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Abstract

We consider the recently proposed reinforce-
ment learning (RL) framework of Contextual
Markov Decision Processes (CMDP), where
the agent interacts with a (potentially adver-
sarial) sequence of episodic tabular MDPs. In
addition, a context vector determining the MDP
parameters is available to the agent at the start
of each episode, thereby allowing it to learn a
context-dependent near-optimal policy. In this
paper, we propose a no-regret online RL algo-
rithm in the setting where the MDP parameters
are obtained from the context using generalized
linear mappings (GLMs). We propose and an-
alyze optimistic and randomized exploration
methods which make (time and space) efficient
online updates. The GLM based model sub-
sumes previous work in this area and also im-
proves previous known bounds in the special
case where the contextual mapping is linear. In
addition, we demonstrate a generic template to
derive confidence sets using an online learning
oracle and give a lower bound for the setting.

1 INTRODUCTION

Recent advances in reinforcement learning (RL) meth-
ods have led to increased focus on finding practical RL
applications. RL algorithms provide a set of tools for tack-
ling sequential decision making problems with potential
applications ranging from web advertising and portfo-
lio optimization, to healthcare applications like adaptive
drug treatment. However, despite the empirical success
of RL in simulated domains such as boardgames and
video games, it has seen limited use in real world ap-
plications because of the inherent trial-and-error nature
of the paradigm. In addition to these concerns, for the
applications listed above, we have to essentially design
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adaptive methods for a population of users instead of a
single system. For instance, optimizing adaptive drug
treatment plans for an influx of patients has two key re-
quirements: (1) ensure quickly learning good policies
for each user and (2) share the observed outcome data
efficiently across patients. Intuitively, we expect that fre-
quently seen patient types (with some notion of similarity)
can be adequately dealt with by using adaptive learning
methods whereas difficult and rare cases could be care-
fully referred to experts to safely generate more data.

An efficient and plausible way to incorporate this hetero-
geneity is to include any distinguishing exogenous factors
in form of a contextual information vector in the learn-
ing process. This information can include demographic,
genomic features or individual measurements taken from
lab tests. We model this setting using the framework of
Contextual Markov Decision Processes (CMDPs) (Modi
et al., 2018) where the learner has access to some con-
textual features at the start of every patient interaction.
Similar settings have been studied with slight variations
by Abbasi-Yadkori and Neu (2014); Hallak et al. (2015)
and Dann et al. (2019). While the framework proposed
in these works is innovative, there are a number of defi-
ciencies in the available set of results. First, theoretical
guarantees (PAC-style mistake bounds or regret bounds)
sometimes hold only under a linearity assumption on the
mapping between contexts and MDPs. This assumption
is quite restrictive as it enforces additional constraints on
the context features which are harder to satisfy in practice.
Second, if non-linear mappings are introduced (Abbasi-
Yadkori and Neu, 2014), the next state distributions are
left un-normalized and therefore do not correctly model
the context dependence of MDP dynamics.

We address these deficiencies by considering generalized
linear models (GLMs) for mapping context features to
MDP parameters (succinctly referred to as GLM-CMDP).
We build upon the existing work on generalized linear
bandits (Zhang et al., 2016) and propose UCRL2 (opti-
mistic) and RLSVI (randomized) like algorithms with



regret analyses. Overall, our contributions are as follows:

• We provide optimistic and randomized regret min-
imizing algorithms for GLM-CMDPs. Our model
subsumes/corrects previous CMDP frameworks and
our analysis improves on the existing regret bounds
by a factor of O(

√
S) in the linear case.

• The proposed algorithms use efficient online updates,
both in terms of memory and time complexity, im-
proving over typical OFU approaches whose running
time scales linearly with number of rounds.

• We prove a regret lower bound for GLM-CMDP
when a logistic or quadratic link function is used.

• We provide a generic way to convert any online
no-regret algorithm for estimating GLM parameters
to confidence sets. This allows an improvement in
the regret incurred by our methods when the GLM
parameters have additional structure (e.g., sparsity).

2 SETTING AND NOTATION

We consider episodic Markov decision processes, denoted
by tuple (S,A, P,R,H) where S and A are finite state
and action spaces, P (·|s, a) the transition distribution,
R(s, a) the reward function with mean r(s, a) and H is
the horizon. Without loss of generality, we will consider
a fixed start state for each episode. In the contextual MDP
setting (Hallak et al., 2015; Modi et al., 2018), the agent
interacts with a sequence of MDPs Mk (indexed by k)
whose dynamics and reward functions (denoted by Pk
and Rk) are determined by an observed context vector
xk ∈ X . For notation, we use (sk,h, ak,h, rk,h, sk,h+1) to
denote the transition at step h in episode k. We denote the
size of MDP parameters by the usual notation: |S| = S
and |A| = A.

The value of a policy in an episode k is defined as the
expected total return for H steps in MDP Mk:

vπk = EMk,π

[ H∑
h=1

rk,h

]
The optimal policy for episode k is denoted by π∗k :=
arg maxπ v

π
k and its value as v∗k. The agent’s goal in

the CMDP setting is to learn a context dependent policy
π : X × S → A such that cumulative expected return
over K episodes is maximized. We quantify the agent’s
performance by the total regret incurred over a (potentially
adversarial) sequence of K contexts:

R(K) :=

K∑
k=1

v∗k − v
πk

k (1)

Note that the regret here is defined with respect to the
sequence of context dependent optimal policies.

Additional notation. For two matrices X and Y , the
inner product is defined as 〈X,Y 〉 := Tr(X>Y ). For
a vector x ∈ Rd and a matrix A ∈ Rd×d, we de-
fine ‖x‖2A := x>Ax. For matrices W ∈ Rm×n and
X ∈ Rn×n, we define ‖W‖2X :=

∑m
i=1 ‖W (i)‖2X where

W (i) is the ith row of the matrix. Further, we reserve the
notation ‖W‖F to denote the Frobenius norm of a matrix
W . Any norm which appears without a subscript will
denote the `2 norm for a vector and the Frobenius norm
for a matrix.

2.1 GENERALIZED LINEAR MODEL FOR
CMDPs

Using a linear mapping of the predictors is a simple and
ubiquitous approach for modeling contextual/dynamical
dependence in sequential decision making problems. Lin-
ear models are also well known for being interpretable and
explainable, properties which are very valuable in our mo-
tivating settings. Similarly, we also utilize this structural
simplicity of linearity and model the categorical output
space (p(·|s, a)) in a contextual MDP using generalized
linear mappings. Specifically, for each pair s, a ∈ S ×A,
there exists a weight matrix Wsa ∈ W ⊆ RS×d where
W is a convex set. For any context xk ∈ Rd, the next
state distribution for the pair is specified by a GLM:

Pk(·|s, a) = ∇Φ(Wsaxk) (2)

where Φ(·) : RS → R is the link function of the GLM1.
We will assume that this link function is convex which
is always the case for a canonical exponential family
(Lauritzen, 1996). For rewards, we assume that each
mean reward is given by a linear function2 of the context:
rk(s, a) := θ>saxk where θ ∈ Θ ⊆ Rd. In addition,
we will make the following assumptions about the link
function.

Assumption 2.1. The function Φ(·) is α-strongly convex
and β-strongly smooth, that is:

Φ(v) ≥ Φ(u) + 〈∇Φ(u), v − u〉+ α
2 ‖u− v‖

2
2 (3)

Φ(v) ≤ Φ(u) + 〈∇Φ(u), v − u〉+ β
2 ‖u− v‖

2
2 (4)

We will see that this assumption is critical for construct-
ing the confidence sets used in our algorithm. We make
another assumption about the size of the weight matrices
W ∗sa and contexts xk:

1We abuse the term GLM here as we don’t necessarily con-
sider a complementary exponential family model in eq. (2)

2 Similar results can be derived for GLM reward functions.



Assumption 2.2. For all episodes k, we have ‖xk‖2 ≤ R
and for all state-action pairs (s, a), ‖W (i)

sa ‖2 ≤ Bp and
‖θsa‖2 ≤ Br. So, we have ‖Wxk‖∞ ≤ BpR for all
W ∈ W .

The following two contextual MDP models are special
cases of our setting:

Example 2.3 (Multinomial logit model, Agarwal (2013)).
Each next state is sampled from a categorical distribution
with probabilities3:

Px(si|s, a) =
exp(W

(i)
sa x)∑S

j=1 exp(W
(j)
sa x)

The link function for this case can be given as Φ(y) =

log(
∑S
i=1 exp(yi)) which can be shown to be strongly

convex with α = 1
exp (BR)S2 and smooth with β = 1.

Example 2.4 (Linear combination of MDPs, Modi et al.
(2018)). Each MDP is obtained by a linear combination
of d base MDPs {(S,A, P i, Ri, H)}di=1. Here, xk ∈
∆d−1

4, and Pk(·|s, a) :=
∑d
i=1 xkiP

i(·|s, a). The link
function for this can be shown to be:

Φ(y) = 1
2‖y‖

2
2

which is strongly convex and smooth with parameters
α = β = 1. Moreover, Wsa here is the S × d matrix
containing each next state distribution in a column. We
have, Bp ≤

√
d, ‖Wsa‖F ≤

√
d and ‖Wsaxk‖2 ≤ 1.

3 ONLINE ESTIMATES AND
CONFIDENCE SET CONSTRUCTION

In order to obtain a no-regret algorithm for our setting,
we will follow the popular optimism in the face of uncer-
tainty (OFU) approach which relies on the construction of
confidence sets for MDP parameters at the beginning of
each episode. We focus on deriving these confidence sets
for the next state distributions for all state action pairs.
We assume that the link function Φ and values α, B and
R are known a priori. The confidence sets are constructed
and used in the following manner in the OFU template for
MDPs: at the beginning of each episode k = 1, 2, . . . ,K:

• For each (s, a), compute an estimate of transition dis-
tribution P̂k(·|s, a) and mean reward r̂k(s, a) along
with confidence sets P andR such that Pk(·|s, a) ∈
P and rk(s, a) ∈ R with high probability.

3Without loss of generality, we can set the last row W
(S)
sa of

the weight matrix to be 0 to avoid an overparameterized system.
4 ∆d−1 denotes the simplex {x ∈ Rd : ‖x‖1 = 1, x ≥ 0}.

• Compute an optimistic policy πk using the confi-
dence sets and unroll a trajectory in Mk with πk.
Using observed transitions, update the estimates and
confidence sets.

Therefore, in the GLM-CMDP setup, estimating transi-
tion distributions and reward functions is the same as
estimating the underlying parameters Wsa and θsa for
each pair (s, a). Likewise, any confidence set Wsa for
Wsa (Θsa for θsa) can be translated into a confidence set
of transition distributions.

In our final algorithm for GLM-CMDP, we will use the
method from this section for estimating the next state dis-
tribution for each state-action pair. The reward parameter
θsa and confidence set Θsa is estimated using the linear
bandit estimator (Lattimore and Szepesvári (2020), Chap.
20). Here, we solely focus on the following online estima-
tion problem without any reference to the CMDP setup.
Specifically, given a link function Φ, the learner observes
a sequence of contexts xt ∈ X (t = 1, 2, . . .) and a sam-
ple yt drawn from the distribution Pt ≡ ∇Φ(W ∗xt) over
a finite domain of size S. Here, we use W ∗ to denote the
true parameter for the given GLM model. The learner’s
task is to compute an estimate Wt for W ∗ and a confi-
dence setWt after any such t samples. We frame this as
an online optimization problem with the following loss
sequence (based on the negative log-likelihood):

lt(W ;xt, yt) = Φ(Wxt)− y>t Wxt (5)

where yt is the one-hot representation of the observed
sample in round t. This loss function preserves the strong
convexity of Φ with respect to Wxt and is a proper loss
function (Agarwal, 2013):

arg min
W

E
[
lt(W ;xt, yt)|xt

]
= W ∗ (6)

Since our aim is computational and memory efficiency,
we carefully follow the Online Newton Step (Hazan et al.,
2007) based method proposed for 0/1 rewards with logis-
tic link function in Zhang et al. (2016). While deriving the
confidence set in this extension to GLMs, we use proper-
ties of categorical vectors in various places in the analysis
which eventually saves a factor of S. The online update
scheme is shown in Algorithm 1. Interestingly, note that
for tabular MDPs, where d = α = 1 and Φ(y) = 1

2‖y‖
2
2,

with η = 1, we would recover the empirical average dis-
tribution as the online estimate. Along with the estimate
Wt+1, we can also construct a high probability confidence
set as follows:
Theorem 3.1 (Confidence set for W ∗). In Algorithm 1,
for all timesteps t = 1, 2, . . ., with probability at least
1− δ, we have:

‖Wt+1 −W ∗‖Zt+1
≤ √γt+1 (8)



Algorithm 1 Online parameter estimation for GLMs
1: Input: Φ, α, η
2: Set W1 ← 0, Z1 ← λId
3: for t = 1, 2, . . . do
4: Observe xt and sample yt ∼ Pt(·)
5: Compute new estimate Wt+1:

arg min
W∈W

‖W−Wt‖2Zt+1

2 +η〈∇lt(Wtxt)x
>
t ,W−Wt〉

(7)
where Zt+1 = Zt + ηα

2 xtx
>
t .

where

γt+1 = λB2 + 8ηBpR

+ 2η
[
( 4
α + 8

3BpR)τt + 4
α log det(Zt+1)

det(Z1)

]
(9)

with τt = log(2d2 logStet2/δ) and B =
maxW∈W ‖W‖F .

Any upper bound for ‖W ∗‖2F can be substituted forB the
confidence width in eq (9). The term γt depends on the
size of the true weight matrix, strong convexity parameter
1
α and the log determinant of the covariance matrix. We
will later show that the last term grows at a O(d log t)
rate. Therefore, overall γt scales asO(S+ d

α log2 t). The
complete proof can be found in Appendix A.

Algorithm 1 only stores the empirical covariance matrix
and solves the optimization problem (7) for the current
context. SinceW is convex, this is a tractable problem
and can be solved via any off-the-shelf optimizer up to
desired accuracy. The total computation time for each
context and all (s, a) pairs is O(poly(S,A, d)) with no
dependence on t. Furthermore, we only store SA-many
matrices of size S × d and covariance matrices of sizes
d × d. Thus, both time and memory complexity of the
method are bounded by O(poly(S,A,H, d)) per episode.

4 NO-REGRET ALGORITHMS FOR
GLM-CMDP

4.1 OPTIMISTIC REINFORCEMENT
LEARNING FOR GLM CMDP

In this section, we describe the OFU based online learn-
ing algorithm which leverages the confidence sets as de-
scribed in the previous section. Not surprisingly, our algo-
rithm is similar to the algorithm of Dann et al. (2019) and
Abbasi-Yadkori and Neu (2014) and follows the standard
format for no-regret bounds in MDPs. In all discussions
about CMDPs, we will again use xk ∈ X to denote the
context for episode k and use Algorithm 1 from the pre-
vious section to estimate the corresponding MDP Mk.

Specifically, for each state-action pair (s, a), we use all
observed transitions to estimate Wsa and θsa. We com-
pute and store the quantities used in Algorithm 1 for each
(s, a): we use Ŵk,sa to denote the parameter estimate for
Wsa at the beginning of the kth episode. Similarly, we use
the notation γk,sa and Zk,sa for the other terms. Using
the estimate Ŵk,sa and the confidence set, we compute
the confidence interval for Pk(·|s, a):

ξ
(p)
k,sa := ‖Pk(·|s, a)− P̂k(·|s, a)‖1

≤ β
√
S‖Wsa − Ŵk,sa‖Zk,sa

‖xk‖Z−1
k,sa

≤ β
√
S
√
γk,sa‖xk‖Z−1

k,sa
(10)

where in the definition of γk,sa we use δ = δp. It is
again easy to see that for tabular MDPs with d = 1, we
recover a similar confidence interval as used in Jaksch
et al. (2010). For rewards, using the results from linear
contextual bandit literature (Lattimore and Szepesvári
(2020), Theorem 20.5), we use the following confidence
interval:

ξ
(r)
k,sa := |rk(s, a)− r̂k(s, a)|

=

(√
λd+

√
1
4 log

detZk,sa

δ2r detλI

)
︸ ︷︷ ︸

:=ζk,sa

‖xk‖Z−1
k,sa

(11)

In GLM-ORL, we use these confidence intervals to com-
pute an optimistic policy (Lines 9-15). The computed
value function is optimistic as we add the total uncertainty
as a bonus (Line 11) during each Bellman backup. For any
step h, we clip the optimistic estimate between [0, H−h]
during Bellman backups (Line 135). After unrolling an
episode using πk, we update the parameter estimates and
confidence sets for every observed (s, a) pair.

For any sequence of K contexts, we can guarantee the
following regret bound:

Theorem 4.1 (Regret of GLM-ORL). For any δ ∈ (0, 1),
if Algorithm 2 is run with the estimation method 1, then
for all K ∈ N and with probability at least 1 − δ, the
regret R(K) is:

Õ
((√dmaxs,a ‖Wsa‖F√

α
+
d

α

)
βSH2

√
AK log

KHd

λδ

)
If ‖W (i)‖ is bounded by Bp, we get ‖Wsa‖2F ≤ SB2

p ,
whereas, for the linear case (Ex. 2.4), ‖Wsa‖2F ≤

√
d.

Substituting the bounds on ‖Wsa‖2F , we get:

Corollary 4.2 (Multinomial logit model). For exam-
ple 2.3, we have ‖W‖F ≤ B

√
S, α = 1

exp(BR)S2 and

5We use the notation a∧ b to denote min(a, b) and a∨ b for
max(a, b).



β = 1. Therefore, the regret bound of Algorithm 2 is
Õ(dS3H2

√
AK).

Corollary 4.3 (Regret bound for linear combination case).
For example 2.4, with ‖W‖F ≤

√
d, the regret bound of

Algorithm 2 is Õ(dSH2
√
AK).

Algorithm 2 GLM-ORL (GLM Optimistic Reinforcement
Learning)

1: Input:S,A, H,Φ, d,W , λ, δ
2: δ′ = δ

2SA+SH , Ṽk,H+1(s) = 0 ∀s ∈ S, k ∈ N
3: for k ← 1, 2, 3, . . . do
4: Observe current context xk
5: for s ∈ S, a ∈ A do
6: P̂k(·|s, a)← ∇Φ(Ŵk,saxk)

7: r̂k(s, a)← 〈θ̂k,sa, xk〉
8: Compute conf. intervals using eqns. (10), (11)
9: for h← H,H − 1, · · · , 1, and s ∈ S do

10: for a ∈ A do
11: ϕ = ‖Ṽk,h+1‖∞ξ(p)

k,sa + ξ
(r)
k,sa

12: Q̃k,h(s, a) = P̂>k,saṼk,h+1 + r̂k(s, a) + ϕ

13: Q̃k,h(s, a) = 0 ∨ (Q̃k,h(s, a) ∧ V max
h )

14: πk,h(s) = arg maxa Q̃k,h(s, a)

15: Ṽk,h(s) = Q̃k,h(s, πk,h(s))
16: Unroll a trajectory in Mk using πk
17: Update Ŵsa and θ̂sa for observed samples.

In Corollary 4.3, the bound is worse by a factor of
√
H

when compared to the Õ(HS
√
AKH) bound of UCRL2

for tabular MDPs (d = 1). This factor is incurred while
bounding the sum of confidence widths in eq. (28) (in
UCRL2 it is O(

√
SAKH)).

4.1.1 Proof of Theorem 4.1

We provide the key lemmas used in the analysis with the
complete proof in Appendix B.1. Here, we assume that
transition probability estimates are valid with probability
at least 1 − δp and reward estimates with 1 − δr for all
(s, a) for all episodes. We first begin by showing that the
computed policy’s value is optimistic.
Lemma 4.4 (Optimism). If all the confidence intervals
as computed in Algorithm 2 are valid for all episodes k,
then for all k and h ∈ [H] and s, a ∈ S ×A, we have:

Q̃k,h(s, a) ≥ Q∗k,h(s, a)

Proof. We show this via an inductive argument. For every
episode, the lemma is true trivially for H + 1. Assume
that it is true for h+ 1. For h, we have:

Q̃k,h(s, a)−Q∗k,h(s, a)

= (P̂k(s, a)>Ṽk,h+1 + r̂k(s, a) + ϕk,h(s, a)) ∧ V max
h

− Pk(s, a)>V ∗k,h+1 − rk(s, a)

We use the fact that when Q̃k,h(s, a) = V max
h , the lemma

is trivially satisfied. When Q̃k,h(s, a) < V max
h , we have:

Q̃k,h(s, a)−Q∗k,h(s, a)

= r̂k(s, a)− rk(s, a) + P̂k(s, a)>(Ṽk,h+1 − V ∗k,h+1)

+ ϕk,h(s, a)− (Pk(s, a)− P̂k(s, a))>V ∗k,h+1

≥ −|r̂k(s, a)− rk(s, a)|+ ϕk,h(s, a)

− ‖Pk(s, a)− P̂k(s, a)‖1‖Ṽk,h+1‖∞ ≥ 0

The last step uses the guarantee on confidence intervals
and the inductive assumption for h + 1. Therefore, the
estimated Q-values are optimistic by induction.

Using this optimism guarantee, we can bound the instan-
taneous regret ∆k in episode k as: V ∗k,1(s)− V πk

k,1(s) ≤
Ṽk,1(s) − V πk

k,1(s). With Ṽ as the upper bound, we can
bound the total regret with the following Lemma:

Lemma 4.5. In the event that the confidence sets are valid
for all episodes, then with probability at least 1− SHδ1,
the total regret R(K) can be bounded by

R(K) ≤ SH
√
K log 6 log 2K

δ1

+

K∑
k=1

H∑
h=1

·(2ϕk,h(sk,h, ak,h) ∧ V max
h ) (12)

The proof is given in the appendix. The second term in
ineq. (12) can now be bounded as follows:

K∑
k=1

H∑
h=1

(2ϕ(sk,h, ak,h) ∧ V max
h )

≤
K∑
k=1

H∑
h=1

(2ξ
(r)
k,sk,h,ak,h

∧ V max
h )

+

K∑
k=1

H∑
h=1

(2V max
h+1 ξ

(p)
k,sk,h,ak,h

∧ V max
h ) (13)

We ignore the reward estimation error in eq. (13) as it
leads to lower order terms. The second expression can be
again bounded as follows:

K∑
k=1

H∑
h=1

(2V max
h+1 ξ

(p)
k,sk,h,ak,h

∧ V max
h )

≤ 2
∑
k,h

V max
h

(
1 ∧ β

√
Sγk(sk,h, ak,h)‖xk‖Z−1

k,sa,h

)
(14)



Using Lemma B.4, we see that

γk(s, a) := fΦ(k, δp) +
8η

α
log

det(Zk,sa)

det(Z1,sa)

≤ ηα

2S
+ fΦ(KH, δp) +

8η

α
log

det(ZK+1,sa)

det(Z1,sa)

≤ ηα

2S
+ fΦ(KH, δp) +

8ηd

α
log

(
1 +

KHR2

λd

)
We use fΦ(k, δp) to refer to the Zk independent terms in
eq. (9). Setting γ̄K to the last expression guarantees that
2Sγ̄K
ηα ≥ 1. We can now bound the term in eq. (14) as:

2βV max
1

√
2Sγ̄K
ηα

∑
k,h

(
1 ∧

√
ηα

2
‖xk‖Z−1

k,sa,h

)

≤ 2βV max
1

√
2Sγ̄KKH

ηα

√√√√∑
k,h

(
1 ∧ ηα

2
‖xk‖2Z−1

k,sa,h

)
(15)

Ineq. (15) follows by using Cauchy-Schwarz inequality.
Finally, by using Lemma B.4 in Appendix B.1, we can
bound the term as

K∑
k=1

H∑
h=1

(2V max
h+1 ξ

(p)
k,sk,h,ak,h

∧ V max
h )

= 4βV max
1

√
2Sγ̄KKH

ηα

√
2HSAd log

(
1 +

KHR2

λd

)

Now, after setting the failure probabilities δ1 = δp =
δr = δ/(2SA+ SH) and taking a union bound over all
events, we get the total failure probability as δ. Therefore,
with probability at least 1− δ, we can bound the regret of
GLM-ORL as

R(K) = Õ

((√
dmaxs,a ‖W ∗sa‖F√

α
+
d

α

)
βSH2

√
AK

)

where maxs,a ‖W ∗sa‖F is replaced by the problem depen-
dent upper bound assumed to be known a priori.6

4.1.2 Mistake bound for GLM-ORL

The regret analysis shows that the total value loss suffered
by the agent is sublinear in K, and therefore, goes to
0 on average. However, this can still lead to infinitely
many episodes where the sub-optimality gap is larger
than a desired threshold ε, given that it occurs relatively
infrequently. It is still desirable, for practical purposes, to

6An improved dependence on
∑

s,a ‖W
∗
sa‖F can be ob-

tained instead of S maxs,a ‖W ∗
sa‖F in the regret bound.

analyze how frequently can the agent incur such mistakes.
Here, a mistake is defined as an episode in which the
value of the learner’s policy πk is not ε-optimal, i.e., V ∗k −
V πk

k ≥ ε. In our setting, we can show the following result.

Theorem 4.6 (Bound on the number of mistakes). For
any number of episodes K, δ ∈ (0, 1) and ε ∈ (0, H),
with probability at least 1 − δ, the number of episodes
where GLM-ORL’s policy πk is not ε-optimal is bounded
by

O
(
dS2AH5 log(KH)

ε2

(
d log2(KH)

α
+ S

))
ignoring O(poly(log logKH)) terms.

We defer the proof to Appendix C. Note that this term de-
pends poly-logarithmically on K and therefore increases
with time. The algorithm doesn’t need to know the value
of ε and result holds for all ε. This differs from the stan-
dard mistake bound style PAC guarantees where a finite
upper bound is given. Dann et al. (2019) argued that this
is due to the non-shrinking nature of the constructed con-
fidence sets. As such, showing such a result for CMDPs
requires a non-trivial construction of confidence sets and
falls beyond the scope of this paper.

4.2 RANDOMIZED EXPLORATION FOR
GLM-CMDP

Empirical investigations in bandit and MDP literature has
shown that optimism based exploration methods typically
over-explore, often resulting in sub-optimal empirical per-
formance. In contrast, Thompson sampling based meth-
ods which use randomization during exploration have
been shown to have an empirical advantage with slightly
worse regret guarantees. Recently, Russo (2019) showed
that even with such randomized exploration methods, one
can achieve a worst-case regret bound instead of the typi-
cal Bayesian regret guarantees. In this section, we show
that the same is true for GLM-CMDP where a random-
ized reward bonus can be used for exploration. We build
upon their work to propose an RLSVI style method (Algo-
rithm 3) and analyze its expected regret. The main differ-
ence between Algorithm 2 and Algorithm 3 is that instead
of the fixed bonusϕ (Line 11) in the former, GLM-RLSVI
samples a random reward bonus in Line 12 for each (s, a)
from the distribution N(0, HSϕ2). The variance term
ϕ is set to a sufficiently high value, such that, the result-
ing policy is optimistic with constant probability. We
use a slightly modified version of the confidence sets as
follows:

ξ
(p)

k,sa := 2 ∧
(
β
√
S
√
γk,sa‖xk‖Z−1

k,sa

)
ξ

(r)

k,sa := BrR ∧
(
τk,sa‖xk‖Z−1

k,sa

)



Algorithm 3 GLM-RLSVI
1: Input:S,A, H,Φ, d,W , λ
2: V k,H+1(s) = 0 ∀s ∈ S, k ∈ N
3: for k ← 1, 2, 3, . . . do
4: Observe current context xk
5: for s ∈ S, a ∈ A do
6: P̂k(·|s, a)← ∇Φ(Ŵk,saxk)

7: r̂k(s, a)← 〈θ̂k,sa, xk〉
8: Compute conf. intervals using eqns. (10), (11)
9: for h← H,H − 1, · · · , 1, and s ∈ S do

10: for a ∈ A do
11: ϕ = (H − h)ξ

(p)

k,sa + ξ
(r)

k,sa

12: Draw sample bk,h(s, a) ∼ N(0, SHϕ)

13: Qk,h(s, a) = P̂>k,saV k,h+1 + r̂k(s, a) +
bk,h(s, a)

14: πk,h(s) = arg maxaQk,h(s, a)

15: V k,h(s) = Qk,h(s, πk,h(s))
16: Unroll a trajectory in Mk using πk.
17: Update Ŵsa and θ̂sa for observed samples.

The algorithm, thus, generates exploration policies by
using perturbed rewards for planning. Similarly to Russo
(2019), we can show the following bound for the expected
regret incurred by GLM-RLSVI:
Theorem 4.7. For any contextual MDP with given link
function Φ, in Algorithm 3, if the MDP parameters for
Mk are estimated using Algorithm 1, with reward bonuses
bk,h(s, a) ∼ N(0, SHϕk,h(s, a)) where ϕk,h(s, a) is de-
fined in Line. 11, the algorithm satisfies:

R̄(K) = E

[
K∑
k=1

V ∗k − V
πk

k

]

= Õ

((√
dmaxs,a ‖W ∗sa‖F√

α
+
d

α

)
β
√
H7S3AK

)

The proof of the regret bound is given in Appendix B.2.
Our regret bound is again worse by a factor of

√
H when

compared to the Õ(H3S3/2
√
AK) bound from Russo

(2019) for the tabular case. Therefore, such randomized
bonus based exploration algorithms can also be used in
the CMDP framework with similar regret guarantees as
the tabular case.

5 LOWER BOUND FOR GLM CMDP

In this section, we show a regret lower bound by con-
structing a family of hard instances for the GLM-CMDP
problem. We build upon the construction of Osband and
Van Roy (2016) and Jaksch et al. (2010) for the analysis7:

7The proof is deferred to the appendix due to space con-
straints.

Theorem 5.1. For any algorithm A, there exists CMDP’s
with S states, A actions, horizon H and K ≥ dSA for
logit and linear combination case, such that the expected
regret of A (for any sequence of initial states ∈ SK ) after
K episodes is:

E[R(K;A,M1:K , s1:K)] = Ω(H
√
dSAK)

The lower bound has the usual dependence on MDP pa-
rameters in the tabular MDP case, with an additional
O(
√
d) dependence on the context dimension. Thus, our

upper bounds have a gap of O(H
√
dS) with the lower

bound even in the arguably simpler case of Example 2.4.

6 IMPROVED CONFIDENCE SETS
FOR STRUCTURED SPACES

In Section 3, we derived confidence sets for W ∗ for the
case when it lies in a bounded set. However, in many
cases, we have additional prior knowledge about the prob-
lem in terms of possible constraints over the setW . For
example, consider a healthcare scenario where the con-
text vector contains the genomic encoding of the patient.
For treating any ailment, it is fair to assume that the pa-
tient’s response to the treatment and the progression in
general depends on a few genes rather than the entire
genome which suggests a sparse dependence of the tran-
sition model on the context vector x. In terms of the
parameter W ∗, this translates as complete columns of the
matrix being zeroed out for the irrelevant indices. Thus,
it is desirable to construct confidence sets which take this
specific structure into account and give more problem
dependent bounds.

In this section, we show that it is possible to convert a
generic regret guarantee of an online learner to a confi-
dence set. If the online learner adapts to the structure
of W , we would get the aforementioned improvement.
The conversion proof presented here is reminiscent of the
techniques used in Abbasi-Yadkori et al. (2012) and Jun
et al. (2017) with close resemblance to the latter. For this
section, we use Xt to denote the t× d shaped matrix with
each row as xi and Ct as t× S shaped matrix with each
row i being (Wixi)

>8. Also, set W t := Z−1
t+1X

>
t Ct. Us-

ing a similar notation as before, we can give the following
guarantee.

Theorem 6.1 (Multinomial GLM Online-to-confidence
set conversion). Assume that loss function li defined in
eq. (5) is α-strongly convex with respect to Wx. If an
online learning oracle takes in the sequence {xi, yi}ti=1,
and produces outputs {Wi}ti=1 for an input sequence

8We again solely consider the estimation problem for a single
(s, a) pair and study a t-indexed online estimation problem.



{xi, yi}ti=1, such that:

t∑
i=1

li(Wi)− li(W ) ≤ Bt ∀W ∈ W, t > 0,

then with W t as defined above, with probability at least
1− δ, for all t ≥ 1, we have

‖W ∗ −W t‖2Zt+1
≤ γt

where γt := γ′t(Bt) + λB2S − (‖Ct‖2F − 〈W t, X
>
t Ct〉),

γ′t(Bt) := 1 + 4
αBt + 8

α2 log
(

1
δ

√
4 + 8Bt

α + 16
α4δ2

)
.

The complete proof can be found in Appendix E. Note
that, all quantities required in the expression γt can be in-
crementally computed. The required quantities are Zt and
Z−1
t along with X>t Ct which are incrementally updated

with O(poly(S, d)) computation. Also, we note that this
confidence set is meaningful when Bt is poly-logarithmic
in t which is possible for strongly convex losses as shown
in Jun et al. (2017). The dependence on S and d is the
same as the previous construction, but the dependence on
the strong convexity parameter is worse.

Column sparsity of W ∗ Similar to sparse stochastic
linear bandit, as discussed in Abbasi-Yadkori et al. (2012),
one can use an online learning method with the group
norm regularizer (‖W‖2,1). Therefore, if an efficient on-
line no-regret algorithm has an improved dependence on
the sparsity coefficient p, we can get an O(

√
p log d) size

confidence set. This will improve the final regret bound
to Õ(

√
pdT ) as observed in the linear bandit case. To

our knowledge, even in the sparse adversarial linear re-
gression setting, obtaining an efficient and sparsity aware
regret bound is an open problem.

7 DISCUSSION

Here, we discuss the obtained regret guarantees for our
methods along with the related work. Further, we outline
the algorithmic/analysis components which are different
from the tabular MDP case and lead to interesting open
questions for future work.

7.1 RELATED WORK

Contextual MDP To our knowledge, Hallak et al.
(2015) first used the term contextual MDPs and studied
the case when the context space is finite and the context
is not observed during interaction. They propose CECE,
a clustering based learning method and analyze its regret.
Modi et al. (2018) generalized the CMDP framework and

proved the PAC exploration bounds under smoothness
and linearity assumptions over the contextual mapping.
Their PAC bound is incomparable to our regret bound as
a no-regret algorithm can make arbitrarily many mistakes
∆k ≥ ε as long as it does so sufficiently less frequently.

Our work can be best compared with Abbasi-Yadkori and
Neu (2014) and Dann et al. (2019) who propose regret
minimizing methods for CMDPs. Abbasi-Yadkori and
Neu (2014) consider an online learning scenario where
the values pk(s′|s, a) are parameterized by a GLM. The
authors give a no-regret algorithm which uses confidence
sets based on Abbasi-Yadkori et al. (2012). However,
their next state distributions are not normalized which
leads to invalid next state distributions. Due to these mod-
elling errors, their results cannot be directly compared
with our analysis. Even if we ignore their modelling er-
ror, in the linear combination case, we get an Õ(S

√
A)

improvement. Similarly, Dann et al. (2019) proposed an
OFU based method ORLC-SI for the linear combina-
tion case. Their regret bound is Õ(

√
S) worse than our

bound for GLM-ORL. In addition, the work also showed
that obtaining a finite mistake bound guarantees for such
CMDPs requires a non-trivial and novel confidence set
construction. In this paper, we show that a polylog(K)
mistake bound can still be obtained. For a quick compari-
son, Table 1 shows the results from the two papers.

(Generalized) linear bandit Our reward model is
based on the (stochastic) linear bandit problem first stud-
ied by Abe et al. (2003). Our work borrows key results
from Abbasi-Yadkori et al. (2011) for both the reward
estimator and during analysis for the GLM case. Extend-
ing the linear bandit problem, Filippi et al. (2010) first
proposed the generalized linear contextual bandit setting
and showed a O(d

√
T ) regret bound. We, however, lever-

age the approach from Zhang et al. (2016) and Jun et al.
(2017) who also studied the logistic bandit and GLM
Bernoulli bandit case. We extend their proposed algo-
rithm and analysis to a generic categorical GLM setting.
Consequently, our bounds also incur a dependence on
the strong convexity parameter 1

α of the GLM which was
recently shown to be unavoidable by Foster et al. (2018)
for proper learning in the closely related online logistic
regression problem.

Regret analysis in tabular MDPs Auer and Ortner
(2007) first proposed a no-regret online learning algo-
rithm for average reward infinite horizon MDPs, and the
problem has been extensively studied afterwards. More
recently, there has been an increased focus on fixed hori-
zon problems where the gap between the upper and lower
bounds has been effectively closed. Azar et al. (2017) and
Dann et al. (2019), both provide optimal regret guarantees



Algorithm RLinear(K) RLogit(K) Px(·|s, a) normalized

Algorithm 1 (Abbasi-Yadkori and Neu, 2014) Õ(dH3S2A
√
K) 7 7

ORLC-SI (Dann et al., 2019) Õ(dH2S3/2
√
AK) 7 7

GLM-ORL (this work) Õ(dH2S
√
AK) Õ(dH2S3

√
AK) 3

Table 1: Comparison of regret guarantees for CMDPs. Last column denotes whether the transition dynamics Px(·|s, a)
are normalized in the model or not.

(Õ(H
√
SAK)) for tabular MDPs. Another series of pa-

pers (Osband et al., 2013, 2016; Russo et al., 2018) study
Thompson sampling based randomized exploration meth-
ods and prove Bayesian regret bounds. Russo (2019) re-
cently proved a worst case regret bound for RLSVI-style
methods (Osband et al., 2016). The algorithm template
and proof structure of GLM-RLSVI is borrowed from
their work.

Feature-based linear MDP Yang and Wang (2019a)
consider an RL setting where the MDP transition dy-
namics are low-rank. Specifically, given state-action fea-
tures φ(s, a), they assume a setting where p(s′|s, a) :=∑d
i=1 φi(s, a)νi(s

′) where νi are d base distributions
over the state space. This structural assumption guar-
antees that the Qπ(s, a) value functions are linear in the
state-action features for every policy. Yang and Wang
(2019b); Jin et al. (2019) have recently proposed regret
minimizing algorithms for the linear MDP setting. Al-
though, their algorithmic structure is similar to ours (lin-
ear bandit based bonuses), the linear MDP setting is only
superficially related to CMDP. In our case, the value func-
tions are not linear in the contextual features for every
policy and/or context. Thus, the two MDP frameworks
and their regret analyses are incomparable.

7.2 CLOSING THE REGRET GAP

From the lower bound in Section 5, it is clear that the
regret bound of GLM-ORL is sub-optimal by a factor
of Õ(H

√
dS). As mentioned previously, for episodic

MDPs, Azar et al. (2017) and Dann et al. (2019) propose
minimax-optimal algorithms. The key technique in these
analyzes is to directly build a confidence interval for the
value functions and use a refined analysis using empirical
Bernstein bonuses based on state-action visit counts saves
a factor of O(

√
HS). In our case, we use a Hoeffding

style bonus for learning the next state distributions to de-
rive confidence sets for the value function. Further, the
value functions in GLM-CMDP do not have a nice struc-
ture as a function of the context variable and therefore,
these techniques do not trivially extend to CMDPs. Simi-
larly, the dependence on context dimension d is typically

resolved by dividing the samples into phases which make
them statistically independent (Auer, 2002; Chu et al.,
2011; Li et al., 2017). However, for CMDPs, these filter-
ing steps cannot be easily performed while ensuring long
horizon optimistic planning. Thus, tightening the regret
bounds for CMDPs is highly non-trivial and we leave this
for future work.

8 CONCLUSION AND FUTURE WORK

In this paper, we have proposed optimistic and random-
ized no-regret algorithms for contextual MDPs which
are parameterized by generalized linear models. We pro-
vide an efficient online Newton step (ONS) based update
method for constructing confidence sets used in the algo-
rithms. This work also outlines potential future directions:
close the regret gap for tabular CMDPs, devise an efficient
and sparsity aware regret bound and investigate whether
a near-optimal mistake and regret bound can be obtained
simultaneously. Lastly, extension of the framework to
non-tabular MDPs is an interesting problem for future
work.
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Improved algorithms for linear stochastic bandits. In
Advances in Neural Information Processing Systems,
pages 2312–2320.

Abbasi-Yadkori, Y., Pal, D., and Szepesvari, C. (2012).



Online-to-confidence-set conversions and application
to sparse stochastic bandits. In Artificial Intelligence
and Statistics, pages 1–9.

Abe, N., Biermann, A. W., and Long, P. M. (2003). Rein-
forcement learning with immediate rewards and linear
hypotheses. Algorithmica, 37(4):263–293.

Agarwal, A. (2013). Selective sampling algorithms for
cost-sensitive multiclass prediction. In International
Conference on Machine Learning, pages 1220–1228.

Auer, P. (2002). Using confidence bounds for exploitation-
exploration trade-offs. Journal of Machine Learning
Research, 3(Nov):397–422.

Auer, P. and Ortner, R. (2007). Logarithmic online regret
bounds for undiscounted reinforcement learning. In
Advances in Neural Information Processing Systems,
pages 49–56.

Azar, M. G., Osband, I., and Munos, R. (2017). Minimax
regret bounds for reinforcement learning. In Proceed-
ings of the 34th International Conference on Machine
Learning-Volume 70, pages 263–272. JMLR. org.

Chu, W., Li, L., Reyzin, L., and Schapire, R. (2011).
Contextual bandits with linear payoff functions. In Pro-
ceedings of the Fourteenth International Conference
on Artificial Intelligence and Statistics, pages 208–214.

Dann, C., Li, L., Wei, W., and Brunskill, E. (2019). Policy
certificates: Towards accountable reinforcement learn-
ing. In International Conference on Machine Learning,
pages 1507–1516.

Filippi, S., Cappe, O., Garivier, A., and Szepesvári, C.
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A PROOF OF THEOREM 3.1

We closely follow the analysis from Zhang et al. (2016)
and use properties of the categorical output space to adapt
it to our case. The analysis is fairly similar, but carefully
manipulating the matrix norms saves a factor of O(S)
in the confidence widths. For notation, we use ∇lt(Wt)
to refer to the derivative with respect to the matrix for
loss lt and ∇lt(Wtxt) for the derivative with respect to
the projection Wtxt. Bp denotes the upper bound on the
`2-norm of each rowW (i) andR is the assumed bound on
the context norm ‖x‖2. Now, using the strong convexity
of the loss function lt with respect to Wtxt, for all t, we
have:

lt(Wt)− lt(W ∗) ≤ 〈∇lt(Wtxt),Wtxt −W ∗xt〉
− α

2 ‖W
∗xt −Wtxt‖22︸ ︷︷ ︸

:=bt

Taking expectation with respect to the categorical sample
yt, we get:

0 ≤ Eyt [lt(Wt)− lt(W ∗)]
≤ Eyt [〈∇lt(Wtxt),Wtxt −W ∗xt〉]− α

2 bt

≤ Eyt [〈∇lt(Wtxt),Wtxt −W ∗xt〉]− α
2 bt (16)

where the lhs is obtained by using the calibration prop-
erty from eq. (6). Now, for the first term on rhs, we
have:

Eyt [〈∇lt(Wtxt),Wtxt −W ∗xt〉]
= Eyt [〈∇Φ(Wtxt)− yt,Wtxt −W ∗xt〉]
= (p̃t − pt)>(Wt −W ∗)xt
= (p̃t − yt)>(Wt −W ∗)xt︸ ︷︷ ︸

:=I

+ (yt − pt)>(Wt −W ∗)xt︸ ︷︷ ︸
:=ct

(17)

where p̃t = ∇Φ(Wtxt) and E[yt] = pt = ∇Φ(W ∗xt).
We bound the term I using the following lemma:

Lemma A.1.

〈∇lt(Wtxt),Wtxt −W ∗xt〉

≤
‖Wt −W ∗‖Zt+1

2η
−
‖Wt+1 −W ∗‖Zt+1

2η

+ 2η‖xt‖2Z−1
t+1

(18)

Proof. To prove this, we go back to the update rule in (7)
which has the following form:

Y = arg min
W∈W

‖W −X‖2M
2

+ ηa>Wb

with Y = Wt+1, X = Wt, a = ∇lt(Wtxt) = p̃t − yt,
b = xt and M = Zt+1. For a solution to any such opti-
mization problem, by the first order optimality conditions,
we have:

〈(Y −X)M + ηab>,W − Y 〉 ≥ 0

(Y −X)MW ≥ (Y −X)MY

− ηa>(W − Y )b

Using this first order condition, we have

‖X −W‖2M − ‖Y −W‖2M

=

S∑
i=1

XiMXi +W iMW i − Y iMY i

−W iMW i + 2(Y i −Xi)MW i

≥ ‖X − Y ‖2M − 2ηa>(W − Y )b

= ‖X − Y ‖2M + 2ηa>(Y −X)b

− 2ηa>(W −X)b

≥ arg min
A∈RS×d

‖A‖2M + 2ηa>Ab− 2ηa>(W −X)b (19)

Noting that a = p̃t − yt, we get

arg min
A∈RS×d

‖A‖2M + 2ηa>Ab ≥
S∑
i=1

−η2a2
i ‖b‖2M−1

≥ −4η2‖b‖2M−1

Substituting this and W = W ∗ along with other terms in
ineq. (19) proves the stated lemma (ineq. (18)).

Thus, from eqs. (16), (17) and (18), we have

‖Wt+1 −W ∗‖Zt+1

≤ ‖Wt −W ∗‖Zt
− ηα

2
bt + 2ηct + 4η2‖xt‖2Z−1

t+1

(20)

Bounding the first term on the rhs similarly, and tele-
scoping the sum, we get:

‖Wt+1 −W ∗‖Zt+1
+
ηα

2

t∑
i=1

bi

≤ ‖W ∗‖Z1
+ 2η

t∑
i=1

ci + 4η2
t∑
i=1

‖xi‖2Z−1
i+1

≤ λ‖W ∗‖2F + 2η

t∑
i=1

ci + 4η2
t∑
i=1

‖xi‖2Z−1
i+1

(21)

We will now bound the sum
∑t
i=1 ci in ineq. (21) using

Bernstein’s inequality for martingales in the same manner
as Zhang et al. (2016):



Lemma A.2. With probability at least 1− δ, we have:

t∑
i=1

ci ≤ 4BpR+
α

4

t∑
i=1

bi +

(
4

α
+

8BpR

3

)
τt (22)

where τt = log(2d2 logStet2/δ).

Proof. The result can be easily derived from the proof
of Lemma 5 in Zhang et al. (2016). We provide the key
steps here for completeness.

We first note that ct is a martingale difference sequence
with respect to filtration Ft induced by the first t rounds
including the next context xt+1:

E
[
(yt − pt)>(Wt −W ∗)xt|Ft−1

]
= E [(yt − pt)|Ft−1]

>
(Wt −W ∗)xt = 0

Further, each term in this martingale series can be
bounded as:

|ct| = (yt − pt)>(Wt −W ∗)xt
≤ ‖(yt − pt)‖1‖(Wt −W ∗)xt‖∞
≤ 4BpR

Similarly, for martingale Ct :=
∑t
i=1 ci, we bound the

conditional variance as

Σ2
t =

t∑
i=1

Eyi
[(

(yt − pt)>(Wt −W ∗)xt
)2]

≤
t∑
i=1

Eyi
[(
y>t (Wt −W ∗)xt

)2]
≤

t∑
i=1

‖(Wt −W ∗)xt‖22︸ ︷︷ ︸
:=At

Thus, we have a natural upper bound for the conditional
variance which is Σ2

t ≤ 4B2
pR

2St. Now, consider two
scanarios: CASE I: At ≥ 4B2

pR
2/St and CASE II:

4B2
pR

2/St ≤ At ≤ 4B2
pR

2St.

CASE I: Here, we directly bound the sum as

Ct ≤
t∑
i=1

|ci| ≤ 2

t∑
i=1

‖(Wt −W ∗)xt‖2

≤ 2

√√√√t

t∑
i=1

‖(Wt −W ∗)xt‖22 ≤ 4BpR

CASE II: We directly use the expression after applying
Bernstein’s inequality along with the peeling technique

from Zhang et al. (2016). Using that, we have:

P

[
Ct ≥ 2

√
Atτt +

8BpRτt
3

]
≤

m∑
j=− logS

P
[
Ct ≥ 2

√
Atτt +

8BpRτt
3

,

4BpR
22j

t
≤ At ≤

4BpR
22j+1

t

]
≤ m′e−τt

wherem = logSt2 andm′ = m+logS = logS2t2. We
set τt = log 2m′t2

δ , we get that with probability at least
1− δ/2t2, we have:

Ct ≤ 2
√
Atτt +

8BpRτt
3

Taking a union bound over t ≥ 0 and substituting At =∑t
i=1 bi, with probability at least 1− δ, for all t ≥ 0, we

get:

t∑
i=1

ci ≤ 4BpR+ 2

√√√√τt

t∑
i=1

bi +
8BpR

3 τt

Using the RMS-AM inequality, we get the desired expres-
sion:

t∑
i=1

ci ≤ 4BpR+
α

4

t∑
i=1

bi +

(
4

α
+

8BpR

3

)
τt

Substituting the high probability upper bound over∑t
i=1 ci in eq. (21), we get:

‖Wt+1 −W ∗‖Zt+1

≤ λ‖W ∗‖2F + 2η
[
4BpR+

( 4

α
+

8

3
BpR

)
τt

]
+ 4η2

t∑
i=1

‖xt‖2Z−1
t+1

(23)

For getting the final result, we now bound the elliptic
potential using the following Lemma from Zhang et al.
(2016):

Lemma A.3 (Lemma 6, Zhang et al. (2016)).

t∑
i=1

‖xt‖2Z−1
t+1

≤ 2

ηα
log

det(Zt+1)

det(Z1)

B REGRET ANALYSIS

B.1 PROOF OF THEOREM 4.1

We now provide a complete proof of Theorem 4.1.



B.1.1 Failure events and bounding failure
probabilities

To begin with, we write the important failure events for
the algorithm F = F (r) ∪ F (p) ∪ F (O) where each sub-
event is defined as follows:

F (O) :=
{
∃K ∈ N :

K∑
k=1

∑
h,s,a

(
Pk[sh, ah = s, a|sk,1]

− I[sk,h = s, ak,h = a]
)
≥ SH

√
K log 6 log(2K)

δ1

}

F (p) :=
{
∃ s ∈ S, a ∈ A, k ∈ N :

‖Wsa − Ŵk,sa‖Zk,sa
≥ √γk,sa

}

F (r) :=
{
∃ s ∈ S, a ∈ A, k ∈ N :

‖θsa − θ̂k,sa‖Zk,sa
≥ ζk,sa

}
Using high-probability guarantees for parameter estima-

tion and concentration of measure, we have the guarantee
that:

Lemma B.1. The probabilities for failure events
F (O), F (p) and F (r) are bounded bounded by SHδ1,
SAδp and SAδr respectively.

Proof. The guarantee for F (p) follows from Theorem 3.1
in Section 3. The failure probability P (F (r)) can be
bounded by using Theorem 20.5 from Lattimore and
Szepesvári (2020).

Lastly, the failure probability P (F (O)) is directly taken
from Lemma 23 of Dann et al. (2019).

B.1.2 Regret incurred outside failure events

Lemma B.2 (Optimism). If all the confidence intervals
as computed in Algorithm 2 are valid for all episodes k,
then outside of failure event F , for all k and h ∈ [H] and
s, a ∈ S ×A, we have:

Q̃k,h(s, a) ≥ Q∗k,h(s, a)

Proof. For every episode, the lemma is true trivially for

H + 1. Assume that it is true for h+ 1. For h, we have:

Q̃k,h(s, a)−Q∗k,h(s, a)

= (P̂k(s, a)>Ṽk,h+1 + r̂k(s, a) + ϕk,h(s, a)) ∧ V max
h

− Pk(s, a)>V ∗k,h+1 − rk(s, a)

= r̂k(s, a)− rk(s, a) + P̂k(s, a)>(Ṽk,h+1 − V ∗k,h+1)

+ ϕk,h(s, a)− (Pk(s, a)− P̂k(s, a))>V ∗k,h+1

≥ −|r̂k(s, a)− rk(s, a)|+ ϕk,h(s, a)

− ‖Pk(s, a)− P̂k(s, a)‖1‖Ṽk,h+1‖∞ ≥ 0

In the second equality step, we use the fact that when
Q̃k,h(s, a) = V max

h , the requirement is trivially satisfied.
When Q̃k,h(s, a) < V max

h , the step follows by definition.
The last step uses the guarantee on confidence intervals
and the inductive assumption for h + 1. Therefore, the
estimated Q-values are optimistic by induction.

Therefore, using the optimism guarantee, we can bound
the instantaneous regret ∆k in episode k as: V ∗k,1(s) −
V πk

k,1(s) ≤ Ṽk,1(s)− V πk

k,1(s). Thus, we have:

∆k ≤ Ṽk,1(s)− V πk

k,1(s)

≤ (P̂k(s, a)>Ṽk,2 + r̂k(s, a) + ϕ) ∧ V max
1

− Pk(s, a)>V πk

k,2 − rk(s, a)

≤ (ϕ+ P̂k(s, a)− Pk(s, a))>Ṽk,2 + r̂k(s, a)

− rk(s, a)) ∧ V max
1 + Pk(s, a)>(V πk

k,2 − Ṽk,2)

≤ 2ϕ ∧ V max
1 + Pk(s, a)>(V πk

k,2 − Ṽk,2)

≤
∑
h,s,a

[
Pk[sh, ah = s, a|sk,1]

(2ϕ(s, a) ∧ V max
h )

]
(24)

Using Lemma B.1.1, we can show the following result:

Lemma B.3. Outside the failure event F (O), i.e., with
probability at least 1− SHδ1, the total regret R(K) can
be bounded by

R(K) ≤ SH2
√
K log 6 log 2K

δ1

+

K∑
k=1

H∑
h=1

·(2ϕk,h(sk,h, ak,h) ∧ V max
h ) (25)



Proof.

∆k ≤
∑
h,s,a

[Pk[sh, ah = s, a|sk,1](2ϕ(s, a) ∧ V max
h )]

≤
K∑
k=1

H∑
h=1

∑
s,a

(
Pk[sh, ah = s, a|sk,1]

− Ik,h(s, a)
)

(2ϕ(sk,h, ak,h) ∧ V max
h )

+

K∑
k=1

H∑
h=1

Ik,h(s, a)(2ϕ(sk,h, ak,h) ∧ V max
h )

where Ik,h(s, a) is the indicator function I[sk,h =
s, ak,h = a]. From Lemma B.1.1, we know that the first

term is bounded by SH
√
K log 6 log 2K

δ1
with probability

at least 1− SHδ1.

Before bounding the second term in ineq. (25), we state
the following Lemma from Abbasi-Yadkori et al. (2011)
which is used frequently in our analysis:

Lemma B.4 (Determinant-Trace inequality). Suppose
X1, X2, . . . , Xt ∈ Rd and for any 1 ≤ s ≤ t, ‖Xs‖2 ≤
L. Let Vt := λI +

∑t
s=1XsX

>
s for some λ ≥ 0. Then,

we have:

det(Vt) ≤
(
λ+ tL2/d

)d
The second term in ineq. (12) can now be bounded as
follows:

K∑
k=1

H∑
h=1

(2ϕ(sk,h, ak,h) ∧ V max
h )

≤
K∑
k=1

H∑
h=1

(2ξ
(r)
k,sk,h,ak,h

∧ V max
h )

+

K∑
k=1

H∑
h=1

(2V max
h+1 ξ

(p)
k,sk,h,ak,h

∧ V max
h ) (26)

We ignore the reward estimation error in eq. (26) as it
leads to lower order terms. The second expression can be
again bounded as follows:

K∑
k=1

H∑
h=1

(2V max
h+1 ξ

(p)
k,sk,h,ak,h

∧ V max
h )

≤ 2
∑
k,h

V max
h

(
1 ∧ β

√
Sγk(sk,h, ak,h)‖xk‖Z−1

k,sa,h

)
(27)

Using Lemma B.4, we see that

γk(s, a) := fΦ(k, δp) +
8η

α
log

det(Zk,sa)

det(Z1,sa)

≤ ηα

2S
+ fΦ(KH, δp) +

8η

α
log

det(ZK+1,sa)

det(Z1,sa)

≤ ηα

2S
+ fΦ(KH, δp) +

8ηd

α
log

(
1 +

KHR2

λd

)
We use fΦ(k, δp) to refer to the Zk independent terms in
eq. (9). Setting γ̄K to the last expression guarantees that
2Sγ̄K
ηα ≥ 1. We can now bound the term in eq. (27) as:

2βV max
1

√
2Sγ̄K
ηα

∑
k,h

(
1 ∧

√
ηα

2
‖xk‖Z−1

k,sa,h

)

≤ 2βV max
1

√
2Sγ̄KKH

ηα

√√√√∑
k,h

(
1 ∧ ηα

2
‖xk‖2Z−1

k,sa,h

)
(28)

Ineq. (28) follows by using Cauchy-Schwarz inequality.
We now bound the elliptic potential inside the square root
in ineq. (28):

Lemma B.5. For any K ∈ N, we have:∑
k,h

(
1 ∧ ηα

2
‖xk‖2Z−1

k,sa,h

)
≤ 2H

∑
s,a

log

(
detZk+1,sa

detZk,sa

)

Proof. Note that, instead of summing up the weighted
operator norm with changing values of Zk,h for each
observed transition of a pair (s, a), we keep the matrix
same for all observations in an episode. Note that, Zk
denotes the matrix at the beginning of episode k and
therefore, does not include the terms xkx>k . Thus, for any
episode k:

H∑
h=1

(
1 ∧ ηα

2
‖xk‖2Z−1

k,sa,h

)
≤ 2

∑
s,a

H∑
h=1

Ik,h(s, a) log
(

1 +
ηα

2
‖xk‖2Z−1

k,sa

)
= 2

∑
s,a

Nk(s, a) log
(

1 +
ηα

2
‖xk‖2Z−1

k,sa

)
≤ 2

∑
s,a

Nk(s, a) log
(

1 +Nk(s, a)
ηα

2
‖xk‖2Z−1

k,sa

)
= 2H

∑
s,a

log

(
detZk+1,sa

detZk,sa

)
where in the last step, we have used the following:

Zk+1 = Z
1/2
k

(
1 +

ηα

2
NkZ

−1/2
k xkx

>
k Z
−1/2
k

)
Z

1/2
k



and then bound the determinant ratio using

detZk+1 = detZk

(
1 +Nk

ηα

2
‖xk‖2Z−1

k

)

Finally, by using Lemma B.4, we can bound the term as

K∑
k=1

H∑
h=1

(2V max
h+1 ξ

(p)
k,sk,h,ak,h

∧ V max
h )

≤ 4βV max
1

√
2Sγ̄KKH

ηα

√
2HSAd log

(
1 +

KHR2

λd

)
Now, we set each individual failure probabilityδ1 = δp =
δr = δ/(2SA+SH). Upon taking a union bound over all
events, we get the total failure probability as δ. Therefore,
with probability at least 1− δ, we can bound the regret of
GLM-ORL as

R(K) = Õ

((√
dmaxs,a ‖W ∗sa‖F√

α
+
d

α

)
βSH2

√
AK

)

where maxs,a ‖W ∗sa‖F is replaced by the problem depen-
dent upper bound assumed to be known apriori.

B.2 PROOF OF THEOREM 4.7

Our analysis will closely follow the proof from Russo
(2019). We start by writing the concentration result for
estimating MDP Mk by using Algorithm 1 and the linear
bandit estimators. For notation, we use M̂k to denote the
MDP constructed using the estimates Ŵk and θ̂k. The
perturbed MDP used in the algorithm is denoted by Mk

and M̃k will denote an MDP constructed using another
set of i.i.d. reward bonuses as Mk. Specifically, we have:

Lemma B.6. LetMk be the following set of MDPs:

Mk := {(P ′, R′) : ∀(h, s, a), |(R′(s, a)−Rk(s, a))

+ 〈P ′(s, a)− Pk(s, a), Vk,h+1〉| ≤ ϕk,h(s, a)}

where ϕ2
k,h(s, a) = (β

√
Sγk,sa(H − h) +

ζk,sa)‖xk‖Z−1
k,sa

. If we choose δp = δr = π2/SA,
then, we have:

∑
k∈N

Pk[M̂k /∈Mk] ≤ π2

6

Proof. The proof follows from the analysis in Ap-
pendix B.1 where the union bound over all (s, a) pairs
gives the total failure probability to be π2

6 .

Given the concentration result, Lemma 4 from Russo
(2019) directly applies to the CMDP setting in the follow-
ing form:

Lemma B.7. Let π∗k be the optimal policy for MDP
Mk. If M̂k ∈ Mk and reward bonuses bk,h(s, a) ∼
N(0, HSϕ2

k,h(s, a)), then we have

P
[
vπk

Mk
≥ vπ

∗

Mk
|Hk−1

]
≥ F(−1)

where M̂k is the estimated MDP,Mk is the MDP obtained
after perturbing the rewards and F(·) is the cdf for the
standard normal distribution.

In a similar fashion, the following result can also be easily
verified:

Lemma B.8. For an absolute constant c = F(−1)−1 ≤
6.31, we have:

R(K) := EAlg

[
K∑
k=1

v∗k(sk,1)− vπk

k (sk,1)

]

≤ (c+ 1)E

[
K∑
k=1

∣∣∣vπk

Mk
− vπk

Mk

∣∣∣]

+ cE

[
K∑
k=1

∣∣∣vπk

M̃k
− vπk

Mk

∣∣∣]+H
π2

6

We will now bound the first term on the rhs of
Lemma B.8 to get the final regret bound. The second term
can be bounded in the same manner. For each episode,
the summand in the first term can be written as:

vπk

M
(sk,1)− vπk

Mk
(sk,1)

=
∣∣∣E[ H∑

h=1

(
〈Pk(sk,h, ak,h)− P̂k(sk,h, ak,h), V k,h+1〉

+ r̂k(sk,h, ak,h)− rk(sk,h, ak,h)

+ bk,h(sk,h, ak,h)
)∣∣∣Hk−1

]∣∣∣
≤

∣∣∣∣∣E
[
H∑
h=1

〈
Pk(sk,h, ak,h)− P̂k(sk,h, ak,h), V k,h+1

〉]

+ E

[
H∑
h=1

rk(sk,h, ak,h)− r̂k(sk,h, ak,h)|Hk−1

] ∣∣∣∣∣
+ E

[
H∑
h=1

|bk,h(sk,h, ak,h)|
∣∣Hk−1

]
(29)

where V k,h+1 denotes the hth-step value of policy πk in
Mk. We will now bound each term individually where
we ignore the reward term and the variance component



due to reward uncertainty as both lead to lower order
terms. Specifically, we directly consider ϕ2

k,h(s, a) =

2
(
β
√
Sγk,sa(H − h)

)
‖xk‖Z−1

k,sa
. For the last expres-

sion in eq. (29), we focus on the first and third terms
(the reward bonuses lead to lower order terms in the final
regret bound).

Lemma B.9. We have:

E

[
K∑
k=1

H∑
h=1

|bk,h(sk,h, ak,h)|
∣∣Hk−1

]

= Õ

((√
dmaxs,a ‖W ∗sa‖F√

α
+
d

α

)
βS3/2H5/2

√
AK

)

Proof. We write bk,h(sk,h, ak,h) =√
HSϕk,h(sk,h, ak,h)ξk,h(sk,h, ak,h) where

ξk,h(sk,h, ak,h) ∼ N(0, 1). Therefore, by using
Holder’s inequality, we have:

E

[
K∑
k=1

H∑
h=1

|bk,h(sk,h, ak,h)|
∣∣Hk−1

]

≤ E
[

max
k,h,s,a

ξk,h(s, a)

]
E

[
K∑
k=1

H∑
h=1

√
HSϕk,h(sk,h, ak,h)

]
By using (sub)-Gaussian maximal inequality, we know
that

E
[

max
k,h,s,a

ξk,h(s, a)

]
= O (log(HSAK)) (30)

For the second expression, we have:

E

[
K∑
k=1

H∑
h=1

√
HSϕk,h(sk,h, ak,h)

]

≤
√
HSE

[
K∑
k=1

H∑
h=1

ϕk,h(sk,h, ak,h)

]

≤ 2H3/2
√
SE

[
K∑
k=1

H∑
h=1

1 ∧
(
β
√
S
√
γk,sa‖xk‖Z−1

k,sa

)]

where we used the definition of ξ
(p)

k,h used in Section 4.2.
Using the upper bound above along with Lemmas B.4
and B.5, we obtain the bound:

E

[
K∑
k=1

H∑
h=1

√
HSϕk,h(sk,h, ak,h)

]

= O

(
βH5/2S3/2

√
dAγ̄KK

ηα

√
log
(

1 +
KHR2

λd

))
(31)

We get the final bound on the term by combining eqs. (30)
and (31).

We now bound the first term in eq. (29):

Lemma B.10. With the ONS estimation method and the
used randomized bonus, we have:

E

∑
k,h

∣∣∣〈Pk(sk,h, ak,h)− P̂k(sk,h, ak,h), V k,h+1〉
∣∣∣


= Õ

((√
dmaxs,a ‖W ∗sa‖F√

α
+
d

α

)
β
√
H7S3AK

)

Proof. We first rewrite the expression:

E

∑
k,h

∣∣∣〈Pk(sk,h, ak,h)− P̂k(sk,h, ak,h), Vk,h+1

〉∣∣∣


≤ E

∑
k,h

‖εpk(sk,h, ak,h)‖1‖Vk,h+1‖∞


where εpk(sk,h, ak,h) = Pk(sk,h, ak,h) − P̂k(sk,h, ak,h).
Using Cauchy-Schwarz inequality, we rewrite this as:√√√√√E

∑
k,h

‖εpk(sk,h, ak,h)‖21


√√√√√E

∑
k,h

‖Vk,h+1‖2∞


For bounding the sum of values under the second square
root, we can directly use the Lemma 8 from Russo (2019):√√√√√E

∑
k,h

‖Vk,h+1‖2∞

 = Õ(H3
√
SK) (32)

For bounding the expected estimation error, we consider
two events: F (p) when the confidence widths are incorrect
and (F (p))c when the confidence intervals are valid for
all (s, a), k and h. Therefore, we have:

E

∑
k,h

‖εpk(sk,h, ak,h)‖21


= E

∑
k,h

‖εpk(sk,h, ak,h)‖21|F (p)

P (F (p))

+ E

∑
k,h

‖εpk(sk,h, ak,h)‖21|(F (p))c

P ((F (p))c)

Setting δp = 1/KH , we can bound the sum under failure
event to a constant. For the other term, we see that it is



equivalent to:

E

∑
k,h

‖εpk(sk,h, ak,h)‖21|(F (p))c

P ((F (p))c)

≤ E

∑
k,h

(
1 ∧ β

√
Sγk(sk,h, ak,h)‖xk‖Z−1

k,sa,h

)2


≤ 2β2Sγ̄K
ηα

E

∑
k,h

(
1 ∧ ηα

2
‖xk‖2Z−1

k,sa,h

)
= Õ

((
dmaxs,a ‖W ∗sa‖2F

α
+
d2

α2

)
β2S2AH

)
(33)

Combining eqs. (32) and (33), we get the desired result.

The final regret guarantee can be obtained by adding terms
from Lemma B.9 and Lemma B.10.

C PROOF OF MISTAKE BOUND FROM
SECTION 4.1.2

In order to prove the mistake bound, we need to bound
the number of episodes where the policy’s value is more
than ε-suboptimal. We start with inequality (24):

V ∗k,1(s)− V πk

k,1(s)

≤
∑
h,s,a

Pk[sh, ah = s, a|sk,1](2ϕk,h(s, a) ∧ V max
h )

We note that if ϕk,h(s, a) ≤ ε
2H for all k, h and (s, a),

then we have

V ∗k,1(s)− V πk

k,1(s)

≤
∑
h,s,a

Pk[sh, ah = s, a|sk,1]
ε

H

≤ ε

In order to satisfy the constraint, we bound each error
term as: ξ(p) ≤ ε

4H2 and ξ(r) ≤ ε
4H .

We bound the number of episodes where this constraint
is violated. For simplicity, we consider that the rewards
are known and only consider the transition probabilities

in the analysis:∑
k∈[K]

I
[
∃(s, a) s.t. ξ(p)

k,sa ≥
ε

4H2

]
≤
∑
k∈[K]

∑
s,a

I
[
β
√
S
√
γk,sa‖xk‖Z−1

k,sa
≥ ε

4H2

]
≤
∑
k∈[K]

∑
s,a

16β2SH4γk,sa
ε2

‖xk‖2Z−1
k,sa

(34)

≤ 16β2SH4γK+1

ε2

∑
k∈[K]

∑
s,a

‖xk‖2Z−1
k,sa

≤ 16β2H4γK+1

ε2

∑
s,a

∑
k∈[K]

‖xk‖2Z−1
k,sa

(35)

where in the intermediate steps, we have used the nature of
the indicator function and the fact that minimum is upper
bounded by the average. Assuming that Nk,sa denotes
the number of visits to pair (s, a) in episode k, we rewrite
the inner term as:

‖xk‖2Z−1
k+1,sa

= x>k (Zk +Nk,saxkx
>
k )−1xk

= x>k Zk,saxk −
Nk,sax

>
k Z
−1
k,saxkx

>
k Z
−1
k,saxk

1 +Nk,sax>k Z
−1
k,saxk

= ‖xk‖2Z−1
k,sa

−
Nk‖xk‖4Z−1

k,sa

1 +Nk,sa‖xk‖2Z−1
k,sa

With this setup, we get:

‖xk‖2Z−1
k,sa

=
‖xk‖2Z−1

k+1,sa

1−Nk,sa‖xk‖2Z−1
k+1,sa

≤ λ+H

λ
‖xk‖2Z−1

k+1,sa

≤ λ+H

λ
〈Z−1

k+1,sa, Nk,saxkx
>
k 〉

Using Lemma 11 from Hazan et al. (2007), the inner sum
in eq. (35), can be bounded as:

λ+H

λ

∑
k∈[K]

‖xk‖2Z−1
k+1

≤ d log

(
R2KH

λ
+ 1

)
Combining all these bounds, we get:∑
k∈[K]

I
[
∃(s, a) s.t. ξ(p)

k,sa ≥
ε

4H2

]
≤ 16(λ+H)β2dS2AH4γK+1

λε2
log

(
R2KH

λ
+ 1

)
Noting that γK+1 = O

(
d log2KH

α + S
)

, we get the final
mistake bound as:

O
(
dS2AH5 logKH

ε2

(
d log2KH

α
+ S

))



ignoring O(poly(log logKH)) terms.

D PROOF OF THE LOWER BOUND

Proof. We start with the lower bound from Jaksch et al.
(2010) adapted to the episodic setting.

Theorem D.1 (Jaksch et al. (2010), Thm. 5). For any
algorithm A′, there exists an MDP M with S states, A
actions, and horizon H , such that for K ≥ dSA, the
expected regret of A after K episodes is:

E[R(K;A′, s,M)] = Ω(H
√
SAK)

Figure 1: Hard 2-state MDP (Osband and Van Roy, 2016)

The lower bound construction is obtained by concatenat-
ing dS/2e-copies of a bandit-like 2-state MDP as shown
in figure 19. Essentially, state 1 is a rewarding state and
all but one action take the agent to state 0 with probability
δ1. The remaining optimal action transits to state 0 with
probability δ1 − ε. This makes the construction similar
to a hard Bernoulli multi-armed bandit instance which
leads to the lower bound. Now, we will construct a set of
such hard instances with the logit link function for tran-
sition probabilities. A similar construction for the linear
combination case is discussed in Appendix D. Since, the
number of next states is 2, we use a GLM with parameter
vector w∗ of shape 1 × d. Thus, for any context x, the
next state probabilities are given as:

p(1|1, a;x) =
exp(w∗ax)

1 + exp(w∗ax)
= φ(w∗ax)

If w∗ax = 0, the value turns out to be 1
2 which we choose

as δ1 − ε. For making the probability δ1 = 1
2 + ε, we

need to have w∗ax = φ−1(δ1) = c∗. We consider the case
where for each index i, all but one action has w∗a[i] = 0
and one action a∗i has w∗a∗ [i] = c∗. The sequence of con-
texts given to the algorithm comprises of K/d indicator
vectors with 1 at only one index. Therefore, for each
episode k, we get an MDP with pk(0|1, a∗k%d) = 1/2 for
one optimal action and 1/2 for all other actions. There-
fore, this is a hard instance as shown in figure 1. The

9The two state MDP is built using A/2 actions with the rest
used for concatenation. We ignore this as it only leads to a
difference in constants.

agent interacts with each such MDP Ki ≈ K/d times.
Further, these MDPs are decoupled as the context vectors
are non-overlapping. Therefore, we have:

E[R(K;A,M1:K , s1:K)]

=

d∑
i=1

E[R(Ki;A,M1:K , s1:K)]

≥
d∑
i=1

cH
√
SAK/d = cH

√
dSAK

Linear combination case Similar to the logit case, we
need to construct the sequence of hard instances in the
linear combination case. It turns out that a similar con-
struction works. Note that, in the linear combination case,
each parameter vector w∗a now directly contains the prob-
ability of moving to the rewarding state. In other words,
each index of this vector w∗a[i] corresponds to the next
state visitation probability for the base MDP Mi. There-
fore, for each index, we again set one action’s value to
1
2 + ε and all others to 0. This maintains the independence
argument and using indicator vectors as contexts, we get
the same sequence of MDPs. The same lower bound can
therefore be obtained for the linear combination case.

E OMITTED PROOFS FROM
SECTION 6

Theorem E.1 (Multinomial GLM Online-to-confidence
set conversion). Assume that loss function li defined in
eq. (5) is α-strongly convex with respect to Wx. If an
online learning oracle takes in the sequence {xi, yi}ti=1,
and produces outputs {Wi}ti=1 for an input sequence
{xi, yi}ti=1, such that:

t∑
i=1

li(Wi)− li(W ) ≤ Bt ∀W ∈ W, t > 0,

then with W t as defined above, with probability at least
1− δ, for all t ≥ 1, we have

‖W ∗ −W t‖2Zt+1
≤ γt

where γt := γ′t(Bt) + λB2S − (‖Ct‖2F − 〈W t, X
>
t Ct〉),

γ′t(Bt) := 1 + 4
αBt + 8

α2 log
(

1
δ

√
4 + 8Bt

α + 16
α4δ2

)
.

Proof. Using the strong convexity of the losses li, we
again have:

li(Wi)− li(W ∗)

≥ 〈∇li(W ∗),W ∗ −Wi〉+
α

2
‖W ∗xi −Wixi‖22



Summing this for i = 1 to t and substituting the regret
bound Bt, we get

t∑
i=1

‖W ∗xi −Wixi‖22

≤ 2

α
Bt +

2

α

t∑
i=1

〈pt − yt,W ∗xi −Wixi〉 (36)

Now, we focus on bounding the second term in the rhs.
We note that for any z ∈ RS , we have

〈pt − yt, z〉 ≤ ‖pt − yt‖2‖z‖2 ≤ 2‖z‖2

In addition, 〈ηt, z〉 := 〈pt − yt, z〉 is a martingale with re-
spect to the filtration Ft := σ(x1, y1, . . . , xt−1, yt−1, xt).
This shows that

E[Dλ
t |Ft] = E[exp(λ〈ηt, z〉 − 1

2λ
2‖z‖22)|Ft] ≤ 1

(37)

We can substitute zt = W ∗xt−Wtxt which isFt measur-
able. Now, using St =

∑t
i=1〈ηi, zi〉, ineq. (37) implies

that Mλ
t = exp

(
4λSt − 1

2λ
2
∑t
i=1 ‖zi‖22

)
is a Ft+1-

adapted supermartingale. Using the same analysis as in
Abbasi-Yadkori et al. (2012), we get the following result:

Corollary E.2 (Corollary 8, Abbasi-Yadkori et al.
(2012)). With probability at least 1− δ, for all t > 0, we
have

t∑
i=1

〈ηi, zi〉

≤

√√√√√2

(
1 +

t∑
i=1

‖zi‖22

)
ln

 1
δ

√√√√(1 +

t∑
i=1

‖zi‖22)


Substituting this in ineq. (36), we get

t∑
i=1

‖zi‖22 −
2

α
Bt

≤ 2

α

√√√√√2

(
1 +

t∑
i=1

‖zi‖22

)
ln

 1
δ

√√√√(1 +

t∑
i=1

‖zi‖22)


We now use Lemma 2 from Jun et al. (2017), to obtain a
simplified bound:

Lemma E.3 (Lemma 2, Jun et al. (2017)). For δ ∈ (0, 1),
a ≥ 0, f ≥ 0, q ≥ 1, q2 ≤ a+ fq

√
log q

δ implies

q2 ≤ 2a+ f2 log

(√
4a+ f4/(4δ2)

δ

)

With q :=
√

1 +
∑t
i=1 ‖zi‖22, a := 1 + 2

αBt and f =

2
√

2
α , we now have:

t∑
i=1

‖W ∗xi −Wixi‖22 ≤ γ′t (38)

with γ′t := 1 + 4
αBt + 8

α2 log

(
1
δ

√
4 + 8Bt

α + 16
α4δ2

)
.

We can rewrite ineq. (38) as

‖XtW
∗> − Ct‖2F ≤ γ′t (39)

If we center this quadratic form around

W t := arg min
W

‖XtW
> − Ct‖2F + λ‖W‖2F

= Z−1
t+1X

>
t Ct

we can rewrite the set as:

‖W ∗ −W t‖2Zt+1

≤ λB2
pS + γ′t −

(
‖W t‖2F + ‖XtW

>
t − Ct‖2F

)
Simplifying the expression on the rhs gives the stated
result.
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