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Optimizing mHealth Interventions ez
with a Bandit
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and Susan Murphy

Abstract Mobile health (mHealth) interventions can improve health outcomes by
intervening in the moment of need or in the right life circumstance. mHealth interven-
tions are now technologically feasible because current off-the-shelf mobile phones
can acquire and process data in real time to deliver relevant interventions in the
moment. Learning which intervention to provide in the moment, however, is an opti-
mization problem. This book chapter describes one algorithmic approach, a “bandit
algorithm,” to optimize mHealth interventions. Bandit algorithms are well-studied
and are commonly used in online recommendations (e.g., Google’s ad placement, or
news recommendations). Below, we walk through simulated and real-world exam-
ples to demonstrate how bandit algorithms can be used to personalize and contex-
tualize mHealth interventions. We conclude by discussing challenges in developing
bandit-based mhealth interventions.

18.1 Introduction

Before mHealth, the standard of care was periodic visits to a clinician’s office, inter-
spersed with little to no patient support in between visits. At the clinician’s office,
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data is collected to describe the patient’s state at that visit time and self-report data
about the patient’s state prior to the current visit time is collected through an error-
prone mechanism of recalling past events. The mHealth model has enabled significant
progress in situ data collection between clinic visits; phone sensors can now cap-
ture personal data at a millisecond level, and improvement in user interfaces has
reduced the burden of self-report information (Kubiak and Smyth 2019). mHealth
interventions using persuasive design features are promising approaches for improv-
ing patients health (Baumeister et al. 2019; Messner et al. 2019). However providing
effective interventions personalized to the patient between patient visits remains
challenging.

Two key components of intervening at the right time are personalization and
contextualization. Personalization is the process of matching an individual’s pref-
erences and lifestyle. e.g., a physical activity intervention can say, “You walked 10
times in the last week near your office. Don’t forget to take small walks near your
office today.” Such personalization can lower barriers to acting on the suggestion
(Hochbaum et al. 1952). Contextualization takes personalization one step further by
delivering interventions at moments of need or at an opportune moment when the
intervention is easy to follow (Fogg 2009). e.g., when a participant reaches the office,
a push notification with the earlier walking suggestion can be sent, or, just after a
high risk teen reports high stress, a SMS can be sent with ideas to reduce stress.

Contextualization and personalization are complex problems because different
people may prefer different interventions and these preferences may vary by context.
Fortunately, similar problems have been solved before. When Google places ads or
Netflix suggests movies, they adapt their recommendation based on user preferences
and characteristics, utilizing bandit algorithms. Here we describe how to repurpose
bandit algorithms to personalize and contextualize mHealth interventions. We will
start with a simple example, where we personalize a daily list of physical activity
suggestions to an individual. We will then extend this simple example to account
for contextual factors (e.g., weather). We conclude with a real-world example and
discuss future challenges in developing personalized/contextualized interventions
with bandit algorithms.

18.2 Background

Bandit algorithms: “Bandit algorithms” are so called because they were first devised
for the situation of a gambler playing one-armed bandits (slot machines with a long
arm on the side instead of a push button). Each time the gambler picks a slot machine,
he/she receives a reward. The bandit problem is to learn how to best sequentially
select slot machines so as to maximize total rewards. The fundamental issue of bandit
problems is the exploitation-exploration tradeoff; here exploitation means re-using
highly rewarding slot machines from the past and exploration means trying new or
less-used slot machines to gather more information. While exploration may yield
less short-term payoff, an exploitation-only approach may miss a highly rewarding
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slot machine. Researchers have proposed solutions to the bandit’s exploit-explore
tradeoff across many areas. In particular, once the relevance of bandit algorithms to
internet advertising was understood, there was a flurry of work (Bubeck and Cesa-
Bianchi 2012). Nowadays, bandit algorithms are theoretically well understood, and
their benefits have been empirically demonstrated (Bubeck and Cesa-Bianchi 2012;
Chapelle et al. 2012).

An important class of bandit problems is the contextual bandit problem that con-
siders additional contextual information in selecting the slot machine (Woodroofe
1979). Contextual bandit problems provide a natural model for developing mobile
health interventions. In this model, the context is the information about the indi-
vidual’s current circumstances, the slot machines correspond to the different inter-
vention options, and the rewards are near-time, proximal, outcomes (Nahum-Shani
et al. 2017). In this setup, optimizing mHealth intervention delivery is the act of
learning the intervention option that will result in the best proximal outcome in a
given circumstance. This is same as solving the contextual bandit problem.

18.3 Optimizing Intervention with a Bandit Algorithm

We will use two simulated examples to explain how bandits can be used to optimize
an mHealth intervention for an individual. In Sect. 18.4, we will discuss another real-
world mobile application that builds on the ideas introduced in the first two simple
examples.

In our first example, the bandit algorithm will be used to select an optimal set of
five physical activity suggestions, for an individual, from a set of ten suggestions. A
set of five suggestions is optimal if the set leads to the highest level of daily activity
for that individual. The second example extends the first by finding a set of five
suggestions for each of several contexts. Contextualizing suggestions can be helpful
because the same suggestion may be more actionable in certain contexts (e.g., good
weather or day of the week).

18.3.1 Personalizing Suggestions for an Individual

Consider a scenario in which Jane’s health plan gives her a physical activity tracker
and a smartphone app. Jane’s health plan has found that the ten activity suggestions
from Table 18.1 often work for many less-active people to increase their activity.
Note that the order of suggestions in Table 18.1 does not imply any specific ranking.
It is unlikely, however, that every individual will be able to follow or prefer to follow
all the 10 suggestions equally and there will be inter-personal variability in which
suggestions are followed and to what degree. Thus, we set the goal of learning the
five suggestions with the highest chance of maximizing Jane’s activity. We use the
bandit algorithm, which is running as part of Jane’s smartphone app, to achieve this
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Table 18.1 List of 10
suggestions

—

. Walk 30 min
. Add intervals: walk 5 min, walk very fast for 5 min, repeat
3 times

NS

. Take the stairs instead of the elevator whenever possible

Go for a walk with a friend or your dog

Swim a lap, rest 1 min, repeat 10 times

. Attend a fitness class at your gym

. Try some of the strength training and bodyweight exercises
illustrated by the fitness app on your phone

8. Do yoga

9. Park at the far end of the parking lot to walk farther

10. Do yardwork for at least 10 min

N0 LA W

goal. Each morning, the app issues a set of 5 suggestions. The app then monitors
Jane’s activities throughout the day and uses that information to choose 5 suggestions
for the following day.

Formally, we will refer to each set of five activity suggestions as an intervention
option or action. This intervention option or action is the particular choice of the
five suggestions. On the morning of day 7, the app suggests to Jane the action A,
where A, = [S/1, Si2, Si3, - - -, Si10]T is a 10 x 1 vector of binary variables. S;; has
a value of 1 if the i-th suggestion from Table 18.1 is shown to Jane on day ¢, and 0
otherwise. Thus A; will have 5 entries equal to 1 and 5 entries equal to 0. Further,
let Y, denote the number of active minutes for Jane on day ¢, which might be called
the proximal outcome or reward of action A,.

Consider the following linear regression model for the mean of the daily active
minutes Y; on day ¢ in terms of the suggestions:

10
E[Y,|A]=" S
i=1

=pTA, (18.1)

where the second equality is written more compactly by using vector notation,
B =181, B2, ..., ﬂlO]T. Here B4, B2, B3, - - ., Bio respectively represent suggestion
1,2,3, ..., 10 s contribution to Jane’s number of active minutes. Therefore, Eq. 18.1.
has the following simple interpretation: Y,, the number of daily active minutes, is the
sum of the effects of the 5 activity suggestions provided on day ¢ (i.e., suggestions
for which §;; = 1).

Formally, our goal is to discover the best action A, = a* that is, the set of 5
suggestions that makes Jane most active (that results in the highest mean daily active
minutes). We can formally write this goal as: given §, determine the action a* for
which

Bla* > pla (18.2)
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where a is a combination of 5 suggestions from Table 18.1. g is, however, unknown.
We can estimate Jane’s a* by running experiments in the following way: at the start
of a day 7, the app selects action A, (in other words, it delivers to Jane a combination
of 5 suggestions from Table 18.1). The tracker then counts the number of minutes
Jane is active on the day (note that this number is the proximal outcome Y;). If the
5 suggestions are useful, then Jane will be more active that day and Y; will be high
compared to other days with a different set of 5 suggestions. Now, the question
is: how to select the 5 suggestions each day? One simple approach is to select 5
suggestions out of 10 with equal probability. But such a uniform selection strategy
will select more useful and less useful suggestions equally. A more sophisticated
approach is to use the information already available from the past experiments to
select future suggestions that will both yield additional information about a* and
give as few less useful suggestions as possible. Note that here we face the same
exploit-explore tradeoff faced by the classic bandit setting’s gambler—i.e., how to
balance exploiting suggestions that seemed useful in the past with exploring less
frequently issued suggestions.

An effective approach to delivering less useful suggestions as little as possible is
“optimism in the face of uncertainty” epitomized by the Upper Confidence Bound
(UCB) technique (Auer et al. 2002; Li et al. 2010). Bandit algorithms based on the
UCB have been well studied and possess guarantees of minimizing the number of
less useful suggestions. The key intuition behind the UCB idea is the following: First,
for each choice of action a;, a confidence interval is constructed for the linear combi-
nation 87 a,. Recall this linear combination represents E[Y;|A, = a,], the expected
proximal outcome after receiving action, a,. Then the UCB bandit algorithm selects
the action with the highest upper confidence limit. Note that the upper confidence
limit for 87 a, can be high for either of two reasons: (1) either 87, is large and
thus a, is a good action to make Jane active, or (2) the confidence interval is very
wide with a high upper limit, indicating that there is much uncertainty about the
value of B7a,. Using the upper confidence limit represents UCB’s optimism; UCB
is optimistic that actions with high upper confidence limits will be the best actions,
even though a larger upper confidence limit can mean more uncertainty. However, if
an action with high upper confidence is indeed not the optimal action, then selecting
the action will reduce the uncertainty about the effect of this action. This will help
UCB realize that the action is indeed not useful.

How does UCB choose an action using the upper confidence interval? By follow-
ing these two steps. The first step involves using Eq. 18.1 to estimate § assuming
homogeneous error variance. We might use ridge regression to estimate 8 because
ridge regression regularizes to avoid overfitting, especially when Jane has just begun
to use the app and we have less data (Li et al. 2010; Bishop 2007). In this case the
estimator of 8, denoted by B,, after ¢ days of using the bandit algorithm is:

B =5 (Z AuYu> (18.3)
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-1
where £, =Y, _ (A,Al)+ 10 and I)pisan 10 x 10 identity matrix. Equation 18.3
is the standard solution for ridge regression. The second step is to construct an upper

confidence limit for 87 a for each possible action a; the upper confidence limit on

AT a1
day ¢ for action a is given by B, a + ay/aT X, a, where « is an appropriate critical
a1

value. Note, since we assumed homogeneous error variance, X, is proportional

. ~ o1 . [ o]
to the covariance for B,, and aTE, a is the covariance of /STa. Thus, aTEt a
represents standard deviation of 87a and the upper confidence limit of 87a has

. L. . ~T .
an interpretable form, which is simply the current estimate, 8, a, plus its standard
deviation multiplied up to a constant factor «. Then, to choose the UCB action for
day ¢ + 1, we calculate the a,4; for which

AT r ol AT 1
B, a1 +ana, X, ai = BatayalE, a (18.4)

for all actions a. i.e., a4 is selected to maximize the upper confidence limit on the
mean of Y;4. This approach possesses strong guarantees to minimize the number of
less useful suggestions (Li et al. 2010; Auer 2002).

Here we summarize how the UCB bandit algorithm works on Jane’s smartphone.
First there is an “exploration phase” to allow the UCB algorithm to form preliminary
estimates of 8. This phase lasts for a number of days, say 7y days, during which each
morning the UCB bandit algorithm randomly selects an action, that is, uniformly
selects five activity suggestions from the 10, and delivers these suggestions to Jane
in the application. Then at the end of day 7y, the UCB bandit uses an incremental cal-
culation to form Bto and ﬁm based on the selected action, Jane’s activity minutes, Yy,

for that day and the prior day’s Bm_l and f,o_l. Next the UCB algorithm calculates
the upper confidence limit for each action and selects the action a4 with the highest
upper confidence limit. On the next morning, Jane is provided the five suggestions as
specified by a;,;+1. The UCB algorithm repeats the process by estimating new 3,0 T

ftoﬂ and an updated set of 5 suggestions are chosen for the next day and so on.

18.3.2 A Simulation Example

In this section, we use a simulated example to demonstrate how a UCB bandit algo-
rithm can personalize suggestions for Jane. We assume the following simple model
of how Jane responds to the suggestions: When Jane sees a suggestion, she follows
it with probability p or does not follow it with probability 1 — p. If Jane follows
the suggestion, she spends D minutes following it on a particular day. We assume D
is random and normally distributed, because Jane may not spend the same amount
of time each time she follows the same suggestion. In Table 18.2, we created an
artificial example scenario with p and D values for different suggestions. The D
values are written as mean =+ standard deviation. We also show the expected number
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Table 18.2 A simulated scenario for Jane where p represents the probability of following a sug-
gestion when Jane sees it, and if the suggestion is followed, “Duration” represents the number of
daily minutes spent following the suggestion. Finally, p and “Duration” are used to compute the
expected value p E[ D], which also represents 8 values for the suggestion

Suggestions p | Duration, D (min) | Expected duration p E[ D] (min)
1. Walk 30 min 1 15+4 15.0

2. Add intervals: walk 5 min, & 2145 0.4
walk very fast 5 min, repeat 3
times

3. Take the stairs instead of the 3 75+£2 5.2
elevator whenever possible

4. Go with a friend or your dog g 22+ 10 18.9
for a walk

5. Swim a lap, rest for 1 min, 0 — —
repeat 10 times

6. Attend a fitness class at your 11—4 31+5 2.2
gym

7. Try some of the strength 0 - —
training and bodyweight
exercises illustrated by the
fitness app on your phone

18+3 10.3
11£2 6.3

8. Yoga

9. Park at the far end of the
parking lot to walk further

N e

10. Do yardwork for at least 24+5 5.1

10 min

=l

of activity minutes that Jane spends following a suggestion when she sees it. This
expected number is p x E[D]+ (1 — p) x 0 = pE[D]. These expected minutes are
also B values in Eq. 18.1. Note that 8 values are unknown in real world setting. We
use known g values in a simulated example to show how the UCB algorithm finds
the suggestions with higher g values.

With the above setup, we run the simulation in two stages. In the first stage, sug-
gestions are included with equal probability in the five suggestions on each of the first
fourteen days. This initial “exploration phase” helps to form an initial estimate of S.
In the second stage, we run the UCB bandit algorithm: on each day, we compute B,,
according to Eq. 18.3, and choose an action using Eq. 18.4. We run these simulation
for 56 days, or 8 weeks. We run 200 instances of the simulation to account for ran-
domness in the problem. One source of this randomness comes from the exploration
phase, where the app generates non-identical sequences of random suggestions based
on when Jane starts using the app. We deal with this randomness by resetting the
randomization seed after each simulation run. Another source of randomness comes
from the within-person variability of how Jane responds to the suggestions. We create
a second stream of random numbers to simulate how Jane responds to the sugges-
tions. The seed of this second stream remains unchanged after each simulation run;
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we do not reset this seed because, doing so will add the randomness of resetting the
seeds to the within-person variability.

Table 18.3 shows the results, where we report the mean of the B estimates. At
the top, we list the actual 8 values. We then list in each row how many times a
suggestion is issued by UCB over a two week period. We use boldface for the top
five suggestions (1st, 3rd, 4th, 8th, 9th in Table 18.1). The simulation shows that
after the two-week exploration phase, UCB chooses the top (boldfaced) suggestions
more times than the less useful ones. Since a suggestion can be picked only once
a day, the top suggestions 1, 2, and 8 from Table 18.3 are picked nearly every day
after the exploration phase (11-14 days between week 3—4, 5-6, and 7-8). However,
suggestions 3, 9, and 10 all have similar 8 values. As aresult, UCB is often uncertain
among them and chooses the 10th suggestion sometimes wrongly, since it is not in
the top five suggestions.

18.4 Optimizing Interventions for Different Contexts

In the earlier section, we discussed an example of personalizing suggestions with
the UCB algorithm. Our goal was to demonstrate the inner workings of a bandit
algorithm in a simple setting. Here we discuss extending the prior example to a
more realistic setting where we tailor suggestion based on users’ context. Indeed,
context can determine whether, and the degree to which, certain suggestions are
actionable. For example, Jane may only be able to act on the yardwork suggestion
on the weekend, or she may appreciate and act on the reminder to take her dog for
a walk when the weather is good. By adapting suggestions to different contexts, we
hope to enhance her activity level. Fortunately, we can contextualize suggestions by
re-purposing the bandit technique described already. We briefly describe one way to
do so below.

For clarity, we will first consider a very simple context involving only the weather
and day of the week. For these two contexts, there are two states (i) weekend or
weekday, (ii) good or bad weather, where we consider the whole day as bad weather
if only part is. Thus, each day belongs to one of four different context combinations
(see Table 18.4). Note this simple characterization of only 4 contexts is to convey the
idea of contextualization rather than actually to realistically handle a large number
of contexts.

For these four context combinations, the task of contextualizing suggestions boils
down to optimizing the suggestions for each of the four. An intuitive approach is
to use 4 different bandit algorithms, one for each context combination. Depending
on the context on day ¢, the corresponding bandit would be activated for optimizing
suggestions for that context. Recall that an action is a set of five activity suggestions
from the 10 in Table 18.1. Each of the four different bandit algorithms uses a model
such as Eq. 18.1. but with different 8s due to the different contexts. We represent
this difference by sub-scripting 8 as B for the k-th (k = 1, 2, 3, 4) context. So, the
goal is to learn the optimal action g; that maximizes the average number of minutes



285

18 Optimizing mHealth Interventions with a Bandit

89 8L ror 91 134 e 8€l 9 e el (8-L oom) N
L9 s ot L1 £y 9¢ LEl €9 ge 87l (9-G oom) N
9 8L 96 $C Sy 8C el €9 6'¢ (44! (=g Yoam) N
'L 'L 89 69 69 89 0L 0L L L (T-1 oom) N
s €9 €01 00 (4 00 6'81 (47 70 0°ST d
01 6 8 L 9 S 14 € 4 I suornse33ng

(1 = N o1 1 1sow Je st porrad Yoom-om) & SULINp Pajod[as 9q Ued UonsaS3ns & sowr) JO Ioquinu 3y} “9J0N "SIsayjuared UIYIIM PIUOTIUSUW SWILLY SWIT) Ay} Ul

~

uonsa33ns e s310970s dde oy sAep Jo Joquinu Ay} SJOUIP A “S[BAIUI JaM-0Mm) ) Jo yoed uryym dde ayy £q payyord are suoryso33ns sowm jo oqunN €81 d[qeL



286 M. Rabbi et al.

Table 18.4 Different types
of contexts

Context

Bad weather, weekend

Bad weather, weekday

Good weather, weekend

AW =

Good weather, weekday

active for Jane in context k. That is, for k = 1, 2, 3, 4 the goal is to learn the action
a; which satisfies

T x T
i A = By ak

Again, one UCB bandit algorithm can be run per context to learn the optimal five
suggestions for that context.

Note that using a separate bandit algorithm for each context is not a feasible
approach in a real-world setting; there are too many possible contexts. It would
take the bandit algorithm many days to obtain good estimates of the B, parameters.
However, we can use a few tricks to handle large number of contexts. First, we may
know a priori that some suggestions are equally actionable across different contexts
and some suggestions are not at all actionable in certain contexts. If the suggestions
are equally actionable across contexts, we can use the same f; parameter values
for these contexts. And if a suggestion is not actionable in a given context we can
set its parameter in By to zero. Second, we can pool information across people. For
example, some suggestions, such as yardwork, are more actionable on weekends
for most people. Thus, we don’t need to find B for each user individually. Pooling
information, however, requires a Bayesian approach where for a new user, initially
Bi is pooled from prior users and once some data from the user is available, Sy is
then adapted to make more user-specific changes. Bayesian approaches to bandit
algorithms are beyond the scope of this chapter; but the techniques are along the
same lines as UCB (Chapelle and Li 2011).

18.5 A Real-World Example

Earlier, we gave two simple examples of how the UCB bandit algorithm can person-
alize and contextualize mobile health interventions. Real-world examples, however,
are more complicated, with many potential suggestions and many contexts. Below we
discuss an mHealth app called MyBehavior that has been deployed multiple times in
real world studies (Rabbi et al. 2018; Rabbi et al. 2015). MyBehavior utilizes phone
sensor data to design unique suggestions for an individual and subsequently uses a
bandit algorithm to find the activity suggestions that maximize chances of daily calo-
rie burns. Like the example in Sect. 18.3, MyBehavior issues the suggestions once
each morning. The number of suggestions, however, is higher than in Table 18.1
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because the suggestions in MyBehavior closely match an individual’s routine behav-
iors, and routine behaviors are dynamic. In the following, we briefly discuss how
MyBehavior uses the bandit algorithm. More information on this can be found in
(Rabbi et al. 2017).

18.5.1 MyBehavior: Optimizing Individualized Suggestions
to Promote More Physical Activity

The following discussion of MyBehavior first covers how unique suggestions are
created for each individual. We then briefly discuss how a bandit algorithm is used
to find optimal activity suggestions that have the highest chance of maximizing an
individual’s daily calorie burn.

The MyBehavior app tracks an individual’s physical activity and location every
minute. The detected physical activities include walking, running, driving, and being
stationary. The app then analyzes the location-tagged activity data to find patterns
that are representative of the user’s behaviors. Figure 18.1 shows several examples
of behaviors found by MyBehavior. Figure 18.1a and b respectively contain places
where a user stayed stationary and a location where the user frequently walked.
Figure 18.1c shows similar walking behaviors from another user. MyBehavior uses
these behavioral patterns to generate suggestions that are unique to each individual.
For example, one intervention may suggest an activity goal at specific locations that
the user regularly goes to. Such tailoring makes feedback more compelling, since a
user’s familiarity with the location enhances adherence (Fogg 2009).

(a) . ~(b)

Fig. 18.1 Visualization of a user’s movements over a week a heatmap showing the locations where
the user is stationary everyday b location traces of frequent walks for the user ¢ location traces of
frequent walks for another user
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Specifically, MyBehavior creates three kinds of uniquely individualized sugges-
tions: (i) for stationary behaviors, MyBehavior pinpoints the locations where the user
tends to be stationary and suggests taking small walking breaks every hour in these
locations. (ii) for walking behaviors, MyBehavior locates the different places the
user usually walks and suggests continuing to walk in those locations (iii) for other
behaviors, e.g., participation in yoga class or gym exercises, MyBehavior simply
reminds the user to keep up the good work. Figure 18.2 shows several screen shots of
the MyBehavior app, where Figs. 18.2a—c are suggestions for three separate users.
Since MyBehavior suggestions are tailored to the user, the first suggestion at the top
of each screen shot is to walk, but the locations are different. Also, the first and third
users receive a gym weight training exercise suggestion that the second user does
not.

Now, how does MyBehavior decide which suggestions to give? MyBehavior uses
abandit algorithm like that in Sect. 18.3’s first example, where suggestions are issued
once a day. But MyBehavior can offer many more suggestions than Table 18.1 con-
tains, depending on the variety of locations in which a user might be sedentary
or active, etc. Fortunately, the bandit algorithm can still efficiently adapt to these
high numbers of tailored suggestions. Rabbi et al. (2017) details how this optimiza-
tion works, but the key intuitions are the following: (i) Most human behaviors are
highly repetitive and routine and occur in the same locations. Routine behaviors
and locations will be detected early and thus included soon in the individual’s list
of suggestions. (ii) The suggestions relating to routine behaviors and locations are
more likely to be followed than suggestions of non-routine behaviors in non-routine

(a) (b) (c)

EL XXX P Ow Ow @00

Activity Suggestions LY, s Activity Suggestions O [#] Activity Suggestions Y B

walk near East Ave Walk near Graham Rd Walk near Rpee Loading Dock
walks in 240 days. 20 mins of walk everyday days. 30 ming of walk everyday 768w 118 days. 28 mins of walk everyday
:'.:I w3 nparty 4 min A ’y'\v-a u}‘) Each walk ,,.,4.-.1
o+ 4
| Acochmam 16 | Asocis ] 2] Avccsd | | Aeschwasize | Az |
Small walks each hour near Small walks each hour near Small walks each hour near
Campus Rd ﬁ raha Rd Rpee Lnading Dock
Nearty & hours sedaniary sverycay Nearly 11 erydyy
* o
“Asicia | o] Aescio | A e |
Exercise Small walks each hour near Exercise
health chl sses ﬁ mmir g'e health chub exercise classes
123 times eaity 63 cal kst — 24 tirmees in 115 days. Daily nearly 77 cal lost
»* ' 4 g
[ B esch e rsc | Asicrs | e
| Asmin ot - 13¢ | i ;
n Walk near Fall Creek Dr SamEne] Ao | n Walk near Fairgrounds Memorial
297 walks in 240 days. B mins of walk everyday walkngarﬁardenAvg Pl
‘ Eschwalk naardy 4 m walks in alk everyday. Each ‘ I'?:’.nyn- 5. 14 ming of walk sveryday
s A o Eschmalkneaty 14 mn
T Tl |
| Aschwakisc | Asscis |

Explore more suggestions

<]

Fig. 18.2 MyBehavior app screenshots for three different users. Figures 18.1 and 18.2 have been
reproduced from Rabbi et al. (2015) with appropriate permission from the authors
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locations. Thus, the bandit will learn about the effects of these suggestions more
quickly and these suggestions will likely remain effective if the user’s routine does
not change.

18.6 Discussion

In the last two sections, we discussed several examples of how bandit algorithms can
optimize mobile health interventions. The bandit algorithm balances experimenting
with different activity suggestions and selecting activity suggestions that currently
appear most useful. This balancing act ensures that the algorithm acquires necessary
information while maintaining an engaging user experience by providing as few
less-useful suggestions as possible. While we showed that bandit algorithms can be
useful to personalize and contextualize suggestions, there are additional real-world
complexities that pose new challenges for bandit algorithms to address:

Ignoring delayed effects: In bandit algorithms, the optimal action is the action
that maximizes the immediate reward (proximal outcome). In other words, bandit
algorithms ignore the potential impact of the action on future context and future
proximal outcomes. Some actions, however, can have long-term negative effects
even if the short-term effect is positive. e.g., delivering an office walking suggestion
may increase a user’s current activity level, but the user might become bored after
repeating the office walk several days, thus future suggestions may be less effective.
In these cases, other algorithms that explicitly allow past actions to impact future
outcomes (Sutton and Barto 1998) might be used. Precisely, the outcome of these
algorithms are ¥, + V(X,4;), where V (X,4) is the prediction of the impact of the
actions on future proximal outcomes given the context X, at the time ¢ 4 1 (a bandit
algorithm acts as if V(X,4;) = 0). These algorithms tend to learn more slowly than
bandit algorithms, since we need additional data to form the prediction V(X,;).
We conjecture that the noisier the data is, the harder it will be to form high quality
predictions of V (X, ) and thus as a result, bandit algorithms may still be preferable.

Non-stationarity: Most bandit algorithms assume ‘“stationary” settings; i.e., the
responsivity of a user in a given context to an action does not change with time.
This assumption can be violated in real-word settings; in MyBehavior, for example,
we observed that many suggestions become ineffective when people switched job
and moved from one location to another. Such changes over time are often referred
to as “non-stationarity.” Other types of non-stationarity can be caused by life events
such as a significant other’s illness or aging. Bandit algorithms are typically slow to
adapt to non-stationarity. Speeding up this process is a critical direction for future
bandit research.

Dealing with less data: In real world applications, where the number of contexts and
actions are many, bandit algorithms will need a lot of burdensome experimentation
to find the optimal action for a given context. One way around this is to use a “warm



290 M. Rabbi et al.

start.” A warm start set of decision rules that link the context to the action can be
constructed using data from micro-randomized trials (Klasnja et al. 2015) involving
similar individuals. Recently Lei et al. (2014) developed a bandit algorithm that can
employ a warm start. However, we still need to test whether, and in which settings,
warm starts will sufficiently speed up learning.

Adverse effects: Since mHealth interventions are generally behavioral, the risk of
personal harm is often minimal. Nonetheless, there could be potential iatrogenic
effect because phones cannot capture every piece of contextual information and ban-
dit algorithms ignore the long-term effects of interventions. Since bandit algorithms
don’t take interventions’ long-term effects into account, the algorithm may notify or
otherwise deliver interventions too much and thus cause annoyance and reduce app
engagement. Future work needs to investigate how to account for such long-term
adverse effects. Furthermore, current phone sensors cannot automatically capture
critical contextual information such as a user’s health risks, preferences, barriers,
emotional states, etc. Incomplete information may cause the algorithm to provide
less appealing (e.g., not suggesting an activity that a user likes but didn’t do often
in the past) and inappropriate suggestions (e.g., asking someone who is injured to
walk). Providing human control over the suggestion generation process can mitigate
these problems; e.g., a user can delete inappropriate suggestions and prioritize the
suggestions that are more appealing (Rabbi et al. 2015).
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