼p1

E
ε1
. . . sup

xT

sup
pT

E
sT ,s

′
T ∼pT

EεT [sup
f∈F

T

∑
t=1

εt (s′t − st) f(xt)]

≤ sup
x1

sup
s1∈[−2L,2L]

E
ε1
. . . sup

xT

sup
sT ∈[−2L,2L]

EεT [sup
f∈F

T

∑
t=1

εtstf(xt)]

= sup
x1

sup
s1∈{−2L,2L}

E
ε1
. . . sup

xT

sup
sT ∈{−2L,2L}

EεT [sup
f∈F

T

∑
t=1

εtstf(xt)] (26)

= 2L sup
x1

sup
s1∈{−1,1}

E
ε1
. . . sup

xT

sup
sT ∈{−1,1}

EεT [sup
f∈F

T

∑
t=1

εtstf(xt)] (27)

where the last inequality is because, for every t ∈ [T ], we have convexity in st and so
supremum is achieved at either −2L or 2L. Notice that after using convexity to go to
gradients, the proof technique above basically mimics the proofs of Theorems 1 and 7 to get
to a symmetrized term as we did in those theorems. Now consider any arbitrary function
ψ ∶ {±1}↦ R, we have that

sup
s∈{±1}

Eε [ψ(s ⋅ ε)] = sup
s∈{±1}

1

2
(ψ(+s) + ψ(−s)) = 1

2
(ψ(+1) + ψ(−1)) = Eε [ψ(ε)]

Since in Eq. (27), for each t, st and εt appear together as εt ⋅ st using the above equation
repeatedly, we conclude that

VST (F) ≤ 2L sup
x1

sup
s1∈{−1,1}

Eε1 . . . sup
xT

sup
sT ∈{−1,1}

EεT [sup
f∈F

T

∑
t=1

εtstf(xt)]

= 2L sup
x1

Eε1 . . . sup
xT

EεT [sup
f∈F

T

∑
t=1

εtf(xt)] (28)

We now claim that the above supremum can be written in terms of an X -valued tree. Briefly,
the solution for x1 in (28) is attained (for simplicity, assume the supremum is attained) at
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an optimal value x∗1 . The optimal value x∗2 can be calculated for ε1 = 1 and ε1 = −1. Arguing
in this manner leads to a tree x. We conclude

VST (F) ≤ 2L sup
x

Eε1∶T [sup
f∈F

T

∑
t=1

εtf(xt(ε))] = 2LT RT (F)

Proof [of Proposition 9] For the upper bound, we start by using Theorem 8 for absolute
loss, which has a Lipschitz constant of 1, to bound the value of the game by sequential
Rademacher complexity,

1

T
VS
T (F) ≤ 2RT (F) .

We combine the above inequality with Eqs. (7) and (8) to obtain the upper bound.

Observe that a lower bound on the value can be obtained by choosing any particular
joint distribution on sequences (x1, y1), . . . , (xt, yt) in Eq. (2):

VS
T (F) ≥ E [

T

∑
t=1

inf
ft∈F

E(xt,yt) [∣yt − ft(xt)∣ ∣ (x, y)1∶t−1] − inf
f∈F

T

∑
t=1

∣yt − f(xt)∣]

To this end, choose any X -valued tree x of depth T . Let y1, . . . , yT be i.i.d. Rademacher
random variables and define xt = x(y1∶t−1) deterministically (that is, the conditional dis-
tribution of xt is a point distribution on x(y1∶t−1)). It is easy to see that this distribution
makes the choice ft irrelevant, yielding

VS
T (F) ≥ E [

T

∑
t=1

1 − inf
f∈F

T

∑
t=1

∣yt − f(xt)∣] = Ey1,...,yT sup
f∈F

T

∑
t=1

ytf(xt)

Since this holds for any tree x, we obtain the desired lower bound VS
T (F) ≥ RT (F). The

final lower bound on RT (F) (in terms of the fat-shattering dimensions) is proved by Rakhlin
et al. (2014, Lemma 2).

Proof [of Theorem 10] The equivalence of 1 and 2 follows directly from Proposition 9.
First, suppose that fatα is infinite for some α > 0. Then, the lower bound says that VS

T (F) ≥
αT /(4

√
2) and hence lim supT→∞ VS

T (F)/T ≥ α/(4
√

2). Thus, the class F is not online
learnable in the supervised setting. Now, assume that fatα is finite for all α. Fix an ε > 0
and choose α = ε/16. Using the upper bound, we have

VS
T (F) ≤ 8Tα + 24

√
T ∫

1

α

√
fatβ log (2eT

β
) dβ

≤ 8Tα + 24
√
T (1 − α)

√
fatα log (2eT

α
)

≤ εT /2 + εT /2
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for T large enough. Thus, lim supT→∞ VS
T (F)/T ≤ ε. Since ε > 0 was arbitrary, this proves

that F is online learnable in the supervised setting.

The statement that VS
T (F), RT (F), and DT (F) are within a multiplicative factor of

O(log3/2 T ) of each other whenever the problem is online learnable follows immediately
from (Rakhlin et al., 2014, Eq. (10)) and Proposition 9.

Proof [of Lemma 13] Consider the game (F ,Zcvx) and fix a randomized strategy π of
the player. Then, the expected regret of a randomized strategy π against any adversary
playing g1, . . . , gT can be lower-bounded via Jensen’s inequality as

T

∑
t=1

Eut∼πt(g1∶t−1) [gt(ut)] − inf
u∈F

T

∑
t=1

gt(u) ≥
T

∑
t=1

gt (Eut∼πt(g1∶t−1) [ut]) − inf
u∈F

T

∑
t=1

gt(u),

which is simply regret of a deterministic strategy obtained from π by playing Eut∼πt(g1∶t−1) [ut]
on round t. Thus, to any randomized strategy corresponds a deterministic one that is no
worse. On the other hand, the set of randomized strategies contains the set of determinis-
tic ones. Hence, VT (F ,Zcvx) = Vdet

T (F ,Zcvx) where Vdet
T is defined as the minimax regret

obtainable only using deterministic player strategies. Now, we appeal to Theorem 14 of
Abernethy et al. (2008) that says Vdet

T (F ,Zcvx) = Vdet
T (F ,Zlin). Note that Abernethy et al.

(2008) deal with convex sets in finite dimensional spaces only. However, their proof relies
on fundamental properties of convex functions that are true in any general vector space
(such as the fact that the first order Taylor expansion of a convex function globally lower
bounds the convex function). Since Zlin also consists of convex (in fact, linear) functions,
the above argument again gives Vdet

T (F ,Zlin) = VT (F ,Zlin). This finishes the proof of the
lemma.

Proof [of Proposition 15] We shall prove that for any i ∈ {2, . . . , k},

RT (Fi) ≤ 16LBi (1 + 4
√

2 log3/2(eT 2))RT (Fi−1)

To see this note that for any x, RT (Fi,x) is equal to

Eε

⎡⎢⎢⎢⎢⎢⎢⎢⎣

sup
wi∶∥wi∥1≤Bi
∀j fj∈Fi−1

T

∑
t=1

εt
⎛
⎝∑j

wijσ (fj(xt(ε)))
⎞
⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎦

≤ Eε

⎡⎢⎢⎢⎢⎢⎢⎢⎣

sup
wi∶∥wi∥1≤Bi
∀j fj∈Fi−1

∥wi∥1 max
j

∣
T

∑
t=1

εtσ (fj(xt(ε)))∣

⎤⎥⎥⎥⎥⎥⎥⎥⎦

by Hölder’s inequality. Then RT (Fi) is upper bounded as

sup
x

Eε [Bi sup
f∈Fi−1

max{
T

∑
t=1

εtσ (f(xt(ε))) ,−
T

∑
t=1

εtσ (f(xt(ε)))}]

≤ sup
x

Eε [Bimax{ sup
f∈Fi−1

T

∑
t=1

εtσ (f(xt(ε))) , sup
f∈Fi−1

T

∑
t=1

−εtσ (f(xt(ε)))}] .
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Since 0 ∈ Fi together with the assumption of σ(0) = 0, both terms are non-negative, and
thus the maximum above can be upper bounded by the sum

sup
x

Eε [Bi sup
f∈Fi−1

T

∑
t=1

εtσ (f(xt(ε)))] + sup
x

Eε [Bi sup
f∈Fi−1

T

∑
t=1

−εtσ (f(xt(ε)))] .

We now claim that the two terms are equal. Indeed, let x∗ be the tree achieving the
supremum in the first term (a modified analysis can be carried out if the supremum is not
achieved). Then the mirror tree x defined via xt(ε) = x∗t (−ε) yields the same value for the
second term. Since the argument can be carried out in the reverse direction, the two terms
are equal, and the upper bound of

2Bi sup
x

Eε [ sup
f∈Fi−1

T

∑
t=1

εtσ (f(xt(ε)))]

follows. In view of contraction in Corollary 5, we obtain a further upper bound of

16BiL (1 + 4
√

2 log3/2(eT 2))RT (Fi−1) (29)

To finish the proof we note that for the base case of i = 1, RT (F1) is equal to

sup
x

Eε
⎡⎢⎢⎢⎢⎣

sup
w∈Rd∶∥w∥1≤B1

T

∑
t=1

εtw
⊺xt(ε)

⎤⎥⎥⎥⎥⎦
which is upper bounded by

sup
x

Eε
⎡⎢⎢⎢⎢⎣

sup
w∈Rd∶∥w∥1≤B1

∥w∥1 ∥
T

∑
t=1

εtxt(ε)∥
∞

⎤⎥⎥⎥⎥⎦
≤ B1 sup

x
Eε [max

i∈[d]
{
T

∑
t=1

εtxt(ε)[i]}]

Note that the instances x ∈ X are vectors in Rd and so for a given instance tree x, for any
i ∈ [d], x[i] given by only taking the ith co-ordinate is a valid real valued tree. By Eq. (4),

T ⋅RT (F1) ≤ B1 sup
x

Eε [max
i∈[d]

{
T

∑
t=1

εtxt(ε)[i]}] ≤ B1

√
2TX2

∞ log d

Using the above and Eq. (29) repeatedly we conclude the proof.

Proof [of Proposition 16] Fix a γ > 0 and use loss

`(ŷ, y) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 ŷy ≤ 0
1 − ŷy/γ 0 < ŷy < γ
0 ŷy ≥ γ

Since this loss is 1/γ-Lipschitz, we can use (11) and the Rademacher contraction Corollary 5
to show that for each γ > 0 there exists a randomized strategy τγ such that for any data
sequence

T

∑
t=1

Eŷt∼τγt (z1∶t−1) [`(ŷt, yt)] ≤ inf
f∈F

T

∑
t=1

`(f(xt), yt) + γ−1ρTTRT (F),
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where ρT = 16 (1 + 4
√

2 log3/2(eT 2)) throughout the proof. Further, observe that the loss

function is lower bounded by the zero-one loss 1{ŷy < 0} and is upper bounded by the
margin zero-one loss 1{ŷy < γ}. Hence,

T

∑
t=1

Eŷt∼τγt (z1∶t−1) [1{ŷtyt < 0}] ≤ inf
f∈F

T

∑
t=1

1{ytf(xt) < γ} + γ−1ρTTRT (F) (30)

The above bound holds for randomized each strategy given by τγ , for any given γ.
Now we discretize the set of γ’s as γi = 1/2i and use the output of the randomized strategies
τγ1 , τγ2 , . . ., that attain the regret bounds given in (30), as experts. We then run a countable
experts algorithm (Algorithm 1) with initial weight for expert i as pi = 6

π2i2
. Such an

algorithm achieves O(
√
T log(1/pi)) regret w.r.t. expert i. In view of Proposition 20, for

this randomized strategy τ , for any i

T

∑
t=1

Eŷt∼τt(z1∶t−1) [1{ŷtyt < 0}] ≤ inf
f∈F

T

∑
t=1

1{ytf(xt) < γi} + γ−1
i ρTTRT (F) +

√
T (1 + 2 log( iπ√

6
))

For any γ > 0, let iγ ∈ 0,1, . . . , be such that 2−(iγ+1) < γ ≤ 2−iγ . Then above right-hand side
is upper bounded by

inf
f∈F

T

∑
t=1

1{ytf(xt) < 2γ} + γ−1ρTTRT (F) +
√
T (1 + 2 log( iγπ√

6
))

The proof is concluded using the inequality iγ ≤ log(1/γ) and upper bounding constants.

Proof [of Proposition 17] Fix some L > 0. The loss

φL(α) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if α ≤ 0
1 −Lα if 0 < α ≤ 1/L

0 otherwise

is L-Lipschitz and so by Theorem 7 and Corollary 5 we have that for every L > 0, there exists
a randomized strategy τL for the player, such that for any sequence z1 = (x1, y1), . . . , zT =
(xT , yT ),

T

∑
t=1

Eŷt∼τLt (z1∶t−1) [φL(ytŷt)] ≤ inf
f∈F

T

∑
t=1

φL(ytf(xt)) +LρTTRT (F) (31)

where ρT = 16 (1 + 4
√

2 log3/2(eT 2)) throughout this proof. Since φL dominates the step

function, the left hand side of (31) also upper-bounds the expected indicator loss

T

∑
t=1

Eŷt∼τLt (z1∶t−1) [1{ŷt ≠ yt}] .

For any f ∈ F , we can relate the φL-loss to the indicator loss by

T

∑
t=1

φL(ytf(xt)) =
T

∑
t=1

1{ytf(xt) ≤ 0} +∑
l

C(l)φL(wl).
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Let us now use the above decomposition in Eq. (31). Crucially, the sign of f(x) does not
depend on wl, but only on the label σl of the unique leaf l reached by x. Thus, the infimum
in (31) can be split into two infima:

inf
f∈F

T

∑
t=1

φL(ytf(xt)) = inf
f∈F

T

∑
t=1

1{ytf(xt) ≤ 0} + inf
wl
∑
l

C(l)φL(wl)

where it is understood that the C(l) term on the right hand side is computed using the
function f minimizing the first sum on the right hand side. We can further write

∑
l

C(l)φL(wl) ≤∑
l

C(l)max(0,1 −Lwl) =∑
l

max (0, (1 −Lwl)C(l)) .

So far, we have derived a regret bound for a given L. Let us now remove the requirement
to know L a priori by running the experts Algorithm 1 with τ1, τ2, . . . as a countable set of
experts corresponding to the values L ∈ N. The prior on expert L is taken to be pL = 6

π2L
−2

so that ∑pL = 1. For the randomized strategy τ obtained in this manner, from Proposition
20, for any sequence of instances and any L ∈ N,

T

∑
t=1

Eŷt∼τt(z1∶t−1) [1{ŷ ≠ yt}] ≤ inf
f∈F

T

∑
t=1

1{ytf(xt) ≤ 0} + inf
f∈F
∑
l

max (0, (1 −Lwl)C(l))

+LρTTRT (F) +
√
T + 2

√
T log(Lπ/

√
6)

Now we pick L = ∣{l ∶ C(l) > ρTTRT (F)}∣ ≤ N and upper bound the second infimum by
choosing wl = 0 if C(l) ≤ ρTTRT (F) and wl = 1/L otherwise:

inf
wl
∑
l

max (0, (1 −Lwl)C(l)) +LρTTRT (F) ≤∑
l

C(l)1{C(l) ≤ ρTTRT (F)}

+ ρTTRT (F)∑
l

1{C(l) > ρTTRT (F)}

which can be written succinctly as

∑
l

min{C(l), ρTTRT (F)}

We conclude that

T

∑
t=1

Eŷt∼τt(z1∶t−1) [1{ŷt ≠ yt}] ≤ inf
f∈F

T

∑
t=1

1{ytf(xt) ≤ 0}

+∑
l

min(C(l), ρTTRT (F)) +
√
T (1 + 2 log(Nπ/

√
6))

Finally, we apply Corollary 6 and Lemma 3(2) to bound RT (F) ≤ dO(log3/2 T ) RT (H) and
thus conclude the proof.

Proof [of Proposition 18] First, by the classical result of Kolmogorov and Tikhomirov
(1959), the class G of all bounded Lipschitz functions on a bounded interval has small metric
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entropy: log N̂∞(α,G) = Θ(1/α). For the particular class of non-decreasing 1-Lipschitz
functions, it is trivial to verify that the entropy is in fact bounded by 2/α. Considering all
1-Lipschitz functions increases this to c0/α for some universal constant c0.

Next, consider the class F = {⟨w,x⟩ ∣ ∥w∥2 ≤ 1} over the Euclidean ball. By Proposi-
tion 14, RT (F) ≤ 1/

√
T . Using the lower bound of Proposition 9, fatα ≤ 32/α2 whenever

α > 4
√

2/
√
T . This implies that N∞(α,F , T ) ≤ (2eT /α)32/α2

whenever α > 4
√

2/
√
T . Note

that this bound does not depend on the ambient dimension of X .
Next, we show that a composition of G with any “small” class F ⊂ [−1,1]X also has

a small cover. To this end, suppose N∞(α,F , T ) is the covering number for F . Fix a
particular tree x and let V = {v1, . . . ,vN} be an `∞ cover of F on x at scale α. Analogously,
let W = {g1, . . . , gM} be an `∞ cover of G with M = N̂∞(α,G). Consider the class G ○F =
{g○f ∶ g ∈ G, f ∈ F}. The claim is that {g(v) ∶ v ∈ V, g ∈W} provides an `∞ cover for G○F on
x. Fix any f ∈ F , g ∈ G and ε ∈ {±1}T . Let v ∈ V be such that maxt∈[T ] ∣f(xt(ε))−vt(ε)∣ ≤ α,
and let g′ ∈ W be such that ∥g − g′∥∞ ≤ α. Then, using the fact that functions in G are
1-Lipschitz, for any t ∈ [T ],

∣g(f(xt(ε))) − g′(vt(ε))∣ ≤ ∣g(f(xt(ε))) − g′(f(xt(ε))∣ + ∣g′(f(xt(ε)) − g′(vt(ε))∣ ≤ 2α .

Hence, N∞(2α,G ○F , T ) ≤ N̂∞(α,G) ×N∞(α,F , T ).
Finally, we put all the pieces together. By Theorem 8, the minimax value is bounded

by 8T times the sequential Rademacher complexity of the class G ○ F = {u(⟨w,x⟩) ∣ u ∶
[−1,1]→ [−1,1] is 1-Lipschitz , ∥w∥2 ≤ 1} since the squared loss is 4-Lipschitz on the space
of possible values. The latter complexity is then bounded by

TDT (G ○F) ≤ 32
√
T + 12∫

1

8/
√
T

√
T log N (δ,G ○F , T ) dδ

≤ 32
√
T + 12

√
T ∫

1

8/
√
T

√
4c0

δ
+ 128

δ2
log(2eT )dδ .

We therefore conclude that the value of the game for the supervised learning problem is
bounded by O(

√
T log3/2(T )).

Appendix C. Exponentially Weighted Average (EWA) Algorithm on
Countable Experts

We consider here a version of the exponentially weighted experts algorithm for a countable
(possibly infinite) number of experts and provide a bound on the expected regret of the
randomized algorithm. The proof of the result closely follows the finite case (e.g. (Cesa-
Bianchi and Lugosi, 2006, Theorem 2.2)). This result is well known and we include it here
for completeness, as it is needed in the proofs of Proposition 16 and Proposition 17.

Suppose we are provided with countable experts E1,E2, . . ., where each expert can
herself be thought of as a randomized/deterministic player strategy which, given history,
produces an element of F at round t. Here we also assume that F ⊆ [0,1]X . Denote by
f it the function output by expert i at round t given the history. The EWA algorithm we
consider needs access to the countable set of experts and also needs an initial weighting on
each expert p1, p2, . . . such that ∑i pi = 1.
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Algorithm 1 EWA (E1,E2, . . ., p1, p2, . . .)

Initialize each w1
i ← pi

for t = 1 to T do
Pick randomly an expert i with probability wti
Play ft = f ti
Receive xt

Update for each i, wt+1
i = wtie

−ηfti (xt)

∑iwtie
−ηft

i
(xt)

end for

Proposition 20 The exponentially weighted average forecaster (Algorithm 1) with η =
T−1/2 enjoys the regret bound

T

∑
t=1

E [ft(xt)] ≤
T

∑
t=1

f ti (xt) +
√
T

8
+
√
T log (1/pi)

for any i ∈ N.
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