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Abstract

Data-driven approaches to predict-then-
optimize decision-making problems seek to
mitigate the risk of uncertainty region mis-
specification in safety-critical settings. Cur-
rent approaches, however, suffer from con-
sidering overly conservative uncertainty re-
gions, often resulting in suboptimal decision-
making. To this end, we propose Conformal-
Predict-Then-Optimize (CPO), a framework
for leveraging highly informative, noncon-
vex conformal prediction regions over high-
dimensional spaces based on conditional
generative models, which have the desired
distribution-free coverage guarantees. De-
spite guaranteeing robustness, such black-
box optimization procedures alone inspire lit-
tle confidence owing to the lack of explana-
tion of why a particular decision was found
to be optimal. We, therefore, augment CPO
to additionally provide semantically mean-
ingful visual summaries of the uncertainty re-
gions to give qualitative intuition for the op-
timal decision. We highlight the CPO frame-
work by demonstrating results on a suite of
simulation-based inference benchmark tasks
and a vehicle routing task based on proba-
bilistic weather prediction.

1 INTRODUCTION

Predict-then-optimize or contextual robust optimiza-
tion problems are of long-standing interest in safety-
critical settings where decision-making happens under
uncertainty (Sun, Liu, and Li, 2023; Elmachtoub and
Grigas, 2022; Elmachtoub, Liang, and McNellis, 2020;
Peršak and Anjos, 2023). In traditional robust op-
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timization, results are made to be robust to distri-
butions anticipated to be present upon deployment
(Ben-Tal, El Ghaoui, and Nemirovski, 2009; Beyer and
Sendhoff, 2007). Since such decisions are sensitive to
proper model specification, recent efforts have sought
to supplant this with data-driven uncertainty regions
(Cheramin et al., 2021; Bertsimas, Gupta, and Kallus,
2018; Shang and You, 2019; Johnstone and Cox, 2021).

Model misspecification is ever more present in con-
textual robust optimization, spurring efforts to define
similar data-driven uncertainty regions (Ohmori, 2021;
Chenreddy, Bandi, and Delage, 2022; Sun, Liu, and
Li, 2023). Such methods, however, focus on box- and
ellipsoid-based uncertainty regions, both of which are
necessarily convex and often overly conservative, re-
sulting in suboptimal decision-making.

Conformal prediction provides a principled framework
for producing distribution-free prediction regions with
marginal frequentist coverage guarantees (Angelopou-
los and Bates, 2021; Shafer and Vovk, 2008). By us-
ing conformal prediction on a user-defined score func-
tion s(x, y) and obtaining an empirical 1− α quantile
q̂(α) of s(x, y) over a calibration set DC , prediction
regions C(x) = {y | s(x, y) ≤ q̂(α)} attain marginal
coverage guarantees. Such prediction regions, how-
ever, are notably defined implicitly. For simple scores,
such as residuals, an explicit expression of such re-
gions can be written, making these the most common
approaches used in practice (Tumu et al., 2023; Hor-
witz and Hoshen, 2022; Angelopoulos et al., 2022; Hu
et al., 2022; Mao, Martin, and Reich, 2022).

The disadvantage is that such score functions ignore
the structure that is often present in high-dimensional
data, such as images. Choices of simplistic scores,
thus, tend to be overly conservative and often produce
convex prediction regions even when P(Y |X) is non-
convex. Recent work has demonstrated that defining
scores using conditional generative models produces
sharper and, hence, more informative prediction re-
gions (Feldman, Bates, and Romano, 2023; Wang et
al., 2022; Patel et al., 2023). We, thus, extend the line
of data-driven predict-then-optimize work by consid-
ering such generative model-based prediction regions.
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Figure 1: CPO leverages informative, non-convex conformal prediction regions for robust predict-then-optimize
decision making. CPO uses a score function such that the resulting prediction regions can be decomposed
into convex subregions over which optimization can be carried out efficiently. Visual summaries {ξ(i)} of the
prediction region can similarly be efficiently sampled to gain intuition on the optimal decision w∗.

In addition to contributing to the predict-then-
optimize line of inquiry, we view this work as ad-
dressing a concern of the conformal prediction commu-
nity: how to use implicitly defined non-convex, high-
dimensional prediction regions. Works producing such
regions have themselves noted the difficulty in their
use (Sesia and Romano, 2021; Izbicki, Shimizu, and
Stern, 2022). Initial works on coverage for images
have framed the utility of their results in highlighting
regions of the image with the greatest variability and,
hence, uncertainty (Angelopoulos et al., 2022; Horwitz
and Hoshen, 2022; Belhasin et al., 2023).

Extending such visualization gives invaluable intuition
to the end user. For instance, a black-box optimiza-
tion procedure for producing drug candidates to ro-
bustly bind to a predicted protein structure offers lit-
tle insight into the decision-making process; however,
semantic summaries of the uncertainty region would
reveal regions of flexibility of the protein, clarifying
why particular structures were deemed optimal in the
candidate drug. Such interest in explainable robust
decision-making was highlighted in a recent survey
(Sadana et al., 2023), especially given the “right to
explanation” mandated by the EU’s “General Data
Protection Regulation” (Doshi-Velez and Kim, 2017;
Kaminski, 2019). Our main contributions, thus, are:

• Proposing Conformal-Predict-Then-Optimize
(CPO) to leverage informative, non-convex
prediction regions for decision-making.

• Providing interpretable visual summaries of un-
certainty regions using representative points.

• Demonstrating the generality of CPO across a
suite of benchmark tasks and a traffic routing task
based on probabilistic weather prediction.

2 BACKGROUND

2.1 Conformal Prediction

Given a dataset D = {(x(1), y(1)), . . . (x(N), y(N))} of
i.i.d. observations from a distribution P(X,Y ), confor-
mal prediction (Angelopoulos and Bates, 2021; Shafer
and Vovk, 2008) produces prediction regions with
distribution-free theoretical guarantees. A prediction
region maps from observations of X to sets of possible
values for Y and is said to be marginally valid at the
1− α level if PX,Y (Y /∈ C(X)) ≤ α.

Split conformal is one popular version of conformal
prediction. In this approach, marginally calibrated re-
gions C are designed using a “score function” s(x, y).
Intuitively, the score function should have the qual-
ity that s(x, y) is smaller when it is more reasonable
to guess that Y = y given the observation X = x.
For example, if one has access to a function f̂(x)
which attempts to predict Y from X, one might take
s(x, y) = ∥f̂(x) − y∥. The score function is evalu-
ated on each point of a dataset DC called the “calibra-
tion dataset,” yielding S = {s(x(j), y(j))}NC

j=1, where
NC := |DC |. Note that the calibration dataset can-
not be used to pick the score function; if data is used
to design the score function, it must independent of
DC . We then define q̂(α) as the ⌈(NC + 1)(1−α)⌉/NC
quantile of S. For any future x, the set C(x) = {y |
s(x, y) ≤ q̂(α)} satisfies 1 − α ≤ P(Y ∈ C(X)). This
inequality is known as the coverage guarantee, and it
arises from the exchangeability of the score of a test
point s(x′, y′) with S. The coverage guarantee pos-
sesses finite-sample properties.

As noted in Vovk’s tutorial (Shafer and Vovk, 2008),
while the coverage guarantee holds for any score func-
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tion, different score functions may lead to more or less
informative prediction regions. For example, the score
s(x, y) = 1 leads to the highly uninformative predic-
tion region of all possible values of Y . Predictive effi-
ciency is one way to quantify informativeness, defined
as the inverse of the expected Lebesgue measure of
the prediction region, i.e. (E[|C(X)|])−1

(Yang and
Kuchibhotla, 2021; Sesia and Candès, 2020). Methods
employing conformal prediction often seek to identify
prediction regions that are efficient and calibrated.

2.2 Representative Points

The problem of summarizing the distribution of a ran-
dom vector with points Ξ := {ξ(i)}Ni=1 arises in many
contexts, such as in optimal stratification (Dalenius,
1950; Dalenius and Gurney, 1951), density estima-
tion (Flury and Tarpey, 1993), and signal quantization
(Max, 1960). Such points are known as representative

points (RPs). Denoting the space of all sets Ξ̂ such

that |Ξ̂| ≤ n as ζ, the RPs of a random variable X are

Ξ := arg min
Ξ̂∈ζ

EX

[
min
ξ(i)∈Ξ̂

||X − ξ(i)||22

]
. (1)

For a comprehensive review of representative points,
see (Fang and Pan, 2023). Despite extensive study, no
general algorithm exists for the efficient construction of
representative points for arbitrary distributions. Typi-
cal implementations use clustering algorithms, such as
Lloyd’s algorithm, on {x(i)}Mi=1 ∼ P(X).

2.3 Predict-Then-Optimize

Predict-then-optimize problems are formulated as

w∗(x) := min
w∈W

E[CTw | x], (2)

where w are decision variables, C an unknown cost
parameter, x observed contextual variables, and W
a compact feasible region. The predict-then-optimize
framework is so called as the nominal approach first
predicts ĉ := f(x) and subsequently solves minw ĉTw.
Alternatively, a predictive contextual distribution
P(C | x) is assumed, with respect to which the op-
timization formulation is solved. A full review is pre-
sented in (Elmachtoub and Grigas, 2022).

This formulation, however, is inappropriate in risk-
sensitive downstream tasks. For this reason, recent
works have begun investigating a risk-sensitive variant
or “robust” alternative to this traditional formulation,
namely by replacing E[CTw | x] with maxĉ∈U(x) ĉ

Tw
(Ohmori, 2021; Chenreddy, Bandi, and Delage, 2022;
Sun, Liu, and Li, 2023), where U(x) is constructed to
guarantee coverage of c, precisely stated in Lemma 3.1.

3 METHOD

We now propose CPO, a way to perform robust
predict-then-optimize decision-making over informa-
tive, non-convex prediction regions based on genera-
tive models. We then discuss how to construct visual
summaries of the contents of the conformal prediction
regions using a collection of N representative points.

3.1 CPO: Problem Formulation

Let c ∈ C, where (C, d) is a general metric space, and F
be the σ-field of C. While the standard predict-then-
optimize framework assumes a linear objective func-
tion cTw, we consider general convex-concave objec-
tive functions f(w, c) that are L-Lipschitz in c under
the metric d for any fixed w, as follows:

w∗(x) := min
w,U

max
ĉ∈U(x)

f(w, ĉ)

s.t. PX,C(C ∈ U(X)) ≥ 1− α,
(3)

where U : X → F is a uncertainty region predictor.
Exact solution of this problem is intractable, as no
practical methods exist to optimize over the predictor
function space U . Practical solution of this optimiza-
tion problem, thus, involves optimizing over several
prespecified uncertainty region predictors {Ui}Ni=1. For
any fixed U , this robust counterpart to the nominal
predict-then-optimize problem produces a valid upper
bound if c ∈ U(x). Denoting the pessimism gap as
∆(x, c) := minw maxĉ∈U(x) f(w, ĉ) − minw f(w, c), we
clearly see ∆(x, c) ≥ 0 if c ∈ U(x), formalized below.

Lemma 3.1. Consider any f(w, c) that is L-Lipschitz
in c under the metric d for any fixed w. Assume fur-
ther that PX,C(C ∈ U(X)) ≥ 1− α. Then,

PX,C (0 ≤ ∆(X,C) ≤ L diam(U(X))) ≥ 1− α. (4)

The proof is deferred to Appendix A. Thus, 1− α va-
lidity of U ensures the RO procedure produces a valid
bound with probability 1−α, with more efficient pre-
diction regions resulting in tighter upper bounds.

3.2 CPO: Score Function

We assume a conditional generative model q(C | X) is
learned for this prediction task. For most score func-
tions, the min-max optimization problem of Equation
3 is computationally intractable. Crucially, however,
we can consider an extension to the score proposed in
(Wang et al., 2022), which lends itself to a decomposi-
tion under which such optimization becomes tractable.
For a fixed K and {ĉk}Kk=1 ∼ q(C | x), let

s(x, c) = min
k

[d (ĉk, c)] . (5)
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We refer to this score as “Generalized Probabilistic
Conformal Prediction,” (GPCP) whose validity follows
from that of the original PCP framework (Wang et al.,
2022). We discuss the selection of K in Section 3.4.

3.3 CPO: Optimization Algorithm

We fix α ∈ [0, 1] and take U(x) to be the 1 − α pre-
diction region C(x). Let ϕ(w) := maxĉ∈C(x) f(w, ĉ). It
follows that ϕ(w) is convex by Danskin’s Theorem by
assumption of the convexity of f in w. Exact solu-
tion of the min-max problem, thus, follows using stan-
dard gradient-based optimization techniques on ϕ(w).
By Danskin’s Theorem, ∇wϕ(w) = ∇wf(w, c∗), where
c∗ := maxĉ∈C(x) f(w, ĉ). We follow the standard pro-
jected gradient descent optimization scheme, project-
ing into W at each iterate, denoted by ΠW .

Efficient solution of this RO problem, therefore, re-
duces to being able to efficiently solve the maximiza-
tion problem over C(x). While challenging over general
nonconvex regions, the GPCP score formulation lends
itself to a highly structured prediction region, namely
of the form C(x) =

⋃K
k=1 Bq̂(ĉk) with Bq̂ being a ball

of radius q̂, the conformal quantile, under the d met-
ric. This decomposition of C(x) means the maximum
can be efficiently computed by aggregating the max-
ima over the individual balls:

max
ĉ∈C(x)

f(w, ĉ) = max
k

max
ĉ∈Bq̂(ĉk)

f(w, ĉ), (6)

where the maximum over a ball can be efficiently
computed with traditional convex optimization tech-
niques. This procedure is summarized in Algorithm 1.
The convergence of this procedure proceeds as follows,
whose proof is deferred to Appendix B.

Algorithm 1 CPO-Opt

1: procedure CPO-Opt
Inputs: Context x, CGM q(C | X), Optimiza-
tion steps T , Score samples K, Conformal quantile
q̂

2: w ∼ U(W), {ĉk}Kk=1 ∼ q(C | x)
3: for t ∈ {1, . . . T} do

4:
{
c∗k ← arg maxĉ∈Bq̂(ĉk)

f(w, ĉ)
}K

k=1
5: c∗ ← arg maxc∗k

f(w, c∗k)

6: w ← ΠW(w − η∇wf(w, c∗))
7: end for
8: Return w
9: end procedure

Lemma 3.2. Let ϕ(w) := maxĉ∈
⋃K

k=1 Bq̂(ĉk)
f(w, ĉ) for

{ĉk}Kk=1 ⊂ C, q̂ ∈ R+, and f(w, c) convex-concave and
L-Lipschitz in c for any fixed w. Let w∗ ∈ W be a

minimizer of ϕ. For any ϵ > 0, define T := L2||w0−w∗||
ϵ2

and η := ||w0−w∗||
L
√
T

. Then the iterates {wt}Tt=0 returned

by Algorithm 1 satisfy

ϕ

(
1

T + 1

T∑
t=0

wt

)
− ϕ(w∗) ≤ ϵ. (7)

3.4 CPO: K Selection

Crucially, the convergence highlighted in Lemma
3.2 reveals that the number of “outer” iterations
(i.e. T ) has no dependence on K. This is ap-
parent from the proof, in which the iterate count
T hinges upon the Lipschitz constant of ϕ(w) =
maxk maxĉ∈Bq̂(ĉk) f(w, ĉ) := maxk ϕk(w), which crit-
ically is L-Lipschitz regardless of what K is selected,
as each ϕk(w) is L-Lipschitz.

We can, thus, solely focus attention on the impact the
choice of K has on the “inner” optimization computa-
tional cost, namely maxk ϕk(w). This linearly increas-
ing cost with K, however, must be juxtaposed with
the improved statistical efficiency of such prediction
regions. In particular, (Wang et al., 2022) empirically
demonstrated region size generally decreased nonlin-
early up to a saturation point as a function of K.

Critically, this inflection point can be determined prior
to performing the optimization, since doing so only re-
quires access to q(C | X) and test samples to estimate
the prediction region size. As pointed out in (Wang
et al., 2022) and proven in (Chan, 2008), estimation
of the volume of a union of hyperspheres is compli-
cated by the need to account for overlapped regions.
K is, thus, chosen based on Monte Carlo estimates of
the prediction region volume using Voronoi cells of the
hypersphere centers given by (Edelsbrunner, 1995):

ℓ̂({Bq̂(ĉk)}) := |Bq̂|
K∑

k=1

PC∼U(Bq̂(ĉk))(C ∈ V (ĉk)), (8)

where C ∼ U(Bq̂(ĉk)) denotes a random variable de-
fined uniformly over the region associated with ĉk, |Bq̂|
the volume of a hypersphere of radius q̂, and V (ĉk)
the Voronoi cell of ĉk, defined as {z ∈ Rd | d(ĉk, z) ≤
d(ĉk′ , z), k′ ̸= k}. Muller’s method enables efficient
sampling of U(Bq̂(ĉk)) (Muller, 1959; Fishman, 2013).

We then choose K∗ to be the inflection point, namely
the arg minK |ℓ̂K − ℓ̂K+1| ≤ ϵ for some user-specified
ϵ volume tolerance. Critically, these volume estimates
must be performed on a distinct subset of the data
from DC as exchangeability with future test points is
otherwise lost in conditioning on DC for selecting K∗

(Yang and Kuchibhotla, 2021). We, thus, partition
DC := DC1

∪ DC2
, using DC1

for calibration and DC2

for volume estimation, detailed in Algorithm 2.
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Algorithm 2 CPO

1: procedure VolumeEst
Inputs: Context x, CGM q(C | X), Conformal
quantile q̂

2: {ĉk}Kk=1 ∼ q(C1:K | x)

3:
{
{ck,m}Mm=1 ∼ U(Bq̂(ĉk))

}K
k=1

4: Return |Bq̂|
∑K

k=1
1
M

∑M
m=1 1 [ck,m ∈ V (ĉk)]

5: end procedure

6: procedure CPO
Inputs: Context x, CGM q(C | X), Optimiza-
tion steps T , Desired coverage 1 − α, Max sam-
ples Kmax, Volume Tolerance ϵ, Calibration sets
DC1

,DC2

7: for K ∈ {1, . . .Kmax} do
8: sK(x, c)← minĉk∈{ĉi}∼q(C1:K |x) [d (ĉk, c)]

9: SK ←
{
sK(x(i), c(i)) | (x(i), c(i)) ∈ DC1

}
10: q̂K ←

⌈(|DC1
|+1)(1−α)⌉
|DC1

| quantile of SK
11: ℓ̂K ← 1

|DC2
|
∑|DC2

|
i=1 VolumeEst(x(i), q, q̂K)

12: end for
13: K∗ ← arg minK

∣∣∣ℓ̂K − ℓ̂K+1

∣∣∣ ≤ ϵ

14: Return CPO-Opt(x, q, T,K∗, q̂K∗)
15: end procedure

3.5 CPO: Representative Points

We now frame the problem of summarizing the pre-
diction region C(x). We critically note that this is-
sue of interpretability is non-existent in traditional
approaches to robust predict-then-optimize, where un-
certainty regions are interpretable by construction, be-
ing balls around nominal estimates Bϵ(ĉ). In other
words, there is a fundamental tension in qualitative
interpretability and the expressiveness of uncertainty
regions, requiring a bespoke method for recovering in-
tuition when leveraging conformal prediction regions.
Formally, for a user-specified number of summary
points N and query x, we seek

Ξ(x) := arg min
Ξ̂∈ζ

EC∼U(C(x))

[
min
ξ̂(i)∈Ξ̂

d(C, ξ(i))

]
. (9)

We use the shorthand d(C,Ξ) := minξ(i)∈Ξ d(C, ξ(i)).
In other words, we wish to construct representative
points for a uniform sampling of the prediction re-
gion. A naive approach would simply involve explicitly
gridding the output space C, filtering such points with
the rejection criterion of C(x), and clustering the re-
maining points per the d metric. This, however, is in-
tractable in high-dimensional cases. Thus, a sampling
method is employed to circumvent gridding, parallel-
ing the technique leveraged for volume estimation.

M samples are initially drawn {ck,m}Mm=1 ∼ U(Bq̂(ĉk))

for each k. Importantly, such uniform sampling of
the balls leads to non-uniform sampling over C(x) if
naively aggregated across k, as overlapped regions will
be more densely sampled. For this reason, we sub-
sample by discarding those samples ck,m for which
ck,m ∈ V (ĉk′) for k ̸= k′. This results in samples
C := {ci} drawn from the desired U(C(x)).

RPs must be aggregated separately for each connected
subregion of Ωℓ ⊂ C(x) to ensure each ξ(i) ∈ C(x).
That is, we must identify Cℓ := C ∩ Ωℓ. To do so,
we determine if two points (ci, cj) belong to the same
Ωℓ by considering the corresponding connected com-
ponents problem defined on the graph induced by the
edge criterion ei,j = 1[d(ci, cj) < q̂]. For each Cℓ, we
find a subset Nℓ := N(|Cℓ|/|C|) of the total N repre-
sentative points, for which we use K-Means++ with
the d metric. The full procedure is in Algorithm 3.

Algorithm 3 CPO-RPs: QueryBall(T , x, r) is an
assumed subroutine that returns all points in the kd
tree T that are within a radius r of x.
1: procedure CPO-RPs

Inputs: Context x, CGM q(C | X), RP count
N , Conformal quantile q̂

2: {ĉk}Kk=1 ∼ q(C1:K | x)

3:
{
{ck,m}Mm=1 ∼ U(Bq̂(ĉk))

}K
k=1

4: C ← {ck,m | ck,m ∈ V (ĉk)}K,M
k=1,m=1

5: T ← KD-Tree(C)
6: E ←

⋃
i{ci ×QueryBall(T , ci, q̂) | ci ∈ T }

7: {Cℓ} ← ConnectedComponents(G(C, E))

8: Ξ←
⋃L

ℓ=1{K-Means++(Cℓ, N
(

|Cℓ|
|C|

)
, d)}

9: Return Ξ
10: end procedure

3.6 CPO: Projection

After obtaining Ξ, further insight can be gleaned by
exploring the local projection around each ξ(i). An
example of this is visualizing the road-level variabil-
ity in traffic predictions from uncertainty in upstream
weather predictions, shown in Figure 5. To do this, we
visualize the extent of the Voronoi cell V (i) ⊂ C(x) as-
sociated with ξ(i) along the C space dimensions. That
is, for each Voronoi cell, we visualize the Frechet vari-
ance along the projections {πj}Jj=1, where J = dim(C).
Such projections preserve the structure of the objects
being modeled, making them visually interpretable.
For instance, πj in the traffic example corresponds to
the projection of V (i) to a single road j. Similarly, πj

would project to a single atom for a molecular recon-
struction task. Formally,∣∣∣V (i)

j

∣∣∣ :=
∑

c∈V (i)

d2(πj(c), πj(ξ
(i))). (10)
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4 EXPERIMENT

We now demonstrate the utility of CPO with code at
https://github.com/yashpatel5400/csi.

4.1 SBI: Fractional Knapsack

We first study the fractional knapsack problem under
various complex contextual mappings, namely

w∗(x) := min
w,U

max
ĉ∈U(x)

−ĉTw (11)

s.t.w ∈ [0, 1]n, pTw ≤ B,PX,C(C ∈ U(X)) ≥ 1− α,

where p ∈ Rn and B > 0. The distributions P(C)
and P(X | C) are taken to be those from vari-
ous simulation-based inference (SBI) benchmark tasks
provided by (Hermans et al., 2021), chosen as they
have P(C | X) with complex structure. We specif-
ically study Two Moons, Lotka-Volterra, Gaussian
Linear Uniform, Bernoulli GLM, Susceptible-Infected-
Recovered (SIR), and Gaussian Mixture, fully de-
scribed in Appendix C. We note that, while these par-
ticular distributions have little semantic meaning in
the traditional context of fractional knapsack, this ex-
periment highlights the capacity for CPO to succeed
even for complex distributions, which we leverage in a
more semantically meaningful case in Section 4.2.

4.1.1 SBI: Quantitative Assessment

We first demonstrate the quantitative improvement in
decision-making from leveraging CPO over the box-
(PTC-B) and ellipsoid-based (PTC-E) regions pro-
posed in (Sun, Liu, and Li, 2023), as well as box- and
ellipsoid-based sets constructed based solely on obser-
vations of P(C), i.e. where we ignore x, referred to as
Box and Ellipsoid. For CPO, we use

s(x, c) = min
k
||ĉk − c||22. (12)

q(ĉ | x) was taken to be a neural spline normalizing
flow (Durkan et al., 2019) trained with FAVI (Am-
brogioni et al., 2019). Visualizations of the exact and
variational posteriors are provided in Appendix E. Ks
were chosen by studying the inflections of the predic-
tion region volume estimate under each distributional
setup, with |DC1,2

| = 1000, seen in Figure 2. Inflection
points were around K = 10 for most setups.

For assessing coverage and the robust objective value,
we sampled |DT | = 1000 test points i.i.d. from
P(X,C). Coverage was assessed across all 1000
samples by measuring the proportion of samples for
which s(x(i), c(i)) ≤ q̂. For assessing the objec-
tive, optimization was performed across 10 samples,
with p ∼ U([0, 1000]n), u ∼ U(0, 1), and B ∼
U(maxi pi,

∑
i pi − umaxi pi) sampled per run.

Figure 2: Average volume estimates ℓ̂({Bq̂(ĉ
(i)
k )}) over

x(i) ∈ DC2
across SBI benchmarks.

The results are seen in Table 1. We include the nomi-
nal optima as a reference, i.e. minw −cTw for the true
c. Recall that, by Lemma 3.1, with proper U(x), the
robust objective values should be valid upper bounds
on the nominal optima, with more conservative regions
resulting in more vacuous bounds. We see this as, al-
though all approaches result in valid coverage guar-
antees and hence produce valid upper bounds, the
overly conservative nature of alternate regions results
in their consistent looseness compared to CPO. No-
tably, these differences are more accentuated in cases
where P(C|X) has complex structure; level sets under
the Gaussian Linear, Gaussian Mixture, and Bernoulli
GLM cases are roughly ellipsoidal, seen in Appendix
E, resulting in comparable performance between CPO
and PTC-E. Thus, as discussed and highlighted in Sec-
tion 4.2, the benefits of CPO primarily manifest under
difficult-to-model contextual distributions, where sets
for simple geometries become overly large.

4.1.2 SBI: Representative Point Recovery

We next demonstrate that Algorithm 3 can approxi-
mately recover RPs for such uncertainty regions, lever-
aged to glean insights in the modeling task of Section
4.2. Notably, RPs are not unique; for instance, any
rigid rotation of Ξ for a uniform distribution over a 2D
ball results in a distinct yet optimal set Ξ̂ of RPs. The
RP objective minimum, however, is unique, meaning
suboptimality can be assessed by measuring

∆(Ξ, Ξ̂) := EC∼U(C(x))

[
d(C, Ξ̂)− d(C,Ξ)

]
. (13)
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Table 1: Coverages across tasks for α = 0.05 are shown in the left table, where coverage was assessed over a
batch of 1,000 i.i.d. test samples. Objective optima are shown in the right table, averaged over a batch of 10
i.i.d. test samples with standard deviations in parentheses. The nominal optima are included as reference points.

Box PTC-B Ellipsoid PTC-E CPO

Gaussian Uniform 0.94 0.96 0.95 0.95 0.95
Gaussian Mixture 0.95 0.93 0.94 0.93 0.94

Bernoulli GLM 0.96 0.95 0.95 0.94 0.94
Lotka Volterra 0.95 0.96 0.94 0.94 0.95

SIR 0.94 0.95 0.93 0.95 0.93
Two Moons 0.93 0.94 0.94 0.94 0.96

Box PTC-B Ellipsoid PTC-E CPO Nominal

0.0 (0.0) 0.0 (0.0) 0.0 (0.0) -0.27 (0.35) -0.43 (0.4) -4.48 (0.56)
0.0 (0.0) -6.6 (1.67) 0.0 (0.0) -7.38 (1.78) -7.77 (1.87) -11.66 (1.23)
0.0 (0.0) -0.18 (0.49) 0.0 (0.0) -0.06 (0.25) -0.18 (0.37) -3.53 (0.27)

-0.52 (0.02) -0.05 (0.24) -0.02 (0.0) -0.22 (0.18) -0.68 (0.26) -1.88 (0.01)
-0.16 (0.02) -0.22 (0.09) -0.08 (0.01) -0.22 (0.06) -0.38 (0.05) -0.52 (0.02)

0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) -0.15 (0.11) -0.38 (0.01)

N = 5 representative points were produced per setup.
To compute Ξ, a grid discretization over the space was
performed followed by a clustering for each connected
component of this discretization. That is, the support
C was discretized into 60 bins per dimension. Each
discretized point ck was assessed for membership in
C(x), resulting in a collection of points C, from which
we could recover Ξ in the manner described in Section
3.5. Visualizations of the exact and approximate RPs
are provided for tasks where C ⊂ R2 in Appendix F.

Figure 3: Suboptimality of the approximate repre-
sentative points ∆(Ξ, Ξ̂) decreases over increased sam-
pling from the conformal prediction region.

To make explicit discretization possible, problems were
projected into lower-dimensional versions, namely C ⊂
R4. Figure 3 demonstrates the suboptimality of Ξ̂ de-
creases with increasing samples. Of note is that this
convergence is slower in higher dimensional problems:
for low dimensional cases, recovery of optimal RPs
happens for small M , meaning any fluctuations there-
after are noise, as seen in the Two Moons case.

4.2 Robust Vehicle Routing

Optimal routing is a long-standing point of interest in
the operations research community, with widespread
applications such as in resource distribution and ur-
ban traffic flow management (Mor and Speranza, 2022;
Saberi and Verbas, 2012; Okulewicz and Mańdziuk,
2019; Kořenář, 2003). We study the traffic flow prob-
lem from (Angelelli et al., 2021).

Recent work has demonstrated the utility of gener-
ative models in quantifying uncertainty for weather
predictions over traditional physics-based approaches
(Agrawal et al., 2019; Ayzel, Scheffer, and Heister-
mann, 2020; Franch et al., 2020; Shi et al., 2017). We
specifically leverage a latent diffusion model for such
forecasting from (Leinonen et al., 2023). Formally, a

forecaster P(Ỹ | x) maps precipitation readings from
radar networks x ∈ RT×W×H , specifically over T time
steps with resolutions W × H, to Ỹ ∈ RW×H , the
precipitation for some fixed ∆T point beyond x.

We consider the robust traffic flow problem (RTFP)
for a source-target pair (s, t) over the network graph
of Manhattan, where |V| = 4584 and |E| = 9867. The

precipitation Ỹ was combined with the nominal speed
limits to obtain the final travel costs c along edges,
fully described in Appendix G. Formally, we seek

w∗(x) := min
w

max
ĉ∈U(x)

ĉTw (14)

s.t.w ∈ [0, 1]E , Aw = b,PX,C(C ∈ U(X)) ≥ 1− α

where we represents the proportion of traffic routed
along edge e, C ∈ R|E| is the edge weight vector, A ∈
R|V|×|E| is the node-arc incidence matrix, and b ∈ R|V|

has entries bs = 1, bt = −1, and bk = 0 for k /∈ {s, t}.

We again demonstrate the quantitative improvement
in decision-making resulting from using the more in-
formative CPO prediction regions. Experiments were
conducted with s and t chosen uniformly at random
from V. We take the score as defined in Equation 12
on the edge weight space rather than the initial pre-
cipitation map space. Results are shown in Table 2.
Again, although all approaches achieve coverage guar-
antees, bounds resulting from alternate regions are sig-
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Table 2: Coverage was assessed over 128 i.i.d. test samples and average objective optima over 10 i.i.d. test
samples with standard deviations in parentheses.

Box PTC-B Ellipsoid PTC-E CPO Nominal

Coverage 0.94 0.93 0.94 0.92 0.94 —
Objective 7863.45 (0.0) 34559.03 (171.3) 7038.77 (0.0) 8807.68 (4.22) 4171.22 (321.34) 299.50 (0.0)

nificantly looser compared to those from CPO. This is
especially prominent in this task compared to those of
Section 4.1 due to the high dimension of the prediction
space(R|E|) and complex nature of P(C|X).

Figure 4: Solutions for the RTFP under the Box (left)
and CPO (right) uncertainty regions.

Notably, the formulation in Equation 14 is a relax-
ation of the standard LP formulation of the robust
shortest paths problem (RSPP), in whichW = {0, 1}E .
Given that A is a totally unimodular matrix, the so-
lutions of the box -constrained RTFP and RSPP are
equivalent, i.e. for both Box and PTC-B; they, how-
ever, are not equivalent under more general constraint
sets (Chaerani, Roos, and Aman, 2005), i.e. Ellipsoid,
PTC-E, and CPO, resulting in the observed subopti-
mality of box constraints. This is highlighted in Figure
4, where the Box constraint results in a fully concen-
trated allocation of traffic along a single path.

Despite apparent quantitative improvements resulting
from the CPO optimal solution, it is difficult to di-
rectly understand why such allocations were deemed
optimal without a qualitative impression of U(x), as
framed in Section 3.5. We, therefore, now construct
N = 5 representative points and their corresponding
projections, two of which are visualized in Figure 5.
The RPs highlight the multimodal nature of the edge
weights distribution, where ξ(1) exhibits a case of pre-
cipitation more heavily concentrating along the north-

east corridor across Manhattan and ξ(2) one where it
concentrates on the west. In addition, the projection
around ξ(2) reveals especially high uncertainty on the
path through Central Park with less on surrounding
roads. CPO, thus, hedges its allocation in Figure 4
more evenly across paths, unlike the concentrated al-
location under the Box region.

Figure 5: Two RPs for C(x) for travel time prediction
(left) and the extents of their Voronoi cells (right).

5 DISCUSSION

We have presented CPO, a framework to leverage in-
formative, non-convex conformal regions for predict-
then-optimize decision-making. This work suggests
many directions for future work. We are actively pur-
suing the extension of CPO to robust LQR control and
subsequently to the broader category of robust control.
Another interesting extension would be applications of
CPO to discrete objects using GFlowNets for condi-
tional sampling (Malkin et al., 2022; Hu et al., 2023).
Finally, leveraging CPO over function spaces would
enable its use to distributionally robust optimization.
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A Prediction Region Validity Lemma

Lemma A.1. Consider any f(w, c) that is L-Lipschitz in c under the metric d for any fixed w. Assume further
that PX,C(C ∈ U(X)) ≥ 1− α. Then,

PX,C (∆(X,C) ≤ L diam(U(X))) ≥ 1− α. (15)

Proof. We consider the event of interest conditionally on a pair (x, c) where c ∈ U(x):

min
w

max
ĉ∈U(x)

f(w, ĉ)−min
w

f(w, c)

≤ max
w
| max
ĉ∈U(x)

f(w, ĉ)− f(w, c)|

≤ L max
ĉ∈U(x)

d(ĉ, c) ≤ Ldiam(U(x)).

Since we have the assumption that P(C ∈ U(X)) ≥ 1− α, the result immediately follows.

B Optimization Convergence Lemma

We first begin by citing a standard result of projected gradient descent, from which the result of interest imme-
diately follows.

Lemma B.1. Let K be a closed convex set, and f : K → R be convex, differentiable, and L-Lipschitz. Let

x∗ ∈ K be a minimizer of f , and define T := L2||x0−x∗||
ϵ2 and η := ||x0−x∗||

L
√
T

. Then the iterates {xt}Tt=0 returned

by projected gradient descent satisfy

f

(
1

T + 1

T∑
t=0

xt

)
− f(x∗) ≤ ϵ. (16)

Lemma B.2. Let ϕ(w) := maxĉ∈
⋃K

k=1 Bq̂(ĉk)
f(w, ĉ) for {ĉk}Kk=1 ⊂ C, q̂ ∈ R+, and f(w, c) convex-concave and

L-Lipschitz in c for any fixed w. Let w∗ ∈ W be a minimizer of ϕ. For any ϵ > 0, define T := L2||w0−w∗||
ϵ2 and

η := ||w0−w∗||
L
√
T

. Then the iterates {wt}Tt=0 returned by Algorithm 1 satisfy

ϕ

(
1

T + 1

T∑
t=0

wt

)
− ϕ(w∗) ≤ ϵ. (17)

Proof. Notice that ϕ(w) is convex by Danskin’s Theorem by assumption of the convexity of f in w. By Danskin’s
Theorem, ∇wϕ(w) = ∇wf(w, c∗), where c∗ := maxĉ∈C(x) f(w, ĉ). Further notice

ϕ(w) := max
ĉ∈C(x)

f(w, ĉ) = max
k

max
ĉ∈Bq̂(ĉk)

f(w, ĉ). (18)

Denote ϕk(w) := maxĉ∈Bq̂(ĉk) f(w, ĉ). Clearly, ϕk(w) is L-Lipschitz by assumption on the structure of f . Further,
as the point-wise maximum of L-Lipschitz functions is itself L-Lipschitz, it follows that ϕ(w) = maxk ϕk(w) is
also L-Lipschitz. The conclusion, thus, follows by applying Lemma B.1 to ϕ(w).

C Simulation-Based Inference Benchmarks

The benchmark tasks are a subset of those provided by (Lueckmann et al., 2021). For convenience, we provide
brief descriptions of the tasks curated by this library; however, a more comprehensive description of these tasks
can be found in their manuscript.
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C.1 Gaussian Linear

10-dimensional Gaussian model with a Gaussian prior:

Prior: N (0, 0.1⊙ I)

Simulator: x | w ∼ N (x | w, 0.1⊙ I)

C.2 Gaussian Linear Uniform

10-dimensional Gaussian model with a uniform prior:

Prior: U(−1, 1)

Simulator: x | w ∼ N (x | w, 0.1⊙ I)

C.3 SLCP with Distractors

Simple Likelihood Complex Posterior (SLCP) with Distractors has uninformative dimensions in the observation
over the standard SLCP task:

Prior: U(−3, 3)

Simulator: x | w = p(y) where p reorders

y with a fixed random order

y[1:8] ∼ N
([

w1

w2

]
,

[
w4

3 w2
3w

2
4 tanh(w5)

w2
3w

2
4 tanh(w5) w4

4

])
,

y9:100 ∼
1

20

20∑
i=1

t2(µi,Σi), µi ∼ N (0, 152I),

Σi
j,k ∼ N (0, 9),Σi

j,j = 3ea, a ∼ N (0, 1),

C.4 Bernoulli GLM Raw

10-parameter GLM with Bernoulli observations and Gaussian prior. Observations are not sufficient statistics,
unlike the standard “Bernoulli GLM” task:

Prior: β ∼ N (0, 2), f ∼ N (0, (FTF )−1)

Fi,i−2 = 1, Fi,i−1 = −2

Fi,i = 1 +

√
i− 1

9
, Fi,j = 0; i ≤ j

Simulator: x(i) | w ∼ Bern(η(v
(i)
T f + β)),

η(⊙) = exp(⊙)/(1 + exp(⊙))

C.5 Gaussian Mixture

A mixture of two Gaussians, with one having a much broader covariance structure:

Prior: β ∼ U(−10, 10)

Simulator: x | w ∼ 0.5N (x | w, I) + 0.5N (x | w, .01I)
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C.6 Two Moons

Task with a posterior that has both global (bimodal) and local (crescent-shaped) structure:

Prior: β ∼ U(−1, 1)

Simulator: x | w =[
r cos(α) + 0.25

r sin(α)

]
+

[
−|w1 + w2|/

√
2

(−w1 + w2)/
√

2

]
α ∼ U(−π/2, π/2), r ∼ N (0.1, 0.012)

C.7 SIR

Epidemiology model with S (susceptible), I (infected), and R (recovered). A contact rate β and mean recovery
rate of γ are used as follows:

Prior: β ∼ LogNormal(log(0.4), 0.5),

γ ∼ LogNormal(log(1/8), 0.2)

Simulator: x = (x(i))10i=1;x(i) | w ∼ Bin(1000,
I

N
),

where I is simulated from:

dS

dt
= −βSI

N
,

dI

dt
= β

SI

N
− γI,

dR

dt
= γI

C.8 Lotka-Volterra

An ecological model commonly used in describing dynamics of competing species. w parameterizes this interac-
tion as w = (α, β, γ, δ):

Prior: α ∼ LogNormal(−.125, 0.5)

β ∼ LogNormal(−3, 0.5), γ ∼ LogNormal(−.125, 0.5)

δ ∼ LogNormal(−3, 0.5)

Simulator: x = (x(i))10i=1,

x1,i | w ∼ LogNormal(log(X), 0.1),

x2,i | w ∼ LogNormal(log(Y ), 0.1)

where X,Y is simulated from:

dX

dt
= αX − βXY,

dY

dt
= −γY + δXY

D Training Details

All encoders were implemented in PyTorch (Paszke et al., 2019) with a Neural Spline Flow architecture. The
NSF was built using code from (Durkan et al., 2020). Specific architecture hyperparameter choices were taken
to be the defaults from (Durkan et al., 2020) and are available in the code. Optimization was done using Adam
(Kingma and Ba, 2014) with a learning rate of 10−3 over 5,000 training steps. Minibatches were drawn from
the corresponding prior P(Y ) and simulator P(X | Y ) as specified per task in the preceding section. Training
these models required between 10 minutes and two hours using an Nvidia RTX 2080 Ti GPUs for each of the
SBI tasks.
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E Posteriors

We provide visualizations of approximate and reference posteriors (produced with MCMC from (Lueckmann
et al., 2021)).

E.1 Gaussian Linear

E.2 Gaussian Mixture



Yash Patel, Sahana Rayan, Ambuj Tewari

E.3 Gaussian Linear Uniform

E.4 Two Moons

E.5 SLCP
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E.6 Bernoulli GLM

F SBI Representative Points

F.1 Gaussian Mixture

F.2 Two Moons
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Figure 6: Precipitation maps (left) are converted to edge weights (right) as per Equation 19. Solving the shortest
paths problem (SPP) on this newly weighted graph, therefore, can produce distinct routes from that based on
the nominal travel-time SPP, as highlighted by the two distinct paths under the nominal and weather-weighted
graphs on the right.

G Robust Vehicle Routing Setup

The routing graph of Manhattan was extracted using OSMnx, with local highway speeds extracted using Open-
StreetMap (Boeing, 2017). Highway speed imputation was performed on edges where such information was
not available, specifically by averaging over those highways of comparable categorization, namely “residential,”
“secondary,” or “tertiary.” Doing so defined a nominal travel cost c̃.

We now wish to modify these nominal travel costs to account for the weather predictions made upstream. That
is, we wish to account for the precipitation map Ỹ ∈ RW×H in these edge weights. To do so, we use the global
coordinates (cvx, c

v
y) ∈ R2 of each v ∈ V to find the precipitation at the corresponding location. Concretely, we

determine the pixel coordinate by scaling the coordinate to the range of the region that was forecasted. So, for
a forecast over the window (cmin

x , cmax
x )× (cmin

y , cmax
y ), the corresponding pixel lookup is:

pvx = ⌊ cvx − cmin
x

cmax
x − cmin

x

⌋ ×W pvy = ⌊
cvy − cmin

y

cmax
y − cmin

y

⌋ ×H.

The corresponding precipitation associated with each vertex, therefore, is Ỹpv
x,p

v
y
. We define the final travel cost

for each edge e ∈ E with endpoints (es, et) as:

ce := c̃e · exp

{
Ỹpes

x ,pv
y

+ Ỹp
et
x ,p

et
y

2

}
. (19)

We then solve SPP on the weighted directed graph with edge weights ce. An example of this weighting and the
corresponding shortest path is illustrated in Figure 6.
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