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Abstract

Reinforcement learning (RL) methods have
been shown to be capable of learning intel-
ligent behavior in rich domains. However,
this has largely been done in simulated do-
mains without adequate focus on the process
of building the simulator. In this paper, we
consider a setting where we have access to
an ensemble of pre-trained and possibly inac-
curate simulators (models). We approximate
the real environment using a state-dependent
linear combination of the ensemble, where
the coefficients are determined by the given
state features and some unknown parameters.
Our proposed algorithm provably learns a
near-optimal policy with a sample complexity
polynomial in the number of unknown param-
eters, and incurs no dependence on the size of
the state (or action) space. As an extension,
we also consider the more challenging problem
of model selection, where the state features
are unknown and can be chosen from a large
candidate set. We provide exponential lower
bounds that illustrate the fundamental hard-
ness of this problem, and develop a provably
efficient algorithm under additional natural
assumptions.

1 INTRODUCTION

Reinforcement learning methods with deep neural net-
works as function approximators have recently demon-
strated prominent success in solving complex and obser-
vations rich tasks like games (Mnih et al., 2015; Silver
et al., 2016), simulated control problems (Todorov et al.,
2012; Lillicrap et al., 2015; Mordatch et al., 2016) and
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a range of robotics tasks (Christiano et al., 2016; Tobin
et al., 2017). A common aspect in most of these suc-
cess stories is the use of simulation. Arguably, given
a simulator of the real environment, it is possible to
use RL to learn a near-optimal policy from (usually a
large amount of) simulation data. If the simulator is
highly accurate, the learned policy should also perform
well in the real environment.

Apart from some cases where the true environment and
the simulator coincide (e.g., in game playing) or a nearly
perfect simulator can be created from the law of physics
(e.g., in simple control problems), in general we will
need to construct the simulator using data from the real
environment, making the overall approach an instance
of model-based RL. As the algorithms for learning from
simulated experience mature (which is what the RL
community has mostly focused on), the bottleneck has
shifted to the creation of a good simulator. How can
we learn a good model of the world from interaction
experiences?

A popular approach for meeting this challenge is to
learn using a wide variety of simulators, which imparts
robustness and adaptivity to the learned policies. Re-
cent works have demonstrated the benefits of using such
an ensemble of models, which can be used to either
transfer policies from simulated to real-world domains,
or to simply learn robust policies (Andrychowicz et al.,
2018; Tobin et al., 2017; Rajeswaran et al., 2017). Bor-
rowing the motivation from these empirical works, we
notice that the process of learning a simulator inher-
ently includes various choices like inductive biases, data
collection policy, design aspects etc. As such, instead of
relying on a sole approximate model for learning in sim-
ulation, interpolating between models obtained from
different sources can provide better approximation of
the real environment. Previous works like Buckman
et al. (2018); Lee et al. (2019); Kurutach et al. (2018)
have also demonstrated the effectiveness of using an
ensemble of models for decreasing modelling error or
its effect thereof during learning.

In this paper, we consider building an approximate
model of the real environment from interaction data
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using a set (or ensemble) of possibly inaccurate models,
which we will refer to as the base models. The simplest
way to combine the base models is to take a weighted
combination, but such an approach is rather limited.
For instance, each base model might be accurate in
certain regions of the state space, in which case it is
natural to consider a state-dependent mixture. We
consider the problem of learning in such a setting,
where one has to identify an appropriate combination
of the base models through real-world interactions,
so that the induced policy performs well in the real
environment. The data collected through interaction
with the real world can be a precious resource and,
therefore, we need the learning procedure to be sample-
efficient. Our main result is an algorithm that enjoys
polynomial sample complexity guarantees, where the
polynomial has no dependence on the size of the state
and action spaces. We also study a more challenging
setting where the featurization of states for learning
the combination is unknown and has to be discovered
from a large set of candidate features.

Outline. We formally set up the problem and nota-
tion in Section 2, and discuss related work in Section 3.
The main algorithm is introduced in Section 4, together
with its sample complexity guarantees. We then pro-
ceed to the feature selection problem in Section 5 and
conclude in Section 6.

2 SETTING AND NOTATION

We consider episodic Markov decision processes (MDP).
An MDP M is specified by a tuple (S,A, P,R,H, P1),
where S is the state space and A is the action space.
P denotes the transition kernel describing the system
dynamics P : S ×A → ∆(S) and R is the per-timestep
reward function R : S × A → ∆([0, 1]). The agent
interacts with the environment for a fixed number of
timesteps, H, which determines the horizon of the
problem. The initial state distribution is P1. The
agent’s goal is to find a policy π : S × [H]→ A which
maximizes the value of the policy:

vπM := Es∼P1 [V πM,1(s)]

where the value function at step h is defined as:

V πM,h(s) = E
[ H∑
h′=h

rh′
∣∣ sh = s, ah:H ∼ π, sh:H ∼M

]
Here we use “sh:H ∼M” to imply that the sequence of
states are generated according to the dynamics of M .
A policy is said to be optimal for M if it maximizes
the value vπM . We denote such a policy as πM and its
value as vM . We use M∗ to denote the model of the

true environment, and use π∗ and v∗ as shorthand for
πM∗ and vM∗ , respectively.

In our setting, the agent is given access to a set of
K base MDPs {M1, . . . ,MK}. They share the same
S,A, H, P1, and only differ in P and R. In addition, a
feature map φ : S × A → ∆d−1 is given which maps
state-action pairs to d-dimensional real vectors. Given
these two objects, we consider the class of all mod-
els which can be obtained from the following state-
dependent linear combination of the base models:

Definition 2.1 (Linear Combination of Base Mod-
els). For given model ensemble {M1, . . . ,MK} and the
feature map φ : S × A → ∆d−1, we consider models
parametrized by W with the following transition and
reward functions:

PW (·|s, a) =

K∑
k=1

[Wφ(s, a)]kP
k(·|s, a),

RW (·|s, a) =

K∑
k=1

[Wφ(s, a)]kR
k(·|s, a).

We will use M(W ) to denote such a model for any
parameter W ∈ W with W0 ≡ {W ∈ [0, 1]K×d :∑K
i=1Wij = 1 for all j ∈ [d]}.

For now, let’s assume that there exists some W ∗ such
that M∗ = M(W ∗), i.e., the true environment can
be captured by our model class; we will relax this
assumption shortly.

To develop intuition, consider a simplified scenario
where d = 1 and φ(s, a) ≡ 1. In this case, the matrix
W becomes a K × 1 stochastic vector, and the true
environment is approximated by a linear combination
of the base models.

Example 2.2 (Global convex combination of models).
If the base models are combined using a set of constant
weights w ∈ ∆K−1, then this is a special case of Defi-
nition 2.1 where d = 1 and each state’s feature vector
is φ(s, a) ≡ 1.

In the more general case of d > 1, we allow the com-
bination weights to be a linear transformation of the
features, which are Wφ(s, a), and hence obtain more
flexibility in choosing different combination weights in
different regions of the state-action space. A special
case of this more general setting is when φ corresponds
to a partition of the state-action space into multiple
groups, and the linear combination coefficients are con-
stant within each group.

Example 2.3 (State space partition). Let S × A =⋃
i∈[d] Xi be a partition (i.e., {Xi} are disjoint). Let

φi(s, a) = 1[(s, a) ∈ Xi] for all i ∈ [d] where 1[·] is the
indicator function. This φ satisfies the condition that
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φ(s, a) ∈ ∆d−1, and when combined with a set of base
models, forms a special case of Definition 2.1.

Goal. We consider the popular PAC learning objec-
tive: with probability at least 1 − δ, the algorithm
should output a policy π with value vπM∗ ≥ v∗ − ε by
collecting poly(d,K,H, 1/ε, log(1/δ)) episodes of data.
Importantly, here the sample complexity is not allowed
to depend on |S| or |A|. However, the assumption that
M∗ lies the class of linear models can be limiting and,
therefore, we will allow some approximation error in
our setting as follows:

θ := min
W∈W

sup
(s,a)∈S×A

∥∥∥P ∗(·|s, a)− PW (·|s, a)
∥∥∥
1

+
∥∥∥R∗(·|s, a)−RW (·|s, a)

∥∥∥
1

(1)

We denote the optimal parameter attaining this value
by W ∗. The case of θ = 0 represents the realizable
setting where M∗ = M(W ∗) for some W ∗ ∈ W . When
θ 6= 0, we cannot guarantee returning a policy with the
value close to v∗, and will have to pay an additional
penalty term proportional to the approximation error
θ, as is standard in RL theory.

Further Notations Let πW be a shorthand for
πM(W ), the optimal policy in M(W ). When refer-
ring to value functions and state-action distributions,
we will use the superscript to specify the policy and
use the subscript to specify the MDP in which the
policy is evaluated. For example, we will use VWW ′,h to
denote the value of πW (the optimal policy for model
M(W )) when evaluated in model M(W ′) starting from
timestep h. The term dWW ′,h denotes the state-action
distribution induced by policy πW at timestep h in the
MDP M(W ′). Furthermore, we will write VWM∗,h and

dWM∗,h when the evaluation environment is M∗. For
conciseness, VW,h and QW,h will denote the optimal
(state- and Q-) value functions in model M(W ) at step
h (e.g., VW,h(s) ≡ VWW,h(s)). The expected return of a
policy π in model M(W ) is defined as:

vπW = Es∼P1
[V πM(W ),1(s)]. (2)

We assume that the total reward
∑H
h=1 rh lies in [0, 1]

almost surely in all MDPs of interest and under all
policies. Further, whenever used, any value function at
step H + 1 (e.g., V πW,H+1) evaluates to 0 for any policy
and any model.

3 RELATED WORK

MDPs with low-rank transition matrices Yang
and Wang (2019b,a); Jin et al. (2019) have recently
considered structured MDPs whose transition matrices

admit low-rank factorization, and the left matrix in the
factorization are known to the learner as state-action
features (corresponding to our φ). Their environmen-
tal assumption is a special case of ours, where the
transition dynamics of each base model P k(·|s, a) is
independent of s and a, i.e., each base MDP can be fully
specified by a single density distribution over S. This
special case enjoys many nice properties, such as the
value function of any policy is also linear in state-action
features, and the linear value-function class is closed
under the Bellman update operators, which are heavily
exploited in their algorithms and analyses. In contrast,
none of these properties hold under our more general
setup, yet we are still able to provide sample efficiency
guarantees. That said, we do note that the special case
allows these recent works to obtain stronger results:
their algorithms are both statistically and computa-
tionally efficient (ours is only statistically efficient),
and some of these algorithms work without knowing
the K base distributions.1 We leave the problem of
utilizing this linear structure in a regret minimization
framework (Jin et al., 2019) for future work.

Contextual MDPs Abbasi-Yadkori and Neu (2014);
Modi et al. (2018); Modi and Tewari (2019) consider
a setting similar to our Example 2.2, except that the
linear combination coefficients are visible to the learner
and the base models are unknown. Therefore, despite
the similarity in environmental assumptions, the learn-
ing objectives and the resulting sample complexities
are significantly different (e.g., their guarantees depend
on |S| and |A|).

Bellman rank Jiang et al. (2017) have identified
a structural parameter called Bellman rank for explo-
ration under general value-function approximation, and
devised an algorithm called OLIVE whose sample com-
plexity is polynomial in the Bellman rank. A related
notion is the witness rank (the model-based analog of
Bellman rank) proposed by Sun et al. (2019). While
our algorithm and analyses draw inspiration from these
works, our setting does not obviously yield low Bell-
man rank or witness rank.2 We will also provide a
more detailed comparison to Sun et al. (2019), whose
algorithm is most similar to ours among the existing
works, in Section 4.

1In our setting, not knowing the base models immedi-
ately leads to hardness of learning, as it is equivalent to
learning a general MDP without any prior knowledge even
when d = K = 1. This requires Ω(|S||A|) sample complex-
ity (Azar et al., 2012), which is vacuous as we are interested
in solving problems with arbitrarily large state and action
spaces.

2In contrast, the low-rank MDPs considered by Yang
and Wang (2019b,a); Jin et al. (2019) do admit low Bellman
rank and low witness rank.
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Mixtures/ensembles of models The closest work
to our setting is the multiple model-based RL (MMRL)
architecture proposed by Doya et al. (2002) where they
also decompose a given domain as a convex combina-
tion of multiple models. However, instead of learning
the combination coefficients for a given ensemble, their
method trains the model ensemble and simultaneously
learns a mixture weight for each base model as a func-
tion of state features. Their experiments demonstrate
that each model specialized for different domains of
the state space where the environment dynamics is
predictable, thereby, providing a justification for using
convex combination of models for simulation. Further,
the idea of combining different models is inherently
present in Bayesian learning methods where a posterior
approximation of the real environment is iteratively re-
fined using interaction data. For instance, Rajeswaran
et al. (2017) introduce the EPOpt algorithm which
uses an ensemble of simulated domains to learn robust
and generalizable policies. During learning, they adapt
the ensemble distribution (convex combination) over
source domains using data from the target domain to
progressively make it a better approximation. Simi-
larly, Lee et al. (2019) combine a set of parameterized
models by adaptively refining the mixture distribution
over the latent parameter space. Here, we study a
relatively simpler setting where a finite number of such
base models are combined and give a frequentist sample
complexity analysis for our method.

4 ALGORITHM AND MAIN
RESULTS

In this section we introduce the main algorithm that
learns a near-optimal policy in the aforementioned
setup with a poly(d,K,H, 1/ε, log(1/δ)) sample com-
plexity. We will first give the intuition behind the algo-
rithm, and then present the formal sample complexity
guarantees. Due to space constraints, we present the
complete proof in the appendix. For simplicity, we
will describe the intuition for the realizable case with
θ = 0 (P ∗ ≡ PW

∗
). The pseudocode (Algorithm 1)

and the results are, however, stated for the general case
of θ 6= 0.

At a high level, our algorithm proceeds in iterations
t = 1, 2, . . ., and gradually refines a version space
Wt of plausible parameters. Our algorithm follows
an explore-or-terminate template and in each itera-
tion, either chooses to explore with a carefully cho-
sen policy or terminates with a near-optimal policy.
For exploration in the t-th iteration, we collect n tra-

jectories {(s(i)1 , a
(i)
1 , r

(i)
1 , s

(i)
2 , . . . , s

(i)
H , a

(i)
H , r

(i)
H )}i∈[n] fol-

lowing some exploration policy πt (Line 7). A key
component of the algorithm is to extract knowledge

Algorithm 1 PAC Algorithm for Linear Model En-
sembles

1: Input: {M1, . . .MK}, ε, δ, φ(·, ·),W0

2: for t→ 1, 2, . . . do
3: Compute optimistic model Wt and set πt to πWt

Wt ← arg max
W∈Wt−1

VW

4: Estimate the value of πt using neval trajectories:

v̂t :=
1

neval

H∑
h=1

r
(i)
h (3)

5: if vWt − v̂t ≤ 3ε/4 + (3
√
dK + 1)Hθ then

6: Terminate and output πt
7: Collect n trajectories using πt : ah ∼ πt(sh)

8: Estimate the matrix Ẑt and ŷt as

Ẑt :=
1

n

n∑
i=1

H∑
h=1

V t,h

(
s
(i)
h , a

(i)
h

)
φ
(
s
(i)
h , a

(i)
h

)>
(4)

ŷt :=
1

n

n∑
i=1

H∑
h=1

r
(i)
h+1 + Vt,h+1

(
s
(i)
h+1

)
(5)

9: Update the version space to Wt as the set:{
W ∈ Wt−1 :

∣∣ŷt − 〈W, Ẑt〉∣∣ ≤ ε
12
√
dK

+Hθ
}
(6)

about W ∗ from these trajectories. In particular, for

every h, the bag of samples {s(i)h+1}i∈[n] may be viewed
as an unbiased draw from the following distribution

1

n

n∑
i=1

PW
∗(
· |s(i)h , a

(i)
h

)
. (7)

The situation for rewards is similar and will be omitted
in the discussion. So in principle we could substitute
W ∗ in Eq.(7) with any candidate W , and if the re-
sulting distribution differs significantly from the real

samples {s(i)h+1}h∈[H],i∈[n], we can assert that W 6= W ∗

and eliminate W from the version space. However,
the state space can be arbitrarily large in our setting,
and comparing state distributions directly can be in-
tractable. Instead, we project the state distribution in
Eq.(7) using a (non-stationary) discriminator function
{ft,h}Hh=1 (which will be chosen later) and consider the



Aditya Modi1 Nan Jiang2 Ambuj Tewari1 Satinder Singh1

following scalar property

1

n

n∑
i=1

H∑
h=1

E
r∼RW

∗(
·|s(i)h ,a

(i)
h

)
,

s′∼PW
∗(
·|s(i)h ,a

(i)
h

)
[
r + ft,h+1(s′)

]
, (8)

which can be effectively estimated by

1

n

n∑
i=1

H∑
h=1

(
r
(i)
h + ft,h+1

(
s
(i)
h+1

))
. (9)

Since we have projected states onto R, Eq.(9) is the
average of scalar random variables and enjoys state-
space-independent concentration. Now, in order to test
the validity of a parameter W in a given version space,
we compare the estimate in eq. 9 with the prediction
given by M(W ), which is:

1

n

n∑
i=1

H∑
h=1

E
r∼RW

(
·|s(i)h ,a

(i)
h

)
,

s′∼PW
(
·|s(i)h ,a

(i)
h

)
[
r + ft,h+1(s′)

]
. (10)

As we consider a linear model class, by using linearity
of expectations, Eq.(10) may also be written as:

1

n

n∑
i=1

H∑
h=1

[
Wφ(s

(i)
h , a

(i)
h )
]>[

V t,h(s
(i)
h , a

(i)
h )
]

(11)

=
〈
W,

1

n

n∑
i=1

H∑
h=1

V t,h(s
(i)
h , a

(i)
h )φ(s

(i)
h , a

(i)
h )>

〉
, (12)

where 〈A,B〉 denotes Tr(A>B) for any two matrices
A and B. In eq. 12, V t,h is a function that maps (s, a)
to a K dimensional vector with each entry being[

V t,h(s, a)
]
k

:= Er∼Rk(·|s,a),
s′∼Pk(·|s,a)

[
r + ft,h+1(s′)

]
. (13)

The intuition behind Eq.(11) is that for each fixed

state-action pair (s
(i)
h , a

(i)
h ), the expectation in Eq.(8)

can be computed by first taking expectation of r +
ft,h+1(s′) over the reward and transition distribu-
tions of each of the K base models—which gives V h—
and then aggregating the results using the combina-
tion coefficients. Rewriting Eq.(11) as Eq.(12), we
see that Eq.(8) can also be viewed as a linear mea-
surement of W ∗, where the measurement matrix is

again 1
n

∑n
i=1

∑H
h=1 V h

(
s
(i)
h , a

(i)
h

)
φ
(
s
(i)
h , a

(i)
h

)>
. There-

fore, by estimating this measurement matrix and the
outcome (Eq.(9)), we obtain an approximate linear
equality constraint over Wt−1 and can eliminate any
candidate W that violates such constraints. By using a
finite sample concentration bound over the inner prod-
uct, we get a linear inequality constraint to update the
version space (Eq.(6)).

The remaining concern is to choose the exploration
policy πt and the discriminator function {ft,h} to en-
sure that the linear constraint induced in each iteration
is significantly different from the previous ones and
induces deep cuts in the version space. We guarantee
this by choosing πt := πWt

and ft,h := VWt,h
3, where

Wt is the optimistic model as computed in Line 3.
That is, Wt predicts the highest optimal value among
all candidate models in Wt−1. Following a terminate-
or-explore argument, we show that as long as πt is
suboptimal, the linear constraint induced by our choice
of πt and {ft,h} will significantly reduce the volume of
the version space, and the iteration complexity can be
bounded as poly(d,K) by an ellipsoid argument similar
to that of Jiang et al. (2017). Similarly, the sample size
needed in each iteration only depends polynomially on
d and K and incurs no dependence on |S| or |A|, as we
have summarized high-dimensional objects such as ft,h
(function over states) using low-dimensional quantities
such as V t,h (vector of length K).

The bound on the number of iterations and the number
of samples needed per iteration leads to the following
sample complexity result:

Theorem 4.1 (PAC bound for Alg. 1). In Algorithm 1,

if neval := 32H2

ε2 log 4T
δ and n = 1800d2KH2

ε2 log 8dKT
δ

where T = dK log 2
√
2KH
ε / log 5

3 , with probability at
least 1−δ, the algorithm terminates after using at most

Õ
(d3K2H2

ε2
log

dKH

δ

)
(14)

trajectories and returns a policy πT with a value vT ≥
v∗ − ε− (3

√
dK + 2)Hθ.

By setting d and K to appropriate values, we obtain
the following sample complexity bounds as corollaries:

Corollary 4.2 (Sample complexity for partitions).
Since the state-action partitioning setting (Example 2.3)
is subsumed by the general setup, the sample complexity
is again:

Õ
(d3K2H2

ε2
log

dKH

δ

)
(15)

Corollary 4.3 (Sample complexity for global convex
combination). When base models are combined without
any dependence on state-action features (Example 2.2),
the setting is special case of the general setup with d = 1.
Thus, the sample complexity is:

Õ
(K2H2

ε2
log

KH

δ

)
(16)

Our algorithm, therefore, satisfies the requirement of
learning a near-optimal policy without any dependence

3We use the simplified notation Vt,h for VWt,h.
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on the |S| or |A|. Moreover, we can also account for
the approximation error θ but also incur a cost of
(3
√
dK + 1)Hθ in the performance guarantee of the

final policy. As we use the projection of value functions
through the linear model class, we do not model the
complete dynamics of the environment. This leads to
an additive loss of 3

√
dKHθ in value in addition to the

best achievable value loss of 2Hθ (see Corollary A.4 in
the appendix).

Comparison to OLIME (Sun et al., 2019) Our
Algorithm 1 shares some structural similarity with the
OLIME algorithm proposed by Sun et al. (2019), but
there are also several important differences. First of all,
OLIME in each iteration will pick a time step and take
uniformly random actions during data collection, and
consequently incur polynomial dependence on |A| in
its sample complexity. In comparison, our main data
collection step (Line 7) never takes a random deviation,
and we do not pay any dependence on the cardinal-
ity of the action space. Secondly, similar to how we
project the transition distributions onto a discriminator
function (Eq.(7) and (8)), OLIME projects the distri-
butions onto a static discriminator class and uses the
corresponding integral probability metric (IPM) as a
measure of model misfit. In our setting, however, we
find that the most efficient and elegant way to extract
knowledge from data is to use a dynamic discrimina-
tor function, VWt,h, which changes from iteration to
iteration and depends on the previously collected data.
Such a choice of discriminator function allows us to
make direct cuts on the parameter space W, whereas
OLIME can only make cuts in the value prediction
space.

Computational Characteristics In each iteration,
our algorithm computes the optimistic policy within
the version space. Therefore, we rely on access to the
following optimistic planning oracle:

Assumption 4.4 (Optimistic planning oracle). We
assume that when given a version space Wt, we can
obtain the optimistic model through a single oracle call
for Wt = arg maxW∈Wt

VW .

It is important to note that any version space Wt that
we deal with is always an intersection of half-spaces
induced by the linear inequality constraints. Therefore,
one would hope to solve the optimistic planning prob-
lem in a computationally efficient manner given the
nice geometrical form of the version space. However,
even for a finite state-action space, we are not aware of
any efficient solutions as the planning problem induces
bilinear and non-convex constraints despite the linear-
ity assumption. Many recently proposed algorithms
also suffer from such a computational difficulty (Jiang
et al., 2017; Dann et al., 2018; Sun et al., 2019).

Further, we also assume that for any given W , we can
compute the optimal policy πW and its value function:
our elimination criteria in Eq. 6 uses estimates Ẑt and
ŷt which in turn depend on the value function. This
requirement corresponds to a standard planning ora-
cle, and aligns with the motivation of our setting, as
we can delegate these computations to any learning
algorithm operating in the simulated environment with
the given combination coefficient. Our algorithm, in-
stead, focuses on careful and systematic exploration to
minimize the sample complexity in the real world.

5 MODEL SELECTION WITH
CANDIDATE PARTITIONS

In the previous section we showed that a near-optimal
policy can be PAC-learned under our modeling assump-
tions, where the feature map φ : S ×A → [0, 1] is given
along with the approximation error θ. In this section,
we explore the more interesting and challenging setting
where a realizable feature map φ is unknown, but we
know that the realizable φ belongs to a candidate set
{φi}Ni=1, i.e., the true environment satisfies our mod-
eling assumption in Definition 2.1 under φ = φi∗ for
some i∗ ∈ [N ] with θi∗ = 0. Note that Definition 2.1
may be satisfied by multiple φi’s; for example, adding
redundant features to an already realizable φi∗ still
yields a realizable feature map. In such cases, we con-
sider φi∗ to be the most succinct feature map among
all realizable ones, i.e., the one with the lowest dimen-
sionality. Let di denote the dimensionality of φi, and
d∗ = di∗ .

One obvious baseline in this setup is to run Algorithm 1
with each φi and select the best policy among the
returned ones. This leads to a sample complexity of
roughly

∑N
i=1 d

3
i (only the dependence on {di}Ni=1 is

considered), which can be very inefficient: When there
exists j such that d∗ � dj , we pay for d3j which is much
greater than the sample complexity of d∗; When {di}
are relatively uniform, we pay a linear dependence on
N , preventing us from competing with a large set of
candidate feature maps.

So the key result we want to obtain is a sample com-
plexity that scales as (d∗)3, possibly with a mild mul-
tiplicative overhead dependence on d∗ and/or N (e.g.,
log d∗ and logN).

Hardness Result for Unstructured {φi}
Unfortunately, we show that this is impossible when
{φi} is unstructured via a lower bound. In the lower
bound construction, we have an exponentially large
set of candidate feature maps, all of which are state
space partitions. Each of the partitions has trivial
dimensionalities (di = 2, K = 2), but the sample
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complexity of learning is exponential, which can only
be explained away as Ω(N).

Proposition 5.1. For the aforementioned problem
of learning an ε-optimal policy using a candidate
feature set of size N , no algorithm can achieve
poly(d∗,K,H, 1/ε, 1/δ,N1−α) sample complexity for
any constant 0 < α < 1.

On a separate note, besides providing formal justifica-
tion for the structural assumption we will introduce
later, this proposition is of independent interest as it
also sheds light on the hardness of model selection with
state abstractions. We discuss the further implications
in Appendix B.

Proof of Proposition 5.1. We construct a linear class
of MDPs with two base models M1 and M2 in the
following way: Consider a complete tree of depth H
with a branching factor of 2. The vertices forming
the state space of M1 and M2 and the two outgoing
edges in each state are the available actions. Both
MDPs share the same deterministic transitions and
each non-leaf node yields 0 reward. Every leaf node
yields +1 reward in M1 and 0 in M2. Now we construct
a candidate partition set {φi} of size 2H : for φi, the
i-th leaf node belongs to one equivalence class while all
other leaf nodes belong to the other. (Non-leaf nodes
can belong to either class as M1 and M2 agree on their
transitions and rewards.)

Observe that the above model class contains a finite
family of 2H MDPs, each of which only has 1 rewarding
leaf node. Concretely, the MDP whose i-th leaf is
rewarding is exactly realized under the feature map φi,
whose corresponding W ∗ is the identity matrix: the
i-th leaf yields +1 reward as in M1, and all other leaves
yield 0 reward as in M2. Learning in this family of 2H

MDPs is provably hard (Krishnamurthy et al., 2016),
as when the rewarding leaf is chosen adversarially, the
learner has no choice but to visit almost all leaf nodes
to identify the rewarding leaf as long as ε is below a
constant threshold. The proposition follows from the
fact that in this setting d∗ = 2, K = 2, 1/ε is a constant,
N = 2H , but the sample complexity is Ω(2H).

This lower bound shows the necessity of introducing
structural assumptions in {φi}. Below, we consider a
particular structure of nested partitions that is natural
and enables sample-efficient learning. Similar assump-
tions have also been considered in the state abstraction
literature (e.g., Jiang et al., 2015).

Nested Partitions as a Structural Assumption
Consider the case where every φi is a partition.
W.l.o.g. let d1 ≤ d2 ≤ . . . ≤ dN . We assume {φi}

is nested, meaning that ∀(s, a), (s′, a′),

φi(s, a) = φi(s
′, a′) =⇒ φj(s, a) = φj(s

′, a′), ∀i ≤ j.

While this structural assumption almost allows us to
develop sample-efficient algorithms, it is still insufficient
as demonstrated by the following hardness result.

Proposition 5.2. Fixing K = 2, there exist base mod-
els M1 and M2 and nested state space partitions φ1
and φ2, such that it is information-theoretically impos-
sible for any algorithm to obtain poly(d∗, H,K, 1/ε, 1/δ)
sample complexity when an adversary chooses an MDP
that satisfies our environmental assumption (Defini-
tion 2.1) under either φ1 or φ2.

Proof. We will again use an exponential tree style con-
struction to prove the lower bound. Specifically, we
construct two MDPs M and M ′ which are obtained
by combining two base MDPs M1 and M2 using two
different partitions φ1 and φ2. The specification of
M1 and M2 is exactly the same as in the proof of
Proposition 5.1. We choose φ1 to be a partition of size
d1 = 1, where all nodes are grouped together. φ2 has
size d2 = 2H , where each leaf node belongs to a sepa-
rate group. (As before, which group the inner nodes
belong to does not matter.) φ1 and φ2 are obviously
nested. We construct M that is realizable under φ2 by
randomly choosing a leaf and setting the weights for
the convex combination as (1/2 + 2ε, 1/2− 2ε) for that
leaf; for all other leafs, the weights are (1/2, 1/2). This
is equivalent to randomly choosing M from a set of
2H MDPs, each of which has only one good leaf node
yielding a random reward drawn from Ber(1/2 + 2ε)
instead of Ber(1/2). In contrast, M ′ is such that all
leaf nodes yield Ber(1/2) reward, which is realizable
under φ1 with weights (1/2, 1/2).

Observe that M and M ′ are exactly the same as the
constructions in the proof of the multi-armed bandit
lower bound by (Auer et al., 2002) (the number of arms
is 2H), where it has been shown that distinguishing be-
tween M and M ′ takes Ω(2H/ε2) samples. Now assume
towards contradiction that there exists an algorithm
that achieves poly(d∗, H,K, 1/ε, 1/δ) complexity; let
f be the specific polynomial in its guarantee. After
f(1, H, 2, 1/ε, 1/δ) trajectories are collected, the algo-
rithm must stop if the true environment is M ′ to honor
the sample complexity guarantee (since d∗ = 1, K = 2),
and proceed to collect more trajectories if M is the true
environment (since d∗ = 2H). Making this decision
essentially requires distinguishing between M ′ and M
using f(1, H, 2, 1/ε, 1/δ) = poly(H) trajectories, which
contradicts the known hardness result from Auer et al.
(2002). This proves the statement.

Essentially, the lower bound creates a situation where
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d1 � d2, and the nature may adversarially choose
a model such that either φ1 or φ2 is realizable. If
φ1 is realizable, the learner is only allowed a small
sample budget and cannot fully explore with φ2, and
if φ1 is not realizable the learner must do the opposite.
The information-theoretic lower bound shows that it
is fundamentally hard to distinguish between the two
situations: Once the learner explores with φ1, she
cannot decide whether she should stop or move on to
φ2 without collecting a large amount of data.

This hardness result motivates our last assumption in
this section, that the learner knows the value of v?

(a scalar) as side information. This way, the learner
can compare the value of the returned policy in each
round to v? and effectively decide when to stop. This
naturally leads to our Algorithm 2 that uses a doubling
scheme over {di}, with the following sample complexity
guarantee.

Algorithm 2 Model Selection with Nested Partitions

Input:{φ1, φ2, . . . , φN}, {M1, . . . ,MK}, ε, δ, v?.
i→ 0
while True do

Choose φi such that di is the largest among {dj :
dj ≤ 2i}.
Run Algorithm 1 on Φi with εi = ε

2 and δi = δ
2N .

Terminate the sub-routine if t >
diK log 2

√
2KH
ε / log 5

3 .
Let πi be the returned policy (if any). Let v̂i be
the estimated return of πi using neval = 9

2ε2 log 2N
δ

Monte-Carlo trajectories.
if v̂i ≥ v∗ − 2ε

3 then
Terminate with output πi.

Theorem 5.3. When Algorithm 2 is run with the in-
put v∗, with probability at least 1 − δ, it returns a
near-optimal policy π with vπ ≥ v∗ − ε using at most

Õ
(
d∗3K2H2

ε2 log d∗ log d∗KHN
δ

)
samples.

Proof. In Algorithm 2, for each partition i, we run Al-
gorithm 1 until termination or until the sample budget
is exhausted. By union bound it is easy to verify that
with probability at least 1− δ, all calls to Algorithm 1
will succeed and the Monte-Carlo estimation of the
returned policies will be (ε/3)-accurate, and we will
only consider this success event in the rest of the proof.
When the partition under consideration is realizable,
we get vπiM∗ ≥ v∗ − ε/3, therefore

v̂i ≥ vπi − ε
3 ≥ v

∗ − 2ε
3 ,

so the algorithm will terminate after considering a real-
izable φi. Similarly, whenever the algorithm terminates,
we have vπi ≥ v∗ − ε. This is because

vπi ≥ v̂i − ε
3 ≥ v

∗ − ε,

where the last inequality holds thanks to the termina-
tion condition of Algorithm 2, which relies on knowl-
edge of v?. The total number of iterations of the
algorithm is at most O(log d∗). Therefore, by taking
a union bound over all possible iterations, the sample
complexity is

J∑
i=1

Õ
(d3iK2H2

ε2

)
≤ Õ

(d∗3K2H2

ε2
log d∗

)
.

Discussion. Model selection in online learning—
especially in the context of sequential decision making—
is generally considered very challenging. There has
been relatively limited work in the generic setting until
recently for some special cases. For instance, Foster
et al. (2019) consider the model selection problem in
linear contextual bandits with a sequence of nested
policy classes with dimensions d1 < d2 < . . .. They
consider a similar goal of achieving sub-linear regret
bounds which only scale with the optimal dimension
dm∗ . In contrast to our result, they do not need to
know the achievable value in the environment and give
no-regret learning methods in the knowledge-free set-
ting. However, this is not contradictory to our lower
bound: Due to the extremely delayed reward signal,
our construction is equivalent to a multi-armed bandit
problem with 2H arms. Our negative result (Proposi-
tion 5.2) shows a lower bound on sample complexity
which is exponential in horizon, therefore eliminating
the possibility of sample efficient and knowledge-free
model selection in MDPs.

6 CONCLUSION

In this paper, we proposed a sample efficient model
based algorithms which learns a near-optimal policy
by approximating the true environment via a feature
dependent convex combination of a given ensemble.
Our algorithm offers a sample complexity bound which
is independent of the size of the environment and only
depends on the number of parameters being learnt. In
addition, we also consider a model selection problem,
show exponential lower bounds and then give sample
efficient methods under natural assumptions. The pro-
posed algorithm and its analysis relies on a linearity
assumption and shares this aspect with existing explo-
ration methods for rich observation MDPs. We leave
the possibility of considering a richer class of convex
combinations to future work. Lastly, our work also
revisits the open problem of coming up with a com-
putational and sample efficient model based learning
algorithm.
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A Proofs from the main text

In this section, we provide a detailed proof as well as the key ideas used in the analysis. The proof uses an
optimism based template which guarantees that either the algorithm terminates with a near-optimal policy or
explores appropriately in the environment. We can show a polynomial sample complexity bound as the algorithm
explores for a bounded number of iterations and the number of samples required in each iteration is polynomial
in the desired parameters. We start with the key lemmas used in the analysis in Section A.1 with the final proof
of the main theorem in Section A.2.

Notation. As in the main text, we use 〈X,Y 〉 for Tr(X>Y ). The notation ‖A‖F denotes the Frobenius norm
Tr(A>A). For any matrix A = (A1A2 . . . An) in Rm×n with columns Ai ∈ Rm, we will use ‖A‖p,q as the group
norm: ‖(‖A1‖p, ‖A2‖p, . . . , ‖An‖p)‖q.

A.1 Key lemmas used in the analysis

For our analysis, we first define a term E(W,h) for any parameter W which intuitively quantifies the model error
at step h:

E(W,h) := EdW
M∗,h

[
EM(W )

[
rh + VW,h+1(sh+1)

∣∣sh, ah]− EM∗
[
rh + VW,h+1(sh+1)

∣∣sh, ah]] (17)

We start with the following lemma which allows us to express the value loss by using a model M(W ) in terms of
these per-step quantities.

Lemma A.1 (Value decomposition). For any W ∈ W, we can write the difference in two values:

vW − vWM∗ = E(W ) :=

H∑
h=1

E(W,h) (18)

Proof. We start with the value difference on the lhs:

vW − vWM∗ = EdW
M∗,1

[
EM(W )

[
r1 + VW,2(s2)

∣∣s1, a1]− EM∗
[
r1 + VWM∗,2(s2)

∣∣s1, a1]]
= EdW

M∗,1

[
EM(W )

[
r1 + VW,2(s2)

∣∣s1, a1]− EM∗
[
r1 + VW,2(s2)− VW,2(s2) + VWM∗,2(s2)

∣∣s1, a1]]
= EdW

M∗,1

[
EM(W )

[
r1 + VW,2(s2)

∣∣s1, a1]− EM∗
[
r1 + VW,2(s2)

∣∣s1, a1]]
+ EdW

M∗,2

[
VW,2(s2)− VWM∗,2(s2)

]
= E(W, 1) + EdW

M∗,2

[
EM(W )

[
r2 + VW,3(s3)

∣∣s2, a2]− EM∗
[
r2 + VWM∗,3(s3)

∣∣s2, a2]]
Unrolling the second expected value similarly till H leads to the desired result.

At various places in our analysis, we will use the well-known simulation lemma to compare the value of a policy π
across two MDPs:

Lemma A.2 (Simulation Lemma (Kearns and Singh, 2002; Modi et al., 2018)). Let M1 and M2 be two MDPs
with the same state-action space. If the transition dynamics and reward functions of the two MDPs are such that:

‖P 1(·|s, a)− P 2(·|s, a)‖1 ≤ εp ∀s ∈ S, a ∈ A
|R1(·|s, a)−R2(·|s, a)| ≤ εr ∀s ∈ S, a ∈ A

then, for every policy π, we have:

|vπM1
− vπM2

| ≤ Hεp + εr (19)

Now, we will first use the assumption about linearity to prove the following key lemma of our analysis:
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Lemma A.3 (Decomposition of E(W )). If θ is the approximation error defined in eq. 1, then the quantity E(W )
can be bounded as follows:

E(W ) ≤
〈
W −W ∗,

H∑
h=1

EdW
M∗,h

[
VW,h(sh, ah)φ(sh, ah)>

]〉
+Hθ (20)

where VW,h(sh, ah) ∈ [0, 1]K is a vector with the kth entry as EMk

[
rh + VW,h+1(sh+1)|sh, ah

]
.

Proof. Using the definition of E(W,h) from eq. 17, we rewrite the term as:

E(W ) =

H∑
h=1

E(W,h)

= EdW
M∗,h

[
EM(W )

[
rh + VW,h+1(sh+1)

∣∣sh, ah]− EM∗
[
rh + VW,h+1(sh+1)

∣∣sh, ah]]
=

H∑
h=1

EdW
M∗,h

[
EM(W )

[
rh + VW,h+1(sh+1)

∣∣sh, ah]− EM(W∗)

[
rh + VW,h+1(sh+1)

∣∣sh, ah]]
+ EdW

M∗,h

[
EM(W∗)

[
rh + VW,h+1(sh+1)

∣∣sh, ah]− EM∗
[
rh + VW,h+1(sh+1)

∣∣sh, ah]]
≤

H∑
h=1

EdW
M∗,h

[
EM(W )

[
rh + VW,h+1(sh+1)

∣∣sh, ah]− EM(W∗)

[
rh + VW,h+1(sh+1)

∣∣sh, ah]]+ EdW
M∗,h

[
θ
]

Here, we rewrite the inner expectation as:

EM(W )

[
rh + VW,h+1(sh+1)

∣∣sh, ah] =

K∑
k=1

(
Wφ(sh, ah)

)
[k]EMk

[
rh + VW,h+1(sh+1)

∣∣sh, ah]
= EdW

M∗,h

[〈
Wφ(sh, ah), VW,h(sh, ah)

〉
=
〈
W,EdW

M∗,h

[
VW,h(sh, ah)φ(sh, ah)>

]〉
where VW,h(sh, ah) ∈ [0, 1]K is a vector with the kth entry as EMk

[
rh + VW,h+1(sh+1)|sh, ah

]
. Therefore, we can

finally upper bound E(W ) by:

E(W ) ≤
〈
W −W ∗,

H∑
h=1

EdW
M∗,h

[
VW,h(sh, ah)φ(sh, ah)>

]〉
+Hθ

For conciseness, we use the notation Vt,h for the vector VWt,h. We write the matrix∑H
h=1 EdWM∗,h

[
VW,h(sh, ah)φ(sh, ah)> as ZW and further use Zt for ZWt

which results in the bound:

E(W ) ≤
〈
W −W ∗, ZW

〉
+Hθ

Further, using Lemma A.2, one can easily see the following result which we later use in Lemma A.5:

Corollary A.4. For the true environment and the MDP M(W ∗), we have:

E(W ∗) ≤
∣∣vW∗ − vW∗M∗

∣∣ ≤ Hθ (21)

vW
∗

M∗ ≥ v∗ − 2Hθ (22)

Proof. Eq. 21 directly follows through from the assumption and Lemma A.2. For eq. 22, we have:

vW
∗

M∗ ≥ vW∗ −Hθ
≥ vπ

∗

W∗ −Hθ
≥ v∗ − 2Hθ
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By lemma A.1, we see that if the model-misfit error is controlled at each timestep, we can directly get a bound
on the value loss incurred by using the greedy policy πW . In Algorithm 1, we choose the optimistic policy Wt as
the exploration policy which has the following property:

Lemma A.5 (Explore-or-terminate). If the estimate v̂t from eq. 3 satisfies the following inequality:∣∣∣v̂t − vWt

M∗

∣∣∣ ≤ ε
4 (23)

throughout the execution of the algorithm and W ∗ is not eliminated from any Wt (version space is valid), then
either of these two statements hold:

(i) the algorithm terminates with output πt such that vπtW∗ ≥ v∗ − (3
√
dK + 2)Hθ − ε

(ii) the algorithm does not terminate and

E(Wt) ≥
ε

2
+ 3
√
dKHθ +Hθ

Proof. If the algorithm doesn’t terminate, then by the condition on line 5 and the assumption, we know that:

E(Wt) = vWt
− vWt

W∗ ≥ vWt
− v̂t − ε

4 ≥
ε
2 + 3

√
dKHθ +Hθ

If the algorithm does terminate at step T , we have:

vπTM∗ ≥ v̂t − ε/4 (Eq. 23)

≥ vWT
− (3
√
dK + 1)Hθ − ε (Alg. 1, Line 5)

≥ vW∗ − (3
√
dK + 1)Hθ − ε (Optimism)

≥ v∗ − (3
√
dK + 2)Hθ − ε (Lemma A.4)

Lemma A.5 shows that either the algorithm terminates with a (near-)optimal policy or guarantees large model-
misfit error for Wt. For bounding the number of iterations, we use a volumetric argument similar to Jiang et al.
(2017). We will use the following Lemma to show the exponential rate of reduction in the volume of the version
space:

Lemma A.6 (Volume reduction for MVEE, (Jiang et al., 2017)). Consider a closed and bounded set V ⊂ Rp and
a vector a ∈ Rp. Let B be any enclosing ellipsoid of V that is centered at the origin, and we abuse the same symbol
for the symmetric positive definite matrix that defines the ellipsoid, i.e., B = {v ∈ Rp : v>B−1v ≤ 1}. Suppose
there exists u ∈ V with |a>u| ≥ κ and define B+ as the minimum volume enclosing ellipsoid of {v ∈ B : |a>v| ≤ γ}.
If γ/κ ≤ 1/

√
p, we have

vol(B+)

vol(B)
≤ √pγ

κ

( p

p− 1

)(p−1)/2(
1− γ2

κ2

)(p−1)/2
(24)

Further, if γ/κ ≤ 1
3
√
p , the RHS of eq. 24 is less than 0.6.

In the following lemma, we now show that the exploration step can happen only a finite number of times:

Lemma A.7 (Bounding the number of iterations). If the estimates Ẑt and ŷt in eq. 4 and 5 satisfy:

∣∣∣ŷt − H∑
h=1

E
d
Wt
M∗,h

[
EM∗

[
rh + Vt,h+1(sh+1)|sh, ah

]∣∣∣+
∣∣∣〈W, Ẑt〉 − 〈W,Zt〉∣∣∣ ≤ ε

12
√
dK

(25)

for all W ∈ W, for all iterations in Algorithm 1, then W ∗ is never eliminated. Moreover, the number of exploration

iterations of Algorithm 1 is at most T = dK log 2d
√
KH
ε / log 5

3 .
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Proof. By definition, W ∗ ∈ W0. We first show that W ∗ is never eliminated from the version space Wt. Let αt :=∑H
h=1 EdWt

M∗,h

[
EM∗

[
rh + Vt,h+1(sh+1)|sh, ah

]
and by definition, we have 〈W ∗, Zt〉 :=

∑H
h=1 EdWt

M∗,h

[
EM(W∗)

[
rh +

Vt,h+1(sh+1)|sh, ah
]
. Then, we have∣∣ŷt − 〈W ∗, Ẑt〉∣∣ ≤ ∣∣∣ŷt − αt + αt − 〈W ∗, Zt〉+ 〈W ∗, Zt〉 − 〈W ∗, Ẑt〉

∣∣∣
≤ ε

12
√
dK

+
∣∣∣αt − 〈W ∗, Zt〉∣∣∣

≤ ε

12
√
dK

+Hθ

Therefore, W ∗ always satisfies the update equation 6 and is never eliminated.

Now, we argue that the volume of the version space decreases at an exponential rate with each exploration
iteration. To set up the volume reduction analysis, we first notice that:

‖W −W ∗‖F ≤

√√√√ d∑
i=1

∥∥W i −W ∗i
∥∥2
2

≤
√

2d

Therefore, the initial volume of a ball covering the space of flattened vectors in W0 is at most cdK(
√

2d)dK . We
will now use Lemma A.6 by considering the flattened versions of the parameter matrices W in the dimension
p = dK4. Firstly, in each iteration until termination, we find a matrix Wt such that E(Wt) ≥ ε

2 + (3
√
dK + 1)Hθ.

From Lemma A.3, we have:

〈Wt −W ∗, Zt〉 ≥ E(Wt)−Hθ

≥ ε

2
+ 3
√
dKHθ

We will apply Lemma A.6 with Wt −W ∗ as the vector u and Zt as the direction vector a. For the updated
version space, Wt, we have:

|〈W −W ∗, Zt〉| = |yt − ŷt + 〈W,Zt − Ẑt〉+ Ẑt − ŷt|

≤ ε

12
√
dK

+Hθ +
ε

12
√
dK

≤ ε

6
√
dK

+Hθ

Denoting Bt−1 as the MVEE of the version space Wt−1, we consider the MVEE B′t of the set of vectors
W ′t ≡ {W ∈ Bt−1 : |〈W −W ∗, Zt〉| ≤ ε/6

√
dK +Hθ}. Clearly, we have Wt−1 ⊆ Bt−1, and hence, Wt ⊆ W ′t. By

setting κ = ε
2 and γ = ε

3
√
dK

in Lemma A.6, we have:

vol(Bt)

vol(Bt−1)
≤ vol(B′t)

vol(Bt−1)
≤ 0.6

This shows that the volume of the MVEE of the version spaces Wt decreases with at least a constant rate. We
now argue that the procedure stops after reaching a version space with sufficiently small volume.

For any W ∈ Wt and (s, a) ∈ S ×A we have:∥∥∥PW (·|s, a)− PW
∗
(·|s, a)

∥∥∥
1
≤
∥∥∥ K∑
k=1

[(W −W ∗)φ(s, a)]kP
k(·|s, a)

∥∥∥
1

≤
∥∥∥(W −W ∗)φ(s, a)

∥∥∥
1

≤
√
K
∥∥∥(W −W ∗)φ(s, a)

∥∥∥
2

≤
√
dK
∥∥W −W ∗∥∥

F

4For avoiding ambiguity, we will directly use the matrix notations for inner products and norms.



Aditya Modi1 Nan Jiang2 Ambuj Tewari1 Satinder Singh1

Also, using lemma A.2, if the worst case error in next state transition estimates is bounded by ε
2H + θ, the

optimistic value V πWW∗ is ε + Hθ-optimal. Therefore, we only need to identify the matrix W to within ε
2H
√
dK

distance of W ∗. Consequently, the terminating MVEE BT satisfies:

BT ⊇
{
W :

∥∥W −W ∗∥∥
F
≤ ε

2
√
dKH

}

Therefore, we have vol(BT ) ≥ cdK(ε/2
√
dKH)dK , and :

cdK(ε/2
√
dKH)dK

cdK(
√

2d)dK
≤ vol(BT )

vol(B0)
≤ 0.6T

By solving for T , we get that:

dK log
2
√

2KH

ε
≥ T log

5

3

T ≤ dK log
2
√

2KH

ε
/ log

5

3
(26)

We now derive the number of trajectories required in each step to satisfy the validity requirements in Lemma A.5
and A.7:

Lemma A.8 (Concentration for MC estimate v̂t). For any Wt ∈ W with probability at least 1− δ1, we have:∣∣∣v̂t − vWt

M∗

∣∣∣ ≤ ε
4 (27)

if we set neval ≥ 8
ε2 log 2

δ1
.

Proof. Note that v̂t is an unbiased estimate of vWt

M∗ . From our assumption on the expected sum of rewards, the
return of each trajectory is bounded by 1 for all policies. Thus, the range of each summand for the estimate v̂t is
[0, 1]. Then, the result follows from standard application of Hoeffding’s inequality.

Lemma A.9 (Concentration of the model misfit error). If n ≥ 1800d2KH2

ε2 log 4dK
δ2

in Algorithm. 1, then for a
given t, each W ∈ W and with probability at least 1− δ2, we have:

∣∣∣ŷt − H∑
h=1

E
d
Wt
M∗,h

[
EM∗

[
rh + Vt,h+1(sh+1)|sh, ah

]∣∣∣+
∣∣∣〈W,Zt − Ẑt〉∣∣∣ ≤ ε

12
√
dK

(28)

Proof. To bound the first term, we note that ŷt is an unbiased estimate of
∑H
h=1 EdWt

M∗,h

[
EM∗

[
rh +

Vt,h+1(sh+1)|sh, ah
]

and is bounded between [0, H]. Applying Hoeffding’s inequality on the estimand ŷt when
using n trajectories, with probability at least 1− δ′, we get:

∣∣∣ŷt − H∑
h=1

E
d
Wt
M∗,h

[
EM∗

[
rh + Vt,h+1(sh+1)|sh, ah

]∣∣∣ ≤ H√ 1

2n
log

2

δ′

For bounding the second term, using Holder’s inequality with matrix group norm (Agarwal et al., 2008), we first
see:

|〈W, Ẑt〉 − 〈W,Zt〉| ≤ ‖W‖1,∞‖Ẑt − Zt‖∞,1
≤ ‖Ẑt − Zt‖∞,1
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We will now bound the estimation error for Ẑt:

∥∥Ẑt − Zt∥∥∞,1 =
∥∥∥ 1

n

n∑
i=1

H∑
h=1

V t,h(s
(i)
h , a

(i)
h )φ(s

(i)
h , a

(i)
h )> − E

[ H∑
h=1

V t,h(sh, ah)φ(sh, ah)>
]∥∥∥
∞,1

=

d∑
j=1

∥∥∥ 1

n

n∑
i=1

H∑
h=1

V t,h(s
(i)
h , a

(i)
h )φ(s

(i)
h , a

(i)
h )[j]− E

[ H∑
h=1

V t,h(sh, ah)φ(sh, ah)[j]
]∥∥∥
∞

We can consider each trajectory as a random sample from the distribution of trajectories induced by πt. Therefore,
by definition, each summand in the estimate of Ẑt over n trajectories is an unbiased estimate of Zt. Moreover, we
know that each term in the entry Ẑt[i, j] of the matrix Ẑt is bounded by H. Using Bernstein’s inequality for each
term in the error matrix, and a union bound over all entries, with probability at least 1− δ′, for all i, j we have:

∣∣Ẑt[i, j]− Zt[i, j]∣∣ ≤
√

2Var
[ ∑H

h=1 V t,h[i]φ(sh, ah)[j]
]

log 2dK
δ′

n
+

2H log 2dK
δ′

n

Summing up the maximum elements ij of each column, we have:

‖Ẑt − Zt‖∞,1 ≤
d∑
j=1

√
2Var

[ ∑H
h=1 V t,h[ij ]φ(sh, ah)[j]

]
log 2dK

δ′

n
+

2dH log 2dK
δ′

n

=

d∑
j=1

√
2E
[ (∑H

h=1 φ(sh, ah)[j]
)2 ]

log 2dK
δ′

n
+

2dH log 2dK
δ′

n

≤

√
2dE

[ ∑d
j=1

(∑H
h=1 φ(sh, ah)[j]

)2 ]
log 2dK

δ′

n
+

2dH log 2dK
δ′

n

≤

√
2dE

[ (∑d
j=1

∑H
h=1 φ(sh, ah)[j]

)2 ]
log 2dK

δ′

n
+

2dH log 2dK
δ′

n

≤ H

√
2d log 2dK

δ′

n
+

2dH log 2dK
δ′

n

Here, for the first step, we have used the property that V t,h[ij ] ≤ 1, the fact that variance is bounded by the
second moment. The next step can be obtained by using Cauchy-Schwartz inequality. The last second step

uses that property that for non-negative aj ,
∑
j a

2
j ≤ (

∑
j aj)

2. Now, if
2d log 2

δ′
n ≤ 1, the above is bounded by

2

√
2d log 2

δ′
n .

Therefore, summing up the two terms with δ′ = δ2/2, with probability at least 1− δ2 and for all W ∈ W , we have:

∣∣∣ŷt − H∑
h=1

E
d
Wt
M∗,h

[
EM∗

[
rh + Vt,h+1(sh+1)|sh, ah

]∣∣∣+
∣∣∣〈W,Zt − Ẑt〉∣∣∣ ≤

√
8dH2 log 4dK

δ2

n
+

√
H2 log 4

δ2

2n

With some algebra, it can be verified that setting n = 1800d2KH2

ε2 log 4dK
δ2

makes the total error bounded by ε
12
√
dK

with failure probability δ2.

A.2 Proof of Theorem 4.1

Proof. With the key lemmas in Section A.1, we can now prove the main result. For the main theorem, we need
to ensure that the requirements in lemma A.5 and A.7 are satisfied. Since, our method maintains a version space
of plausible weights, the validity of each iteration depends on every previous iteration being valid. Therefore, for
a total failure probability of δ for the algorithm, we assume:

(i) Estimation of Ê(Wt) for all iterations: total failure probability δ/2
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(ii) Updating the version space Wt: total failure probability δ/2

We set δ1 = δ/2T and δ2 = δ/2T in Lemmas A.8 and A.9 respectively with T = dK log 2
√
2KH
ε / log 5

3 . By taking
a union bound over maximum number of iterations, the total failure probability is bounded by δ. Thus, the total
number of trajectories unrolled by the algorithm is:

T (neval + n) ≤
(
dK log

2
√

2KH

ε
/ log

5

3

)( 8

ε2
log

4T

δ
+

1800d2KH2

ε2
log

8dKT

δ

)
= Õ

(d3K2H2

ε2
log

dKH

δ

)
Therefore, by the termination guarantee in Lemma A.5, we arrive at the desired upper bound on the number of
trajectories required to guarantee a policy with value vπM∗ ≥ v∗ − (3

√
dK + 1)Hθ.

B The Implication of Proposition 5.1 on the Hardness of Learning State
Abstractions

Here we show that the proof of Proposition 5.1 can be adapted to show a related hardness result for learning with
state abstractions. A state abstraction is a mapping φ that maps the raw state space S to some finite abstract
state space Sφ, typically much smaller in size. When an abstraction φ with good properties (e.g., preserving
reward and transition dynamics) is known, one can leverage it in exploration and obtain a sample complexity
that is polynomial in |Sφ| instead of |S|. Among different types of abstractions, bisimulation (Whitt, 1978; Givan
et al., 2003) is a very strict notion that comes with many nice properties (Li et al., 2006).

An open problem in state abstraction literature has been whether it is possible to perform model selection over a
large set of candidate abstractions, i.e., designing an algorithm whose sample complexity only scales sublinearly
(or ideally, logarithmically) with the cardinality of the candidate set. Using the construction from Proposition 5.1,
we show that this is impossible without further assumptions:

Proposition B.1. Consider a learner in an MDP that is equipped with a set of state abstractions, {φ1, φ2, . . . , φN}.
Each abstraction φi maps the raw state space S to a finite abstract state space Sφi . Even if there exists i∗ ∈ [N ]
such that φ∗ = φi is a bisimulation, no algorithm can achieve poly(|Sφ∗ |, |A|, H, 1/ε, 1/δ,N1−α) sample complexity
for any α > 0.

Proof. Following the proof of Proposition 5.1, we consider the family of MDPs that share the same deterministic
transition dynamics with a complete tree structure, where each MDP only has one rewarding leaf. Let N = 2H be
the number of leaves, and let the MDPs be {Mi} where the index indicates the rewarding leaf. We then construct
a set of N abstractions where one of them will always be a bisimulation regardless of which MDP we choose from
the family. Consider the i-th abstraction, φi. At each level h, φi aggregates the state on the optimal path in its
own equivalence class, and aggregates all other states together. It does not aggregate states across levels. It is
easy to verify that φi is a bisimulation in MDP Mi, and |Sφi | = 2H. If the hypothetical algorithm existed, it
would achieve a sample complexity sublinear in N , as N = 2H and all other relevant parameters (e.g., |Sφi | and
H) are at most polynomial in H. However, the set of abstractions {φi} is uninformative in this specific problem
and does not affect the Ω(2H) sample complexity, which completes the proof.
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