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Arunachalam and de Wolf [1] showed that the sample complexity of quantum
batch learning of boolean functions, in the realizable and agnostic settings, has the
same form and order as the corresponding classical sample complexities. In this
paper, we extend this, ostensibly surprising, message to batch multiclass learning,
online boolean learning, and online multiclass learning. For our online learning
results, we first consider an adaptive adversary variant of the classical model of
Dawid and Tewari [2]. Then, we introduce the first (to the best of our knowledge)
model of online learning with quantum examples.

1 Introduction
Bshouty and Jackson [3] provided a quantum extension of the PAC setting by formalizing what
it means to learn from quantum examples. This inspired a line of work [4–6], culminating in
the work of Arunachalam and de Wolf [1], that has provided sample complexity bounds for
quantum batch learning of boolean functions. Arunachalam and de Wolf [1] helped crystallize
the following message:

1. No new combinatorial dimension is needed to characterize quantum batch learnability
of boolean functions–the VC dimension continues to do so.

2. There is at most a constant sample complexity advantage for quantum batch learning
of boolean functions, in both the realizable and agnostic settings, as compared to the
corresponding classical sample complexities.

In this paper, we show that this message continues to hold in three other learning settings:
batch learning of multiclass functions, online learning of boolean functions, and online learning
of multiclass functions.

Our motivation for considering quantum batch learning of multiclass functions is an open
question posed in [1] which asks “what is the quantum sample complexity for learning concepts
whose range is [k] rather than {0, 1}, for some k > 2?” We resolve this question for 2 < k < ∞
(see Section 3). In classical multiclass batch learning, an approach to establish the lower and
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upper sample complexity bounds [7] is to proceed via a reduction to the binary case, with an
appeal to the definition of Natarajan dimension. While classically straightforward, extending
such a proof approach to establish sample complexity bounds for quantum multiclass batch
learning involves manipulating quantum examples, which has to be done with utmost care
(see Section 3.2.1).

Unlike the batch setting, quantum online learning of classical functions, to the best of
our knowledge, has no predefined model. One possible explanation is that we need, as an
intermediary, a new classical online learning model (see Sections 4.2, 4.3) where, at each
round, the adversary provides a distribution over the example (input-label) space instead of
a single example. With this new classical model, and the definition of a quantum example, a
model for online learning in the quantum setting arises as a natural extension (see Figure 1).

Classical Batch Learning Classical Online Learning

Definition of a quantum example Adversary-provides-a-distribution
Model (Sections 4.2, 4.3)

Quantum Batch Learning Quantum Online Learning

Figure 1: Mapping of the tools necessary for generalizations of learning paradigms from classical to
quantum.

1.1 Our Contributions
In Tables 1 and 2, we provide a concise overview of existing results and highlight our contri-
butions in batch and online learning for binary and multiclass classification across realizable
and agnostic settings in both classical and quantum paradigms. Our contributions include:

• establishing lower and upper sample complexity bounds for quantum batch multiclass
classification in the realizable and agnostic settings,

• proposing a new classical online learning model, which is an adaptive adversary variant
of an existing classical online learning model [2],

• proposing a quantum online learning model, as a natural generalization of our proposed
classical online learning model,

• establishing tight expected regret bounds for quantum online binary classification in the
realizable and agnostic settings,

• establishing a tight expected regret bound for quantum online multiclass classification
in the realizable setting, and

• establishing lower and upper expected regret bounds for quantum online multiclass clas-
sification in the agnostic setting.

Notes on Tables 1 and 2

• In all cases, we state known results that exhibit the tightest dependence on the combi-
natorial parameters that characterize learning in the respective settings.
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• In the batch multiclass case, we work with Natarajan dimension, instead of DS dimension
which was shown to characterize classical batch multiclass learning (including the k → ∞
case) recently [8]. We defer the resolution of the quantum sample complexity in the
k → ∞ case to future work.

• In the batch multiclass realizable case, there exists an upper bound with a tighter depen-
dence on ϵ (but looser on Ndim(H)) for both classical and quantum cases (see Section
3.2.2).

• In the (canonical) classical online multiclass agnostic case, the Õ(
√

mcLdim(H)T ) bound

hides a
√

log
(

T
mcLdim(H)

)
factor [9].

• The definition of loss/regret differs between the canonical classical adversary-provides-
an-input model (in Section 4.1) and both the classical adversary-provides-a-distribution
model (in Sections 4.2, 4.3) and the quantum online model (in Section 5). Specifically,
the former employs the indicator loss (mistake model), whereas the latter two involve
probabilistic losses.

Classical Quantum

Boolean Realizable Θ
(

d+log( 1
δ

)
ϵ

)
[10, 11] Θ

(
d+log( 1

δ
)

ϵ

)
[1]

Agnostic Θ
(

d+log( 1
δ

)
ϵ2

)
[12, 13] Θ

(
d+log( 1

δ
)

ϵ2

)
[1]

Multiclass
Realizable

Ω
(

d+log( 1
δ

)
ϵ

)
[14] Ω

(
d+log( 1

δ
)

ϵ

)
(Thm. 3.3)

O
(

d log(k) log( 1
ϵ

)+log( 1
δ

)
ϵ

)
[7] O

(
d log(k) log( 1

ϵ
)+log( 1

δ
)

ϵ

)
(Thm. 3.8)

Agnostic
Ω
(

d+log( 1
δ

)
ϵ2

)
[15] Ω

(
d+log( 1

δ
)

ϵ2

)
(Thm. 3.3)

O
(

d log(k)+log( 1
δ

)
ϵ2

)
[15] O

(
d log(k)+log( 1

δ
)

ϵ2

)
(Thm. 3.8)

Table 1: An overview of sample complexity results for batch learning in classical and quantum
paradigms. Our novel contributions are presented in boxes shaded gray. d denotes the VC dimension
for Boolean cases (d := VCdim(H)), and the Natarajan dimension for Multiclass cases (d := Ndim(H)).

Classical Classical
(Input-based) (Distribution-based) Quantum

Bool. Real. Θ(d) [16] Θ(d) (Thms. 4.6, 4.7) Θ(d) (Thms. 5.4, 5.5)
Agn. Θ(

√
dT ) [17, 18] Θ(

√
dT ) (Thms. 4.10, 4.11) Θ(

√
dT ) (Thms. 5.4, 5.5)

Multi.
Real. Θ(d) [7] Θ(d) (Thms. 4.13, 4.14) Θ(d) (Thms. 5.6, 5.7)

Agn. Ω(
√
dT ) [7] Ω(

√
dT ) (Thm. 4.20) Ω(

√
dT ) (Thm. 5.6)

Õ(
√
dT ) [9] O(

√
dT log(Tk)) (Thm. 4.19) O(

√
dT log(Tk)) (Thm. 5.7)

Table 2: An overview of expected regret bounds for online learning in the canonical classical
(adversary-provides-an-input), classical adversary-provides-a-distribution, and quantum paradigms.
Our novel contributions are presented in boxes shaded gray. d denotes the Littestone dimension
for Boolean cases (d := Ldim(H)), and the multiclass Littlestone dimension for Multiclass cases
(d := mcLdim(H)).
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1.2 Related Works
Situating Our Work in the Larger Context. In the survey on the complexity of learning
quantum states [19], the authors identify four key avenues of current research organized into
a 2 × 2 framework: (1) learning all states versus some subclasses of states, and (2) learning
with strong requirements (e.g., up to small trace distance) versus weaker requirements (e.g.,
PAC learning, statistical query learning). One of these avenues, concerning “learning classical
functions encoded as [quantum] states,” aligns with the learning some subclasses of states with
weaker learning requirements category, and it is here that the models introduced in this paper
contribute to the ongoing exploration of this research landscape.

Batch Learning. Quantum learning of classical functions in the batch setting has has pre-
dominantly focused on learning Boolean functions (see [20] for a survey). In our work, the
multiclass extension in the batch setting (Section 3.2) is inspired by an open question of [1].
The lower bound (Section 3.2.1) in this extension is made possible due to the presence of an
explicit quantum circuit (see Figure 2) that allows for a black box -style reduction of the quan-
tum multiclass case to the quantum binary classification case, enabling the existing quantum
batch binary lower bound (and, techniques therewith, see Section 3.1 for a detailed treatment)
in [1] to yield the desired multiclass bound. This reduction is analogous to the establishment
of the lower bound in the classical batch multiclass setting (as presented in Theorem 5 of [7]).
While the batch classification model in this paper assumes the learner has access to copies
of quantum states |ψc⟩ (i.e., an example oracle), with no (i.e., at most a constant) advantage
over classical batch models, Grover’s algorithm – along with its quadratic quantum sample
complexity advantage – has been successfully adapted in [21] to batch binary classification in
a stronger learning model where the learner has access to a quantum circuit Qc that generates
a quantum sample |ψc⟩ (i.e., a unitary oracle1).

Proper vs. Improper Learning. In this work, we do not explicitly address whether
learning is proper or improper in the various settings. However, since most of our proofs involve
reductions to the corresponding classical settings, the nature of the algorithms that provide
tight bounds in those settings remains unchanged in our cases. The separation between proper
and improper quantum learning has garnered significant interest in the community [22, 23].
In particular, this separation has been studied in the context of quantum extensions of the
coupon collector problem, which provides a classical example of such a separation. Notably,
[23] established a provable separation between proper and improper learning in the quantum
setting using a “padded” variant of the quantum coupon collector problem. On the classical
side, [24] provides a full characterization of when proper learning achieves optimal sample
complexity, based on a combinatorial parameter known as the dual Helly number. To the best
of our knowledge, an analogous characterization for quantum proper learning remains an open
question.

Online Learning and Adversary-provides-a-distribution. The online adversary-provides-
a-distribution model (Section 4.2) has analogues in other works. For example, [25] and [26]

1The sample complexity here refers to the number of calls to the unitary oracle, providing access to both
Qc and its Hermitian conjugate Q†

c
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consider a setting where an adaptive adversary provides a distribution. Their setup is de-
signed for smoothed learning, where at each time step, the adversary provides a sample drawn
from their chosen distribution. However, their framework assumes a full-information setting,
where the learner observes all losses, whereas in our model, the learner only receives partial
feedback. Another related connection can be found in the online game introduced in [27] to
analyze batch generalization error. While their setting, like ours, involves partial information
on losses (and, therefore, regret), the probabilistic aspect of their model arises from the learner
selecting a distribution over a hypothesis class, rather than the adversary providing one.

1.3 Organization
The paper is organized as follows. In Section 2, we present preliminaries, including notation,
quantum and probability theory basics, and batch learning frameworks. Section 3 contains
one of our main results, addressing the quantum sample complexity in the batch multiclass
setting. Moving on to Section 4, we revisit the canonical online model (Section 4.1), followed by
the introduction and presentation of results for the classical adversary-provides-a-distribution
model in both realizable (Section 4.2) and agnostic (Section 4.3) settings for both binary and
multiclass (Section 4.4) classification. This model serves as an intermediary for transitioning
from the canonical classical online model to the quantum online model. In Section 5, we
introduce the quantum online learning model and summarize results within the established
framework. The paper concludes with a discussion and reflection on the obtained results in
Sections 5.4 and 6, along with some open questions for future exploration.

2 Preliminaries
In this section, we introduce the key concepts and notation used throughout the paper. First,
we briefly review the fundamentals of quantum computing. Next, we present essential proba-
bility theory concepts needed for the proofs in Section 4. Finally, we outline the batch learning
frameworks in both classical and quantum settings, setting the stage for Section 3.

2.1 Notation
In the bra-ket (Dirac) notation, a ket, |x⟩, denotes a column vector in a complex vector space
with an inner product (i.e., a Hilbert space). It is used primarily in the context of describing
the state of a quantum system (e.g., see Definition 2.1). A bra ⟨·| is the dual of the ket, in that
⟨x| = |x⟩†, where the † operator denotes the conjugate transpose. Typically, the bra notation
is used for operators ⟨M | (e.g. measurement operators) acting on a ket. This notation lends
itself naturally to the notion of inner product ⟨x|x⟩ = ∥x∥2, and matrix-vector multiplication
⟨M |x⟩. Furthermore, note that |x, y⟩ denotes the tensor product |x⟩ ⊗ |y⟩, where ⊗ denotes
the standard tensor product of two vector spaces. The comma may be omitted, and we have
numerous equivalent notations for the tensor product: e.g., |02⟩ = |00⟩ = |0, 0⟩ = |0⟩ |0⟩ =
|0⟩ ⊗ |0⟩ = |0⟩⊗2.

2.2 Quantum Basics
Analogous to how a classical bit (bit) is a unit of classical information, a quantum bit (qubit)
is a unit of quantum information. The difference between the two is best illustrated by
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considering how each is realized. A bit is realized via well separated values of a physical
property of a system (e.g., voltage across an element in an electric circuit). If the value
is higher than a certain threshold, the bit assumes the value 1. Otherwise, it assumes the
value 0. Thus, a bit carries the information equivalent of its namesake, a binary digit. A
qubit, on the other hand, is realized as a two-level quantum system; e.g., as the spin (up,
down) of an electron, the polarization (horizontal, vertical) of a photon, or the discrete energy
levels (ground, excited) of an ion. Consequently, it is governed by the postulates of quantum
mechanics [28], as detailed in the following paragraphs.

The state space of a qubit is a 2-dimensional complex vector space, denoted as C2. The
definition of a qubit as a state vector within this space is presented in the following definition.

Definition 2.1 (Qubit). A single (isolated) qubit is described by a state vector |ψ⟩, which is
a unit vector in the state space C2. Mathematically,

|ψ⟩ = α0 |0⟩ + α1 |1⟩ , α0, α1 ∈ C, |α0|2 + |α1|2 = 1,

where |0⟩ =
[
1
0

]
and |1⟩ =

[
0
1

]
are basis vectors for the state space.

So, although we have two basis states (much as we did for the classical bit), the qubit is
allowed to be in a (complex) superposition of the two, whereas a classical bit must determin-
istically be in one of the basis states. Additionally, as our learning examples (refer to (1),
(2)) will involve multiple qubits, it is important to note that the state space of the composite
system, comprising many qubits, is the tensor product of the state spaces of its components
(i.e., the individual qubits). The joint state of the composite system formed by n qubits, each
in state |ψi⟩ , i ∈ {1, . . . , n}, is given by, |ψ1⟩ ⊗ |ψ2⟩ ⊗ · · · ⊗ |ψn⟩ ∈ C2n . Now, let us express
the state vector for multi-qubit system in terms of the standard basis elements.

Definition 2.2 (Multi-qubit system). The state vector, |Ψ⟩ ∈ C2n, describing the system of
n qubits can be expressed in terms of the standard basis elements {|b⟩ = |b1⟩ ⊗ · · · ⊗ |bn⟩ | b =
(b1, . . . , bn) ∈ {0, 1}n} as follows:

|Ψ⟩ =
∑

b∈{0,1}n

αb |b⟩ ,

where αb = ⟨Ψ|b⟩ ∈ C, ∑b |αb|2 = 1.

In contrast, the joint state of n classical bits is described by their Cartesian product. This
essential distinction between Cartesian and tensor products is precisely the phenomenon of
quantum entanglement, namely the existence of (pure) states of a composite system that are
not product states of its parts. Quantum entanglement, alongside superposition, lies at the
heart of intrinsic advantages of quantum computing.

Any manipulation of a quantum system is confined to unitary evolution. In the context
of computation, this implies that all quantum gates are unitary operators, restricting their
application to reversible computations. An avenue for irreversible computation, and the only
way to obtain classical outputs in the quantum realm, is the notion of a measurement.

Definition 2.3 (Measurement). Quantum measurements are described by a collection {Mm}
of measurement operators acting on the state space of the system. The index m denotes the
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possible classical outcomes of the measurement. If the quantum system is in the state |ψ⟩ before
measurement, then the probability that result m occurs is given by p(m) = ⟨ψ|M †

mMm |ψ⟩, and
the state of the system after the measurement, if m⋆ is observed, “collapses to” Mm⋆ |ψ⟩ /

√
p(m⋆).

To ensure the conservation of total probability, ∑mM †
mMm = I is satisfied.

Here are a couple of examples to illustrate the above definition:
• A measurement in the standard basis is implemented by measurement operators M0 =

|0⟩ ⟨0| and M1 = |1⟩ ⟨1|.
• A measurement in the standard basis of the state |Ψ⟩ =

∑
b∈{0,1}n αb |b⟩ yields the

classical outcome b with probability |αb|2.

2.3 Probability Theory Basics
Let X := (Xt)t≥1 be a sequence of random variables defined on a probability space (Ω,F ,P),
where each Xt represents the outcome of an experiment at time t. Associated with this
sequence is a filtration F := (Ft)t≥1, an increasing family of σ-algebras such that Ft captures
the information available up to time t. Formally, F1 ⊆ F2 ⊆ · · · ⊆ F, where Ft contains events
determined by X|t = (X1, X2, . . . , Xt).
Definition 2.4 (Martingale). A sequence of random variables M := (Mt)t≥1 is said to be a
martingale with respect to the filtration F := (Ft)t≥1 if it satisfies the following conditions:

1. Adaptation: Mt is Ft-measurable for all t ≥ 1 (i.e., we say M is adapted to F),
2. Integrability: E[|Mt|] < ∞ for all t ≥ 1,
3. Martingale Property: E[Mt+1|Ft] = Mt for all t ≥ 1.

Definition 2.5 (Martingale Difference Sequence). Given a martingale M := {Mt}t≥1, the
corresponding martingale difference sequence is defined as D := {Dt+1}t≥1, where Dt+1 =
Mt+1 −Mt. By the martingale property, the sequence D satisfies E[Dt+1|Ft] = 0 for all t ≥ 1,
indicating that each increment Dt+1 has conditional mean zero given the information up to
time t.

In general, any sequence of random variables X := {Xt}t≥1 is a martingale difference
sequence with respect to the filtration F := (Ft)t≥1 if it satisfies the following conditions:

1. Adaptation: Xt is Ft-measurable for all t ≥ 1 (i.e. X is adapted to F),
2. Integrability: E[|Xt|] < ∞ for all t ≥ 1,
3. Conditional Mean-Zero Property: E[Xt|Ft−1] = 0 for all t ≥ 12.

2.4 PAC Learning Framework
In the classical PAC (Probably Approximately Correct) learning model [29], a learner is pro-
vided oracle access to samples (x, y), where x is sampled from some unknown distribution D
on X and y = h⋆(x), for some target hypothesis h⋆ : X → Y. We assume that h⋆ ∈ H, where
H is a predefined hypothesis class, i.e., the learner has prior knowledge of H. The goal of the
learning problem is to find3 h : X → Y such that the generalization error, given by the loss
function L(h,D, h⋆) = Px∼D(h(x) ̸= h⋆(x)), is minimized.

2By convention, we treat the “conditioning” on F0 as an unconditional expectation, i.e., E[X1] = 0.
3Note that h need not necessarily belong to H. If it does, the learner is called proper. If not, the learner is

improper.
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Definition 2.6 (PAC learner). An algorithm A is an (ϵ, δ)-PAC learner for a hypothesis
class H if, for any unknown distribution D and for all h⋆ ∈ H, A takes in m pairs of labeled
instances, i.e., {(xi, h

⋆(xi))}m
i=1, each drawn i.i.d. from D, and outputs a hypothesis h such

that P[L(h,D, h⋆) ≤ ϵ] ≥ 1 − δ, where the outer probability is over the sequence of examples
and the learner’s internal randomness.

Indeed, an (ϵ, δ)-PAC learner outputs a hypothesis that is, with high probability (≥ 1−δ),
approximately correct (L ≤ ϵ). A hypothesis class H is PAC-learnable if there exists an
algorithm A that is an (ϵ, δ)-PAC learner for H. When Y = {0, 1}, we are in the setting of
binary classification. To express the sample complexity of learning boolean function classes
later on, we define below a key combinatorial parameter known as the VC dimension.

Definition 2.7 (VC dimension). Given a hypothesis class H = {h : X → {0, 1}}, a set
S = {s1, . . . , st} ⊆ X is said to be shattered by H if, for every labeling ℓ ∈ {0, 1}t, there exists
an h ∈ H such that (h(s1), h(s2), . . . , h(st)) = ℓ. The VC dimension of H, VCdim(H), is the
size of the largest set S that is shattered by H.

2.5 Agnostic Learning Framework
In the PAC learning framework, we worked with the realizability assumption, namely that
h⋆ ∈ H. If we omit this rather strong assumption, we are able to generalize the PAC learning
framework to the agnostic learning framework [12]. Here, a learner is provided with oracle
access to samples (x, y), sampled from some unknown distribution D on X × Y. The learner
has knowledge of a predefined hypothesis class H. The objective of the learning problem is to
find3 h : X → Y such that the regret

R(h,D) = P(x,y)∼D(h(x) ̸= y) − inf
hc∈H

P(x,y)∼D(hc(x) ̸= y),

is minimized. One can notice that if the labels happen to satisfy some h⋆ ∈ H, R ≡ L.

Definition 2.8 (Agnostic learner). An algorithm A is an (ϵ, δ)-agnostic learner for a hy-
pothesis class H if, for any unknown distribution D, A takes in m pairs of labeled in-
stances, i.e., (xi, yi)m

i=1, each drawn i.i.d. from D, and outputs a hypothesis h such that
P[R(h,D) ≤ ϵ] ≥ 1 − δ, where the outer probability is over the sequence of examples and the
learner’s internal randomness.

2.6 Quantum PAC and Agnostic Learning Frameworks
In the quantum setting, the primary difference from the classical setting lies in how the ex-
amples are provided. In particular, in the PAC learning setup, a quantum example [3] takes
the form ∑

x∈{0,1}n

√
D(x) |x, h⋆(x)⟩ , (1)

for some h⋆ ∈ H, where D : {0, 1}n → [0, 1] is a distribution over the instance space4, as
before. This might appear slightly strange, as a single example seemingly contains information

4Here, we have taken X = {0, 1}n for convenience and ease of analysis. However, any finite X could be
mapped to this one, if needed.
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about all possible classical examples. However, if we view it via the lens of measurement (see
Definition 2.3), then it is clear that measuring a quantum example will provide the learner
with a single classical example (x, h⋆(x)) with probability D(x), exactly how it was in the
classical PAC learning setup. While we have argued that the quantum example is a natural
generalization of the classical example, the question still remains as to whether any sample
complexity advantages in the quantum realm arise from the intrinsic description of a quantum
example or from the quantum algorithm used or from both.

In the agnostic learning setting, a quantum example takes the form∑
(x,y)∈{0,1}n+1

√
D(x, y) |x, y⟩ , (2)

where, now, D : {0, 1}n+1 → [0, 1]. These examples, like in the quantum PAC setting above,
are typically prepared by acting on the all-zero state |0n, 0⟩ via an appropriate quantum circuit.

Given quantum examples (instead of classical examples), Definitions 2.6 and 2.8 otherwise
stay exactly the same in the quantum setting.

3 Quantum Batch Learning
Under the quantum (batch) learning frameworks outlined in Section 2.6, we investigate the
sample complexity of batch learning a hypothesis class H. Specifically, we address the question
of how many copies of quantum examples, as given in (1) (resp. (2)), are required to (ϵ, δ)-
quantum PAC (resp. quantum agnostic) learn H.

3.1 Binary Classification
In the binary classification setting, this question has been conclusively answered, and we
reproduce the corresponding theorem below.

Theorem 3.1 (Sample complexity bounds5 for quantum batch binary classification; Theo-
rems 23 and 25 in [1]). Let H ⊆ {0, 1}X . For every δ ∈ (0, 1/2) and ϵ ∈ (0, 1/20), the sample
complexity of an (ϵ, δ)-quantum PAC learner (and, respectively, an (ϵ, δ)-quantum agnostic
learner) for the hypothesis class H is given by:

mPAC = Θ
(

VCdim(H) + log(1
δ )

ϵ

)
, and magnostic = Θ

(
VCdim(H) + log(1

δ )
ϵ2

)
.

Arunachalam and de Wolf [1] established the optimal lower bounds via quantum state iden-
tification, employing ideas from Fourier analysis to assess the performance of the Pretty Good
Measurement. They also derived near-optimal information-theoretic lower bounds, which are
off by a factor of 1

log(VCdim(H)/ϵ) in the term involving VCdim(H) in both the PAC and agnostic
settings. Their information-theoretic approach has since been refined to provide the optimal
lower bounds [30].

Having resolved the quantum sample complexity in the (batch) binary classification setting,
[1] also presented an open question regarding the quantum sample complexity in the (batch)
multiclass classification setting, i.e., when H ⊆ YX with |Y| = k > 2.

5The upper bounds are obtained trivially via a measure-and-learn-classically quantum learner, whereas
matching lower bounds are provided by [1].
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3.2 Multiclass Classification
In this subsection, we provide an answer to the aforementioned question. To express sample
complexity results in this setting, we first define the combinatorial parameter, Natarajan
dimension (Ndim(·)), which serves as a generalization of the VC dimension to the multiclass
setting.

Definition 3.2 (Natarajan dimension). Given a hypothesis class H = {h : X → [k]}, a set
S = {s1, . . . , st} ⊆ X is said to be N-shattered by H if there exist two “witness” functions
f0, f1 : S → [k] such that:

• For every x ∈ S, f0(x) ̸= f1(x).
• For every R ⊆ S, there exists a function h ∈ H such that

∀x ∈ R, h(x) = f0(x) and ∀x ∈ S \R, h(x) = f1(x).

The Natarajan dimension of H, Ndim(H), is the size of the largest set S that is N-shattered
by H.

3.2.1 Lower Bounds

Theorem 3.3 (Sample complexity lower bounds for quantum batch multiclass classification).
Let H ⊆ YX , with |Y| = k > 2. For every δ ∈ (0, 1/2) and ϵ ∈ (0, 1/20), the sample complexity
of an (ϵ, δ)-quantum PAC learner (and, respectively, an (ϵ, δ)-quantum agnostic learner) for
the hypothesis class H is bounded below as follows:

mPAC = Ω
(

Ndim(H) + log(1
δ )

ϵ

)
, and magnostic = Ω

(
Ndim(H) + log(1

δ )
ϵ2

)
.

At its core, the proof involves reducing the problem to the quantum binary case – establish-
ing that a learning algorithm for H implies a learning algorithm for Hd, where VCdim(Hd) =
Ndim(H) = d. This, in turn, enables us to deduce a sample complexity lower bound for learn-
ing H based on the corresponding lower bound for learning Hd. A key step in the reduction
involves the following transformation of a quantum binary example6 into a quantum multiclass
example,∑

x∈[d]

√
D(x) |x, y⟩ →

∑
x∈[d]

√
D(x) |x, fy(x)⟩ , where y ∈ {0, 1}, and f0, f1 : [d] → [k]. (3)

While in the corresponding classical reduction proof, converting (x, y) → (x, fy(x)) is en-
tirely trivial with the knowledge of x, y, f0, f1, performing the transformation in (3) using only
unitary operations (in a reversible manner) in the quantum realm involves delicate reasoning
using an explicit quantum circuit. In particular, it is noteworthy as its existence hinges on the
reversibility of the transformation y ↔ fy, which is guaranteed precisely due to the definition
of N-shattering.

As preliminaries for the proof, we first introduce the quantum X, CNOT, TOFFOLI gates, and
quantum oracles for computing classical functions. The notation ⊕ refers to the classical XOR
operation (i.e., addition modulo 2).

6To maintain consistency with Section 2.6, the input space [d] can be identified with {0, 1}⌈log2 d⌉.
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Definition 3.4 (X gate). X (or the Pauli-X) gate is the quantum equivalent of the classical
NOT gate. It operates on one qubit, mapping |0⟩ → |1⟩ and |1⟩ → |0⟩ (i.e. it “flips” the qubit).

Definition 3.5 (CNOT gate). CNOT is a quantum gate that operates on two qubits, one control
and one target. If the control qubit is in the state |1⟩, it flips (i.e., applies an X gate to) the
target qubit.

Definition 3.6 (TOFFOLI gate). TOFFOLI is a quantum gate that operates on three qubits,
two control and one target. If the control qubits are both in the state |1⟩, it flips (i.e., applies
an X gate to) the target qubit.

Definition 3.7 (Quantum oracle Uf ). For classical functions f : {0, 1}m → {0, 1}n, there
exists7 a quantum oracle Uf that performs the unitary evolution

Uf |x, y⟩ = |x, y ⊕ f(x)⟩ ,

for x ∈ {0, 1}m and y ∈ {0, 1}n.

Proof. (of Theorem 3.3) Let H ⊆ YX be a hypothesis class of Natarajan dimension d and let
Hd = {0, 1}[d]. Let A be a quantum PAC (corresp. quantum agnostic) learning algorithm for
H. We proceed to show that it is possible to construct a quantum PAC (corresp. quantum
agnostic) learning algorithm, Ā, for Hd. Therefore, by reduction, we would obtain mĀ,Hd

≤
mA,H, and thus mPAC

Hd
≤ mPAC

H (corresp. magnostic
Hd

≤ magnostic
H ). Since, by construction,

VCdim(Hd) = d = Ndim(H), the reduction allows us to obtain the sample complexity lower
bounds being proven here (for the multiclass case), from the corresponding lower bounds
for quantum batch binary classification (Theorem 3.1). Now, for the key step of the proof,
given a quantum learner A for H, it is possible to construct a quantum learner Ā, for Hd, as
follows. We show this for the quantum PAC case, and comment here that this reduction in
the quantum agnostic case will proceed identically.

The learner Ā receives m-copies of the quantum example
∑

x∈[d]
√
D(x) |x, y⟩, where

(x, y) ∈ [d] × {0, 1} and D : [d] → [0, 1] is an arbitrary distribution on [d]. Now, let
S = {s1, . . . , sd} ⊆ X be a set and f0, f1 be the functions that witness the N-shattering of S
by H. The learner Ā will now attempt to convert8 each of its m-copies of

∑
x∈[d]

√
D(x) |x, y⟩

to
∑

x∈[d]
√
D(x) |sx, fy(sx)⟩. However, as sx is simply an indexing of the elements of the set

S, without loss of generality, we let Ā convert each of its m-copies of
∑

x∈[d]
√
D(x) |x, y⟩ to∑

x∈[d]
√
D(x) |x, fy(x)⟩ instead. We claim that the transformation

|ψ⟩Ā =
∑

x∈[d]

√
D(x) |x, y⟩ 7→

∑
x∈[d]

√
D(x) |x, fy(x)⟩ = |ψ⟩A , (4)

is attainable. Indeed, the quantum circuit shown in Figure 2 (and described subsequently)
performs the following augmented transformation,

|ψ⟩Ā =
∑

x∈[d]

√
D(x) |x, y, 03⌈log2 k⌉⟩ 7→

∑
x∈[d]

√
D(x) |x, 0, 02⌈log2 k⌉, fy(x)⟩ = |ψ⟩A. (5)

7In fact, the quantum oracle Uf can be implemented in a rather straightforward way, by using the truth
table of f and generalizations of the CNOT gate that use several qubits as controls.

8The learner Ā will then present these transformed examples to A, the quantum PAC learner for H.
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Figure 2: A quantum circuit that performs the transformation in (5). The first row denotes the
⌈log2 d⌉ qubits involved in encoding x. The second row denotes the single qubit involved in encoding
y. The third and fourth row each denote the ⌈log2 k⌉ ancillary qubits designed to hold the intermediate
computation of f0(x) and f1(x) respectively. The fifth row denotes the ⌈log2 k⌉ qubits designed to
hold the output fy(x).

We form the augmented state |ψ⟩Ā by appending 3⌈log2 k⌉ qubits in the state |0⟩ to the
input |ψ⟩Ā. We intend to use one set of ⌈log2 k⌉ qubits to encode each of f0(x), f1(x) (both
ancillary) and fy(x) (solution). First, we pass the qubits encoding x and one set of ⌈log2 k⌉
qubits in the state |0⟩ to the quantum oracle Uf0 . From this, we transform

|ψ⟩Ā =
∑

x∈[d]

√
D(x) |x, y, 03⌈log2 k⌉⟩ 7→

∑
x∈[d]

√
D(x) |x, y, f0(x), 02⌈log2 k⌉⟩ .

Next, we pass the qubits encoding x and another set of ⌈log2 k⌉ qubits in the state |0⟩ to the
quantum oracle Uf1 . From this, we transform

∑
x∈[d]

√
D(x) |x, y, f0(x), 02⌈log2 k⌉⟩ 7→

∑
x∈[d]

√
D(x) |x, y, f0(x), f1(x), 0⌈log2 k⌉⟩ .

Now, we apply ⌈log2 k⌉ TOFFOLI gates to each set of the qubit encoding y, a qubit involved in
encoding f1(x) and a qubit |0⟩ in the set of ⌈log2 k⌉ remaining qubits that have not yet been
operated on (that are designed hold the final result fy(x)). From this, we transform∑

x∈[d]

√
D(x) |x, y, f0(x), f1(x), 0⌈log2 k⌉⟩ 7→

∑
x∈[d]

√
D(x) |x, y, f0(x), f1(x), y.f1(x)⟩ .

Next, we apply the X gate9 to the qubit encoding y, and then apply ⌈log2 k⌉ TOFFOLI gates
to each set of the qubit (now encoding) 1 − y, a qubit involved in encoding f0(x) and a qubit
that is holding the final result. Finally, we apply the X gate again to the qubit encoding 1 − y

9The concise description for controlling on |y⟩ = |0⟩ (instead of explicitly on |1 − y⟩ = |1⟩) is depicted in
Figure 2.
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to revert the effect of the first X gate. All together, we have transformed∑
x∈[d]

√
D(x) |x, y, f0(x), f1(x), y.f1(x)⟩ 7→

∑
x∈[d]

√
D(x) |x, 1 − y, f0(x), f1(x), y.f1(x)⟩

7→
∑

x∈[d]

√
D(x) |x, 1 − y, f0(x), f1(x), y.f1(x) ⊕ (1 − y).f0(x)⟩

7→
∑

x∈[d]

√
D(x) |x, y, f0(x), f1(x), y.f1(x) ⊕ (1 − y).f0(x)⟩

=
∑

x∈[d]

√
D(x) |x, y, f0(x), f1(x), fy(x)⟩ ,

where, in the last line, we recognize that y.f1(x) ⊕ (1 − y).f0(x) = fy(x).
Now that we have computed our solution, fy(x), to ensure we are not introducing extra-

neous outputs to satisfy reversibility of unitary computation, we must uncompute all ancillary
qubits to their original form. Furthermore, we also do not want the input |y⟩ in our output10,
and would like to “remove” it, by transforming it to the |0⟩ state. We proceed with the
uncomputation as follows. First, we claim, with the following subproof, that there exists a
(genuine) boolean function h that takes as input f0(x), f1(x), and fy(x) and outputs y.

For a short (sub)proof-by-contradiction, consider a particular input f0(x), f1(x),
and fy(x) = y.f1(x) ⊕ (1 − y).f0(x) (for some x) that maps to both y = 0 and
y = 1. This would imply that f0(x) = f1(x) for that particular x. However, as f0
and f1 are witnesses of the N-shattering of H, they must disagree on all inputs x,
providing us with the contradiction.

As h is a genuine (boolean) function, we can apply the oracle Uh to the qubits encoding
f0(x), f1(x), and fy(x) and the qubit encoding y. This gives us the transformation11

∑
x∈[d]

√
D(x) |x, y, f0(x), f1(x), fy(x)⟩ 7→

∑
x∈[d]

√
D(x) |x, y ⊕ y, f0(x), f1(x), fy(x)⟩

=
∑

x∈[d]

√
D(x) |x, 0, f0(x), f1(x), fy(x)⟩ .

Lastly, we apply Uf−1
0

to the qubits encoding x and the ancillary qubits encoding f0(x).
And then, we apply Uf−1

1
to the qubits encoding x and the ancillary qubits encoding f1(x).

All together, we have transformed,∑
x∈[d]

√
D(x) |x, 0, f0(x), f1(x), fy(x)⟩ 7→

∑
x∈[d]

√
D(x) |x, 0, 0⌈log2 k⌉, f1(x), fy(x)⟩

7→
∑

x∈[d]

√
D(x) |x, 0, 02⌈log2 k⌉, fy(x)⟩ = |ψ⟩A.

10We do not want to allow A to be able to cheat by providing it with this additional knowledge.
11In other words, we have been able to “remove” y. It is important to note that this was possible precisely

because y was recoverable from fy (rendering y ↔ fy reversible), ensuring its ability to be encoded in a unitary
operation.
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Now that we have performed the transformation in (5) quantumly, ignoring12 ancillary
(and the “removed” y) qubits in the output, we note that the output of the transformation
in (4) is attained.

The learner Ā now feeds the m-copies of
∑

x∈[d]
√
D(x) |x, fy(x)⟩ as input to the quantum

learner A and obtains (from A) a classical (black box) function13 g : S → Y (recall S =
{s1, . . . , sd} ⊆ X is the subset that is N-shattered by H). Finally, Ā outputs the hypothesis
(as a black box function) f : [d] → {0, 1}, given by f(i) = 1 if and only if g(si) = f1(si)
(which by construction learns Hd).

■

3.2.2 Upper Bounds

In general, classical sample complexity upper bounds trivially translate to the corresponding
quantum ones, as the quantum learner always has the option of simply performing a measure-
ment on each quantum example, and perform the classical learning algorithm on the resulting
m classical examples. We include the theorem statement (Theorem 3.8) and proof below for
completeness.

Theorem 3.8 (Sample complexity upper bounds for quantum batch multiclass classification).
Let H ⊆ YX , with |Y| = k > 2. The sample complexity of an (ϵ, δ)-quantum PAC learner
(and, respectively, an (ϵ, δ)-quantum agnostic learner) for the hypothesis class H is bounded
above as follows:

mPAC = O
(

Ndim(H) log(k) log(1
ϵ ) + log(1

δ )
ϵ

)
, and magnostic = O

(
Ndim(H) log(k) + log(1

δ )
ϵ2

)
.

Proof. The quantum PAC (resp. quantum agnostic) learner performs a measurement on each
of the m examples

∑
x

√
D(x) |x, y⟩ (corresp.

∑
x,y

√
D(x, y) |x, y⟩) in the standard computa-

tional basis. This provides m classical examples, i.e. gives us the training set {(xi, yi)}m
i=1,

where a given (xi, yi) appears with probability D(xi) (corresp. D(xi, yi)). Now, the quantum
PAC (resp. quantum agnostic) learners calls upon an (ϵ, δ)-PAC (resp. agnostic) classical
learner to learn on the training set {(xi, yi)}m

i=1, and outputs the resulting classically learned
hypothesis. Thus, the classical sample complexity sufficiency requirements [7, 15] continue to
hold, and our proof is complete. ■

In [7], the classical upper bound

mPAC = O
(

Ndim(H)(log(k) + log(1
ϵ ) + log(Ndim(H))) + log(1

δ )
ϵ

)
,

was shown to hold which has a tighter dependence on ϵ, but a looser dependence on Ndim(H).
The proof above naturally extends this bound too to the quantum case.

12They are each deterministically |0⟩.
13In fact, our identification sx ↔ x earlier means that g : [d] → Y instead, and f : [d] → {0, 1} would then

be given by f(i) = 1 if and only if g(i) = f1(i).
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While this paper does not focus on the DS dimension, which was recently shown to char-
acterize multiclass learnability, including the k → ∞ case [8], we note that the upper bound
involving the DS dimension can be similarly extended to the quantum setting. The challenges
in adapting the proof of the lower bound involving the DS dimension [31] are discussed in the
conclusion (Section 6).

4 Classical Online Learning
So far, we have been working with learning in the batch setting, where we are provided with all
the examples at once14. For several practical applications, it is either impossible to obtain all
the examples at once (e.g., recommendation systems), or we simply wish to evolve our learning
over time. In these cases, online learning [16] – where we iteratively improve our hypothesis
using examples we receive over time, and using our current hypothesis to predict for the
upcoming example – is the appropriate framework to be placing ourselves in. First, we will
introduce known models and results in classical online learning, and a classical generalization
in Section 4.2 that, in turn, provides us with a quantum online learning model (Section 5) as a
natural generalization. For ease of exposition, we begin with a treatment of boolean function
classes in the realizable setting.

4.1 Adversary provides an input
Let C := {c : X → {0, 1}}, and H ⊆ C (i.e., H ⊆ {0, 1}X ). A protocol for online learning is a
T -round procedure described as follows: at the t-th round,

1. Adversary provides input point in the domain: xt ∈ X .
2. Learner uses a hypothesis15 ht ∈ C, and makes the prediction ŷt = ht(xt) ∈ {0, 1}.
3. Adversary provides the input point’s label, yt = h⋆(xt), where h⋆ ∈ H.
4. Learner suffers a loss of 1 (a ‘mistake’), if ŷt ̸= yt, i.e. LI(ht, xt, h

⋆) = 1[ht(xt) ̸= h⋆(xt)].

Therefore, the learner’s total loss is given by,

LI(h,x, h⋆) =
T∑

t=1
LI(ht, xt, h

⋆) =
T∑

t=1
1[ht(xt) ̸= h⋆(xt)], (6)

where we use h := (h1, . . . , hT ) to denote the sequence of hypotheses that the learner uses,
and x := (x1, . . . , xT ) to denote the sequence of instances that the adversary provides. The
subscript I (in LI) indicates that this is the input-based indicator (0-1) loss function16.

The learner chooses an algorithm A that will generate the sequence hA following the
protocol above. The learner’s goal is to minimize LI(hA,H) = supx,h⋆∈HE[LI(hA,x, h⋆)], i.e.,
make as few mistakes, on average, as possible regardless of the adversary’s (potentially worst-
case) choices of sequence of instances x := (x1, . . . , xT ) and labeling function h⋆ ∈ H. For

14This is typical for most settings where we are trying to learn a hypothesis via inductive reasoning (e.g.
learning a function to fit data, etc.)

15Note that the learner may choose a hypothesis ht ∈ C \ H, i.e., we do not require the learner to be proper.
16This is distinct from the probabilistic loss function LP that we will encounter later in Section 4.2.
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the subsequent bound on LI(hA,H), we first define the combinatorial parameter, Littlestone
dimension, Ldim(H).

Definition 4.1 (Littlestone dimension). Let T be a rooted tree whose internal nodes are
labeled by elements from X . Each internal node’s left edge and right edge are labeled 0 and 1,
respectively. The tree T is L-shattered by H if, for every path from root to leaf which traverses
the nodes x1, . . . , xd, there exists a hypothesis h ∈ H such that, for all i, h(xi) is the label of
the edge (xi, xi+1). We define the Littlestone dimension, Ldim(H), to be the maximal depth
of a complete binary tree that is L-shattered by H.

The classical online learning model in this subsection (Section 4.1) has been thoroughly
studied, and the following theorem characterizes it in terms of the Littlestone dimension.

Theorem 4.2 (Bounds on LI(hA,H) for the canonical classical online model; Corollary
21.8 in [32] and Theorem 24 in [7]). Let H ⊆ {0, 1}X be a hypothesis class. The Standard
Optimal Algorithm (SOA)17 is a deterministic algorithm that achieves a worst-case total loss
of Ldim(H), i.e. LI(hSOA,H) = Ldim(H). Furthermore, for any algorithm A, the expected
total loss on the worst-case sequence is at least18 1

2 · Ldim(H), i.e. LI(hA,H) ≥ 1
2 · Ldim(H).

4.1.1 Can we obtain a quantum generalization of the classical online model?

Given the popularity and widespread applications of the classical online model, we explore the
feasibility of developing a quantum version of the above online model to ultimately inquire
whether such a quantum adaptation would be any more powerful from the perspective of
the learner and/or the adversary. In essence, as there exists a well-defined “landscape” for
classical and quantum batch learning, we seek to delineate the analogous landscape in the
online learning context.

To this, if one attempts to naïvely generalize the above classical model to the quantum
setting, an obvious issue arises: the quantum examples of the form (1) do not split the input-
label pair. In particular, an adversary cannot temporally separate its provision of the input
point and its label. A first step towards a model that can be generalized to the quantum setting,
then, is to reorder the steps at the t-th round to 2, 1 & 3, 4 (i.e., where the learner provides a
prediction ŷt after which the adversary presents both the input and its label (xt, yt)).

While this reordering gives an entirely equivalent model that is, once again, characterized
by Littlestone dimension (Theorem 4.2), it is not sufficient for a natural quantum generaliza-
tion. The issue now is that a classical adversary only ever presents one (classical) example at
each round. How do we go about generalizing a single classical example to a quantum adver-
sary’s (quantum) example that, in general, sits in superposition? It appears futile to attempt
to do so. The missing piece, evidently, is the lack of a notion of a distribution over examples
in the classical online model(s) examined so far.

17At round t, given input xt, the SOA predicts ŷt ∈ {0, 1} that maximizes the Littlestone dimension of the
version space consistent with ŷt.

18The adversary traverses the shattered tree and provides, at every round, the label that the (randomized)
algorithm A is less likely to predict.
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4.2 Adversary provides a distribution
Now that we have identified the unfilled gap to transition to the quantum setting, we first
state the appropriate classical generalization of the canonical classical model (in Section 4.1)
by asking the adversary to, at each t, choose a distribution over a set of input-label pairs, from
which an explicit input-label pair is then drawn. The protocol for the T -round procedure will
be as follows: at the t-th round,

1. Learner provides a hypothesis ht ∈ C.
2. Adversary chooses a distribution Dt : X → [0, 1] on the instance space, draws x ∼ Dt,

and reveals (x, h⋆(x)) to the learner, where h⋆ ∈ H.
3. Learner suffers, but does not “see”, a loss of LP (ht, Dt, h

⋆) := Px∼Dt(ht(x) ̸= h⋆(x)).

Here, the learner’s total loss is given by,

LP (h,D, h⋆) =
T∑

t=1
LP (ht, Dt, h

⋆) =
T∑

t=1
Px∼Dt(ht(x) ̸= h⋆(x)), (7)

where we additionally use D := (D1, . . . , DT ) to denote the sequence of distributions that the
adversary chooses. Analogously, the learner’s objective is to choose h to minimize LP (h,H) =
supD, h⋆∈HE[LP (h,D, h⋆)].

We identify this model as the adaptive adversary variant of the online learning model
recently considered in Dawid and Tewari [2]. Note that, if we restrict the adversary, allowing
it to choose only point masses, we recover the reordered model in Section 4.1.

From a learning standpoint, the adversary-provides-a-distribution model differs fundamen-
tally from the canonical model in that the learner, here, does not have full information about
its own loss at any given round. Since the learner does not know Dt, it cannot compute
LP (ht, Dt, h

⋆) for any t. In other words, the learner seeks to minimize a quantity that it
cannot even compute. This partial information setting here, at least at first, appears to be
more challenging for the learner as it not only grapples with the inability to compute its loss
but also contends with the larger space available to the adversary for its choices (Dt ∈ [0, 1]X
vs. xt ∈ {0, 1}X ).

However, as we will soon illustrate, this perceived challenge proves not to be the case.
The key factor influencing this distinction lies in the learner’s ability to calculate LI(h,x, h⋆)
for the observed sequence of examples x, providing an unbiased estimator for its total loss
LP (h,D, h⋆). We demonstrate that it is indeed (necessary and) sufficient for a learner in the
adversary-provides-a-distribution model to execute SOA on the observed sequence of examples
x to achieve a bound analogous to that in the canonical model (cf. Theorem 4.2). Before
delving into the results, we formally define what a learner, an adversary, and learnability
entails for the adversary-provides-a-distribution model we have just discussed.

Definition 4.3 (Classical online learner). An algorithm A is a classical online learner for a
hypothesis class H ⊆ C if having received a sequence of examples over the first t rounds,
(x1, h

⋆(x1)), . . . , (xt, h
⋆(xt)) where xi ∼ Di with Di arbitrary (unknown), A outputs a hypoth-

esis ht+1 ∈ C at round19 t+ 1.

19Prior to receiving any examples, A outputs some arbitrary hypothesis h1 ∈ C at round 1.
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Definition 4.4 (Classical adversary). Having received a sequence of hypothesis h|t = (h1, . . . , ht)
from the learner, and a sequence of examples x|t = (xt, . . . , xt) drawn previously from its own
prior choices of distributions D|t = (D1, . . . , Dt) over the first t rounds, at round t + 1, a
classical (online) adversary chooses a distribution Dt+1 : X → [0, 1] on the instance space,
draws xt+1 ∈ Dt+1 and reveals (xt+1, h

⋆(xt+1)) to the learner, where h⋆ ∈ H is consistent with
all preceding labeled examples.

Definition 4.5 (Classical online learnability). A hypothesis class H is classical online learn-
able if there exists a classical online learning algorithm A such that:
LP (hA,H) = supD, h⋆∈HE[LP (hA,D, h⋆)] = o(T ).

With these definitions in place, our next objective is to characterize learnability in the
adversary-provides-a-distribution framework. When we later introduce the quantum online
learning model (Section 5), these classical insights will serve as a foundation, enabling us to
draw direct comparisons and understand the strong links connecting the classical adversary-
provides-a-distribution model to the quantum online learning setup.

Theorem 4.6 (Upper bound on the expected loss for the classical adversary-provides-a-dis-
tribution model). Let H ⊆ {0, 1}X be a hypothesis class, and h⋆ ∈ H. For every adversary,
there exists a classical online learner for H that satisfies

E[LP (h,D, h⋆)] = O(Ldim(H)).

Proof. Let D and h⋆ ∈ H be arbitrarily chosen. We proceed by first obtaining a high-
probability bound for LP (h,D, h⋆), and then converting it to an in-expectation one. To obtain
the high-probability bound, we begin by establishing that the difference between LP (h,D, h⋆)
and LI(h,x, h⋆) (see Section 4.1, (6)) on the revealed stream of examples x = (xt)T

t=1 (with
each xt ∼ Dt) is the sum of a martingale difference sequence.

Let Mt := LP (ht, Dt, h
⋆)︸ ︷︷ ︸

Pt

− LI(ht, xt, h
⋆)︸ ︷︷ ︸

It

, where xt ∼ Dt. With the filtration F := (Ft)T
t=1,

where Ft corresponds to the information revealed20 up to (and, including) round t, namely21

h|t, D|t, x|t and y|t := (h⋆(xi))t
i=1, we note that M := (Mt)T

t=1 is adapted to F and ∀t,

E[Mt] = E[Pt] − E[It] < ∞
E[Mt|Ft−1] = E[Pt|Ft−1] − E[It|Ft−1] = Pt − Pt = 0,

where the first line is due to the boundedness (0 ≤ Pt, It ≤ 1, ∀t) of Pt and It. And, the
second line is due to E[It|Ft−1] = 1·Pxt∼Dt(ht(xt) ̸= h⋆(xt))+0·Pxt∼Dt(ht(xt) = h⋆(xt)) = Pt

and E[Pt|Ft−1] = Pt (see Remark 1). Therefore, M is a martingale difference sequence.

20Note that this is not alluding to the information revealed to the learner. Instead, we can think of this
information as having been revealed to an arbiter until the end of round t, where during each round the arbiter
performs the draw xt ∼ Dt on the adversary’s communicated choice of Dt and provides (xt, h⋆(xt)) to the
learner.

21Recall, v|t = (v1, . . . , vt), i.e. v restricted to the first t rounds.
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We first bound the predictable quadratic variation ⟨MT ⟩ of M, as follows:

⟨MT ⟩ :=
T∑

t=1
E[M2

t |Ft−1] =
T∑

t=1
E[(Pt − It)2|Ft−1]

=
T∑

t=1

(
E[P 2

t |Ft−1] − 2E[PtIt|Ft−1] + E[I2
t |Ft−1]

)

=
T∑

t=1
(P 2

t − 2P 2
t + Pt) =

T∑
t=1

(Pt − P 2
t )

≤
T∑

t=1
Pt, (8)

where the second line is due to linearity of expectation, the third line uses E[PtIt|Ft−1] =
PtE[It|Ft−1] = Pt · Pt = P 2

t , and the fourth line is due to P 2
t ≥ 0, ∀t. Now, by Theorem 1 of

[33], with probability 1 − δ (for any δ > 0), we have

T∑
t=1

Mt ≤ log
(1
δ

)
+ (e− 2)⟨MT ⟩ ⇐⇒

T∑
t=1

Pt ≤
T∑

t=1
It + log

(1
δ

)
+ (e− 2)⟨MT ⟩.

Note here that
∑T

t=1 Pt = LP (h,D, h⋆). Therefore, appealing to Theorem 4.2 and the
inequality on ⟨MT ⟩ in (8), we have that (with probability 1 − δ),

LP (h,D, h⋆) ≤ Ldim(H) + log
(1
δ

)
+ (e− 2)LP (h,D, h⋆)

=⇒ LP (h,D, h⋆) ≤ 1
1 − (e− 2)Ldim(H) + 1

1 − (e− 2) log
(1
δ

)
,

or equivalently, for any δ > 0,

P
[
LP (h,D, h⋆) > 1

1 − (e− 2) · Ldim(H) + δ

1 − (e− 2)
]

≤ e−δ. (9)

Now, we compute the in-expectation bound (i.e. a bound on E[LP (h,D, h⋆)]) guaranteed by
the above tail bound (9). Let c := 1

1 − (e− 2) .

E[LP (h,D, h⋆)] =
∫ ∞

0
P[LP (h,D, h⋆) > ℓ] dℓ

=
∫ c·Ldim(H)

0
P[LP (h,D, h⋆) > ℓ] dℓ+

∫ ∞

c·Ldim(H)
P[LP (h,D, h⋆) > ℓ] dℓ

=
∫ c·Ldim(H)

0
P[LP (h,D, h⋆) > ℓ] dℓ+ c

∫ ∞

0
P
[
LP (h,D, h⋆) > c · Ldim(H) + cδ

]
dδ

≤
∫ c·Ldim(H)

0
1 dℓ+ c

∫ ∞

0
e−δ dδ

= c · Ldim(H) + c

= O(Ldim(H)),
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where the first line holds as LP (h,D, h⋆) ≥ 0, the third line uses the change of variable
ℓ = c · Ldim(H) + cδ, the fourth line uses a naïve bound of P[LP (h,D, h⋆) > ℓ] ≤ 1 (for
0 ≤ ℓ ≤ c ·Ldim(H)) on the first integral, and our high-probability bound in (9) on the second
integral. ■

Remark 1 (Internal Randomness). In the proof of Theorem 4.6 (and in subsequent proofs
throughout the paper), the filtration F does not include any information on the internal ran-
domness of the learner or the (adaptive) adversary at any round. In other words, the bound
in Theorem 4.6 applies to a T -round procedure that is behaving deterministically (in as much
as it applies to the learner and the adversary). Crucially, however, it applies to all such
procedures. Therefore, the bounds presented in Theorem 4.6 (as well as others throughout the
paper) imply identical bounds on a T -round procedure where internal randomness is allowed
for both the learner and the adversary.

To summarize, Theorem 4.6 tells us that Ldim(H) continues to be a sufficient condition
for learnability under the new (adversary-provides-a-distribution) model in Section 4.2. In
other words, a learner that performs SOA on the observed sequence of examples x only suffers
a constant overhead under the adversary-provides-a-distribution model as compared to SOA
under the canonical online model (Section 4.1). Next, we show (Theorem 4.7) that Ldim(H)
is also a necessary condition for learnability, and thus fully characterizes the learnability of
the adversary-provides-a-distribution model.

Theorem 4.7 (Lower bound on the expected loss for the classical adversary-provides-a-dis-
tribution model). Let H ⊆ {0, 1}X be a hypothesis class, and h⋆ ∈ H. For every classical
online learner of H, there exists an adversary such that

E[LP (h,D, h⋆)] = Ω(Ldim(H)).

Proof. Consider an adversary which chooses each Dt to be a point mass on the instance space,
i.e. the adversary simply chooses an instance xt at each t. Since each xt ∼ Dt is deterministic,
we have

LP (h,D, h⋆) = LI(h,x, h⋆) = Ω(Ldim(H)),

where the second equality is due to (the lower bound part of) Theorem 4.2. By taking
expectations, we conclude our proof. ■

Now that we have characterized the learnability of the adversary-provides-a-distribution
model in Section 4.2 (via Theorems 4.6 and 4.7), we proceed to introduce and present results
for related classical online models which arise from successively relaxing, first, the realizability
assumption and then, the boolean function class assumption. These serve to define our scope
and lay the groundwork for a comprehensive understanding before introducing the anticipated
quantum generalization.

4.3 Adversary provides a distribution in the agnostic setting
In the agnostic framework, we dispense with the realizability assumption that h⋆ ∈ H (i.e., the
labels need not be consistent with any hypothesis in the hypothesis class). In fact, the labels
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need not arise from a labeling function at all, i.e., the examples may be inconsistent22. The
agnostic generalization of the adversary-provides-a-distribution model in Section 4.2 is given
by the following protocol for the T -round procedure: at the t-th round,

1. Learner provides a hypothesis ht ∈ C.
2. Adversary chooses a distribution Dt : {0, 1}n+1 → [0, 1] on the instance space, draws

and reveals zt = (xt, yt) ∼ Dt to the learner.
3. Learner suffers, but does not “see”, a loss of LP (ht, Dt) := P(x,y)∼Dt

(ht(x) ̸= y).

As there may be no hypothesis that provides the true label on every instance over the T
rounds, we resort to comparing the learner to the best fixed hypothesis in H in hindsight. In
other words, the learner’s total regret is given by,

RP (h,D,H) =
T∑

t=1
LP (ht, Dt) − inf

h∈H

T∑
t=1

LP (h,Dt). (10)

Definitions 4.3, 4.4, and 4.5 are adapted analogously to give us the notions of a classical
online learner, adversary and learnability in the agnostic setting. Additionally, we introduce
further notation and definitions to facilitate the subsequent theorem.

An X -valued tree X of depth T is a rooted complete binary tree with nodes labeled by
elements of X . We identify the tree X with the sequence x(1), . . . , x(T ) of labeling functions
x(i) : {±1}i−1 → X which provide the labels for each node. Here, x(1) labels the root of the
tree, and x(i) for i > 1 labels the node obtained by following the path of length i− 1 from the
root, with +1 indicating ‘right’ and −1 indicating ‘left’. A path of length T is given by the
sequence ϵ = (ϵ1, . . . , ϵT ) ∈ {±1}T . We denote the label at round t along this path as x(t)(ϵ),
understanding that x(t) depends only on the prefix (ϵ1, . . . , ϵt−1) of ϵ. With this notion of a
tree, we define the sequential Rademacher complexity of a hypothesis class, H ⊆ YX [34].

Definition 4.8 (Sequential Rademacher complexity of H). The sequential Rademacher com-
plexity of a function class H ⊆ RX on an X -valued tree X is defined as

RT (H, X) = E
[

sup
h∈H

1
T

T∑
t=1

ϵth(x(t)(ϵ))
]
,

and
RT (H) = sup

X
RT (H, X),

where the outer supremum is taken over all X -valued trees of depth T ; ϵ = (ϵ1, . . . , ϵT ) ∈
{±1}T is a sequence of i.i.d. Rademacher random variables.

Definition 4.9 (The loss class LI ◦ H). The loss class, LI ◦ H, is a boolean hypothesis class
given by

LI ◦ H = {lh : (x, y) 7→ 1[h(x) ̸= y] |h ∈ H}.

22That is, it is entirely possible to encounter both (x, 0) and (x, 1) in the sequence of examples.
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Note that LI ◦ H ⊆ {0, 1}X ×Y , and that its sequential Rademacher complexity is defined
analogously to Definition 4.8. With these definitions in place, we can proceed to present the
theorems for the bounds on expected regret for the adversary-provides-a-distribution model
in the agnostic setting.

Theorem 4.10 (Upper bound on the expected regret for the classical adversary-provides-a-dis-
tribution model in the agnostic setting). Let H ⊆ {0, 1}X be a hypothesis class. For every
adversary, there exists a classical online learner for H that satisfies

E[RP (h,D,H)] = O(
√

Ldim(H) · T ).

Proof. Let D be an arbitrary sequence of distributions, and let z = (z1, . . . , zt) be a se-
quence of instances such that zi ∼ Di. Then, defining23 RI(h, z,H) :=

∑T
t=1 LI(ht, zt) −

infh∈H
∑T

t=1 LI(h, zt), we have

RP (h,D,H) = RP (h,D,H) − RI(h, z,H) + RI(h, z,H)

=
T∑

t=1
LP (ht, Dt) −

T∑
t=1

LI(ht, zt)︸ ︷︷ ︸
∆1

+ inf
h∈H

T∑
t=1

LI(h, zt) − inf
h∈H

T∑
t=1

LP (h,Dt)︸ ︷︷ ︸
∆2

+RI(h, z,H).

We proceed by bounding the expected value of ∆1, ∆2 and RI(h, z,H) separately.
Working with ∆1, we let Mt := LP (ht, Dt) − LI(ht, zt). With the filtration F := (Ft)T

t=1,
where Ft corresponds to the information revealed up to (and, including) round t, namely h|t,
D|t and z|t, we note that M := (Mt)T

t=1 is adapted to F and ∀t,

E[Mt] = E[LP (ht, Dt)] − E[LI(ht, zt)] < ∞
E[Mt|Ft−1] = E[LP (ht, Dt)|Ft−1] − E[LI(ht, zt)|Ft−1] = LP (ht, Dt) − LP (ht, Dt) = 0,

where the first line is due to the boundedness (0 ≤ LP (ht, Dt),LI(ht, zt) ≤ 1, ∀t) of LP (ht, Dt)
and LI(ht, zt). And, the second line is due to E[LI(ht, zt)|Ft−1] = 1 ·Pzt∼Dt(ht(xt) ̸= yt) + 0 ·
Pzt∼Dt(ht(xt) = yt) = LP (ht, Dt). Therefore, M is a martingale difference sequence. Now, as
∆1 =

∑T
t=1Mt, by Azuma-Hoeffding’s inequality, since |Mt| < 1 for all t, we have that

P[|∆1| ≥ δ] ≤ 2 exp
(

− δ2

2T
)
, for all δ ∈ R+, T ∈ Z+. (11)

This allows us to compute the following bound on E[∆1]:

E[∆1] ≤ E[|∆1|] ≤
∫ ∞

0
P[|∆1| ≥ δ] dB

≤
∫ ∞

0
2 exp

(
− δ2

2T
)
dB =

√
2πT = O(

√
T ),

where the first line holds as ∆1 < |∆1| (for the first inequality) and |∆1| ≥ 0 (for the second
inequality), and the second line uses the bound in (11).

23RI(h, z, H) is precisely the regret of an algorithm in the agnostic generalization of the canonical (adversary-
provides-an-input) classical online model in Section 4.1.
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Next, working with ∆2, we obtain the following chain of (in)equalities:

∆2 = inf
h∈H

T∑
t=1

LI(h, zt) − inf
h∈H

T∑
t=1

LP (h,Dt)

= − sup
h∈H

T∑
t=1

−LI(h, zt) + sup
h∈H

T∑
t=1

−LP (h,Dt)

= − sup
h∈H

T∑
t=1

(−LI(h, zt) + LP (h,Dt) − LP (h,Dt)) + sup
h∈H

T∑
t=1

−LP (h,Dt)

≤ sup
h∈H

T∑
t=1

(LI(h, zt) − LP (h,Dt)),

where the final inequality is a result of the subadditivity of the supremum; to elaborate,
we derive suph f ≤ suph(f − g) + suph g ⇐⇒ suph f − suph g ≤ suph(f − g), to which
we substitute f = −LP (h,Dt) and g = −LI(h, zt) + LP (h,Dt) − LP (h,Dt). So far, taking
expectations both sides, we have E[∆2] ≤ E[suph∈H

∑T
t=1(LI(h, zt) − LP (h,Dt))]. Next, we

bound the in-expectation quantity on the right-hand side to obtain,

E
[

sup
h∈H

T∑
t=1

(LI(h, zt) − LP (h,Dt))
]

= E

[
sup
h∈H

T∑
t=1

(
1[h(xt) ̸= yt] − P(xt,yt)∼Dt

[h(xt) ̸= yt]
)]

= E

[
sup
h∈H

T∑
t=1

(
1[h(xt) ̸= yt] − E(xt,yt)∼Dt

[
1[h(xt) ̸= yt]|Ft−1

])]
≤ 2T · RT (LI ◦ H)
≤ 2T · RT (H)

= O(
√

Ldim(H) · T ),

where the second line uses a conditioning on the filtration Ft−1, which corresponds to the
information revealed up to (and, including) round t − 1 (namely h|t−1 := (h1, . . . , ht−1),
D|t−1 := (D1, . . . , Dt−1) and z|t−1 := ((x1, y1), . . . , (xt−1, yt−1))), the third line is due to
Theorem 2 in [34]24, the fourth line is due to Theorem 16 of [2] (with Y = {0, 1}) and the last
line is from the proof of Theorem 12.1 in [18].

Finally, also from Theorem 12.1 of [18], we have RI(h, z,H) = O(
√

Ldim(H) · T ). Putting

24Theorem 2 in [34], as stated, provides a bound on E
[

suph∈H
∑T

t=1

(
E(xt,yt)∼Dt

[
1[h(xt) ̸= yt]|Ft−1

]
−

1[h(xt) ̸= yt]
)]

. However, the proof of Lemma 9 in [34] notes its validity even with absolute values around
the sum, which subsequently ensures that Theorem 2 in [34] also holds in the same generality. This justifies
its use here in the following sense: E

[
suph∈H

∑T

t=1

(
1[h(xt) ̸= yt] − E(xt,yt)∼Dt

[
1[h(xt) ̸= yt]|Ft−1

])]
≤

E

[
suph∈H

∣∣∣∑T

t=1

(
E(xt,yt)∼Dt

[
1[h(xt) ̸= yt]|Ft−1

]
− 1[h(xt) ̸= yt]

)∣∣∣] ≤ 2T · RT (LI ◦ H).
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everything together, using the linearity of expectation, we have,

E[RP (h,D,H)] = E[∆1 + ∆2 + RI(h, z,H)]
= E[∆1] + E[∆2] + E[RI(h, z,H)]

= O(
√
T ) + O(

√
Ldim(H) · T ) + O(

√
Ldim(H) · T )

= O(
√

Ldim(H) · T ).

■

In summary, our theorem reveals that the optimal classical learner for the canonical
(adversary-provides-an-input) agnostic model, when provided with the observed sequence of
instances z in the new protocol, experiences, at most, a constant overhead when assessed un-
der the new (adversary-provides-a-distribution) framework. Upon closer examination, it was
critical for the bound on E[∆2] in our proof not to be worse than the bound on E[RI(h, z,H)].
It is noteworthy that the bound on E[∆2] is guaranteed by the rate of online uniform conver-
gence (in the frameworks of the sequential Rademacher complexity [34] and the adversarial
(uniform) laws of large numbers [18]), whereas the bound on E[RI(h, z,H)] is guaranteed by
the rate of canonical (agnostic) online learnability. The equivalence between these two rates,
for the boolean function class case, played a pivotal role in establishing our result.

Next, we establish (Theorem 4.11) a matching lower bound for expected regret within
the agnostic adversary-provides-a-distribution framework. This fully characterizes agnostic
learnability under the adversary-provides-a-distribution framework. As with all lower bound
proofs within this framework, we efficiently conclude the proof statement by considering an
adversary that exclusively plays point masses.

Theorem 4.11 (Lower bound on the expected regret for the classical adversary-provides-a-dis-
tribution model in the agnostic setting). Let H ⊆ {0, 1}X be a hypothesis class. For every
classical online learner of H, there exists an adversary such that

E[RP (h,D,H)] = Ω(
√

Ldim(H) · T ).

Proof. As in Theorem 4.7, we again consider an adversary which chooses each Dt to be a
point mass on the instance space, i.e. the adversary simply chooses an instance zt at each t.
Since each zt ∼ Dt is deterministic, we have

E[RP (h,D,H)] = E[RI(h, z,H)] = Ω(
√

Ldim(H) · T ),

where the second equality is due to (the lower bound part of) Theorem 21.10 in [32]. ■

4.4 Adversary provides a distribution in the multiclass setting
In Sections 4.1, 4.2 and 4.3, we considered boolean hypothesis classes, i.e. H ⊆ {0, 1}X . Here,
we consider the adversary-provides-a-distribution models in Sections 4.2 and 4.3 extended to
the setting of multiclass learning, i.e. H ⊆ C := {c : X → Y}, with |Y| > 2. As stated earlier,
the objective here is to lay the groundwork, with a clear understanding of these models in the
classical paradigm, before delving into their quantum generalizations.
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4.4.1 Realizable setting

The online learning protocol in the realizable setting is identical to that specified in Section 4.2,
with the added specification of a multiclass hypothesis (and, concept) class. To express our
results in this setting, we first define the combinatorial parameter, multiclass Littlestone di-
mension (mcLdim(H)), which is a generalization of the Littlestone dimension to the multiclass
setting.

Definition 4.12 (Multiclass Littlestone dimension). Let T be a rooted tree whose internal
nodes are labeled by elements from X and whose edges are labeled by elements from Y, such
that the edges from a single parent to its child nodes are each labeled with a different label25.
The tree T is mcL-shattered by H if, for every path from root to leaf which traverses the nodes
x1, . . . , xd, there exists a hypothesis h ∈ H such that, for all i, h(xi) is the label of the edge
(xi, xi+1). We define the multiclass Littlestone dimension, mcLdim(H), to be the maximal
depth of a complete binary tree that is mcL-shattered by H.

Theorem 4.13 (Upper bound on the expected loss for the classical adversary-provides-a-dis-
tribution model in the multiclass setting). Let H ⊆ YX , with |Y| = k > 2, be a hypothesis
class, and h⋆ ∈ H. For every adversary, there exists a classical online learner for H that
satisfies

E[LP (h,D, h⋆)] = O(mcLdim(H)).

Proof. We follow the steps in the proof of Theorem 4.6, which continue to hold in the multiclass
setting, with a minor difference: the upper bound on

∑T
t=1 LI(ht, xt, h

⋆) is now mcLdim(H)
instead of Ldim(H). As a result, we arrive at the following high-probability bound: with
probability 1 − δ (for any δ > 0), LP (h,D, h⋆) ≤ 1

1−(e−2)mcLdim(H) + 1
1−(e−2) log(1

δ ), or
equivalently, the following tail bound: for any δ > 0,

P
[
LP (h,D, h⋆) > 1

1 − (e− 2) · mcLdim(H) + δ

1 − (e− 2)
]

≤ e−δ,

from which we obtain the desired in-expectation result: E[LP (h,D, h⋆)] = O(mcLdim(H)).
■

Theorem 4.14 (Lower bound on the expected loss for the classical adversary-provides-a-dis-
tribution model in the multiclass setting). Let H ⊆ YX , with |Y| = k > 2, be a hypothesis
class, and h⋆ ∈ H. For every classical online learner of H, there exists an adversary such that

E[LP (h,D, h⋆)] = Ω(mcLdim(H)).

Proof. As in the online lower bound proofs thus far, we consider an adversary which chooses
each Dt to be a point mass on the instance space, i.e. the adversary simply chooses an instance
xt at each t. Since each xt ∼ Dt is deterministic, we have

E[LP (h,D, h⋆)] = E[LI(h,x, h⋆)] = Ω(mcLdim(H)),

where the second equality is due to (the lower bound part of) Theorem 24 in [7]. ■

25In the binary case (where the only “different labels” are 0 and 1), it is not hard to see that the definition
reduces to that of the Littlestone dimension (Definition 4.1).
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Theorems 4.13 and 4.14 together imply that mcLdim(H) continues to characterize multi-
class learnability in the realizable setting under the adversary-provides-a-distribution frame-
work. Given that the rate Θ(mcLdim(H)) is independent of k, mcLdim(H) characterizes
realizable learnability even in the unbounded label space case, mirroring the scenario in the
adversary-provides-an-input framework (Theorem 24, [7]).

4.4.2 Agnostic setting

Here, the online learning protocol is identical to that specified in Section 4.3, with the added
specification of a multiclass hypothesis (and, concept) class. We introduce specific definitions
and lemmas to facilitate the subsequent theorem, which provides an upper bound on the ex-
pected regret of an online learner in this multiclass agnostic adversary-provides-a-distribution
setting. For notation related to trees, please refer to Section 4.3 (paragraph preceding Defini-
tion 4.8).

Definition 4.15 (0-cover of a hypothesis class H on a tree X). A set V of Y-valued trees is
a 0-cover of H ⊆ YX on an X -valued tree X of depth T if

∀h ∈ H, ∀ϵ ∈ {±1}T ,∃V ∈ V, s.t., v(t)(ϵ) = h(x(t)(ϵ)),

for all t ∈ [T ].

Definition 4.16 (Covering number of a hypothesis class H on a tree X). The covering number
of a hypothesis class H ⊆ YX on an X -valued tree X, N (H, X), is defined as follows:

N (H, X) := min{|V| : V is a 0-cover of H on X},

i.e. the size of the smallest set V (of trees) that 0-covers X.

Lemma 4.17 (N (LI ◦ H, Z) ≤ N (H, X)). Let H ⊆ YX . Let Z be a (X × Y)-valued tree,26

and let X be the X -valued tree obtained by extracting the X -component from each node of Z.
Then,

N (LI ◦ H, Z) ≤ N (H, X).

Proof. Let the set V be the smallest set of trees that form a 0-cover of H on X. For each tree
V ∈ V, we construct (and add to W) a tree W , given by

w(t)(ϵ) =
{

0, if v(t)(ϵ) = y(t)(ϵ)
1, otherwise

,

where y(t)(ϵ) is the y-label of the node of Z encountered after having traversed the path
(ϵ1, . . . , ϵt−1). We claim that W provides a 0-cover of LI ◦ H on Z.

As the set V of trees forms a 0-cover of H on X, we know that

∀h ∈ H,∀ϵ ∈ {±1}T , ∃V ∈ V, s.t., v(t)(ϵ) = h(x(t)(ϵ)),

for all t ∈ [T ]. Therefore, by construction,

∀h ∈ H,∀ϵ ∈ {±1}T ,∃W ∈ W, s.t., w(t)(ϵ) = 1[h(x(t)(ϵ)) ̸= y(t)(ϵ)],

26The nodes of Z are of the form z = (x, y), where x ∈ X and y ∈ Y.
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for all t ∈ [T ]. So, we obtain

N (LI ◦ H, Z) ≤ |W| = |V| = N (H, X),

completing our proof. ■

Lemma 4.18 (N (H, X) ≤ (Tk)mcLdim(H)). Let H ⊆ YX with |Y| = k > 2, and X be an
X -valued tree. Then,

N (H, X) ≤ (Tk)mcLdim(H).

Proof. Our main idea is that the set of experts, as defined in the proof of Theorem 25 in [7]
(reproduced below), can be used to construct a 0-cover of H on X.

Given time horizon T , let AT = {A ⊂ [T ] | |A| ≤ mcLdim(H)}. For every A ∈ AT

and ϕ : A → Y, we define an expert EA,ϕ. The expert EA,ϕ imitates the SOA
algorithm when it errs exactly on the examples {xt | t ∈ A} and the true labels
of these examples are determined by ϕ. Formally, the expert EA,ϕ proceeds as
follows:

Set V1 = H.
For t = 1, 2, . . . , T :

Receive xt.
If t ∈ A, set ŷt = ϕ(t).
If t ̸∈ A, set ŷt = argmaxy∈Y mcLdim({h ∈ Vt : h(xt) = y}).
Predict ŷt and update Vt+1 = {h ∈ Vt : h(xt) = ŷt}.

Throughout this proof, we use the notation EA,ϕ(x1, . . . , xt) to denote the label ŷt pre-
dicted at round t by the expert EA,ϕ after processing the sequence of instances (x1, . . . , xt).
Similarly, given any true labeling function h⋆ ∈ H, we use the notation SOAh⋆(x1, . . . , xt)
to denote the label predicted at round t by the standard SOA algorithm, after processing
the sequence of instances (x1, . . . , xt) and updating its version space based on the labels
h⋆(x1), . . . , h⋆(xt−1).

Now, the set of experts E = {EA,ϕ} has size |E| =
∑mcLdim(H)

j=0
(T

j

)
kj ≤ (Tk)mcLdim(H) with

the following expert guarantee:

For any sequence (x1, . . . , xT ) of instances, and any h ∈ H, there exists an expert
E⋆ ∈ E such that E⋆(x1, . . . , xt) = h(xt), ∀ t ∈ [T ].

Indeed, given an arbitrary sequence of instances (x1, . . . , xT ) and an arbitrary h ∈ H, the
expert E⋆ = EA⋆,ϕ⋆ that satisfies the guarantee corresponds toA⋆ := {t ∈ [T ] : SOAh(x1, . . . , xt) ̸=
h(xt)} and ϕ⋆ : A⋆ → Y defined by ϕ⋆(t) := h(xt). Since the SOA algorithm makes at most
mcLdim(H) mistakes, we have |A⋆| ≤ mcLdim(H), and therefore E⋆ ∈ E by construction.

Next, for each expert E ∈ E , we add a tree VE to V, given by

VE
(t)(ϵ) = E(x(1)(ϵ), . . . , x(t)(ϵ)), ∀ t ∈ [T ],

where ϵ = (ϵ1, . . . , ϵT ) ∈ {±1}T is a sequence of i.i.d. Rademacher random variables. We now
verify that the set of trees V forms a 0-cover of H on X.

Fix an arbitrary h ∈ H and an arbitrary ϵ = (ϵ1, . . . , ϵT ) ∈ {±1}T . For the sequence of
examples on the path (x(1)(ϵ), . . . , x(T )(ϵ)), by the expert guarantee and our construction of

Accepted in Quantum 2025-06-26, click title to verify. Published under CC-BY 4.0. 27



V above, we have that there exists E⋆ ∈ E such that VE⋆
(t)(ϵ) = E⋆(x(1)(ϵ), . . . , x(t)(ϵ)) =

h(x(t)(ϵ)), ∀t ∈ [T ]. Therefore, by Definition 4.15, we see that V forms a 0-cover of H on X.
Hence,

N (H, X) = min{|V| : V is a 0-cover of H on X} ≤ |V| = |E| ≤ (Tk)mcLdim(H),

as desired. ■

Theorem 4.19 (Upper bound on the expected regret for the classical adversary-provides-a-dis-
tribution model in the multiclass agnostic setting). Let H ⊆ YX , with |Y| = k > 2, be a
hypothesis class, and h⋆ ∈ H. For every adversary, there exists a classical online learner for
H that satisfies

E[RP (h,D,H))] = O(
√

mcLdim(H) · T log(Tk)).

Proof. We follow the steps in the proof of Theorem 4.10, which, in a general sense, are
applicable in the multiclass setting. However, a key bound used in the proof of Theorem 4.10
(RT (LI ◦ H) ≤ RT (H)) is not known to continue to hold in the multiclass setting, forcing us
to handle the rest of the proof differently. Some interesting insights follow from this deviation,
which is elaborated in the proof below, as well as the discussion that follows.

We recall the preliminaries. Let D be an arbitrary sequence of distributions, and let
z = (z1, . . . , zt) be a sequence of instances such that zi ∼ Di. Then, defining27 RI(h, z,H) =∑T

t=1 LI(ht, zt) − infh∈H
∑T

t=1 LI(h, zt), we have

RP (h,D,H) = RP (h,D,H) − RI(h, z,H) + RI(h, z,H)

=
T∑

t=1
LP (ht, Dt) −

T∑
t=1

LI(ht, zt)︸ ︷︷ ︸
∆1

+ inf
h∈H

T∑
t=1

LI(h, zt) − inf
h∈H

T∑
t=1

LP (h,Dt)︸ ︷︷ ︸
∆2

+RI(h, z,H).

We proceed by bounding the expected value of ∆1, ∆2 and RI(h, z,H) separately. First, our
bound E[∆1] ≤ O(

√
T ) using Azuma-Hoeffding’s inequality in Theorem 4.10 is independent

of the form of H and, in particular, continues to hold for a multiclass H.
Next, with regard to E[∆2], we recover the chain of inequalities in Theorem 4.10 leading

up to
E[∆2] ≤ 2T · RT (LI ◦ H). (12)

However, the result in Theorem 16 of [2] (RT (LI ◦ H) ≤ RT (H)) only applies when H is a
boolean hypothesis class. Therefore, we proceed with an explicit bound on RT (LI ◦ H) using
a covering number argument. Let Z be an (X × Y)-valued tree, and let X be the X -valued
tree obtained by extracting the X -component from each node of Z. We provide a chain of

27RI(h, z, H) is the regret of an algorithm in the multiclass agnostic generalization of the canonical
(adversary-provides-an-input) classical online model in Section 4.1.
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inequalities starting from (12):

E[∆2] ≤ 2T · RT (LI ◦ H)

≤ 24T
√

log N (LI ◦ H, Z)√
T

≤ 24T
√

log N (H, X)√
T

≤ 24T
√

mcLdim(H) · log(Tk)√
T

= O(
√

mcLdim(H) · T log(Tk)),

where the second line is from Theorem 3 and Definition 5 of [34], the third line is from
Lemma 4.17, and the fourth line is from Lemma 4.18. Finally, from Theorem 4 of [9], we

have RI(h, z,H) = O
(√

mcLdim(H) · T log
(

T
mcLdim(H)

))
, when T ≥ 2 · mcLdim(H). Putting

everything together, using the linearity of expectation, we have,

E[RP (h,D,H)] = E[∆1 + ∆2 + RI(h, z,H)]
= E[∆1] + E[∆2] + E[RI(h, z,H)]

= O(
√
T ) + O(

√
mcLdim(H) · T log(Tk))

+ O
(√

mcLdim(H) · T log
( T

mcLdim(H)
))

= O(
√

mcLdim(H) · T log(Tk)),

where the third line holds as point-wise bounds imply bounds in-expectation28, and the last
line holds as k > 2 and mcLdim(H) ≥ 1 =⇒ k ≥ 1

mcLdim(H) . ■

In summary, our theorem provides a k-dependent upper bound on E[RP (h,D,H)], while
the corresponding lower bound (presented next, Theorem 4.20), is k-independent. Although
the optimal classical learner for the canonical multiclass agnostic model bridges this gap, as
indicated by the k-independent bound used on E[RI(h, z,H)], it remains unclear whether
we can establish a k-independent upper bound on E[RP (h,D,H)]. Our current proof strat-
egy29 faces challenges in achieving this goal due to the following observation. The bound on
E[∆2] is guaranteed by the rate of online uniform convergence of the loss (LI ◦ H) class (in
the frameworks of sequential Rademacher complexity [34] and adversarial (uniform) laws of
large numbers [18]). Meanwhile, the bound on E[RI(h, z,H)] is guaranteed by the rate of
canonical (agnostic) online learnability of H. However, in the multiclass function class case,
as demonstrated by Theorem 7 and Example 1 in [9], these two rates are not equivalent.

28Since the point-wise bound holds for T ≥ 2 · mcLdim(H), it is clear that E[RI(h, z, H)] ≤ 2 · mcLdim(H) +

O
(√

mcLdim(H) · T log
(

T
mcLdim(H)

))
, where the latter term dominates when T ≥ 4 · mcLdim(H).

29Currently, we employ the optimal classical learner for the canonical multiclass agnostic model by presenting
it with the observed sequence of instances z in the adversary-provides-a-distribution protocol and evaluate its
performance under the adversary-provides-a-distribution framework.
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Theorem 4.20 (Lower bound on the expected regret for the classical adversary-provides-a-dis-
tribution model in the multiclass agnostic setting). Let H ⊆ YX , with |Y| = k > 2, be a
hypothesis class. For every classical online learner of H, there exists an adversary such that

E[RP (h,D,H)] = Ω(
√

mcLdim(H) · T ).

Proof. As in the online lower bound proofs thus far, we consider an adversary which chooses
each Dt to be a point mass on the instance space, i.e., the adversary simply chooses an instance
zt at each t. Since each zt ∼ Dt is deterministic, we have

E[RP (h,D,H)] = E[RI(h, z,H)] = Ω(
√

mcLdim(H) · T ),

where the second equality is due to Theorem 26 in [7]. ■

Due to Theorems 4.19 and 4.20, we have characterized multiclass agnostic learnability in
the adversary-provides-a-distribution setting for the bounded label space (k < ∞) case.

5 Quantum Online Learning
Equipped with our models in Sections 4.2 and 4.3, we are finally ready to introduce our
quantum online learning model. However, prior to the model description, we clarify our scope.
In its nascent existence, quantum online learning has primarily focused on the online learning
of quantum states [19, 35, 36]. In contrast, our focus in this paper is on the online learning
of classical functions via quantum examples. Our scope is motivated by the abundance of
classical online learning literature [7, 16, 17, 32], as well as our results in Sections 4.2, 4.3 and
4.4, that presents us with an at-the-ready comparison.

5.1 Model Description
Let H ⊆ YX be a hypothesis class. Identifying the T -round protocol in Section 4.2 (corresp.
Section 4.3) with the definition of a quantum example in (1) (corresp. (2)), we obtain the
following “natural” model for quantum online learning. The T -round protocol proceeds as
follows: at the t-th round,

1. Learner provides a hypothesis ht : X → Y.
2. Adversary reveals an example |ψt⟩ where

(a) |ψt⟩ =
∑

x∈X
√
Dt(x) |x, h⋆(x)⟩ for some Dt : X → [0, 1] and h⋆ ∈ H (realizable),

(b) |ψt⟩ =
∑

x∈X , y∈Y
√
Dt(x, y) |x, y⟩ for some Dt : X × Y → [0, 1] (agnostic30).

3. Learner incurs loss31

(a) LP (ht, Dt, h
⋆) := Px∼Dt(ht(x) ̸= h⋆(x)) (realizable),

30As in the classical case, the adversary need not be consistent: i.e., they could reveal, for e.g., both |x, 0⟩
and |x, 1⟩ during the T -round protocol.

31As an aside, for those who favor a mistake model, it is possible to define it by specifying a threshold ϵ.
In this case, a mistake occurs in a round iff LP > ϵ, i.e. Lϵ

I = 1[LP > ϵ]. We do not investigate this mistake
model.
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(b) LP (ht, Dt) := P(x,y)∼Dt
(ht(x) ̸= y) (agnostic).

As in the classical adversary-provides-a-distribution models, the learner’s total loss in the
realizable case continues to be given by LP (h,D, h⋆) =

∑T
t=1 LP (ht, Dt, h

⋆) (ref. (7)), while
in the agnostic case, the learner’s total regret continues to be expressed as RP (h,D,H) =∑T

t=1 LP (ht, Dt) − infh∈H
∑T

t=1 LP (h,Dt) (ref. (10)).
For this model, we formally define what a quantum online learner, a quantum adversary,

and quantum online learnability entails. While these definitions are analogous to Definitions
4.3, 4.4, and 4.5, we present them here for the sake of completeness.

Definition 5.1 (Quantum online learner). An algorithm A is a quantum online learner for a
hypothesis class H if having received a sequence of quantum examples (|ψi⟩)t

i=1 (of the form in
2. (a) or 2. (b) of Section 5.1) over the first t rounds, A outputs a hypothesis ht+1 : X → Y
at round32 t+ 1.

Definition 5.2 (Quantum adversary). Having received a sequence of hypothesis h|t = (h1, . . . , ht)
from the learner, and with knowledge of its own prior choices of quantum examples, (|ψi⟩)t

i=1,
over the first t rounds, at round t + 1, a quantum (online) adversary chooses a distribution
Dt+1 (on X (realizable) or on X × Y (agnostic)) and discloses the corresponding quantum
example |ψt+1⟩ (with consistent labeling throughout the protocol in the realizable case) to the
learner.

Definition 5.3 (Quantum online learnability). A hypothesis class H is quantum online learn-
able if there exists a quantum online learning algorithm A such that

• LP (hA,H) = supD, h⋆∈HE[LP (hA,D, h⋆)] = o(T ) (realizable),
• RP (hA,H) = supDE[RP (hA,D,H)] = o(T ) (agnostic).

5.2 Binary Classification
Under the quantum online learning model described above in Section 5.1, we bound the ex-
pected regret (in both the realizable and the agnostic cases) of a quantum online learner for a
boolean hypothesis class.

Theorem 5.4 (Lower bounds on expected loss/regret for quantum online binary classifica-
tion). Let H ⊆ {0, 1}X , be a hypothesis class, and h⋆ ∈ H. For every quantum online learner
of H, there exists a quantum adversary such that

E[LP (h,D, h⋆)] = Ω(Ldim(H)) (realizable), and

E[RP (h,D,H)] = Ω(
√

Ldim(H) · T ) (agnostic).

Proof. Let AQ be an arbitrary, but fixed, quantum online learning algorithm for H. We
proceed using a reduction argument. To do this, we examine the scenario where a classical
adversary chooses Dt to be a point mass for each t (i.e. the adversary simply chooses an
instance xt (realizable) or zt = (xt, yt) (agnostic) at each t), and analyze the loss/regret
bound for the following classical learner AC that accesses AQ as a “black box”. At the t-th
round,

32Prior to receiving any examples, A outputs some arbitrary hypothesis h1 : X → Y at round 1.
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1. AC provides hypothesis hQ
t (received from AQ in the previous round).

2. Adversary reveals (xt, yt) to AC (in the realizable case, yt = h⋆(xt) for some h⋆ ∈ H).
3. AC state prepares |ψt⟩ = |xt, yt⟩ and passes it as input to AQ.
4. AQ outputs hypothesis hQ

t+1 to AC .

We provide a bound first for the realizable case. Since AC plays hQ
t at each t, it is clear, for

our setup, that LP (hAC
,D, h⋆) = LI(hAC

,x, h⋆) ≤ LI(hAQ
,x, h⋆) = LP (hAQ

,D, h⋆). Taking
expectations, and noting that E[LP (hAC

,D, h⋆)] = Ω(Ldim(H)) (from Theorem 4.7), we have
shown E[LP (hAQ

,D, h⋆)] = Ω(Ldim(H)). Since, AQ was chosen arbitrarily, we deduce that
E[LP (h,D, h⋆)] = Ω(Ldim(H)).

The agnostic case follows an identical argument; we obtain the following chain of (in)equalities,
RP (hAC

,D,H) = RI(hAC
, z,H) ≤ RI(hAQ

, z,H) = RP (hAQ
,D,H). Taking expectations,

and noting E[RP (hAC
,D,H)] = Ω(

√
Ldim(H) · T ) (from Theorem 4.11) and that AQ was

chosen arbitrarily, we deduce E[RP (h,D,H)] = Ω(
√

Ldim(H) · T ). ■

Theorem 5.5 (Upper bounds on expected loss/regret for quantum online binary classifica-
tion). Let H ⊆ {0, 1}X , be a hypothesis class, and h⋆ ∈ H. For every quantum adversary,
there exists a quantum online learner for H that satisfies

E[LP (h,D, h⋆)] = O(Ldim(H)) (realizable), and

E[RP (h,D,H)] = O(
√

Ldim(H) · T ) (agnostic).

Proof. For a naïve algorithm that, at each round t, measures |ψt⟩ in the standard basis and
employs a classical learner to learn from the observed classical outputs, the desired upper
bounds are guaranteed by Theorems 4.6 and 4.10. ■

5.3 Multiclass Classification
Here, we present bounds on the expected regret (in both the realizable and the agnostic cases)
of a quantum online learner for a multiclass hypothesis class.

Theorem 5.6 (Lower bounds on expected loss/regret for quantum online multiclass clas-
sification). Let H ⊆ YX , with |Y| = k > 2, be a hypothesis class, and h⋆ ∈ H. For every
quantum online learner of H, there exists a quantum adversary such that

E[LP (h,D, h⋆)] = Ω(mcLdim(H)) (realizable), and

E[RP (h,D,H)] = Ω(
√

mcLdim(H) · T ) (agnostic).

Proof. The proof is identical to that of Theorem 5.4, where now, for the corresponding classical
learners, E[LP (hAC

,D, h⋆)] = Ω(mcLdim(H)) (from Theorem 4.14), and E[RP (hAC
,D,H)] =

Ω(
√

mcLdim(H) · T ) (from Theorem 4.20). ■

Theorem 5.7 (Upper bounds on expected loss/regret for quantum online multiclass clas-
sification). Let H ⊆ YX , with |Y| = k > 2, be a hypothesis class, and h⋆ ∈ H. For every
quantum adversary, there exists a quantum online learner for H that satisfies

E[LP (h,D, h⋆)] = O(mcLdim(H)) (realizable), and

E[RP (h,D,H)] = O(
√

mcLdim(H) · T log(Tk)) (agnostic).
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Proof. Once again, we consider the measure-and-learn-classically quantum learner for which
the desired upper bounds are now guaranteed by Theorems 4.13 and 4.19. ■

5.4 Takeaways
Before we end this section on online learning with quantum examples, we note that the proofs
for the expected regret upper bounds were established by a quantum online learner that
performs a measurement and subsequently learns classically. The fact that the upper bounds
thus obtained are identical to the lower bounds, in all but one setting33, shows that the
performance of this measure-and-learn-classically learner is as good as the best “genuine”
quantum online learner in these settings. We feel that this is consistent with the overall
message of this paper, viz., that there is limited power in quantum examples to speed up
learning especially when the adversary is allowed to play arbitrary distributions (including
very degenerate ones like point masses).

Recently, [9] improved the classical upper bound for the online multiclass agnostic case to
Õ(
√

mcLdim(H)T )34, which removes all k dependence (cf. the
√

log k factor that appears in
our corresponding quantum upper bound in Theorem 5.7). Meanwhile, we believe our analysis
in the proof of Theorem 4.19 (which establishes the classical bound for the measure-and-learn-
classically quantum learner in Theorem 5.7) is tight, and so we suspect that any removal
of the k-dependence in this setting would involve investigating into a “genuine” quantum
online learning algorithm, which may involve a quantum-specific combinatorial parameter
that characterizes learning. We identify this as an open question for future work.

• What is the tight expected regret bound for quantum online multiclass agnostic learning
when the label space is unbounded (i.e., when the number of classes k → ∞)?

6 Conclusion
In this work, we partially resolved an open question of [1] by characterizing the sample com-
plexity of multiclass learning (for 2 < k < ∞). With recent work [8] fully characterizing
classical multiclass learnability (including the case when k → ∞) via the DS dimension, we
ask whether quantum multiclass learnability is also fully characterized by the DS dimension.
We know that the upper bound in [8] also holds in the quantum case by measure-and-learn-
classically. However, since the classical lower bound involving the DS dimension (Theorem
2 of [31]) uses transductive learning which has no clear analog for a quantum example (ref.
(1) and (2)), providing a quantum lower bound involving the DS dimension has proved to be
non-trivial. We identify this as an open question for future work.

• What is the tight quantum sample complexity bound for batch multiclass learning, in
both the realizable and agnostic settings, when the label space is unbounded (i.e., when
k → ∞)?

33The exception is the online multiclass agnostic case, where the quantum upper and lower bounds differ by
a factor of

√
log(T k).

34Here, Õ(·) hides
√

log
(

T
mcLdim(H)

)
factors.
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In the batch setting, the sample complexity upper bounds were trivial to establish due
to the quantum learner’s ability to measure quantum examples and learn classically on the
resulting output. In the online setting, the expected regret lower bounds, in turn, were trivial
due to the adversary’s ability to provide point masses Dt at each t, rendering each quantum
example equivalent to a classical example. This prompts us to ask the following question.

• What happens when we impose restrictions on Dt to force it away from a point mass?
Would the expected regret bounds for the canonical classical online model (Section 4.1),
classical adversary-provides-a-distribution model (Sections 4.2 and 4.3), and the quan-
tum online model in Section 5.1 all diverge from one another?
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