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1 Introduction
The Oxford English Dictionary defines precision medicine as “medical care designed to optimize efficiency
or therapeutic benefit for particular groups of patients, especially by using genetic or molecular profiling.”
It is not an entirely new idea: physicians from ancient times have recognized that medical treatment needs
to consider individual variations in patient characteristics (Konstantinidou et al., 2017). However, the
modern precision medicine movement has been enabled by a confluence of events: scientific advances in
fields such as genetics and pharmacology, technological advances in mobile devices and wearable sensors,
and methodological advances in computing and data sciences.

This chapter is about bandit algorithms: an area of data science of special relevance to precision medicine.
With their roots in the seminal work of Bellman, Robbins, Lai and others, bandit algorithms have come
to occupy a central place in modern data science (see the book by Lattimore and Szepesvári (2020) for an
up-to-date treatment). Bandit algorithms can be used in any situation where treatment decisions need to be
made to optimize some health outcome. Since precision medicine focuses on the use of patient characteristics
to guide treatment, contextual bandit algorithms are especially useful since they are designed to take such
information into account.

The role of bandit algorithms in areas of precision medicine such as mobile health and digital phenotyping
has been reviewed before (Tewari and Murphy, 2017; Rabbi et al., 2019). Since these reviews were published,
bandit algorithms have continued to find uses in mobile health and several new topics have emerged in the
research on bandit algorithms. This chapter is written for quantitative researchers in fields such as statistics,
machine learning, and operations research who might be interested in knowing more about the algorithmic
and mathematical details of bandit algorithms that have been used in mobile health.

We have organized this chapter to meet two goals. First, we want to provide a concise exposition of basic
topics in bandit algorithms. Section 2 will help the reader become familiar with basic problem setups and
algorithms that appear frequently in applied work in precision medicine and mobile health (see, for example,
Paredes et al. (2014); Piette et al. (2015); Rabbi et al. (2015); Piette et al. (2016); Yom-Tov et al. (2017);
Rindtorff et al. (2019); Forman et al. (2019); Liao et al. (2020); Ameko et al. (2020); Aguilera et al. (2020);
Tomkins et al. (2021)). Second, we want to highlight a few advanced topics that are important for mobile
health and precision medicine applications but whose full potential remains to be realized. Section 3 will
provide the reader with helpful entry points into the bandit literature on non-stationarity, robustness to
corrupted rewards, satisfying additional constraints, algorithmic fairness, and causality.

∗These authors made equal contributions to the writing of this chapter.

1



2 Basic Topics
In this section, we begin by introducing the most simple of all bandit problems: the multi-armed bandit.
Then we discuss a more advanced variant called contextual bandit that is especially suitable for precision
medicine applications. The last topic we discuss in this section is offline learning which deals with algorithms
that can use already collected data. The offline learning setting is to be contrasted with the online learning
setting where the bandit algorithm has control over the data it collects.

2.1 Multi-armed Bandit
In recent years, the multi-armed bandit (MAB) framework has attracted a lot of attention in many application
areas such as healthcare, marketing, and recommendation systems. MAB is a simple model that describes
the interaction between an agent1 and an environment. At every time step, the agent makes a choice from an
action2 set and receives a reward. The agent may have different goals, such as maximizing the (discounted)
cumulative reward within a time horizon, identifying the best arm, or competing with the arm with the best
risk-return trade-off etc. In this section, we focus on maximizing the cumulative rewards for simplicity. An
important observation is that the agent needs to balance between exploration and exploitation to achieve
its goal of receiving high cumulative reward. That is, both under-explored arms as well as tested-and-tried
arms with high rewards should be selected often but for different reasons: the former have the potential to
achieve high rewards and the latter are already confirmed to be good based on the past experience.

To formally define the bandit framework, we start with introducing some notation. Suppose the agent
interacts with the environment for T time steps, where T is called the horizon. In each round t ∈ [T ],
the learner chooses an action At from the action set A and receives a corresponding reward Rt ∈ R. We
denote the cardinality of A by K. The choice of At depends on the action/reward history up to time t− 1:
Ht−1 = (A1, R1, . . . , At−1, Rt−1). A policy πt is defined as a mapping from the history up to time t − 1 to
the actions. For short, we use π as the sequence of policies (π0, . . . , πT−1).

In a healthcare setting, the fundamental pattern that often occurs is the following. Of course, this simple
pattern fails to capture the full complexity of decision making in healthcare, but it is a reasonable starting
point, especially for theoretical analysis.

Algorithm 1 Bandit Framework in Healthcare
Input: Available treatment options, treatment period length T .
for t = 1, . . . , T do
A treatment option (action) is selected and delivered to the patient.
Patient’s health outcome (reward) following the treatment is recorded.

end for

In the remainder of this section, we will review bandit algorithms that learn good decision policies over
time. We focus on the two key settings: stochastic bandit and adversarial bandit. In both settings, the
algorithms aim at minimizing their regret, which measures the difference between the maximal reward one
can get, and the reward obtained by the algorithm. We will formally define regret in each setting.

2.1.1 Stochastic Multi-armed Bandit

A stochastic bandit is a set of distributions ν = (Pa : a ∈ A) and we define the environment class E as a set
of such distributions

E = {ν = (Pa : a ∈ A) : Pa ∈Ma for all a ∈ A},
1Also referred to as a learner, statistician, or decision maker.
2Since the historical roots of probability theory lie in gambling and casinos, it is not surprising that the MAB terminology

comes from imagining a slot machine in a casino. A slot machine is also called a “one-armed bandit” as it robs you of your
money. Therefore, we will use actions and arms interchangeably.
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where for each a, Ma is a set of distributions. For unstructured bandits, playing one action cannot help
the agent deduce anything about other actions. Environment classes that are not unstructured are called
structured, such as linear bandits (Abbasi-Yadkori et al., 2011), low-rank bandits (Lu et al., 2021b) and
combinatorial bandits (Cesa-Bianchi and Lugosi, 2012) etc. Throughout this chapter, we assume all bandit
instances are EKSG(1), which means the reward distribution for all K arms is 1-subgaussian.

Definition 1 (Subgaussianity). A random variable X is σ-subgaussian if for all λ ∈ R, E
[
eλX

]
≤ eλ2σ2/2.

It is not hard to see from the definition that many well-known distributions are subgaussian, e.g., any
bounded-domain distribution, Bernoulli distribution and Gaussian distributions. Intuitively, a subgaussian
distribution has tails no heavier than a Gaussian distribution. Many nice concentration inequalities have
been developed for subgaussian variables and are widely used in the proofs of bandit algorithms.

In the process of interactions, once the agent performs action at following a particular policy, the en-
vironment samples a reward Rt from the distribution Pat . The combination of an environment and agent
policy induces a probability measure on the sequence of outcomes a1, R1, . . . , aT , RT . A standard stochastic
MAB protocol is following. At every time step t = 1, . . . , T , the learning agent

1. picks an action at ∈ A following policy πt−1,

2. receives reward Rt ∼ Pat ,

3. updates its policy to πt.

We note that Pat is the conditional reward distribution of Rt given {Ht−1, at} and πt is a function from
Ht−1 to A. The expected reward of action a is defined by µa(ν)

def
= Eν [R|a] =

∫∞
−∞ rdPa(r), where R is used

as the reward variable. Then the maximum expected reward and the optimal action are given by

µ∗(ν) = max
a∈A

µa(ν) and a∗(ν) ∈ argmaxa∈A µa(ν).

According to above definition, more than one optimal actions can exist and the optimal policy is to select
an optimal action at every round. For actions whose expected rewards are less than optimal actions, we call
them sub-optimal actions and define the reward gap between action a and a∗(ν) by ∆a := µ∗(ν)− µa(ν).

As mentioned earlier, the learner’s goal is to maximize the cumulative reward ST =
∑T
t=1Rt. We now

define a performance metric called regret which is the difference between the expected reward that π∗(ν)
can obtain and E[ST ]. Minimizing the regret is equivalent to maximizing the reward. The reason why we do
not directly optimize ST is that the cumulative rewards depends on the environment and it is hard to tell
whether a policy is good or not by merely looking at the cumulative rewards unless it is compared to a good
policy. So we define the problem-dependent regret of a policy π on bandit instance ν by

RegT (π, ν) = Tµ∗(ν)− E[ST ],

where the expectation is taken over actions and rewards up to time T . The worst-case regret of a policy π
is defined by

RegT (π) = sup
ν∈E

RegT (π, ν).

We will drop π and ν from the regret when they are clear from the context.

Remark about Pure Exploration. Throughout this chapter, we focus on minimizing regret by bal-
ancing exploration and exploitation. We also want to point out that in a different setting, the exploration
cost may not be a concern and the agent just wants to output a final recommendation for the best arm
after an exploration phase. Problems of this type are called pure exploration problems. In such cases, algo-
rithms are usually evaluated by sample complexity or simple regret (Bubeck et al., 2009). Pure exploration
is also related to randomized controlled trials (RCTs) including modern variants that involve sequential
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Algorithm 2 Explore-then-Commit (ETC)

1: Input: action space A, where K = |A|, number of exploration steps, m, horizon T .
2: for t = 1, . . . , T do
3: if t ≤ mK then
4: play At = (t mod K) + 1.
5: else
6: play At = argmaxa µ̂a(mK).
7: end if
8: receive Rt.
9: end for

randomization such as sequential multiple assignment randomized trials (SMARTs) (Lei et al., 2012) and
micro-randomized trials (MRTs) (Klasnja et al., 2015). Randomized trials are typically designed to enable
estimation of treatment effects with sufficient statistical power. Since the concerns of pure exploration and
randomized controlled trials are different from those of bandit algorithms, we do not discuss them further in
this chapter. However, note that in an actual application, methodology from bandits and randomized trials
may need to be integrated. Researchers may start off with a randomized trial and follow it up with bandit
algorithm in the next iteration of their health app. They can also decide to run a randomized trial for one
health outcome while simultaneously running a bandit for a different outcome (e.g., an outcome related to
user engagement with the health app) in the same study. There is also ongoing work (Yao et al., 2020; Zhang
et al., 2021) on enabling the kind of statistical analysis done after randomized trials on data collected via
online bandit algorithms.

Explore-then-Commit (ETC). We start with a simple two-stage algorithm: Explore-then-Commit
(ETC). In the first stage of ETC, the learner plays every arm for a fixed number of times (m) and ob-
tain estimates of the expected rewards. In the second stage, the learner commits to the best arm according
to the estimates in the first stage. For every arm a, let µ̂a(t) denote the estimated expected reward up to
time t:

µ̂a(t) =
1

Ta(t)

t∑
s=1

1{As=a}Rs,

where Ta(t) =
∑t
s=1 1{As=a} is the number of times action a has been performed up to round t.

With the above definitions, we are ready to present the ETC in Algorithm 2. The overall performance of
ETC crucially depends on the parameterm. Ifm is too small, the algorithm cannot estimate the performance
of every arm accurately, so it is likely to exploit a sub-optimal arm in the second stage, which leads to high
regret. If m is too big, the first stage (explore step) plays with sub-optimal arms for too many times, so
that the regret can be large again. The art is to choose an optimal value for m in order to minimize the
total regret incurred in both stages. Specifically, ETC achieves O(T 2/3) worst-case regret3 by choosing
m = O(T 2/3) (Lattimore and Szepesvári, 2020). Sub-linear regret O(T 2/3) performance is good as a starting
point. Next, we will introduce another two classic algorithms which incur even less regret.

Upper Confidence Bound (UCB). There are several types of exploration strategies to select actions
such as greedy, Boltzmann, optimism and pessimism. Suppose the agent has reward estimates µ̂a for all
actions. A greedy exploration strategy simply selects the action with the highest µ̂a. A Boltzmann explo-
ration strategy picks each action with probability proportional to exp(ηµ̂a), where η is a tuning parameter.
Boltzmann becomes greedy as η goes to infinity. For an optimism strategy, one picks the action with the
highest reward estimate plus some bonus term, i.e. argmaxa µ̂a + bonusa. In contrast, a pessimism strategy
would pick the action: argmaxa µ̂a − bonusa.

3Ignoring parameters other than T .
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Algorithm 3 Upper Confidence Bound (UCB)

1: Input: δ, A where K = |A|.
2: for t = 1, . . . , T do
3: play At = argmaxa∈AUCBa(t− 1, δ).
4: receive reward Rt and update the upper confidence bound terms according to (1).
5: end for

Out of these strategies, UCB algorithm follows the optimism strategy, in particular, a famous principle
called optimism in the face of uncertainty (OFU), which means that one should act as if the environment
is the best possible one among those that are plausible given current experience. The reason OFU works is
that misplaced optimism gets corrected when under-explored actions are tried and low rewards are observed.
In contrast, pessimism does not work (at least in the online setting; for the offline setting things can be
different (Jin et al., 2021)) since wrong beliefs about low performance of under-explored actions do not get
a chance to get revised by collecting more data from those actions.

At every step t, the UCB algorithm updates a value called upper confidence bound defined for each action
a ∈ A and confidence level δ ∈ [0, 1] as follows.

UCBa(t− 1, δ) =

{
∞, if Ta(t− 1) = 0

µ̂a(t− 1) +
√

2 log(1/δ)
Ta(t−1)∨1 , otherwise.

(1)

The learner chooses the action with the highest UCB value at each step. Overall, UCB (Algorithm 3)
guarantees a Õ(

√
T ) worst-case regret (where the informal Õ(·) notation hides constants and logarithmic

factors).
According to the construction of upper confidence bounds, an action will be selected under two circum-

stances: under-explored (Ta(t − 1) small) or well-explored with good performance (µ̂a(t − 1) large). The
upper confidence bound for an action gets close to its true mean after being selected for enough times. A
sub-optimal action will only be played if its upper confidence bound is larger than that of the optimal arm.
However, this is unlikely to happen too often. The upper confidence bound for the sub-optimal action will
eventually fall below that of the optimal action as we play the sub-optimal actions more times. We present
the regret guarantee for UCB (Algorithm 3) in Theorem 1.

Theorem 1 (Regret for UCB Algorithm). If δ = 1/T , then the problem-dependent regret of UCB, as defined
in Algorithm 3, on any 1-subgaussian bandit ν is bounded by

RegT (UCB, ν) ≤ 3
∑
a∈A

∆a +
∑

a:∆a>0

16 log T

∆a
, (2)

where ∆a := µ∗(ν)− µa(ν) represents the corresponding gap term. The worst-case regret bound of UCB is:

RegT (UCB) = O(
√
KT log T ). (3)

Proof. We only present the worst-case regret for simplicity. For the problem-dependent regret proof, we
refer the reader to Chapter 7 in Lattimore and Szepesvári (2020).

We define a good event E as follows:

E :=

{
|µ̂a(t− 1)− µa| ≤

√
2 log(1/δ)

Ta(t− 1) ∨ 1
,∀t ∈ [T ], a ∈ A

}
.

By Hoeffding inequality and union bound, one can show that P(Ec) ≤ 2TKδ4. Next, we decompose the

5



regret.

RegT (UCB) = E

[
T∑
t=1

µ∗ −UCBa∗(t− 1, δ) + UCBa∗(t− 1, δ)−UCBAt
(t− 1, δ) + UCBAt

(t− 1, δ)− µAt

]

≤ E

[
T∑
t=1

µ∗ −UCBa∗(t− 1, δ) + UCBAt
(t− 1, δ)− µAt

]
.

The inequality in above expression is due to the action selection criterion in UCB algorithm. Condition on
event E, we have µ∗ − UCBa∗(t − 1, δ) ≤ 0 for all t ∈ [T ]; otherwise, the regret can be bounded by 2T .
Combining these arguments, we have

RegT (UCB) ≤ P(Ec) · 2T + P(E) · E

[
T∑
t=1

UCBAt
(t− 1, δ)− µAt

| E

]

≤ 4T 2Kδ4 + 2E

[
T∑
t=1

√
2 log (1/δ)

TAt
(t− 1) ∨ 1

]
(By definition of event E)

≤ 4T 2Kδ4 +
√

8 log (1/δ)
∑
a∈A

T∑
t=1

E

[√
1

TAt(t− 1) ∨ 1
1{At=a}

]

≤ 4T 2Kδ4 +
√

8 log (1/δ)
∑
a∈A

∫ Ta(T )

1

√
1/sds

≤ 4T 2Kδ4 +
√

8 log (1/δ)
√
KT = O(

√
KT log T ) (Set δ = 1/T ).

The last inequality in above is by Cauchy-Schwarz inequality.

The UCB family has many variants, one of which is to replace the upper confidence bound for every
action by µ̂a(t− 1) +

√
2 log

(
1 + t log2(t)

)
/Ta(t− 1). Even though the regret dominant terms (

√
KT log T

and
∑
a:∆a>0

log T
∆a

) for this version has the same order as those of Algorithm 3, the leading constants for the
two dominant terms become smaller.

Then one may ask the question: is it possible to further improve the regret bound of UCB and above
variant? The answer is yes. Audibert et al. (2009) proposed an algorithm called MOSS (Minimax Optimal
Strategy in the Stochastic case). MOSS replaces the upper confidence bounds in Algorithm 3 by

µ̂a(t− 1) +

√√√√max
{

log
(

T
KTa(t−1)

)
, 0
}

Ta(t− 1)
.

Under this construction, the worst-case regret of MOSS is guaranteed to be only O(
√
KT ).

However, MOSS is not always good. One can easily construct regimes where the problem-dependent
regret of MOSS is worse than UCB (Lattimore, 2015). On the other hand, the improved UCB algorithm
proposed by Auer and Ortner (2010) satisfies a problem-dependent regret that is similar to (1), but the worst-
case regret is O(

√
KT logK). Later on, by carefully constructing the upper confidence bounds, Optimally

Confidence UCB algorithm (Lattimore, 2015) and AdaUCB algorithm (Lattimore, 2018) are shown to achieve
O(
√
KT ) worst-case regret and their problem-dependent regret bounds are also not worse than that of the

UCB algorithm. There are many more UCB variants in the literature that we do not cover in this chapter.
The reader may refer to Table 2 in Lattimore (2018) for a comprehensive summary.

Successive Elimination (SE). We now describe the SE algorithm that also relies on the upper confidence
bound calculations. The idea is similar to UCB such that a sub-optimal arm is very unlikely to have large a
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Algorithm 4 Successive Elimination (SE)

1: Input: δ,A where K = |A|.
2: while A contains more than one arm do
3: play every arm in A once and update the UCBs and LCBs using (1) and (4).
4: Eliminate all arms a s.t. ∃a′ ∈ A with UCBa(t− 1, δ) < LCBa′(t− 1, δ).
5: end while

upper confidence bound if it has been selected for enough times. At every round, SE maintains a confidence
interval for the mean reward of every arm and removes all arms whose reward upper bound is smaller than
the lower bound of the biggest estimated reward arm. The procedure ends when there is only one arm
remained. We describe the SE algorithm in Algorithm 4 and define the UCB terms as (1) and LCB terms as

LCBa(t− 1, δ) =

{
∞, if Ta(t− 1) = 0

µ̂a(t− 1)−
√

2 log(1/δ)
Ta(t−1)∨1 , otherwise.

(4)

SE was first proposed in Even-Dar et al. (2006) along with a similar action elimination based algorithm:
Median Elimination (ME). They studied the probably approximately correct (PAC) setting (Haussler and
Warmuth, 2018). In particular, Even-Dar et al. (2006) shows that for given K arms, it suffices to pull the
arms for O(Kε2 log(1/δ) times to find an ε-optimal arm with probability at least 1− δ. It is not hard to prove
that SE also satisfies the following regret bound.

Theorem 2 (Regret for SE Algorithm). If δ = 1/T , the worst-case regret of SE over 1-subgaussian bandit
environments is bounded by

RegT (SE) = O(
√
KT log T ). (5)

Proof. Without loss of generality, we assume the optimal arm a∗ is unique. Define the event E by {|µ̂a(t)−
µa| ≤ ca(t, δ),∀a, t}, where ca(t, δ) =

√
2 log(1/δ)
Ta(t)∨1 denotes the confidence set width. By Hoeffding inequality

and union bound, one can show that P(Ec) ≤ 2δ4TK.
Define t as the last round when arm a is not eliminated yet. According to the elimination criterion in

SE, the reward gap term can be bounded as:

∆a := µ∗ − µa ≤ 2(ca∗(t, δ) + ca(t, δ)) = O(ca(t, δ)).

The last equality holds as Ta(t) and Ta∗(t) differ at most by 1 by construction. Since t is the last round a
being played, we have Ta(t) = Ta(T ) and ca(t) = ca(T ), which implies below property for all non-optimal
arms a:

∆a ≤ O

(√
log(1/δ)

Ta(T )

)
.

We thus obtain that under event E,

T∑
t=1

E[µ∗ − µat |E] ≤
∑

a∈A\{a∗}

Ta(T )∆a ≤ O(
√

log(1/δ))
∑
a∈A

√
Ta(T ) ≤ O(

√
KT log(1/δ)),

where the last inequality is by Cauchy-Schwarz inequality. Take δ = 1/T , RegT (SE) = O(
√
KT log T ) by

conditional expectation calculations.
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Algorithm 5 Thompson Sampling (TS)

1: Input: Bayesian bandit environment (E ,B(E), Q, P ) (B(·) is the Borel set), action set A with |A| = K.

2: for t = 1, . . . , T do
3: Sample νt ∼ Q(·|A1, R1, . . . , At−1, Rt−1).
4: Play At = argmaxi∈[K] µi(νt).
5: end for

Thompson Sampling (TS). All of the methods we have mentioned so far select their actions based on
a frequentist view. TS uses one of the oldest heuristic (Thompson, 1933) for choosing actions and addresses
the exploration-exploitation dilemma based on a Bayesian philosophy of learning. The idea is simple. Before
the game starts, the agent chooses a prior distribution over a set of possible bandit environments. At every
round, the agent samples an environment from the posterior and acts according to the optimal action in
that environment. The exploration in TS comes from the randomization over bandit environments. At the
beginning, the posterior is usually poorly concentrated, then the policy will likely explore. As more data
being collected, the posterior tends to concentrate towards the true environment and the rate of exploration
decreases. We present the TS algorithm in Algorithm 5.

To formally describe how TS works, we start with several definition related to Bayesian bandits.

Definition 2 (K-armed Bayesian bandit environment). A K-armed Bayesian bandit environment is a tuple
(E ,G, Q, P ) where (E ,G) is a measurable space and Q is a probability measure on (E ,G) called the prior.
P = (Pνa : ν ∈ E , a ∈ A) is the reward distribution for arms in bandit ν, where |A| = K.

Given a K-armed Bayesian bandit environment (E ,G, Q, P ) and a policy π, the Bayesian regret is defined
as:

BRegT (π,Q) =

∫
E
RegT (π, ν)dQ(ν).

TS has been analyzed in both of the frequentist and the Bayesian settings and we will start with the
Bayesian results.

Theorem 3 (Bayesian Regret for TS Algorithm). For a K-armed Bayesian bandit environment (E ,G, Q, P )
such that Pνa is 1-subgaussian for all ν ∈ E and a ∈ [K] with mean in [0, 1]. Then the policy π of TS satisfies

BRegT (π,Q) = O(
√
KT log T ). (6)

Proof. The proof is quite similar to that of UCB. We abbreviate µa = µa(ν) and let a∗ = argmaxa∈[K] µa be
the optimal arm. Note that a∗ is a random variable depending on ν. For every a ∈ [K], we define a clipped
upper bound term

UCBa(t− 1) = µ̂a(t− 1) +

√
2 log(1/δ)

1 ∨ Ta(t− 1)
,

where µ̂a(t− 1) and Ta(t− 1) are defined in the same way as those in UCB. We define event E such that for
all t ∈ [T ] and a ∈ A,

|µ̂a(t− 1)− µa| <

√
2 log(1/δ)

1 ∨ Ta(t− 1)
.

By Hoeffding inequality and union bound, one can show that P(Ec) ≤ 2TKδ4. This result will be used in
later steps.
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Let Ft = σ(A1, R1, . . . , At, Rt) be the σ-algebra generated by the interaction sequence up to time t. The
key insight for the whole proof is to observe below property from the definition of TS:

P(a∗|Ft−1) = P(At|Ft−1) a.s. (7)

Using above property and BRegT = E
[∑T

t=1(µa∗ − µAt)
]

= E
[∑T

t=1 E [(µa∗ − µAt) | Ft−1]
]
, we have

E [µa∗ − µAt | Ft−1] = E [µa∗ −UCBa∗(t− 1) + UCBAt(t− 1)− µAt | Ft−1] ,

and thus

BRegT = E

[
T∑
t=1

(µa∗ −UCBa∗(t− 1)) +

T∑
t=1

(UCBAt(t− 1)− µAt)

]
.

Conditioning on the high-probability event E, the first sum is negative and the second sum is of the order
O(
√
KT log(1/δ)), while BRegT ≤ 2T if conditioning on Ec. Take δ = 1/T , one can verify that BRegT =

O(
√
KT log T ).

Compared to the analysis for Bayesian regret, frequentist (worst-case) regret analysis for TS gets a lot
more technical. The key reason behind this is that the worst-case regret does not have an expectation with
respect to the prior and therefore the property in (7) cannot be used. Even though TS was well-known to
be easy to implement and competitive with state of the art methods, it lacked worst-case regret analysis for
a long time. Significant progress was made by Agrawal and Goyal (2012) and Kaufmann et al. (2012). In
Agrawal and Goyal (2012), the first logarithmic bound on the frequentist regret of TS was proven. Kaufmann
et al. (2012) provided a bound that matches the asymptotic lower bound of Lai and Robbins (1985). However,
both of these bounds were problem-dependent. The first near-optimal worst-case regret O(

√
KT log T ) was

proved by Agrawal and Goyal (2013) for Bernoulli bandits with Beta prior, where the reward is either zero
or one. For TS that uses Gaussian prior, the same work proved a O(

√
KT logK) worst-case regret. Jin et al.

(2020) proposed a variant of TS called MOTS (Minimax Optimal TS) that achieves O(
√
KT ) regret.

2.1.2 Adversarial Multi-armed Bandit

In stochastic bandit models, the rewards are assumed to be strictly i.i.d. given actions. This assumption can
be violated easily in practice. For example, the health feedback for a patient after certain treatments may
vary slightly across times and the way it varies is usually unknown. In such scenarios, a best action that
maximizes the total reward still exists, but algorithms designed for stochastic bandit environments are no
longer guaranteed to work. As a more robust counterpart to the stochastic model, we study the adversarial
bandit model in this section, in which the assumption that a single action is good in hindsight is retained
but the rewards are allowed to be chosen adversarially.

The adversarial bandit environment is often called as the adversary. In an adversarial bandit problem,
the adversary secretly chooses reward vectors r := {rt}Tt=1 where rt ∈ [0, 1]K corresponds to the rewards
over all actions at time t. In every round, the agent chooses a distribution over the actions Pt. An action
At ∈ [K] is sampled from Pt and the agent receives the reward rtAt . A policy π in this setting maps the
history sequences to distributions over actions. We evaluate the performance of policy π by the expected
regret, which is the cumulative reward difference between the best fixed action and the agent’s selections:

RegT (π, r) = max
a∈A

T∑
t=1

rta − E

[
T∑
t=1

rtAt

]
(8)

The worst-case regret of policy π is defined by

RegT (π) = sup
r∈[0,1]T×K

RegT (π, r). (9)
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It may not be very clear at the beginning that why we define the regret by comparing to the fixed best
action instead of the best action at every round. In the later case, the regret should be Reg′T (π, x) =

E
[∑T

t=1 maxa∈A rta −
∑T
t=1 rtAt

]
. However, this definition provides the adversary too much power so that

for any policy, one can show Reg′T (π, r) can be Ω(T ) for certain reward vectors r ∈ [0, 1]K×T .

Remark on randomized policy: In stochastic bandit models, the optimal action is deterministic and
the optimal policy is simply to select the optimal action at every round. However, in adversarial bandit
setting, the adversary has great power in designing the reward. It may know the agent’s policy and design
the rewards accordingly, so that a deterministic policy can incur linear regret. For example, we consider there
are two actions, whose reward is either 0 or 1 at any time. For a deterministic policy, the agent decides to
choose an action at time t. Then the adversary knows it and can set the reward of that action at time t to be
0 and the reward of the unselected action to be 1. The cumulative regret will be T after T rounds. However,
one can improve the performance by a randomized policy, e.g., choosing either action with probability 0.5,
then the adversary cannot make you incur regret 1 at every round by manipulating the reward values for
both actions.

Exponential-weight algorithm for Exploration and Exploitation (EXP3). We now study one of
the most famous adversarial bandit algorithm called EXP3. Before describing the algorithm, we define some
related terms below. In a randomized policy, the conditional probability of the action a being played is
denoted by

Pta = P(At = a | A1, R1, . . . , At−1, Rt−1).

Assuming Pta > 0 almost surely for all policies, a natural way to define the importance-weighted estimator
of rta is

R̂ta =
1{At=a}Rt

Pta
. (10)

Let Et[·] = E[· | A1, R1, . . . , At−1, Rt−1]. A simple calculation shows that R̂ta is conditionally unbiased, i.e.
Et[R̂ta] = rta. However, the variance of estimator R̂ta can be extremely large when Pta is small and rta is
non-zero. Let Ata := 1{At=a}, then the variance of the estimator is:

Vt[R̂ta] = Et[R̂
2
ta]− r2

ta = Et

[
Atar

2
ta

P 2
ta

]
− r2

ta =
r2
ta(1− Pta)

Pta
.

An alternative estimator is:

R̂ta = 1−
1{At=a}

Pta
(1−Rt). (11)

This estimator is still unbiased and its variance is

Vt[R̂ta] = y2
ta

1− Pta
Pta

,

where we define yta = 1− rta.
The best choice of the estimator R̂ta depends on the actual rewards. One should use (10) for small

rewards and (11) for large rewards. So far we have learned how to construct reward estimators for given
sampling distributions Pta. EXP3 algorithm provides a way to design the Pta terms. Let Ŝt,a =

∑t
s=1 R̂sa

be the total estimated reward until the end of round t, where R̂si is defined in (11). We present EXP3 in
Algorithm 6.

Surprisingly, even though adversarial bandit problems look more difficult than stochastic bandit problems
due to the strong power of the adversary, one can show that the adversarial regret for EXP3 algorithm has
the same order as before, i.e. O(

√
KT log T ).
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Algorithm 6 Exponential-weight Algorithm for Exploration and Exploitation (Exp3)

1: Input: T,K, η
2: Set Ŝ0,a = 0 for all a.
3: for t = 1, . . . , T do

4: Calculate Pta ←
exp(ηŜt−1,a)∑

a′∈A exp(ηŜt−1,a′)
for all a ∈ [K]

5: Sample At from Pt and receive reward Rt
6: Calculate Ŝt,a ← Ŝt−1,a + 1− 1{At=a}(1−Rt)

Pta

7: end for

Theorem 4 (Regret for EXP3 Algorithm). Let r ∈ [0, 1]T×K . With learning rate η =
√

logK/(KT ), we
have

RegT (EXP3, r) ≤ 2
√
KT logK. (12)

Proof. The proof for EXP3 is different than those for the stochastic bandit algorithms. We first define the
expected regret relative to using action a in T rounds:

RegTa =

T∑
t=1

rta − E

[
T∑
t=1

Rt

]
.

According to the definition of the adversarial bandit regret, the final result will follow if we can bound RTa
for every a ∈ A. It’s not hard to show E[ŜT,a] =

∑T
t=1 rta and Et[Rt] =

∑
a∈A Ptarta =

∑K
i=1 PtaE[R̂ta] hold

using the definition of R̂ta. Then we can re-write RTa as E
[
ŜT,a − ŜT

]
, where ŜT =

∑T
t=1

∑
a∈A PtaR̂ta.

Let Wt =
∑
a∈A exp

(
ηŜt,a

)
, Ŝ0,a = 0 and W0 = K, then one can show that

exp
(
ηŜT,a

)
≤
∑
a′∈A

exp
(
ηŜT,a′

)
= WT = K

T∏
t=1

Wt

Wt−1
= K

T∏
t=1

∑
a′∈A

Pta′ exp
(
ηR̂ta′

)
.

We next bound the ratio term

Wt

Wt−1
≤ 1 + η

∑
a′∈A

Pta′R̂ta′ + η2
∑
a∈A

Pta′R̂
2
ta′ ≤ exp

(
η
∑
a′∈A

Pta′R̂ta′ + η2
∑
a′∈A

Pta′R̂
2
ta′

)
,

using inequalities ex ≤ 1 + x+ x2 for x ≤ 1 and 1 + x ≤ ex for x ∈ R.
Combining with previous results, we have

exp
(
ηŜT,a

)
≤ K exp

(
ηŜT + η2

T∑
t=1

∑
a′∈A

Pta′R̂
2
ta′

)
.

Taking logarithm on both sides and rearranging give us

ŜT,a − ŜT ≤
logK

η
+ η

T∑
t=1

∑
a′∈A

Pta′R̂
2
ta′ . (13)

To bound RTa, we only need to bound the expectation of the second term in above. By standard (conditional)
expectation calculations, one can get

E

[
T∑
t=1

∑
a′∈A

Pta′R̂
2
ta′

]
≤ TK.

11



By substituting above inequality into (13), we get

RegTa ≤
logK

η
+ ηTK = 2

√
KT logK, (14)

where we choose η =
√

logK/(TK). By definition, the overall regret RegT (EXP3, r) has the same upper
bound as above.

We just proved the expected regret of EXP3. However, if we consider the distribution of the random
regret, EXP3 is not good enough. Define the random regret as R̂egT = maxa∈A

∑T
t=1 rta −

∑T
t=1Rt. One

can show that for all large enough T and reasonable choices of η, there exists a bandit such that the random
regret of EXP3 satisfies P(R̂egT ≥ T/4) ≥ c > 0, where c is a constant. That means EXP3 sometimes can
incur linear regret with non-trivial probability, which makes EXP3 unsuitable for practical problems. This
phenomenon is caused by the high variance of the regret distribution. In next section, we will discuss how
to resolve this problem by slightly modifying EXP3.

EXP3-IX (EXP3 with Implicit eXploration). We have learned that small Pta terms can cause enor-
mous variance on the reward estimator, which then leads to high variance on the regret distribution. Thus,
EXP3-IX (Neu, 2015) redefines the loss-estimator as

Ŷta =
1{At=a}Yt

Pta + γ
, (15)

where Yt = 1−Rt denotes the loss at round t and γ > 0. Ŷta is a biased estimator for yta = 1− rta due to γ,
but the variance can be reduced. An optimal choice for γ needs to balance the bias and variance. Other than
this slight change on the loss estimator, the remaining procedures remain the same as EXP3. The name of
’IX’ (Implicit eXploration) can be justified by the following argument:

Et[Ŷta] =
Ptayta
Pta + γ

≤ yta.

The effect of adding a γ to the denominator is that EXP3-IX tries to decrease the large losses for some
actions, so that such actions can still be chosen occasionally. As a result, EXP3-IX explores more than
EXP3. Neu (2015) has proved the following high probability regret bound for EXP3-IX.

Theorem 5 (Regret for EXP3-IX Algorithm). With η = 2γ =
√

2 logK
KT , EXP3-IX guarantees that

R̂egT (EXP3-IX) ≤ 2
√

2KT logK +

(√
2KT

logK
+ 1

)
log(2/δ) (16)

with probability at least 1− δ.

2.1.3 Lower Bound for MAB Problems

We have discussed two types of bandit models and their corresponding algorithms in regret minimization.
Then a natural question are: what is the minimal regret bound we can hope for? To answer this question,
we will introduce two types of lower bound results: minimax lower bound and instance dependent lower
bound. Both of them are useful for describing the hardness of a class of bandit problems and are often used
to evaluate the optimality of an existing algorithm. For example, suppose the worst-case regret of a policy π
matches the minimax lower bound up to a universal constant, we say that the policy π is minimax-optimal.
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Minimax Lower Bounds. We consider a Gaussian bandit environment, in which the reward for every
arm is Gaussian-distributed. We denote the class of Gaussian bandits with unit variance by EKN (1) and use
µ ∈ RK as the reward mean vector. In particular, νµ ∈ EKN (1) is a Gaussian bandit for which the ith arm has
reward distribution N (µi, 1). The following result provides a minimax lower bound for the Gaussian bandit
class EKN (1).

Theorem 6 (Minimax Lower Bound for Gaussian Bandit Class). Let K > 1 and T ≥ K−1. For any policy
π, there exists a mean vector µ ∈ [0, 1]K such that

RegT (π, νµ) = Ω(
√
KT ). (17)

Proof. To prove the lower bound, we start with constructing two bandit instances that are very similar to
each other and hard to distinguish. Let µ = (∆, 0, 0, . . . , 0) denote the mean vector for the first unit variance
Gaussian bandit. We use Pµ and Eµ to denote the probability and expectation induced by environment νµ
and policy π up to time T . To choose the second environment, let

i = argminj>1 Eµ[Tj(T )].

Define the reward mean vector for the second bandit as µ′ = (∆, 0, . . . , 0, 2∆, 0, . . . , 0), where µ′i = 2∆.
Decomposing the regret leads to

RegT (π, νµ) ≥ Pµ(T1(T ) ≤ T/2)
T∆

2
,

RegT (π, νµ′) > Pµ′(T1(T ) > T/2)
T∆

2
.

Then, applying the Bretagnolle-Huber inequality, we get

RegT (π, νµ) + RegT (π, νµ′) ≥
T∆

4
exp(−KL(Pµ,Pµ′)).

It remains to upper bound the KL-divergence term in above. By divergence decomposition, one can show
that

KL(Pµ,Pµ′) =

K∑
i=1

Eµ[Ti(T )]KL(Pi,P
′
i) = Eµ[Ti(T )]KL(N (0, 1),N (2∆, 1))

= Eµ[Ti(T )]
(2∆)2

2
≤ 2T∆2

K − 1
.

In above , we use Pi and P′i denote the reward distribution of the ith arm in νµ and νµ′ , respectively. For the
last inequality, since

∑K
j=1 Eµ[Tj(T )] = T , it holds that Eµ[Ti(T )] ≤ T

K−1 . Combining with previous results,
we know that

RegT (π, νµ) + RegT (π, νµ′) ≥
T∆

4
exp

(
− 2T∆2

K − 1

)
.

Choosing ∆ =
√

(K − 1)/4T ≤ 1/2, the result follows.

An algorithm is called minimax-optimal if its worst-case regret matches with the minimax lower bound.

Instance Dependent Lower Bounds. An algorithm with nearly minimax-optimal regret is not always
preferred, since it may fail to take advantage of environments that are not the worst case. In practice, what is
more desirable is to have algorithms that are near minimax-optimal, while their performance gets better on
“easier” instances Lattimore and Szepesvári (2020). This motivates the study of instance dependent regret.
In this section, we present two types of lower bound for instance dependent regret: one is asymptotic, the
other is finite-time.

We first define consistent policy and present the asymptotic instance-dependent lower bound result.
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Definition 3 (Consistent Policy). A policy π is consistent if over bandit environment E if for all bandits
ν ∈ E and for all p > 0 it holds that

RegT (π, ν) = O(T p) as n→∞.

Theorem 7 (Asymptotic Instance Dependent Lower Bound for Gaussian Bandits (Lattimore and Szepesvári,
2020)). For any policy π consistent over K-armed unit-variance Gaussian environments EKN (1) and any
ν ∈ EKN (1), it holds that

lim inf
T→∞

RegT (π, ν)

log T
≥

∑
i:∆i>0

2

∆i
.

A policy is called asymptotically optimal if the equality in above theorem holds. Interestingly, building
on the similar idea of Theorem 7, one can also develop a finite-time instance dependent lower bound result.

Theorem 8 (Instance Dependent Lower Bound for Gaussian Bandits (Lattimore and Szepesvári, 2020)).
Let ν ∈ EKN (1) be a K-armed Gaussian bandit with mean vector µ ∈ RK and suboptimality gaps ∆ ∈ [0,∞)K .
Define a bandit environment:

E(ν) = {ν′ ∈ EKN (1) : µi(ν
′) ∈ [µi, µi + 2∆i]}.

Suppose C > 0 and p ∈ (0, 1) are constants and π is a policy such that RegT (π, ν′) ≤ CT p for all T and
ν′ ∈ E(ν). Then the regret for instance ν is lower bounded by

RegT (π, ν) ≥ 2

(1 + ε)2

∑
i:∆i>0

(
(1− p) log T + log

(
ε∆i

8C

)
∆i

)+

, (18)

where (x)+ := max{x, 0}.

The proof for above two instance dependent lower bounds are too technical that we do not want to go
beyond. Interested readers are referred to Chapter 16 in Lattimore and Szepesvári (2020) for details.

2.2 Contextual Bandit
In many real-world applications, some side information is available to facilitate decision making. For in-
stance, in healthcare applications, it is important to make decisions based on contextual information such
as the person’s demographic information, genetic information, life history, biomarkers, and environmental
exposures. Ignoring such contextual information may lead to suboptimal decision making. To this end,
the contextual bandits setting was introduced to model the side information that determines the reward
distribution. The term “contextual bandit” is due to Langford and Zhang (2007) but similar settings have
been considered earlier under the names “bandit problems with covariates” (Clayton, 1989; Sarkar, 1991;
Yang et al., 2002) and “bandit problems with side information” (Wang et al., 2005; Goldenshluger and Zeevi,
2011). Let C be a context space for the side information. The contextual bandits setting considered in
this section is the same as the MAB described in Section 2.1 except for an extra contextual information
Ct ∈ C at each step t, respectively. We extend our modeling of the environment from ν = (Pa : a ∈ A)
to ν = (Pa,c : a ∈ A, c ∈ C), i.e. the distribution of rewards depends on both action and context. The
trajectory is extended to a sequence of triples, (At, Rt, Ct), which represents the action, rewards and context
at step t. An instantiation of the contextual bandit protocol in the healthcare setting is given in Algorithm 7.
Contextual bandits enable precision medicine by taking appropriate actions for particular patients rather
than the same action for a variety of patients. Many papers, like Rindtorff et al. (2019) on precision oncology
with in vitro data and Zhou et al. (2019) on cancer treatment with genetic data, have effectively applied
contextual bandits to precision medicine. Other applications can be found in Shrestha and Jain (2021).
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Throughout the section, we discuss the setting where Ct is presented adversarially, rather than assuming
Ct is sampled stochastically from an underlying distribution. For the stochastic setting, Goldenshluger
and Zeevi (2013) gives an algorithm with some parametric assumptions and Yang et al. (2002) with non-
parametric algorithm. In fact, the stronger stochastic assumption does not improve the worst-case regret
bound over the adversarial setting in linear contextual bandit that we will introduce later. The stochastic
setting does help when the instance-dependent regret bound is considered.

Algorithm 7 Contextual Bandit Framework in Healthcare

Input: Available treatment options (A), treatment period length T .
for t = 1, . . . , T do
Agent receives the context information (Ct) for the current patient.
A treatment decision (At) is made based on the history and the context information.
Record the post treatment health outcome (Rt) for the patient.

end for

In this section, we review the online learning literature on bandit problems with adversarial context. We
will first see a naive one bandit per context approach, which does not make any assumption on the data
generating process. We will also introduce the linear contextual bandit setting with linear assumption on the
reward distribution. In the end, we introduce some variants of the standard contextual bandits that address
sparsity or different types of outputs.

2.2.1 One bandit per context

The simplest solution for contextual bandits is possibly one bandit per context (OBPC), which solves the
MAB for each context separately. Given any algorithm that solves MAB, OBPC maintains a trajectory for
each context. On each step t, if Ct = c, the agent applies the algorithm on the trajectory corresponding to c
and selects an action. Combined with the EXP3 algorithms, which we call EXP3 per Context, OBPC achieves
a regret bound of

√
K log(K)|C|T . OBPC does not make any further assumption on the data generating

process ν, so it only works when C is finite and small. As pointed out in Lattimore and Szepesvári (2020),
the awareness of the context information improves the performance over the non-contextual algorithm only
when the context actually leads to a non-stationary environment and causes a large gap between the best
context-aware policy

∑
c∈C maxa∈[K]

∑
t∈[n]:Xt=c

Rt,a and non-context policy maxa∈[K]

∑n
t=1Rt,a.

2.2.2 Bandits with expert advice

OBPC fails when the context space is large and each context does not receive enough samples. In practice,
context space has some internal structure that allows information sharing among different contexts. For
instance, there can be thousands of categorical variables in precision health applications and many of them
may be irrelevant to the reward distribution. Thus, grouping context based on these variables can reduce
the context space while keeping the same performance.

Let P ⊂ 2C be a partition over context space, i.e. any P, P ′ ∈ P, P ∩P ′ = ∅ and ∪P∈PP = C. The above
structural information can be seen as restricting the policy space within

Π(P) = {π : C → [K];∀c, c′ ∈ C s.t. c, c′ ∈ P for some P ∈ P, π(c) = π (c′)} .

In other words, we represent the structural information as a restricted policy space that is expected to be
essentially smaller than the whole policy space. To allow more flexibility in structural information, we study
the general restricted policy space Π ⊂ {π : C 7→ [K]}. The aim of agent is now to compete against a fixed
class of policies, instead of competing against a set of actions which is a special case of the former.

The recommendations of the policies in the restricted set can be thought of as “expert advice”. We can
therefore design an algorithm to use such advice by extending the EXP3 algorithm. The extended algorithm
EXP4 (Exponential weighting for Exploration and Exploitation with Experts) is given in Algorithm 8.
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Algorithm 8 Exponential-weight Algorithm for Exploration and Exploitation with Experts (Exp4)

1: Input: T,K, hyper-parameter η ∈ (0, 1] and policy space Π
2: Set the distribution Q1,π = 1/|Π| for all π ∈ Π
3: for t = 1, . . . , T do
4: Receive context Ct
5: For all i ∈ [K], compute Pt,i =

∑
π∈ΠQt,π1{π(Ct) = i}

6: Sample At from Pt and receive reward Rt
7: Set R̂t,i = 1− 1{At=i}

Pt,i
(1−Rt)

8: Propagate the rewards to the experts: R̃t,π =
∑
i∈[K] 1{π(Ct) = i}R̂t,i for all π ∈ Π

9: Update Qt+1,π = exp(ηR̃t,π)Qt,π/
∑
π′∈Π exp(ηR̃t,π′)Qt,π for all π ∈ Π

10: end for

Following the idea of EXP3, EXP4 first uses the same importance-weighted estimator for each action, i.e.
R̂t,i = 1− 1{At=i}(1−Rt)/Pti. Then EXP4 estimates the reward for each expert (policy)

R̃t,π =
∑
i∈[K]

1 {π (Ct) = i} R̂t,i,

and keeps a distribution Qt,π over the policy space. The distribution is updated using exponentially weighting
of the rewards:

Qt+1,π = exp (ηRt,π)Qt,π/
∑
π′∈Π

exp (ηRt,π′)Qt,π,

where η ∈ (0, 1] is the learning rate.
We define regret not with respect to the best action but with respect to the best expert:

RegT = E

[
max
π∈Π

T∑
t=1

rTt π(Ct)−
n∑
t=1

Rt

]
,

where rt = (rt,i)i is the K-dimensional vector of rewards of the individual actions and π(Ct) is the K-
dimensional vector of the probability of selecting each action using policy π under context Ct.

Theorem 9. Let η =
√

2 log(|Π|/(TK)). The regret of EXP4 satisfies

RegT (EXP4) ≤
√

2 log(|Π|)KT.

Proof. Similarly to the way we show (13) in the proof in Theorem 4, we can also show that the for any
π∗ ∈ Π:

T∑
t=1

R̃t,π∗ −
T∑
t=1

∑
π∈Π

Qt,πR̃t,π ≤
log(|Π|)

η
+
η

2

T∑
t=1

∑
π∈Π

Qt,π

(
1− R̃t,π

)2

. (19)

Let R̂t = (R̂t,i)
K
i=1 and R̃t = (R̃t,π)π∈Π denote the vector of Rt,i’s and R̃t,π’s. Since the estimator is

unbiased, Et[R̂t] = rt and letting E(t) be the |Π| ×K matrix with each row corresponding to a π ∈ Π that
gives the row vector (1{π(Ct) = i})Ki=1, we have

Et[R̃t] = Et[E
(t)R̂t] = E(t)Et[R̂t] = E(t)rt.

Taking expectation over both side of Eq. (19) and using the fact that Qt,π is Ft-measurable leads to

RegT ≤
log(|Π|)

η
+
η

2

T∑
t=1

∑
π∈Π

EQt,π
(

1− R̂t,π
)2

. (20)
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Let Ŷt,i = 1 − R̂t,i, yt,i = 1 − rt,i and Ỹt,π = 1 − R̃t,π for all i ∈ [K] and π ∈ Π. Define vectors Ỹt and Ŷt
similarly. Note that Ỹt = E(t)Ŷt and let At,i = 1{At = i}, which gives us Ŷt,i = At,iyt,i/Pt,i and

Et
[
Ỹ 2
t,π

]
= Et

(E(t)
π,At

yt,At

Pt,At

)2
 =

K∑
i=1

(
E

(t)
π,iyt,i

)2

Pt,i
≤

K∑
i=1

E
(t)
π,i

Pt,i
.

Thus, by the definition of Pt,i,

E[
∑
π∈Π

Qt,π(1− R̃t,π)] ≤

[∑
π∈Π

Qt,π

K∑
i=1

E
(t)
π,i

Pt,i

]
= K.

Substituting into Eq. (20) gives us

RegT ≤
log(|Π|)

η
+
ηTK

2
≤
√

2TK log(|Π|),

when η =
√

2 log(|Π|)/(TK).

Now we take a look at the context space partition example introduced before. Assume we have a M -
partition of the context space C. The regret bound is reduced from

√
2|C| log(K)KT to

√
2M log(K)KT

with the structural information.

2.2.3 Linear bandits and contextual linear bandits

One bandit per context method learns a distinct environment for each context, which fails when the context
space is large or even infinite. Many healthcare applications, especially in mobile health, have continuous
context including heart rate, sleeping time, etc. To model such applications with efficient algorithms, we need
to assume some nice relationship between the context and environment. The simplest and most frequently
used model of this kind is the contextual linear bandit.

Before we introduce the setting for contextual linear bandit, we first define linear bandit. In linear bandit,
we do not directly model contexts but assume that the action space At ⊂ Rd (we will soon reveal the reason
behind choosing a time varying action space) for some positive integer d, the reward on step t is sampled
from a linear model:

Rt = 〈θ∗, At〉+ ηt, for some θ∗ ∈ Rd, (21)

and the noise ηt is usually assumed to be subgaussian. Note that, depending on the choice ofAt, linear bandits
can subsume other bandit problems. For example, to capture the standard stochastic bandit environment
with d actions, we set At = {e1, . . . , ed} for unit vectors (ei)i. Note that this choice of action set is not
time varying. The flexibility to choose time varying action sets is critical to capture contextual bandits. We
simply let At = {ψ (Ct, i) ∈ Rd : i ∈ [K]}, for some known function ψ : C × [K] 7→ Rd. A common setup (Li
et al., 2010) considers one context per arm, where C ⊂ Rd×K and the function ψ(c, i) extracts the i-th column
of the matrix c. Another formulation assumes the same context ct ∈ Rd for every arm but assumes each arm
i has a parameter θ∗i ∈ Rd: Rt = 〈θ∗i , ct〉 + ηt, when arm i is chosen. Note that this is a special case of the
general formulation in (21). We can write θ∗ = (θ∗T1 , . . . , θ∗TK )T and At = {(0d(i−1), C

T
t ,0d(K−i))}Ki=1 ⊂ RdK ,

where 0n is the all-zero row vector of dimension n.

Linear Upper Confidence Bound (LinUCB). The regret for linear bandit is defined as

RegT = E[

T∑
t=1

max
at∈At

〈θ∗, at〉 −
T∑
t=1

Rt].
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Algorithm 9 Linear Upper Confidence Bound (LinUCB)

1: Input: δ, d, (At)t ⊂ Rd, (βt)t, λ.
2: for t = 1, . . . , T do
3: Calculate θ̂t using (22).
4: Compute the confidence set Θt = {θ ∈ Rd : ‖θ − θ̂t−1‖2Vt−1

≤ βt}.
5: Play At = argmaxa∈At

maxθ∈Θt〈θ, a〉.
6: Receive reward Rt and update Vt using (23).
7: end for

We have seen UCB for the regular bandit environment as a powerful algorithm to balance the exploration
and exploitation. In this section, we introduce a new UCB algorithm called LinUCB for linear bandit setting
(Auer, 2002; Dani et al., 2008; Rusmevichientong and Tsitsiklis, 2010).

As the case in UCB, we follow the principle optimism in the face of uncertainty (OFU). Instead of directly
building confidence set over the mean function µa, we build confidence set Θt ⊂ Rd over the linear coefficient
θ∗ that satisfies the following two properties: 1) Θt contains the optimal θ∗ with a high probability; 2) the
set Θt should be as small as possible.

For that purpose, we consider the regularised least-square estimator up to step t,

θ̂t = argminθ∈Rd

(
t∑

s=1

(Rs − 〈θ,As〉)2
+ λ‖θ‖22

)
, (22)

where λ > 0 is the penalty factor. Equ. (22) gives

θ̂t = V −1
t

t∑
s=1

AsRs, where V0 = λId and Vt = V0 +

t∑
s=1

AsA
>
s . (23)

Then the confidence set centering at θ̂t is defined by

Θt+1 = {θ ∈ Rd : ‖θ − θ̂t‖2Vt
≤ βt+1}, (24)

where (βt)t is an increasing sequence of constants that controls the level of confidence with β1 ≥ 1 as (Vt)t
also have increasing eigenvalues. Lemma 10 shows the correctness of the confidence set defined in (24).
LinUCB chooses actions that maximize the expected reward over all the possible θ’s in the confidence set.
Details are given in Algorithm 9.

Lemma 10. Let δ ∈ (0, 1). Then, with a probability at least 1−δ, it holds that for all t ∈ N, θ∗ ∈ Θt defined
in (24) with any sequence (βt)t satisfying

βt ≤
√
λ ‖θ∗‖2 +

√
2 log

(
1

δ

)
+ d log

(
detVt
λd

)
.

Now using the confidence set in Lemma 10, we can show the following regret bound under some mild
assumption on the boundedness of the action space. We refer reader to Part V of Lattimore and Szepesvári
(2020) for the proof of Lemma 10.

Theorem 11. Assuming maxt∈[n] supa,b∈At
〈θ∗, a− b〉 ≤ 1 and ‖a‖2 ≤ L for all a ∈

⋃n
t=1At, using the

confidence set defined in Lemma 10, we have with a probability at least 1− δ, the expected regret of LinUCB
is bounded by

RegT (LinUCB, ν) ≤ Cd
√
T log(L/δ), for some C > 0.
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Proof. We first analyze the regret on each step. Let θt ∈ Θt be the parameter that maximize the expected
reward. Let A∗t be the optimal action given context Ct. Then, using the fact that θ∗ ∈ Θt, we have
〈θ∗, A∗t 〉 ≤ 〈θ,At〉. Using Cauchy-Schwarz inequality, we have

rt = 〈θ∗, A∗t −At〉 ≤ 〈θt − θ∗, At〉 ≤ ‖At‖V −1
t−1
‖θ̃t − θ∗‖Vt−1

≤ 2‖At‖V −1
t−1

√
βt.

Then the total regret is given by

RegT ≤
T∑
t=1

2 ‖At‖V −1
t−1

√
βt ≤

√√√√T

T∑
t=1

r2
t ≤

√
TβT

∑
t=1

‖At‖2V −1
t−1

. (25)

Using the elliptical potential lemma (Carpentier et al., 2020),
∑T
t=1

(
1 ∧ ‖At‖2V −1

t−1

)
≤ 2 log (detVT /detV0) .

The results follow by plugging this into (25) with the chosen βT and the fact that

det (VT ) =

d∏
i=1

λi ≤
(

1

d
traceVT

)d
≤
(

traceV0 + TL2

d

)d
,

where λ1, . . . , λd are eigenvalues of Vt.

LinUCB gives a regret bound that scales with d. However, this is not the optimal rate when the action
set is finite. Auer (2002) proposed SupLinUCB which maintains a master algorithm that achieves a regret
bound of

√
dT log(TK) when the action space is finite.

LinUCB for contextual bandits. Chu et al. (2011) applied the LinUCB to the contextual bandit prob-
lems. To be specific, they assume a context and a unknown parameter θ for each arm a and the reward is
generated by

Rt = C>t,At
θ∗At

+ ηt, where Ct,a, θ∗a ∈ Rd.

Applying Theorem 11 gives us the regret bound of Kd
√
T . Li et al. (2010) showed a good performance of

the contextual bandit with LinUCB on News Article Recommendation task.

2.2.4 Sparse LinUCB

So far we have achieved regret bound of d
√
T log(T ), which scales linearly with d. However, the bound can

be vacuous for high-dimensional context (d� T ). Such high dimensional problems can occur in healthcare
applications. For example, Bastani and Bayati (2020) incorporates the high-dimensional genetic profile and
medical records with contextual bandits to design patient’s optimal medication dosage. Following the idea
of UCB, the key is to construct a confidence set that accounts for the sparsity. To tackle the problem, we
introduce a powerful tool that converts online prediction problem to confidence set estimation, with which
a UCB-style algorithm can be designed using any online predicting method and we can analyze its regret in
a unified way.

Online to Confidence Set Conversion. There is a conversion from the online prediction to confidence
sets. We consider online linear regression problem with a squared loss, which has been well-explored in the
past decade (Huang et al., 2008; Javanmard and Montanari, 2014). The agent interacts with the environment
in the following manner where in each round t:

1. The environment chooses a context Ct ∈ R and At ∈ Rd in an arbitrary way.

2. The value of At is revealed to the agent.
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Algorithm 10 Online linear predictor UCB

1: Input: δ ∈ (0, 1), an online predictor with a regret bound Bt
2: for t = 1, . . . , T do
3: Receive action set At
4: Compute the confidence set Θt using (26)
5: Play At = argmaxa∈At

maxθ∈Θt〈θ, a〉 and receive reward Rt
6: Feed At to the online linear predictor and obtain prediction R̂t
7: Feed Rt and loss to the linear predictor as feedback.
8: end for

3. The agent generate a prediction R̂t.

4. The environment reveals Rt to the agent as well as the loss (Rt − R̂t)2.

The regret of an agent with respective to the best linear predictor is given by

ρT =
T∑
t=1

(Rt − R̂t)2 − inf
θ⊂Rd

T∑
t=1

(Rt − 〈θ,At〉)2.

Theorem 12 (Online-to-Confidence-Set Conversion (Abbasi-Yadkori et al., 2012)). Let δ ∈ (0, 1) and as-
sume that θ∗ ∈ Θ, noise ηt’s are R-sub-Gaussian and ρt ≤ Bt. Let

βt(δ) = 1 + 2Bt + 32R2 log

(
R
√

8 +
√

1 +Bt
δ

)
.

Then

Θt+1 =

{
θ ∈ Rd :

t∑
s=1

(R̂s − 〈θ,As〉)2 ≤ βt(δ)

}
, (26)

satisfies P(θ∗ ∈ Θt+1∀t ∈ N) ≥ 1− δ.

Theorem 12 provides a tool for constructing confidence set for the prediction of any online learning
algorithm with a regret guarantee. One can develop the Online linear predictor UCB (OLR-UCB) as shown
in Algorithm 10.

Let ‖θ∗‖2 ≤ m2. Using Theorem 12 and the standard regret decomposition for UCB-style algorithm, one
can show the following regret bound:

RT ≤

√
8dT (m2

2 + βT−1(δ)) log

(
1 +

T

d

)
.

Application to sparse online linear prediction. Note that our goal is to derive a regret bound with
a lower dependency on the ambient dimension d. In the standard regression problem, learnability of high-
dimensional data relies on the sparsity assumption which assumes the number of non-zero dimensions is less
or equal to a positive integer s.

Assumption 1. (sparse parameter) The true parameter θ∗ satisfies ‖θ∗‖0 ≤ s for some s > 0.

To this end, we adopt SeqSEW (Gerchinovitz, 2011) as the online linear prediction algorithm, which
achieves the online learning regret ρT = O(s log(T )). Combined with Theorem 12, we have the following
result:

Theorem 13. With a high probability, the we bound the regret of OLR-UCB with SeqSEW as the online
predictor by

RegT = Õ(
√
dsT ). (27)
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This improves over the d
√
T by LinUCB in the previous section when s� d. As pointed out by Lattimore

and Szepesvári (2020), for any algorithm, there exists an infinite action space such that RegT = Ω(
√
dsT ).

Thus, the bound in (27) is minimax optimal. Despite its optimality, our result still have the unavoidable
dependence of

√
d. Bastani and Bayati (2020) derived a regret bound of O(K(s log(d) log(T ))2), when the

action set is finite. More variants of high-dimensional sparse linear bandits are discussed in Hao et al. (2020).

2.3 Offline Learning
So far we have been discussing bandit problems in the online learning setting, where we are free to choose
actions while collecting the dataset. In many real applications, collecting data in the online manner can be
expensive and can cost a lot of time. In such situations we might want to evaluate a target policy using a
large but fixed dataset that has been collected for years by a different policy. This setting is called offline
learning.

Given a fixed contextual bandit environment, the value of a policy is defined as vπ = Eat∼π(ct)rt Formally,
offline bandits, also referred as off-policy evaluation aims at evaluating the value vπ of a new policy using
a sequence of interactions ST = (ct, at, rt)

T
t=1, where ct, at and rt are the context, action and reward

respectively at step t. The actions are chosen by the data-generating policy πD, which is also referred as
behavior policy or logging policy. In this section,

One solution is to learn the reward and context distribution using a parametric or non-parametric method
and then evaluate the new policy with the simulator by sampling context and rewards from the learnt
distribution. Although this approach is straightforward, the modeling step is often very expensive and
difficult, and more importantly, it often introduces modeling bias to the simulator, making it hard to justify
reliability of the obtained evaluation results.

Li et al. (2011) proposed a simple algorithm (Algorithm 11) that uses an unbiased estimator of the
policy value when the behavior policy picks arms uniformly at random. The method is to simply use all the
interactions in the dataset that coincide with the action that the policy being evaluated would have taken.
They show that v̂π is an unbiased estimator of vπ and with a high probability (v̂π−vπ)2 = Õ (Kvπ/n) , where
vπ is the true expected value of the policy as defined above. They also successfully applied the off-policy
evaluation to the News Article Recommendation system. Mary et al. (2014) improved upon Algorithm 11
via bootstrapping techniques. They give a bootstrapped estimator for any quantile of the distribution of the
estimated value v̂π that allows some evaluation of the uncertainty.

Algorithm 11 Policy Evaluator
1: Input: a policy π; stream of interactions ST of length T
2: h0 ← ∅, V̂π ← 0 and N ← 0
3: for t = 1, . . . , T do
4: Get the i-th interaction (ci, ai, rt) from ST
5: if π(ht−1, ct) = at then
6: ht ← ht−1 ∪ (ct, at, rt)
7: V̂π ← V̂π + rt and N ← N + 1
8: end if
9: end for

10: Output: v̂π = V̂π/N

Minimax rate lower bound. To understand how good our algorithms perform, we start with establishing
a minimax lower bound that characterizes the inherent hardness of the off-policy value estimation problem.
Let Rmax, σ ∈ R+. Define the class of reward distributions V(σ,Rmax) with bounded mean and variance as

V(σ,Rmax) := {ν = (Pa,c)a,c∈A×C : 0 ≤ ER∼Pa,c [R] ≤ Rmax and Var[R | a, c] ≤ σ2, ∀a, c ∈ A× C}.
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Any estimator v̂ is a function that maps (π, πD, ST ) to an estimate of vπ. Let the context C ∼ λ with a
density relative to Lebesgue measure. The minimax rate is defined as

Mn(π, λ, πD, σ, Rmax) := inf
v̂

sup
ν∈V(σ,Rmax)

E[(v̂(π, πD, ST )− vπ)2],

where the expectation is taken over the distribution of the dataset ST that depends on (π, λ, πD).
A critical value that determines the hardness of the problem is

V1 := EC∼λ,A∼πD(·,C)

[
π2(A,C)/π2

D(A,C)
]
.

Wang et al. (2017) (Corollary 1) gives the following lower bound for Rn:

Mn(π, λ, πD, σ, Rmax) ≥ V1(σ2 +R2
max)

700T
. (28)

Importance sampling estimator. Wang et al. (2017) give some analysis on the minimax rate of the off-
policy evaluation given a known data-generating policy, denoted by πD. We slightly abuse the notation and
let π(a, c) denote the probability of choose a using policy π under the context c. They consider Importance
Sampling (IS) estimator (Charles et al., 2013) and Weighted Importance Sampling (WIS) estimator given
by

v̂IS,π =
1

T

T∑
t=1

π(at, ct)

πD(at, ct)
rt and v̂WIS,π =

T∑
t=1

π(at,ct)
πD(at,ct)∑T

t′=1
π(at′ ,ct)
πD(at′ ,ct)

rt, respectively.

It is shown in Dudík et al. (2014) that the IS estimator is unbiased and it achieves the minimax rate
in (28) when n is sufficiently large. The WIS estimator is biased with a lower variance. It also enjoys the
minimax optimality up to a logarithmic constant.

Regression estimator. Another common method, so called regression estimator or plug-in estimator,
simply learns the reward distribution and plugs it in. Let r̂ : A×C 7→ R is an estimator for the mean reward.
The regression estimator is given by

v̂Reg,π :=
1

T

T∑
t=1

∑
a

π(a, ct)r̂(a, ct).

When the context space and action space are finite. One can use the simple sample average estimator
r̂(a, c) = (

∑T
t=1 1(at = a, ct = c)ri)/(

∑T
t=1 1(at = a, ct = c)). Interestingly, one can write the regression

estimator using sample average as

v̂Reg =
1

T

T∑
t=1

π (at, ct)

π̂D (at, ct)
rt, where π̂D (a, c) =

∑
t 1(at = a, ct = c)

T
.

There is a strong connection between IS and regression estimator. That is regression estimator simply
replaces the πD with its empirical estimator. Regression estimator is biased while its variance is normally
lower than IS (Dudík et al., 2011; Li et al., 2015). Regression estimator is also shown to be minimax optimal
when n is sufficiently large. The simple plugin method using sample average is not applicable when context
space is infinite. When more information on how rewards depend on contexts and actions, we can posit a
parametric or non-parametric model of E[R | C,A] and fit it to obtain an estimator. Due to the difficulties
of having a good estimation x̂, which may suffer model-misspecification or high variance, pure regression
estimator only works well in problem with finite actions. For more details, we refer reader to a more recent
paper (Kim et al., 2021).
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Doubly robust estimator. Based on the above discussions about IS and Regression Estimator, it is
natural to combine the both. Doubly Robust (DR) (Bang and Robins, 2005; Dudík et al., 2011; Jiang and
Li, 2016) which is a combination of regression and IS estimator, and can achieve the low variance of regression
and no (or low) bias of IS. The method is named by Doubly Robust because it is accurate if at least one of
the estimator is accurate. DR estimator is defined as

v̂DR =
1

T

∑
t

[
π(at, ct)

πD(at, ct)
(rt − r̂(at, ct)) +

∑
a

π(a, ct)r̂(a, ct)

]
.

Informally, the estimator uses r̂(a, c) as a baseline and corrects the baseline when the action more likely
to be sampled from the target policy. DR enjoys both the low variance of Regression estimator and the
low bias of the IS estimator and also matches the minimax lower bound in 28. Wang et al. (2017) further
introduces the SWITCH estimator that takes account into the scale of the importance weight. When the
importance weight is large, it switches to the regression estimator, which significantly reduces the variance
while introducing only little bias. It performs better in the numerical experiments.

Non-asymptotic regime. All of the above estimators achieve minimax optimality when n is sufficiently
large. Ma et al. (2021) discussed regime when the sample size is not large. They showed that there is a
fundamental statistical gap between algorithm with and without the knowledge of the behavior policy in this
regime. They proposed a competitive ratio that measures the MSE of an algorithm with unknown behavior
policy relative to the lower bound of all algorithms with known behavior policy. Competitive ratio is always
greater than 1. A competitive ratio closer to 1 indicates that the algorithm can performance as good as
the algorithm with known behavior policy. Ma et al. (2021) showed that regression estimator has minimax
optimal competitive ratio of the rate is O(K), where K is the number of actions. That means an algorithm
without the knowledge of the behavior policy has to pay multiplicative factor of K compared to that with
the knowledge.

3 Advanced Topics
We now review a selection of advanced topics in bandit algorithms that are relevant to applications in
healthcare.

3.1 Non-stationarity
We have discussed two basic and extreme cases of bandit theory: stochastic bandit models and adversarial
bandit models. In the former, the reward distribution for every arm is static whereas in the latter, it can
change arbitrarily over time. In this section, we describe a more practical setting that sits in the “middle” of
above two extreme models: non-stationary bandits. Specifically, the reward distributions change over time,
but the amount of changes cannot be as arbitrary as the adversarial setting.

For a non-stationary multi-armed bandit environment ν, we define the reward mean for arm a at time t
by µa,t(ν) or µa,t for simplicity. Then the dynamic regret is

RegT =

T∑
t=1

max
a

µa,t − E

[
T∑
t=1

µAt,t

]
.

Unlike the regret definition for the adversarial setting that is with respect to the best single arm, dynamic
regret is defined with respect to the sequence of best arms at each time step. There are two popular
constraints that quantify the reward changes. One is the total count of changes in the mean reward that
occur before time T :

ST = 1 +

T∑
t=2

1{µa,t−1 6= µa,t, for some a}.
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Settings where the above quantity is assumed to be small are also called piece-wise stationary. Another
constraint quantifies the total variation for the reward mean:

BT =

T∑
t=2

max
a
|µa,t − µa,t−1|.

Piecewise Stationary Setting. The first algorithm designed for the non-stationary MAB under finite
number of reward mean changes is Exp3.S (Auer et al., 2002), which is a variant of the Exp3 algorithm. The
expected regret of Exp3.S is O(ST

√
KT log(KT )) in general, but can be improved to O(

√
STKT log(KT ))

if ST is used to tune the algorithm parameters. Later on, Garivier and Moulines (2011) proved that no policy
can achieve problem-dependent regret smaller than O(

√
T ) in the non-stationary case, and Exp3.S is thus

optimal up to logarithmic factors of T . Garivier and Moulines (2011) also studied two UCB-based algorithms:
discounted UCB (D-UCB) which was first proposed by Kocsis and Szepesvári (2006) and sliding-window UCB
(SW-UCB). Their main idea is to encourage using more recent data in UCB reward estimations. When S is
given, both algorithms achieve O(K

√
ST log T ) regret. Another body of works explore the idea of monitoring

the reward distributions by change-detection methods and reset the bandit algorithm accordingly. Using
this idea, Monitored-UCB (M-UCB) (Cao et al., 2019) combines the UCB algorithm with a change-point
detection component based on running sample means over a sliding window and achieves O(

√
KST log T )

regret under certain assumption on the reward mean change. In same year, Auer et al. (2019) proposed an
action elimination algorithm ADSWITCH that again detects changes in the mean reward and restarts the
learning algorithm accordingly. Without knowing S nor making other assumptions, ADSWITCH achieves
O(
√
KST log T ) regret.

Bounded Total Variation Setting. Comparing with piecewise stationary setting, bounded total vari-
ation is a softer constraint. Here nature has the power to change the reward at every round but only
up to a total amount limit BT . Besbes et al. (2014) proposed the Rexp3 policy that uses the famous
Exp3 algorithm as a subroutine and restarts it at every batch. Rexp3 with a batch size tuned by BT has
O((BTK logK)1/3T 2/3) regret that nearly matches the lower bound of Ω(KBT )1/3T 2/3) in this setting (Bes-
bes et al., 2014).

The non-stationary setup has also studied in linear bandits and contextual bandits. We briefly describe
the latter one as an example. Define the distribution of the context-reward pairs C × [0, 1]K by D1, . . . ,DT .
At each round, the environment samples (ct, xt) and reveals ct to the agent, then the agent picks an arm
At ∈ [K] and observes xt(At). For a fixed set of policies Π that contains mappings: C → [K], the dynamic
regret is defined as:

RegT =

T∑
t=1

max
π∈Π

E(c,x)∼Dt
[x(π(c))]−

T∑
t=1

xt(At).

Similar to the MAB setting, there are two ways to measure the non-stationary of the environment: total
number of changes and the total variation in below.

S = 1 +

T∑
t=2

1{Dt 6= Dt−1},

BT =

T∑
t=2

‖Dt −Dt−1‖TV .

Chen et al. (2019) proposed ADA-ILTCB+ algorithm that is parameter-free, efficient and achieves optimal
regret Õ(min{

√
K(log |Π|)ST ,

√
K(log |Π|)T + (K log |Π|BT )1/3T 2/3}) by randomly entering replay phases

to detect non-stationarity. More recently, a generic reduction has been studied that allows one to convert
certain algorithms for the stationary setting into algorithms for the non-stationary setting (Wei and Luo,
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2021). What is nice about this work is that the resulting algorithms often simultaneously achieve optimal
guarantees in terms of both S and BT without prior knowledge of any of these parameters.

3.2 Robustness
So far, we have discussed stochastic and adversarial bandits. Stochastic bandit is an ideal setting, since it
assumes a fixed reward distribution. Adversarial, on the other hand, considers a too extreme scenario. In
real-world applications, some of the observed rewards may be corrupted resulting in deviation from purely
stochastic behavior. For instance, there might be clerical errors while creating electronic health records or
sensor errors in recording health status from wearable devices. If the reward is self-reported by patients, there
can be corruptions due to mistakes, lack of attention, boredom, etc. In this section, we consider algorithms
that are robust to possible corruptions. Note that this setting is between purely stochastic and adversarial
but in a different way than the non-stationary bandit discussed in Section 3.1.

Fraction corruption model. The fraction corruption model limits the fraction of the total number of
rounds that an adversarial corruption can happen. Assume corruptions happen with a probability η ∈ [0, 1].
The adversary closely follows the progress of arm pulling and reward generation. At each time step t, after
the algorithm has decided to pull an arm At, the adversary first decides whether to corrupt this arm pull
or not by performing a Bernoulli trail Zt ∈ {0, 1} with a mean η ∈ [0, 1]. Then it generates a corruption ζ
arbitrarily. After this, the “clean reward” R∗t is generated by the environment. The reward a player receives
at step t is

Rt = 1{Zt = 0}R∗t + 1{Zt = 1}ζt.

Since the rewards may be contaminated, directly running the algorithms built for stochastic bandits can
result in degraded performance. Several papers have proposed variants of UCB that use a more robust
estimate. Kapoor et al. (2019) proposed RUCB-TUNE (Robust UCB) which makes two crucial changes
to the classical UCB: RUCB-TUNE uses the median and a tuned variance estimate instead of the simple
sample mean and variance to construct its upper bound. The algorithm requires an upper bound η0 on the
corruption rate η. Their analyses are built on the environment with Gaussian reward distributions and they
have a regret bound of O((1− η)

√
KT log(T ) + η0(µ∗ +B)T ), where B is an upper bound on the scales of

corruptions |ζt| and µ∗ is the maximum expected reward of all the arms. They provide another algorithm
RUCB with a similar result. RUCB does not require the knowledge of η0 but it requires an upper bound on
the variance of rewards for all the arms.

Niss and Tewari (2020) considers a stronger requirement that all the arms have no more than η-fraction
of corruptions. They proposed crUCB (contamination robust-UCB), which mimics RUCB in the general
framework. The only difference is that they allow a variety of robust mean estimates including α-trimmed
mean, mean estimates that ignores the largest (1−α)-fraction of data, α-shorth mean. Their algorithms are
evaluated by uncontaminated regrets, the regret between true rewards of the best possible actions and the
algorithm-chosen actions:

RegT = max
a∈A

E[

T∑
t=1

R∗a(t)−R∗At
(t)],

If the contamination fraction is small enough, both crUCB using α-shorth mean and α-trimmed mean achieve
uncontaminated regret of

√
KT log(T ) +

∑
a ∆a, where ∆a is the gap between the expected reward of a and

the optimal action.

Budget-bounded corruption model. In budget-bounded corruption model (Lykouris et al., 2018), all
the rounds can be possibly corrupted but the total deviation between the “clean rewards” and the corrupted
rewards is bounded. We define the total corruption budget as

BT =

T∑
t=1

‖R∗t −Rt‖.
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Gupta et al. (2019) proposed BARBAR (Bandit Algorithm with Robustness: Bad Arms get Recourse) based
on the arm elimination algorithm discussed in Section 2 with some crucial modifications that make it robust
to corruptions. Gupta et al. (2019) show that their algorithm achieves a gap-dependent regret bound of

RegT = O

KBT +
∑
a 6=a?

log T

∆a
log

(
K

δ
log T

) .

without knowing the value of C.

3.3 Dealing with Constraints
In standard bandit settings, the only criterion to evaluate the performance of an algorithm is the regret (either
cumulative or simple regret). In this section, we introduce constrained bandit problems, where the agent
also needs to satisfy certain constraints while minimizing its regret. Depending on the actual problem’s
demands, different types of constraints have been considered. For healthcare applications, two types of
constraints frequently arise in practice. First, delivering an intervention might consume resources such as
doctor’s time, patient’s attention, phone battery and power, etc. We might therefore want to maximize
rewards subject to a budget on resource consumption. Second, we might be worried that uncontrolled
exploration might yield performance that is substantially worse than an existing standard of care. With
these concerns in mind, in this section we consider the following two settings: bandits with knapsacks and
conservative bandits.

Bandits with Knapsacks (BwK). The name of bandits with knapsacks comes from the well-known
knapsack problem in combinatorial optimization that studies packing items into a fixed-size knapsack. In a
knapsack problem, each item has its value and size. Its ultimate goal is to fill the knapsack with as large value
as possible. The bandits with knapsacks then focus on a stochastic online version of the knapsack problem.
Many practical scenarios can be captured by this framework. For example, in medical trials, physicians may
be limited by the cost of treatment materials while optimizing the health condition of the patients. In online
recommendations, the website designer may be constrained by the advertisers’ budgets while maximizing
its profit. We follow the terminologies and notations in Badanidiyuru et al. (2018) to formally describe this
setting and their proposed algorithms.

An agent is given an action set A and there are d resources being consumed. At every round, the agent
selects an action At ∈ A and observes a reward Xt along with a d-dimensional resource consumption vector
ct. For each resource i ∈ [d], the total consumption should not exceed the pre-specified budget Bi at any
round. The agent stops immediately when the total consumption of certain resource exceeds its budget.
Denote the stopping time by τ , the goal is to maximize the total reward until time τ . The worst-case regret
for an algorithm is defined as the difference between the benchmark total reward OPT4 and the algorithm’s
expected total reward until τ .

To solve the problem, Badanidiyuru et al. (2018) proposed two algorithms. The first one is a primal-dual
algorithm called PrimalDualBwK. At every round, it estimates the upper confidence bound for the expected
reward and the lower confidence bound for the resource consumption for each arm. Then PrimalDualBwK
plays the most “cost-effective” arm, i.e., the one with highest ratio of the expected reward’s upper bound
to the expected cost. The regret of PrimalDualBwK is proved to be Õ

(√
|A|OPT + OPT

√
|A|/B

)
, where

B := miniBi. Note that without the resource constraints, the regret bound becomes Õ
(√
|A|OPT

)
=

Õ
(√
|A|T

)
that is optimal up to logarithmic factors since the only constraint is the time horizon T and we

can simply set B = T in the general regret formula. The second algorithm is called BalancedExploration.
Its design principle is to explore as much as possible while avoiding obviously sub-optimal strategies. They

4An optimal dynamic policy that maximizes the expected total reward given prior knowledge on all latent distributions such
as the reward distribution and the cost consumption for each action.
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show that the regret of BalancedExploration is Õ
(√

d|A|OPT + OPT
√
d|A|/B

)
. Even though its regret

has worse dependence on d comparing with PrimalDualBwK, BalancedExploration performs better in some
special cases.

Comparing with the general constraint in above knapsack framework, researchers have also considered
more specific settings. For example, other than the time horizon, there is a single resource with deterministic
consumption and different arms consume the resource at different rates (Tran-Thanh et al., 2010, 2012; Ding
et al., 2013; Xia et al., 2015; Zhou and Tomlin, 2018). Such problems are often called budgeted bandits.
Agrawal and Devanur (2014) generalized the BwK model by allowing arbitrary concave rewards and convex
constraints. Furthermore, similar constrained bandit problems are also studied in settings that includes
contextual bandits (Agrawal and Devanur, 2014; Wu et al., 2015; Agrawal and Devanur, 2016) and even
adversarial bandits (Sun et al., 2017; Immorlica et al., 2019).

Conservative Bandits. It is well-known that standard bandit algorithms often explore wildly in their
early stages, so their regret over initial rounds can be very high. However, safety is one of the crucial concerns
for designing adaptive experiments, so the early stage high regret cannot be tolerated in some high stakes
scenarios. For instance, the UCB algorithm can assign treatments almost randomly to a patient during the
first several rounds, which may cause severe problems for the patient’s overall health. A company may also
not be able to withstand the extremely low revenue initially if its operation is in great need of cash flow. In
these examples, the real situation is that the physician or the company already have their favorite policies
that operate well. They would like to explore new strategies to optimize their treatment performance or
revenue while maintaining their performance to not be significantly worse than a baseline, uniformly over
time. Conservative bandits (Wu et al., 2016) exactly model this problem. We follow their terminology and
notation to describe the problem framework.

We use {0, 1, . . . ,K} as the indices of actions, in which the arm indexed by 0 correspond to the default
action (the agent’s typical strategy) and the other arms are the alternatives to be explored. The agent
selects an arm At ∈ {0, 1, . . . ,K} in round t. Denote Rt,i as the random reward received at time t after
playing arm i, then the regret and pseudo-regret are defined as RegT = maxi∈{0,1,...,K}

∑T
t=1Rt,i − Rt,At

and R̃egT = maxi∈{0,1,...,K}
∑T
t=1 µi − µAt

. To ensure that the agent performs as good as his or her usual
strategy, the algorithm needs to satisfy:

t∑
s=1

Rs,As
≥ (1− α)

t∑
s=1

Rs,0, (29)

where 0 < α ≤ 1. Above constraint guarantees that the reward collected by the agent is at least (1 − α)
fraction of the reward from simply playing arm 0. The objective of conservative bandits algorithms is to
minimize regret while satisfying (29) for all t. To solve the problem, (Wu et al., 2016) proposed a novel
algorithm called conservative UCB which is based on UCB with the novel twist of maintaining (29) being
satisfied. Basically, the agent follows the UCB suggestion if (29) can be satisfied from their estimation,
otherwise, the agent switches to the conservative arm 0. They show that conservative UCB achieves pseudo-
regret R̃egT = Õ(

√
KT + K

αµ0
), where µ0 denotes the expected reward for arm 0. For more details, including

gap-dependent regret and regret analysis for the adversarial setting, we refer the reader to Wu et al. (2016).
The concept of conservative bandits, namely performing as good as a baseline uniformly over time, is quite

general. Recently, it has been generalized to more settings, e.g., conservative contextual bandits (Kazerouni
et al., 2016; Garcelon et al., 2020b) and conservative reinforcement learning (Garcelon et al., 2020a).

3.4 Fairness
Algorithmic fairness has become an increasingly important topic in machine learning research (Barocas
et al., 2021). Fairness is also a concern in healthcare applications due to the biases in data collection and
algorithmic design (Paulus and Kent, 2020). Using healthcare cost as a proxy for healthcare needs leads
to biased risk scores that hurt Black patients (Obermeyer et al., 2019). Using genetic datasets collected
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mostly from patients of European ancestry leads to biased genetic risk scores on patients with non-European
ancestries (Martin et al., 2019). Unfairness can also be rooted in algorithmic design. Algorithms that simply
maximizing user responses can be unfair in how they allocate exposure to the items in recommendation
systems (Singh and Joachims, 2018). In this section, we review several popular definitions of fairness in
bandit literature and discuss how to calibrate unfairness.

Two types of fairness. Though there remains little agreement about what “fairness” should mean in
different contexts, the literature can be divided into two broad families: those that target group fairness
and those that target individual fairness. Group fairness requires the algorithm to maintain fairness across
different demographic groups (say by race or gender) that are supposed to be treated equally. As we
mentioned above, biased healthcare algorithms may hurt patients from certain demographic groups due to
low representative. Individual fairness, on the other hand, asks for some constraints on the individual level,
including two slightly different types: fairness through awareness, which requires that similar individuals be
treated similarly and meritocratic fairness, which requires that less qualified individuals not be favored over
more qualified individuals. Individual fairness in healthcare is also important: for two patients with similar
demographic information or physical condition, we shall not develop an algorithm that performs much better
for one patient while useless (or even harmful) for the other.

In the context of bandits, the literature can be further divided into those that model individuals as arms
in the MAB setting and those that models individuals as contexts in the contextual bandits setting. We give
some examples of fairness definitions from each category.

Individual fairness. We start from individual fairness in the MAB setting with each arm representing an
individual. Joseph et al. (2016) proposed the use of meritocratic fairness. Formally, an algorithm is said to
be δ-fair if over T time steps, , for any pair of arms a, a′, and any round t,

πt(a) > πt(a
′) only if µa > µa′

with probability at least 1 − δ. This requires the algorithm to give equal probability to choose two arms
unless one there is strong evidence that µa > µa′ . Joseph et al. (2016) developed an algorithm that is
δ-fair based on the traditional UCB algorithm. In specific, they maintain a set of arms that chains to the
arm with highest UCB. All the arms in the set are given the same probability to be selected. Their regret
bound is O(

√
K3T ln TK

δ ), with a higher cubic dependence on K, which is the price they pay to give equal
probability to all the arms in the set. More generally, Liu et al. (2017) considers a fairness through awareness.
An algorithm is said to be (ε1, ε2, δ)-smooth fair 5, if for any pair of arms a, a′ and any t, with a probability
at least 1− δ,

|πt(a)− πt(a′)| ≤ ε1|µa − µa′ |+ ε2.

They introduced a fairness regret to quantify the violation that occurs when the arm with the highest reward
realization at a given time is not selected with the highest probability. Formally, they have

RegT =

T∑
t=1

E

[
K∑
i=1

max{P ∗(i)− πt(i), 0}

]
,

where P ∗(i) is the probability that arm i has the highest regret. They developed a modified Thompson
Sampling algorithm with an initial uniform exploration phase that achieve fairness regret of O((KT )2/3).
Wang et al. (2021) also aims at the fairness through awareness by comparing to the optimal fair policy π∗,

π∗(a)

π∗(a′)
=

f(µa)

f(µa′)
for some metric function f.

5Note that Liu et al. (2017) considers a general divergence function for the distribution of action selection and rewards, we
introduce a special case here for a cleaner form.
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They in turn target at the fairness regret, the cumulative L0 norm of π∗ − πt. Other individual fairness
definition that simply requires a minimum number of pulls for each arms is considered by Patil et al. (2020)
and Chen et al. (2020).

Group fairness. For group fairness, one may divide arms into n groups G1, . . . , Gn. Schumann et al.
(2019) proposed an algorithm ensuring that the probability of pulling an arm does not change based on
group membership:

P(pull a | a ∈ Gi) = P(pull a | a ∈ Gj),∀i, j < n and a ∈ A.

In other words, one cannot prefer one arm over the other one based on the group information.
Some literature treats each context ct as an individual and aims at the fairness among different contexts.

(Huang et al., 2020) divides the context space into two groups, a privileged group G+ and a protected group
G−. A group-level cumulative mean reward is defined as

R̄G =
1

|TG|
∑
t∈TG

Rt, where TG is the set of all rounds with gt in group G.

Their group fairness requires that |E[R̄G
+ − R̄G

−
]| ≤ τ , where τ ∈ R+ reflects the tolerance degree of

unfairness. Assuming a linear bandit setting, they proposed a Fair-LinUCB algorithm, that penalize the
arms that are unfair by decreasing the corresponding UCB values.

Counterfactual fairness. Another line of work (Kusner et al., 2017) models fairness through causal in-
ference. Their fairness definition is normally referred to as Counterfactual Fairness. In the group fairness, we
require the distributions of the value of interest are the same across different demographic groups. However,
what we really want is that the demographic group information does not cause the unfairness, which can not
be fully inferred from the group fairness definition. Counterfactual fairness, on the other hand, requires the
distribution of the value of interest does not change when the demographic group were changed from one to
the other while keeping all the other context variable unchanged.

General fairness metric. All the above methods requires certain fairness definition, it is natural to ask
whether there is an universal algorithm that adapts to various fairness definition. In real-applications, we
may not know the exact form of fairness metric. Instead, we may know whether certain policy violates
fairness condition. Instead of studying a specific fairness metric, Gillen et al. (2018) developed an algorithm
that achieves fairness through a fairness oracle, which tells the algorithm whether fairness is violated. This
also allows great flexibility in the choice of fairness metric. At each round, each arm i ∈ [K] is given a
context Ct,i ∈ Rd. The probability of selecting action i at the step t is denoted by πt,i, which is a vector
denoting the probability of selecting . We denote the vector of context (policy) at round t by ct (πt). The
fairness oracle is define as following. Intuitively, it tells the algorithm, which pairs of actions violate the
fairness metric.

Definition 4. Let ∆([K]) be the set of all distributions over [K]. Given a user-specified distance function
d, a fairness oracle Od is a function Od : Rd×K ×∆([K])→ 2[K]×[K], defined such that

Od (ct, πt) = {(i, j) : |πt,i − πt,j | > d (Ct,i, Ct,j)} .

They developed an algorithm that only has access to the fairness oracle. The algorithm has the number
of fairness violations depending only logarithmically on T and a regret bound of the optimal rate O(

√
T )

with respect to the best fair policy.

3.5 Benefiting from Causal Knowledge
Causal bandit is an example of a structured bandit problem where actions are composed of interventions
on variables of a causal graph. According to the underlying causal dynamics, performing an intervention
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can help learn another intervention’s reward distribution. Algorithms for causal bandit problems exploit the
causal dependency among interventions to reduce the regret or sample complexity.

Bareinboim et al. (2015) was the first to connect bandit problems with causal models. One of the
main issues that make causal inference hard is the existence of confounders defined below, which can confuse
correlation and causation. Bareinboim et al. (2015) pointed out the importance of capturing the confounders
before actually performing actions. In particular, they proposed a new criterion for choosing actions called
regret decision criterion (RDC). Under RDC rule, the agent collects her intention (includes information
on confounders) on selecting actions and re-thinks based on the estimated reward statistics for the current
intention and then decides which action to play. Since the actual selected action can be different than the
agent’s intention, the agent decides in a counterfactual way.

Definition 5 (Confounder). A confounder is a variable that influences both the dependent variable and
independent variable.

Later on, Lattimore et al. (2016) formally proposed the causal bandit framework via causal graphs. A
causal model consists of a directed acyclic graph G over a set of random variables V = {V1, . . . , Vn} and a
joint distribution P that factorizes over G. A size m hard intervention (action) is denoted by do(V = v),
which assigns the values v = {v1, . . . , vm} ⊂ V to the corresponding variables V = {V1, . . . , Vm}. In causal
bandits, the action set is defined as

A := {do(V = v)|V ⊂ V,v ∈ Dom(V)},

or its subset and the optimal intervention is a∗ := argmaxa∈A E[R|a].
Many practical problems can be modeled via above framework. For example, in healthcare applications,

the physician adjusts several features such as dose levels on different medicines or life-style advices to achieve
some desirable clinical outcomes (Liu et al., 2020). Genetic engineering also involves direct manipulation
of genes using biotechnology to produce improved organisms. In these problems, the number of interven-
tions can be exponentially large in the number of manipulable variables so that standard MAB algorithms
cannot work efficiently. To address this issue, recent work on causal bandits has developed methods that
exploit causal information to achieve simple or cumulative regret that does not scale with the number of
interventions (Lattimore et al., 2016; Sen et al., 2017; Lee and Bareinboim, 2018; Lu et al., 2020, 2021a).
We summarize existing methodologies below.

Refining the Policy Space. Assuming the causal graph is known (confounders may also exist), Lee and
Bareinboim (2018) proposed an intervention set reduction algorithm. They showed that not all interventions
are worthwhile to be played, because there are equivalences among interventions and some interventions
can be proved to be no better than others. Their algorithm filters out redundant interventions using the
causal graph structure before applying any standard MAB algorithm on the reduced intervention set, also
called possibly-optimal minimal intervention set (POMIS). Since the size of POMIS is usually much smaller
than |A|, the corresponding regret can be reduced. Follow-up work in Lee and Bareinboim (2019) further
showed that the expected reward for interventions in a POMIS can be estimated from each other in certain
cases. Their method also works well when some variables are non-manipulable. We remark that the step
of finding the POMIS solely relies on the given causal graph structure and does not involve performing any
intervention.

Accelerating Using Causal Graph Side Information in Standard MAB Algorithms. Recall that
a key step in bandit algorithm is estimating the expected reward for each arm µ̂a. Intuitively speaking,
one needs to play each arm for enough number of times in order to get accurate estimations if interventions
are independent. But in causal bandits, interventions are correlated with each other so that performing one
intervention can help with estimating others according to the shared causal model. Lattimore et al. (2016)
studied the best arm identification problem via importance weighting. Their algorithm achieves simple
regret O(

√
m/T ), where m can be smaller than |A| in many scenarios. Sen et al. (2017) further generalized

the algorithm in Lattimore et al. (2016) to a soft intervention setting and proved gap-dependent regret
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guarantees. In soft interventions, the agent does not directly set values to specific variables, but instead
change their conditional probabilities given their direct parents. Lu et al. (2020) proposed causal UCB and
causal TS algorithms that achieve Õ(

√
ZT ) cumulative regret, where Z is a graph dependent number and

can be exponentially smaller than |A|. A causal linear bandit framework and its efficient algorithms were
also well studied. Furthermore, gap-dependent worst-case regret bound and a budgeted causal bandit setting
was also considered in follow-up works (Nair et al., 2021).

3.6 Multi-task Learning
Multitask learning is the learning paradigm in machine learning that aims at leveraging information in
multiple tasks to achieve a better sample efficiency by solving them jointly rather than separately (Zhang
and Yang, 2021). Multitask learning algorithms usually assume some similarity between tasks that allows
information sharing. In the context of multitask bandit, each bandit is called a task and various similarity
assumptions on the reward distribution can be made. This can model many interesting scenarios. For
instance, a group of patient with the same disease can be seen as multiple tasks. We can not directly use
the same policy, as a personalized treatment should be applied to each patient. However, some patients’
responses may be similar to the other’s such that one can transfer the information across patients. Recall that
we use ν = (Pa, a ∈ A) denote a bandit instance. A general multitask bandit framework can be summarized
below:

Given a set of bandits ν1, . . . , νn, Discrepancy(νi, νj) is small for some i, j ∈ [n],

for some discrepancy measure on bandit instances.
In this subsection, we will review some interesting works on multitask bandit and compare their assump-

tions on discrepancy and the corresponding regret bounds. We will also cover the potential applications of
multitask bandits.

Parametric Model. Early work on multitask bandit was done by Cesa-Bianchi et al. (2013) who consid-
ered a gang of contextual bandits connected with a graph {V,E}, where V = {1, . . . , n} is the node set and
E is the edge set. Each node i is assumed to be a linear bandit with rewards generated by Ri(c) = θTi c+εi(c)
given a context c, where εi(c) is a conditionally zero-mean noise. Any two nodes that are adjacent on the
graph have low discrepancy compared to the total scale:

∑
i∈V ‖θi‖2 �

∑
(i,j)∈E ‖θi − θj‖2. Their discrep-

ancy measure is simply the L2 distance on the unknown parameters. However, their analysis only shows a
benefit of a factor n in the logarithmic term. In the literature of supervised multitask learning, the benefit
could be a factor of n1/2 outside the logarithmic term (Maurer et al., 2016). Another property makes it hard
for their algorithm to generalize to other settings is that the discrepancy information on tasks similarities
is partially known to the agent through the graph structure. Generally speaking, the agent does not know
which tasks are similar and have to adaptively learn the information.

As an improvement, Gentile et al. (2014); Li et al. (2016) consider an unknown graph with clustered
structure, and all the bandits within the same cluster share a common reward distribution, which is also
from a linear model. The algorithm is to simply cluster the bandits based on the feedbacks and pool the data
from all the bandits from the same cluster. Instead of have a dependency of n as for the baseline algorithm
that learns all the bandit separately, their regret is Õ(dm

√
T ), where m� n is the number of clusters.

Non-parametric Model. Despite the encouraging results by Gentile et al. (2014); Li et al. (2016), the
clustered structure and linear payoffs are strong assumptions. Deshmukh et al. (2017) proposed a kernel
regression model that allows general similarities. Formally, they assume the reward is generated by mean
function f : Z × C 7→ R, where Z is called the task similarity space, C is the context from the context space
C. Let k̃ be a SPD (semi-positive definite) kernel on Z × C with the form

k̃ ((z, c), (z′, c′)) = kZ (z, z′) kC (c, c′) ,
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where kZ and kC are SPD kernels on Z = {1, . . . , n} representing n tasks and C. They assume that f is
from the RKHS, Hk̃ corresponding to k̃. Kernel kZ characterized the similarity between different bandits,
for instance:

1. Independent: kZ(z, z′) = 1z=z′ , i.e. observations from different tasks are not sharing any information.

2. Pooled: kZ ≡ 1, i.e all the observations from different tasks are treated the same.

3. Multi-task: kZ is a PDS matrix reflecting task similarity.

Their algorithm KMTL-UCB gives an regret bound of Õ(
√
Trzrc), where rz is the rank of the n × n

matrix KZ = [kZ (zi, zi)]
n
i=1 and rc is the rank of KCT

:= [kC(cat,t, cat′ ,t′)]
T
t,t′=1. To compare, the regular

regret bound of learning one task independently is Õ(
√
Trc) and all tasks independently gives Õ(n

√
Trc).

The scaling of rz determines the benefits of multitask learning: rz = n corresponds to the first case above with
kZ(z, z′) = 1z=z′ and rz = 1 corresponds to the second case with kZ ≡ 1. Though Deshmukh et al. (2017)
gives a general way to characterize the multitask bandit benefits, their algorithm still relies on the knowledge
of the similarity kernel kZ . In practice, one can learn a kernel, but little theory has been established to justify
this practice.

Adaptive Learning. Tomkins et al. (2021) proposed Intelligent Pooling, a generalization of a Thompson
sampling contextual bandit for learning personalized treatment policies. They assume the reward for user
i ∈ [n] is generated by

Ri = φ(Ci, Ai)
T θi + εi,

where φ : C ×A 7→ Rd is the pre-specified mapping from contexts and actions and θi ∈ Rd is the personalized
parameter to learn. IntelligentPooling imposes each wi as a random-effects upon a population-level parameter
wpop, i.e. wi = wpop + ui with ui the Gaussian random effect. Prior distribution of wpop is also assumed to
be Gaussian. IntelligentPooling runs by sampling wi,t from the posterior distribution of wi. The algorithm
uses random effects to adaptively pool users’ data based on the degree to which users exhibit heterogeneous
rewards that is away from the population behavior (wpop). They showed a regret bound of Õ(dn

√
T ).

4 Conclusion
We reviewed basic topics in bandit algorithms that are helpful in understanding their increasing role in
mobile health, and more broadly, precision medicine. We also discussed a selection of advanced topics that
might inform the design of the next generation of bandit driven mobile health applications. We hope that
the reader has gained an appreciation of the beauty and power of bandit algorithms and of their relevance
to mobile health and precision medicine. However, like any methodology, bandit algorithms do have their
limitations. First, bandit algorithms assume that an appropriate reward is available upfront. In practice,
especially in healthcare applications, the design of rewards to be optimized is a difficult problem with no
easy solution. The issues involved in specified a reward function that is aligned with the goals of various
human stakeholders have been brought into focus more recently under the term “the alignment problem”
(Christian, 2020). Second, bandit algorithms do not take into account delayed impacts of the agent’s actions.
When actions have delayed impacts, it might be beneficial to take an action with low immediate reward if it
increases the probability of higher rewards later on. The full treatment of this problem of delayed impact of
actions requires techniques from reinforcement learning (Sutton and Barto, 2018). In fact, bandit problems
can be thought of as the simplest of reinforcement learning problems.
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