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Sample size calculations for
micro-randomized trials in mHealth
Peng Liao,a*† Predrag Klasnja,b Ambuj Tewaria and
Susan A. Murphya

The use and development of mobile interventions are experiencing rapid growth. In “just-in-time” mobile
interventions, treatments are provided via a mobile device, and they are intended to help an individual make
healthy decisions ‘in the moment,’ and thus have a proximal, near future impact. Currently, the development of
mobile interventions is proceeding at a much faster pace than that of associated data science methods. A first
step toward developing data-based methods is to provide an experimental design for testing the proximal effects
of these just-in-time treatments. In this paper, we propose a ‘micro-randomized’ trial design for this purpose.
In a micro-randomized trial, treatments are sequentially randomized throughout the conduct of the study, with
the result that each participant may be randomized at the 100s or 1000s of occasions at which a treatment might
be provided. Further, we develop a test statistic for assessing the proximal effect of a treatment as well as an
associated sample size calculator. We conduct simulation evaluations of the sample size calculator in various
settings. Rules of thumb that might be used in designing a micro-randomized trial are discussed. This work
is motivated by our collaboration on the HeartSteps mobile application designed to increase physical activity.
Copyright © 2015 John Wiley & Sons, Ltd.
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1. Introduction

The use and development of mobile interventions are experiencing rapid growth. Mobile interven-
tions are used across the health fields and include treatments to improve HIV medication adherence
[1, 2], to increase activity [3], supplement counseling/pharmacotherapy in treatment for substance use
[4, 5], reinforce abstinence in addictions [6, 7] and to support recovery from alcohol dependence [8, 9].
Mobile interventions for adherence to anti-retroviral therapy and smoking cessation have shown suf-
ficient effectiveness and replicability in trials and have been recommended for inclusion in health
services [10].

However, as Nilsen et al. [11] state, ‘In fact, the development of mHealth technologies is currently
progressing at a much faster pace than the science to evaluate their validity and efficacy, introducing the
risk that ineffective or even potentially harmful or iatrogenic applications will be implemented.’ Indeed
reviews, while reporting preliminary evidence of effectiveness, call for more programmatic, data-based
approaches to constructing mobile interventions [10,12]. In particular, these reviews call for research that
focuses on data-informed development of these complex multi-component interventions prior to their
evaluation in standard randomized controlled trials. But methods for using data to inform the design
and evaluation of adaptive mobile interventions have lagged behind the use and deployment of these
interventions [11, 13, 14].

Many mobile interventions are designed to be ‘just-in-time’ interventions, meaning that they intend to
provide treatments that help an individual make healthy decisions in the moment, such as engaging in a
desirable behavior (e.g., taking a medication on time) or effectively coping with a stressful situation. As
such, mobile interventions are often intended to have proximal, near-term effects. A first approach toward
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developing data-based methods for evaluation of mobile health interventions is to provide an experimen-
tal design for testing the proximal effects of the treatments. This paper proposes a micro-randomized trial
design for this purpose. In a micro-randomized trial, treatments are sequentially randomized throughout
the conduct of the study, with the result that each participant may be randomized at the hundreds or thou-
sands of occasions at which a treatment might be provided. This repeated randomization of treatments
under investigation enables causal modeling of each treatment’s time-varying proximal effect as well
as modeling of time-varying effect moderation. Thus, the micro-randomized trial can be seen as a first
experimental step in the development of effective mobile interventions that are composed of sequences of
treatments. We propose to size the trial to detect the proximal main effect of the treatments. This is akin
to the use of factorial designs for use in constructing multi-component interventions. In these factorial
designs [15, 16], a first analysis often involves testing if the main effect of each treatment is equal to 0.

This work is motivated by our collaboration on the HeartSteps mobile application for increasing
physical activity, which we will use to illustrate our discussion. One of the treatments in HeartSteps is
suggestions for physical activity that are tailored to the person’s current context. HeartSteps can deliver
these suggestions at any of the five time intervals during the day, which correspond roughly to morn-
ing commute, mid-day, mid-afternoon, evening commute, and post-dinner times. When a suggestion is
delivered, the user’s phone plays a notification sound, vibrates and lights up, and the suggestion is dis-
played on the lock screen of the phone. These suggestions encourage activity in the current context and
are intended to have an effect (getting a person to walk) within the next hour.

In the following section, we introduce the micro-randomized trial design. In section 3, we precisely
define the proximal main effect of a treatment, using the language of potential outcomes. We develop
the test statistic for assessing the proximal effect of a treatment as well as an associated sample size
calculator in section 4 and 5. Next, we provide simulation evaluation of the sample size calculator. We
end, in Section 7, with a discussion.

2. Micro-randomized trial

In general, an individual’s longitudinal data, recorded via mobile devices that sense and provide
treatments, can be written as

{S0, S1,A1, S2,A2,… , St,At,… , ST ,AT , ST+1}

where, t indexes decision times, S0 is a vector of baseline information (gender, ethnicity, etc.) and St(t ⩾ 1)
is information collected between time t−1 and t (e.g., summary measures of recent activity levels, engage-
ment, and burden; day of week; weather; busyness indicated by smartphone calendar, etc.). The treatment
at time t is denoted by At; throughout this paper, we consider binary options for the treatments (e.g., the
treatment is on or off). The proximal response, denoted by Yt+1, is a known function of {St,At, St+1}.
Here, we assume that the longitudinal data are independent and identically distributed across N individ-
uals. Note that this assumption would be violated, if for example, some of the treatments are used to
enhance social support between individuals in the study.

In HeartSteps, data (St) is collected both passively via sensors and via participant self-report. Each
participant is provided a ‘Jawbone’ band, worn at the wrist, which collects daily step count and the amount
of sleep the user had the previous night. Furthermore, sensors on the phone are used to collect a variety of
information at each of the five time points during the day, including the time-stamp, location, busyness of
planned activities on the phone calendar, and other activity on the phone. Each evening, self-report data
are collected including utility and burden ratings. The proximal response, Yt+1, for activity suggestions
is the step count in the hour following time t.

A decision time is a point in time at which—based on participant’s current state, past behavior, or
current context—treatment may need to be delivered. Decision times vary by the nature of the intervention
component. In HeartSteps, the decision times for activity suggestions are 5 times per day over the 42-
day study duration. For an alcohol-recovery application that provides an intervention when an individual
goes within 10 feet of a high risk location (e.g., a liquor store), decision points might be every minute, the
frequency at which the application would get the person’s current location and assess whether she is close
to a high-risk location. In a long-term study of an intervention for multiple health behaviors, the decision
points might be weekly or monthly at which times, decisions are made regarding whether to change the
focus from one behavior (e.g., physical activity) to another (e.g., diet). Finally, in many studies there is
an option for an individual to press a ‘panic’ button, indicating the need for help; for such interventions,
decision times correspond to times at which the panic button is pressed.

Copyright © 2015 John Wiley & Sons, Ltd. Statist. Med. 2015
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A micro-randomized trial is a trial in which at each decision time t, participants are randomized to
a treatment option, denoted by At. Treatment options may correspond to whether or not a treatment is
provided at a decision time; for example, in HeartSteps, whether or not the individual is provided a lock-
screen activity suggestion. Or treatment options may be alternative types of treatment that can be provided
at the same decision time; for example, a daily step goal treatment might have two options, a fixed 10,000-
steps-a-day goal or an adaptive goal based on the user’s activity level on the previous day. Considerations
of treatment burden often imply that the randomization will not be uniform. For example, in HeartSteps,
the randomization probability is 0.4, so that, if an individual is always available, on average, 2 lock-screen
activity messages are delivered per day.

In designing, that is, determining the sample size for, a micro-randomized trial we focus on the reduced
longitudinal data

{S0, I1,A1,Y2, I2,A2,Y3,… , It,At,Yt+1,… , IT ,AT ,YT+1}.

The variable, It is an ‘availability’ indicator. The availability indicator is coded as It = 1 if the individual
is available for treatment and It = 0 otherwise. At some decision times, feasibility, ethics or burden
considerations mean that the individual is unavailable for treatment, and thus, At should not be delivered.
Consider again HeartSteps: if sensors indicate that the individual is likely driving a car or the individual
is currently walking, then the lock-screen activity message should not be sent. Other examples of when
individuals are unavailable for treatment include, in the alcohol recovery setting, a ‘warning’ treatment
would only be potentially provided when sensors indicate that the individual is within 10 feet of a high-
risk location or a treatment might only be provided if the individual reports a high level of craving.
If the application has a panic button, then only in an x second interval in which the panic button is
pressed is it appropriate to provide ‘panic button’ treatments. Individuals may be unavailable for treatment
by choice. For example, the HeartSteps application permits the individual to turn off the lock-screen
activity messages; this option is considered critical to maintaining participant buy-in and engagement
with HeartSteps. After viewing the lock-screen activity message, the individual has the option of turning
off the lock-screen messages for 4 , 8, or 12 hours. After the specified time interval, the delivery of lock-
screen messages automatically turns on again. To summarize, the availability indicator at time t is the
indicator for the subpopulation at time t among which we are interested in assessing the proximal main
effect of the treatment; we are uninterested in assessing the proximal main effect of a treatment among
individuals for whom it is unethical to provide treatment or for whom it makes no scientific sense to
provide treatment or among those who refuse to be provided a treatment.

3. Proximal main effect of a treatment

As discussed earlier, treatments in mobile health interventions are often designed so as to have a proximal
effect (e.g., increase activity in near future, help an individual manage current cravings for drugs or food,
and take medications on schedule). As a result, a first question in developing a mobile health intervention
is whether the treatments have a proximal effect. Here, we develop sample size formulae that guarantee
a stated power to detect the proximal effect of a treatment. In particular, we aim to test if the proximal
main effect is zero.

To define the proximal main effect of a treatment, we use potential outcomes [17–19]. Our use of
potential outcome notation is slightly more complicated than usual because treatment can only be pro-
vided when an individual is available. As a result, we index the potential outcomes by decision rules that
incorporate availability. In particular, define d(a, i) for a ∈ {0, 1}, i ∈ {0, 1} by d(a, 0) =‘unavailable-do
nothing’ and d(a, 1) = a. Then for each a1 ∈ 1 = {0, 1}, define D1(a1) = d(a1, I1). Then we denote the

potential proximal responses following decision time 1 by
{

YD1(1)
2 , YD1(0)

2

}
and denote the potential avail-

ability indicators at decision time 2 by
{

ID1(1)
2 , ID1(0)

2

}
. Next for each ā2 = (a1, a2) with a1, a2 ∈ {0, 1},

define D2(ā2) = d
(

a2, I
D1(a1)
2

)
. Define D2(ā2) = (D1(a1),D2(ā2)). A potential proximal response follow-

ing decision time 2 and corresponding to ā2 is YD2(ā2)
3 and a potential availability indicator at decision

time 3 is ID2(ā2)
3 . Similarly, for each āt = (a1,… , at) ∈ t = {(a1,… , at)||ai ∈ {0, 1}, i = 1,… , t}, define
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Dt(āt) = d
(

at, I
Dt−1(āt−1)
t

)
and Dt(āt) = (D1(a1),… ,Dt(āt)). For each āt = (a1,… , at) ∈ t, the poten-

tial proximal response is YDt−1(āt−1)
t (following decision time t − 1) and potential availability indicator is

IDt−1(āt−1)
t at decision time t.

We define the proximal main effect of a treatment at time t among available individuals by

𝛽(t) = E

(
YDt(Āt−1,1)

t+1 −YDt(Āt−1,0)
t+1

|||| IDt−1(Āt−1)
t = 1

)
where the expectation is taken with respect to the distribution of the potential outcomes and randomization
in Āt−1. This proximal effect is conditional in that the effect of treatment at time t is defined for only

individuals available for treatment at time t, that is, IDt−1(Āt−1)
t = 1. This proximal effect is a main effect

in that the effect is marginal over any effects of Āt−1. The former conditional aspect of the definition is
related to the concept of viable or feasible dynamic treatment regimes [20,21] in which one assesses only
the causal effect of treatments that can actually be provided.

Consider the proximal main effect, 𝛽(t), as t varies across time. 𝛽(t) may vary across time for a variety
of reasons. To see this, consider the case of HeartSteps. Here, 𝛽(t) might initially increase with increasing
t as participants learn and practice the activities suggested on the lock-screen. For larger t, one might
expect to see decreasing or flat 𝛽(t) due to habituation (participants begin to, at least partially, ignore the
messages). This time, variation in 𝛽(t) can be attributed to both the immediate effect of a lock-screen
activity message as well as interactions between the past lock-screen activity messages and the present
activity message; the time variation occurs at least partially because of the marginal character of 𝛽(t).
Alternately, the conditional definition of 𝛽(t) means that the effect is only defined among the population
of individuals who are available at decision time t. Changes in this population may cause changes in
𝛽(t) across time. Again, consider HeartSteps. At earlier time points, participants may be highly engaged,
yet have not developed habits that in various ways increase their activity; thus, most participants will be
available. However, as time progresses, some participants may develop sufficiently positive activity habits
or anticipate activity suggestions; thus at later decision times, these participants may be already active
and thus unavailable to receive a suggestion. Other participants may become increasing disengaged and
repeatedly turn off the lock-screen activity messages; these participants are also unavailable. Thus, as
time progresses, 𝛽(t)may vary because of the subpopulation of participants among whom it is appropriate
to assess the effect of the lock-screen activity messages.

Our main objective in determining the sample size will be to assure sufficient power to detect alter-
natives to the null hypothesis of no proximal main effect, H0 ∶ 𝛽(t) = 0, t = 1,…T for a trial with T
decision points (if 𝛽(t) is nonzero, then for the population available at decision time t, there is a proximal
effect). The proposed test will be focused on detecting smooth, that is, continuous in t, alternatives to this
null hypothesis.

To express 𝛽(t) in terms of the observed data distribution, we assume consistency [18,19]. This assump-
tion is that for each t, the observed Yt and observed It equal the corresponding potential outcomes,

YDt−1(āt−1)
t , IDt−1(āt−1)

t whenever Āt−1 = āt−1. This assumption may be violated if some of the treatments
promote social linkages between participants, for example, to enhance social/emotional support or to
compete in mobile games. In these cases, it would be more appropriate to additionally index each individ-
ual’s potential outcomes by other participants’ treatments. The micro-randomization plus the consistency
assumption implies that the proximal main effect of treatment at time t among available individuals, 𝛽(t)
can be written as

𝛽(t) = E

[
YDt(Āt−1,1)

t+1
||IDt−1(Āt−1)

t = 1

]
− E

[
YDt(Āt−1,0)

t+1
||IDt−1(Āt−1)

t = 1

]
= E

[
YDt(Āt−1,1)

t+1
||IDt−1(Āt−1)

t = 1,At = 1

]
− E

[
YDt(Āt−1,0)

t+1
||IDt−1(Āt−1)

t = 1,At = 0

]
= E

[
YDt(Āt)

t+1
||IDt−1(Āt−1)

t = 1,At = 1

]
− E

[
YDt(Āt)

t+1
||IDt−1(Āt−1)

t = 1,At = 0

]
= E[Yt+1|It = 1,At = 1] − E[Yt+1|It = 1,At = 0]

,

where the second equality follows from the randomization of the At’s and the last equality follows from
the consistency assumption.
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4. Test statistic

Our sample size formula is based on a test statistic for use in testing H0 ∶ 𝛽(t) = 0, t = 1,…T against a
scientifically plausible alternative. This alternative should be formed based on conversations with domain
experts. Here, we construct a test statistic to detect alternatives that are, at least approximately, linear in a
vector parameter, 𝛽, that is, alternatives of the form Z′

t𝛽, where the p × 1 vector, Zt, is a function of t and
covariates that are unaffected by treatment such as time of day or day of week. In the case of HeartSteps,
a plausible alternative is quadratic:

Z′
t𝛽 =

(
1,
⌊ t − 1

5

⌋
,

(⌊ t − 1
5

⌋)2
)
𝛽 (1)

where 𝛽 = (𝛽1, 𝛽2, 𝛽3)′ (p = 3). Recall that in HeartSteps, there are five decision times per day; ⌊ t−1
5
⌋

translates decision times t to days. This rather simplistic parametrization marginalizes across the day and
treats the weekends and weekdays similarly.

We propose to use the alternate, H1 ∶ 𝛽(t) = Z′
t𝛽, t = 1,… , T to construct the test statistic. We base

the test statistic on the estimator of 𝛽 in a least squares fit of a working model. A simple working model
based on the alternative is

E[Yt+1|It = 1,At] = B′
t𝛼 + (At − 𝜌t)Z′

t𝛽 (2)

over all t ∈ {1,… ,T}, where 𝜌t is the known randomization probability (P[At = 1] = 𝜌t) and the q × 1
vector Bt is a function of t and covariates that are unaffected by treatment such as time of day or day of
week. Note that At is centered by subtracting off the randomization probability; thus, the working model
for 𝛼(t) = E[Yt+1|It = 1] is B′

t𝛼. The estimators �̂�, 𝛽 minimize the least squares error:

PN

{
T∑

t=1

It

(
Yt+1 − B′

t𝛼 − (At − 𝜌t)Z′
t𝛽
)2

}
, (3)

where PN {f (X)} is defined as the average of f (X) over the sample.
Note that from a technical perspective, minimizing the least squares criterion, (3), is reminiscent of

a GEE analysis [22] with identity link function and a working correlation matrix equal to the identity.
Thus, it is natural to consider a non-identity working correlation matrix as is common in GEE. This,
however, is problematic from a causal inference perspective. To see this suppose that the true condi-
tional expectation is in fact E

[
Yt+1|It = 1,At

]
= B′

t𝛼
∗ + (At − 𝜌t)Z′

t𝛽
∗, that is, the causal parameter,

𝛽(t) is equal to Z′
t𝛽

∗. Further, suppose that the working correlation matrix has off-diagonal elements
and that we estimate 𝛽∗ by minimizing the weighted (by the inverse of the working correlation matrix)
least squares criterion. In this case, the resulting estimating equations include sums of terms such as
It

(
Yt+1 − B′

t𝛼 − (At − 𝜌t)Z′
t𝛽
)

Is(As − 𝜌t)Zs for t > s. Unfortunately, both availability at time t, It, as
well as Yt+1 may be affected by treatment in the past (in particular, As); thus, absent strong assumptions
E
[
It

(
Yt+1 − B′

t𝛼
∗ − (At − 𝜌t)Z′

t𝛽
∗) Is(As − 𝜌t)

]
are unlikely to be 0. Recall that a minimal condition for

consistency of estimators of (𝛼∗, 𝛽∗) is that the estimating equations have expectation 0; thus, absent
further assumptions, the estimators derived from the weighted least squares criterion are likely biased.
Another possibility is to include a time-varying variance term in the least squares criterion, that is, the
tth entry in (3) might be weighted by 𝜎−2

t . This would be useful in the data analysis; however, for sample
size calculations, values of these variances are unlikely to be available. Thus, for simplicity, we use the
unweighted least squares criterion in (3).

Assume that the matrices Q =
∑T

t=1 E[It]𝜌t(1 − 𝜌t)ZtZ
′
t and

∑T
t=1 E[It]BtB

′
t are invertible. The least

squares estimators, �̂�, 𝛽 are consistent estimators of

�̃� =

(
T∑

t=1

E[It]BtB
′
t

)−1 T∑
t=1

E[It]𝛼(t)Bt (4)

and

𝛽 =

(
T∑

t=1

E[It]𝜌t(1 − 𝜌t)ZtZ
′
t

)−1 T∑
t=1

E[It]𝜌t(1 − 𝜌t)𝛽(t)Zt (5)

Copyright © 2015 John Wiley & Sons, Ltd. Statist. Med. 2015



P. LIAO ET AL.

respectively. Furthermore if 𝛽(t) is in fact equal to Z′
t𝛽 for some 𝛽, then Z′

t𝛽 = 𝛽(t). This is the case even
if E[Yt+1|It = 1] ≠ B′

t �̃�. In the appendix (Lemma 1), we prove these results and also show that, under

moment conditions,
√

N(𝛽 − 𝛽) is asymptotically normal with mean 0 and variance Σ𝛽 = Q−1WQ−1

where,

W = E

[(
T∑

t=1

𝜖tIt(At − 𝜌t)Zt

)
×

(
T∑

t=1

𝜖tIt(At − 𝜌t)Z′
t

)]
and 𝜖t = Yt+1 − ItB

′
t �̃� − (At − 𝜌t)ItZ

′
t𝛽. To test the null hypothesis H0 ∶ 𝛽(t) = 0, t = 1,… ,T , one can

use a test statistic based on the alternative, for example,

N𝛽′Σ̂−1
𝛽
𝛽 (6)

where Σ̂𝛽 = Q̂−1ŴQ̂−1 and Q̂ and Ŵ are plug in estimators. Note that this test statistic results from a
GEE analysis with identity link function and a working correlation matrix equal to the identity matrix
for which sample size formulae have been developed [23]. We build on this work as follows. As Tu et
al. [23] discuss, under the null hypothesis, the large sample distribution of this statistic is a chi-squared
with p degrees of freedom distribution. If N, the sample size, is small, then, as recommended by Mancl
and DeRouen [24], we make small adjustments to improve the small sample approximation to the dis-
tribution of the test statistic. In particular, they recommend adjusting Ŵ using the ‘hat’ matrix; see the
formulae for the adjusted Ŵ as well as Q̂ in Appendix A. Also in small sample settings, investigators
commonly suggest that instead of using a critical value based on the chi-squared distribution, a critical
value based on the t−distribution should be used [25]. As we are considering a simultaneous test for mul-
tiple parameters, we form the critical value based on Hotelling’s T−squared distribution [26]. Hotelling’s
T−squared distribution is a multiple of the F distribution given by d1(d1+d2−1)

d2
Fd1,d2

; here, we use d1 = p
and d2 = N − q − p (recall q is the number of parameters in the nuisance parameter vector, 𝛼); see the
appendix for a rationale. In the following, the rejection region for the test of H0 ∶ 𝛽(t) = 0, t = 1,…T
based on (6) is {

N𝛽′Σ̂−1
𝛽
𝛽 > F−1

p,N−q−p

(
(N − q − p)(1 − 𝛼0)

p(N − q − 1)

)}
,

where 𝛼0 is the desired significance level.

5. Sample size formulae

As Tu et al. [23] have developed general sample size formulas in the GEE setting, here we focus on
considerations specific to the setting of micro-randomized trials. To size the study, we will determine the
sample size needed to detect the alternate 𝛽(t) with

H1 ∶ 𝛽(t)∕�̄� = d(t), t = 1,… ,T

where �̄�2 = (1∕T)
∑T

t=1 E
[
Var

(
Yt+1

|| It = 1,At

)]
is the average variance and d(t) is a standardized

treatment effect. When N is large and H1 holds, N𝛽
′ Σ̂−1

𝛽
𝛽 is approximately distributed as a noncen-

tral chi-squared 𝜒2
p (cN), where cN , the non-centrality parameter, satisfies cN = N(�̄�d̃)′Σ−1

𝛽
(�̄�d̃) and

d̃ =
(∑T

t=1 E[It]𝜌t(1 − 𝜌t)ZtZ
′
t

)−1 ∑T
t=1 E[It]𝜌t(1 − 𝜌t)d(t)Zt [23]. Note that d̃ = 𝛽∕�̄�.

Working Assumptions To derive the sample size formula, we use the form of the non-centrality
parameter of the limiting non-central chi-squared distribution, along with working assumptions. The
working assumptions are used to simplify the form of Σ−1

𝛽
. In particular, we make the following working

assumptions:

(a) E(Yt+1|It = 1) = B′
t𝛼, for some 𝛼 ∈ R

q

(b) 𝛽(t) = Z′
t𝛽 for some 𝛽 ∈ R

p

(c) Var(Yt+1|It = 1,At) is constant in t and At
(d) E[𝜖t𝜖s|It = 1, Is = 1,At,As] is constant in At, As.
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where, as before, 𝜖t = Yt+1 − ItB
′
t �̃� − (At − 𝜌t)ItZ

′
t𝛽. See Appendix A (Lemma 2) for proof of variance

formulas under these working assumptions. The previous working assumptions are somewhat simplistic
but as will be seen later, the resulting sample size formula is robust to moderate violations. First, under
these working assumptions , the alternative hypothesis can be re-written as

H1 ∶ 𝛽∕�̄� = d, (7)

where d is a p dimensional vector of standardized effects. Furthermore, Σ𝛽 is given by

Σ𝛽 = �̄�2

(
T∑

t=1

E[It]𝜌t(1 − 𝜌t)ZtZ
′
t

)−1

,

and thus, cN is given by

cN = Nd′

(
T∑

t=1

E[It]𝜌t(1 − 𝜌t)ZtZ
′
t

)
d. (8)

To improve the small sample approximation, we use the multiple of the F-distribution as discussed earlier.
Thus, the sample size, N, is found by solving

p(N − q − 1)
N − q − p

Fp,N−q−p;cN

(
F−1

p,N−q−p

(
(N − q − p)(1 − 𝛼0)

p(N − q − 1)

))
= 1 − 𝛽0, (9)

where Fp,N−q−p;cN
is the noncentral F distribution with noncentrality parameter, cN and 1−𝛽0 is the desired

power. The inputs to this sample size formula are {Zt}T
t=1, a scientifically meaningful value for d (see

later for an illustration), the time-varying availability pattern, {E[It]}T
t=1, the desired significance level,

𝛼0 and power, 1 − 𝛽0.
Now, we describe how the information needed in the sample size formula might be obtained when the

alternative is quadratic (p = 3, (1)). In this case, we first elicit the initial standardized proximal main
effect given by Z′

1𝛽∕�̄� = 𝛽1∕�̄�. Second, we elicit the averaged across time, standardized proximal main
effect d̄ = 1

T

∑T
t=1 Z′

t𝛽∕�̄�. Lastly, we elicit the time at which the proximal main effect is maximal, that
is, arg maxt Z′

t𝛽. These three quantities can then be used to solve for d = (d1, d2, d3)′. For example, in
HeartSteps, we might want to determine the sample size to ensure 0.80 power when there is no initial
treatment effect on the first day, and the maximum proximal main effect comes around day 29. We specify
the expected availability, E[It] to be constant in t, and Zt is given by (1). Table I gives sample sizes for
HeartSteps under a variety of average standardized proximal main effects (d̄).

In the behavioral sciences, a standardized effect size of 0.2 is considered small [27]. Thus, given the
very small standardized effect sizes, the sample sizes given in Table I seem unbelievably small. Two points
are worth making in this regard. First, the use of the alternative parametric hypothesis (7) in forming the
test statistic implies that both between-subject as well as within-subject contrasts in proximal responses
are used to detect the alternative. To see this, note that if we focused on only the first time point, t = 1,
and tested H0 ∶ 𝛽(1) = 0, then an appropriate test would be a two-sample t-test based on the proximal
response Y2, in which case the required sample size would be much larger (akin to the sample size for a

Table I. Illustrative sample sizes for HeartSteps. The day
of maximal treatment effect is 29. The expected availability
is constant in t.

E[It]

d̄ 0.7 0.6 0.5 0.4

0.10 32 36 42 52
0.09 38 44 51 63
0.08 47 54 64 78
0.07 60 69 81 101
0.06 79 92 109 135
0.05 112 130 155 193

d̄ = (1∕T)
∑T

t=1 Z′
t d is the average standardized treatment effect.
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two arm randomized-controlled trial in which 40% of the subjects are randomized to the treatment arm).
This two-sample t-test uses only between-subject contrasts in proximal response to test the hypothesis.
The required sample size would be even larger for a test of H0 ∶ 𝛽(1) = 0, 𝛽(2) = 0 in which no
relationship between 𝛽(1) and 𝛽(2) is assumed. Conversely the sample size would be smaller if one
focused on detecting alternatives to H0 ∶ 𝛽(1) = 0, 𝛽(2) = 0 of the form H1 ∶ 𝛽(1) = 𝛽(2) ≠ 0. The use
of the alternative, 𝛽(1) = 𝛽(2) ≠ 0, allows one to construct tests that use both between-subject as well
as within-subject contrasts in proximal responses. Our approach is in between these two extremes in that
we focus on detecting smooth, in t, alternatives to H0 ∶ 𝛽(t) = 0 for all t. This permits use of both within-
subject as well as between-subject contrasts in proximal responses. The assumption of a parsimonious
alternative enables the use of smaller sample sizes. A second point is that, at this time, there is no general
understanding of how large the standardized effect size should be for these ‘in-the-moment’ effects of a
treatment. Thus, these standardized effects may or may not be considered small in future.

6. Simulations

We consider a variety of simulations with different generative models to evaluate the performance of the
sample size formulae. In the simulations presented here, we use the same setup as in HeartSteps; see
Appendix B for simulations in other setups (Table B.4). Specifically, the duration of the study is 42 days,
and there are five decision times within each day (T = 210). The randomization probability is 0.4, that
is, 𝜌 = 𝜌t = P(At = 1) = 0.4. The sample size formula is given in (8) and (9). All simulations are based
on 1000 simulated data sets.

Throughout this section, the inputs to this sample size formula are Zt =
(

1, ⌊ t−1
5
⌋, ⌊ t−1

5
⌋2
)′

, the time-
varying availability pattern, 𝜏t = E[It], d, 𝛼0 = .05 and power, 1 − 𝛽0 = .80. The value for the vector d is
indirectly specified via (i) the time at which the maximal standardized proximal main effect is achieved
(arg maxt Z′

t d); (ii) the averaged across time, standardized proximal main effect d̄ = 1
T

∑T
t=1 Z′

t d and; (iii)
no initial standardized proximal main effect (Z′

1d = d1 = 0). The test statistic used to evaluate the sample

size formula is given by (6) in which Bt and Zt are set to
(

1, ⌊ t−1
5
⌋, ⌊ t−1

5
⌋2
)′

.
The simulation results provided later illustrate that the sample size formula and associated test statistic

are robust. For convenience, we summarize the results here. When the working assumptions hold, then
under a variety of availability patterns, that is, time-varying values for 𝜏t = E[It] (Figure 1) the desired
Type I error and power are preserved. This is also the case when past treatment impacts availability. Fur-
thermore, the sample size formula is robust to deviations from the working assumptions, that is, provides
the desired Type I error and power; this is true for a variety of forms of the true proximal main effect of
the treatment (Figure 2), a variety of distributions and correlation patterns for the errors, and dependence
of Yt+1 on past treatment. In all cases the earlier, robustness occurs as long as we provide an approxi-
mately true or conservative value for the standardized effect, d, and if we provide an approximately true
or conservative (low) value for the availability, E[It].

In our simulations, we note several areas in which the sample size formula is less robust to the working
assumption (c); this is when the error variance in Yt+1 varies depending on whether treatment At = 1 or
At = 0 or with time t. In particular, if the ratio of Var[Yt+1|It = 1,At = 1]∕Var[Yt+1|It = 1,At = 0] < 1,

Pattern 1 Pattern 2 Pattern 3 Pattern 4
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A
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Figure 1. Availability Patterns. The x-axis is decision time point and y-axis is the expected availability. Pattern 2
represents availability varying by day of the week with higher availability on the weekends and lower mid-week.

The average availability is 0.5 in all cases.
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then the power is reduced. Also if average variance, E
[
Var[Yt+1|It = 1,At]

]
varies greatly with time t,

then the power is reduced. See later for details. Lastly, as would be expected for any sample size formula,
using values of the standardized effect size, d, or availability that are larger than the truth degrades the
power of the procedure.

6.1. Working assumptions underlying sample size formula are true

First, we considered a variety of settings in which the working assumptions (a)–(d) hold and in which
the inputs to the sample size formula are correct (d is correct under the alternate hypothesis and the
time-varying availability E[It] is correct). Neither the working assumptions nor the inputs to the sam-
ple size formula specify the error distribution; thus, in the simulation, we consider five distributions
for the errors in the model for Yt+1 including independent normal, Student’s t and exponential distri-
butions as well as two autoregressive (AR) processes; all of these error patterns satisfy �̄�2 = 1 (recall
�̄�2 = (1∕T)

∑T
t=1 E

[
Var

(
Yt+1

|| It = 1,At

)]
). Furthermore, neither the working assumptions nor the inputs

to the sample size formula specify the dependence of the availability indicator, It on past treatment. Thus,
we consider settings in which the availability decreases as the number of recent treatments increases. For
brevity, we provide these standard results in the Appendix B (Tables B.2 and B.3). The results are gen-
erally quite good, with very few Type I error rates significantly above .05 and power levels significantly
below .80.

6.2. Working assumptions underlying sample size formula are false

Second, we considered a variety of settings in which the working assumptions are false but the inputs to
the sample size formula are approximately correct as follows. Throughout �̄�2 = 1.

6.2.1. Working assumption (a) is violated. Suppose that the true E[Yt+1|It = 1] ≠ Bt𝛼 for any 𝛼 ∈ R
q.

In particular, we consider the scenario in which there is a “weekend” effect on Yt+1; see other scenario in
Appendix A. The data is generated as follows,

It
Ber∼

(
𝜏t

)
, At

Ber∼ (𝜌)
Yt+1 = 𝛼(t) + (At − 𝜌)Z′

t d + 𝜖t, if It = 1

where the conditional mean 𝛼(t) = B′
t𝛼 + Wt𝜃. Wt is a binary variable: Wt = 1 if day of the week is time

t is a weekend day, and Wt = 0 if the day is a weekday. For simplicity, we assume each subject starts on
Monday, e.g., for k = 1,… , 6, Wi+35(k−1) = 0, when i = 1,… , 25, Wi+35(k−1) = 1, when i = 26,… , 35
(recall that we assume in the simulation that there are 5 decision time points per day and the length of
the study is 6 week). The values of {𝛼i, i = 1, 2, 3} are determined by setting 𝛼(1) = 2.5, arg maxt 𝛼(t) =
T , (1∕T)

∑T
t=1 𝛼(t) − 𝛼(1) = 0.1. The error terms {𝜖t}N

t=1 are i.i.d. N(0, 1). The day of maximal proximal
effect is 29. Additionally, different values of the averaged standardized treatment effect and four patterns
of availability as shown in Figure 1 with average 0.5 and are considered. The type I error rate is not
affected, thus is omitted here. The simulated power is reported in Table II; for more details, see Table B.6
in Appendix B.

6.2.2. Working assumption (b) is violated. Suppose that the true 𝛽(t) ≠ Z′
t𝛽 for any 𝛽. Instead the vector

of standardized effect, d, used in the sample size formula corresponds to the projection of d(t), that is,

d =
(∑T

t=1 E[It]ZtZ
′
t

)−1 ∑T
t=1 E[It]Ztd(t) (recall d(t) = 𝛽(t)∕�̄� and 𝜌t = 𝜌). The sample size formula

is used with the correct availability pattern, {E[It]}T
t=1. The data for each simulated subject is generated

sequentially as follows. For each time t,

It
Ber∼

(
𝜏t

)
, At

Ber∼ (𝜌)
Yt+1 = 𝛼(t) + (At − 𝜌)d(t) + 𝜖t, if It = 1

for the variety of d(t) = 𝛽(t)∕�̄� and E[It] patterns provided in Figure 2 and in Figure 1, respectively. The
average availability is 0.5. The error terms {𝜖t}T

t=1 are generated as i.i.d. N(0, 1). The conditional mean,
E[Yt+1|It = 1] = 𝛼(t) is given by 𝛼(t) = 𝛼1 + 𝛼2⌊ t−1

5
⌋ + 𝛼3⌊ t−1

5
⌋2, where 𝛼1 = 2.5, 𝛼2 = 0.727, 𝛼3 =

−8.66 × 10−4 (so that (1∕T)
∑

t 𝛼(t) − 𝛼(1) = 1, argmaxt 𝛼(t) = T).
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Table II. Simulated power when working
assumption (a) is violated. The patterns of
availability are provided in Figure 1.

Availability Pattern

𝜃 d̄ Pattern 1 Pattern 2 Pattern 3

0.5d̄ 0.10 0.80 0.79 0.81
0.06 0.78 0.83 0.81

1d̄ 0.10 0.79 0.78 0.78
0.06 0.78 0.79 0.79

1.5d̄ 0.10 0.78 0.81 0.78
0.06 0.77 0.81 0.82

2d̄ 0.10 0.78 0.79 0.79
0.06 0.81 0.79 0.78

𝜃 is the coefficient of Wt in E[Yt+1|It = 1]. d̄ =
(1∕T)

∑T
t=1 Z′

t d is the average standardized treatment
effect. Bold numbers are significantly (at .05 level)
greater lower than 0.80.
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Figure 2. Standardized Proximal Main Effects of Treatment, {d(t)}T
t=1: representing maintained and severely

degraded time-varying proximal treatment effects. The horizontal axis is the decision time point. The vertical
axis is the standardized treatment effect. The “Max” in the titles refer to the day of maximal proximal effect. The

average standardized proximal effect is d̄ = 0.1 in all plots.

The simulated powers are provided in Table III. In all cases, the power is close to 0.80; this is because
all of the proximal main effect patterns in Figure 2 are sufficiently well approximated by a quadratic in
time. See Appendix A for other cases of d(t) and details (Figure B.2 and Table B.9).

6.2.3. Working assumption (c) is violated. Suppose that Var[Yt+1|It = 1,At] = At𝜎
2
1t + (1−At)𝜎2

0t where
𝜎1t∕𝜎0t ≠ 1. The sample size formula is used with the correct pattern for {Z′

t d, E[It]}T
t=1. The data for

each simulated subject is generated sequentially as follows. For each time t,

It
Ber∼

(
𝜏t

)
, At

Ber∼ (𝜌)
Yt+1 = 𝛼(t) + (At − 𝜌)Z′

t d + 1{At=1}𝜎1t𝜖t + 1{At=0}𝜎0t𝜖t, if It = 1

where the average across time standardized proximal main effect, d̄ = 1
T

∑T
t=1 Z′

t d is 0.1 and day of max-
imal effect is equal to 22 or 29. The function 𝛼(t) = E[Yt+1|It = 1] is as in the prior simulation. The avail-
ability, 𝜏t = 0.5. The error terms {𝜖t} follow a normal AR(1) process, for example, 𝜖t = 𝜙𝜖t−1 + vt with
the variance of vt scaled so that Var[𝜖t] = 1. Define 𝜎2

t = E
[
Var[Yt+1|It = 1,At]

] (
= 𝜌𝜎2

1t + (1 − 𝜌)𝜎2
0t

)
.

Recall the average variance �̄�2 is given by (1∕T)
∑T

t=1 �̄�
2
t . We consider three time-varying trends for {�̄�t}

together with different values of 𝜎1t∕𝜎0t; see Figure 3. In each trend, 𝜎2
t is scaled such that �̄� = 1; thus

the standardized proximal main effect in the generative model is Z′
t d. In all cases, the simulated type I

error rates are close to 0.05, and thus, the table is omitted here (Appendix Bs, Table B.10). The simulated
power is given in Table IV.
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Table III. Simulated Power when working assumption (b) is violated. The shape
of the standardized proximal effect and pattern for availability are provided in
Figure 2 and 1 respectively. The sample sizes are given on the right.

Shape of d(t)

d̄ Availability Pattern Max Maintained Degraded Sample Size

0.10 Pattern 1 15 0.78 0.79 43 39
29 0.80 0.79 38 38

Pattern 2 15 0.79 0.80 43 39
29 0.78 0.79 38 38

Pattern 3 15 0.81 0.77 45 41
29 0.81 0.78 37 39

0.06 Pattern 1 15 0.81 0.79 111 100
29 0.81 0.79 96 96

Pattern 2 15 0.79 0.81 112 100
29 0.79 0.80 96 96

Pattern 3 15 0.78 0.81 116 106
29 0.80 0.80 95 101

d̄ = (1∕T)
∑T

t=1 Z′
t d is the average standardized treatment effect. The "Max" in the first

row refers to the day of maximal proximal effect. Bold numbers are significantly (at .05
level) lower than 0.80.
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Figure 3. Trend of �̄�t: For all trends, 𝜎2
t is scaled so that (1∕T)

∑T
t=1 𝜎

2
t = 1. In Trend 3, the variance, 𝜎2

t =
E
[
Var[Yt+1|It = 1,At]

]
peaks on weekends. In particular, �̄�7k+i = 0.8 for i = 1,… , 5 and �̄�7k+i = 1.5 for i = 6, 7.

In the case of 𝜎1t < 𝜎0t, the simulated powers are slightly larger than 0.8, while the simulated powers are
smaller than 0.8 in the case of 𝜎1t > 𝜎0t. The impact of �̄�t on the power depends on the shape of treatment
effect: when 𝛽(t) attains its maximum, more than halfway through the study, at day 29, a increasing {�̄�t},
trend 1, lowers the power, while a decreasing {�̄�t}, trend 2, improves the power. When 𝛽(t) attains a
maximal effect midway through the study, either decreasing or increasing {�̄�t} does not impact power.
A large variation in �̄�t, e.g. trend 3, reduces the power in all cases. The differing auto correlations of the
errors, 𝜖t, do not affect power; see a more detailed table in Appendix B, Table B.10.

6.2.4. Working assumption (d) is violated. We violate assumption (d) by making both the availability
indicator, It and proximal response, Yt+1 depend on past treatment and past proximal responses. The
sample size formula is used with the correct value of {Z′

t d,E[It]}T
t=1; in particular d is determined by an

average proximal main effect of d̄ = 0.1, day of maximal effect equal to 29 (d1 = 0, d2 = 9.64×10−3, d3 =
−1.72 × 10−4) and with a constant availability pattern equal to 0.5. The data for each simulated subject
are generated as follows. Denote the cumulative treatment over last 24 hours by Ct =

∑5
j=1 At−jIt−j.

In each time t,

It
Ber∼

(
𝜏t + 𝜏t𝜂1(Ct − E[Ct]) + 𝜏t𝜂2 Trunc

(
1
5

5∑
j=1

𝜖t−j

))
, At

Ber∼ (𝜌)

Yt+1 =
{

𝛼(t) + 𝛾1

[
Ct − E[Ct|It = 1]

]
+ (At − 𝜌)

[
Z′

t d + Z′
t d𝛾2(Ct − E[Ct|It = 1])

]
+ 𝜎∗𝜖t if It = 1

𝛼0(t) + 𝜖t if It = 0.
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Table IV. Simulated Power when working assumption (c) is violated, 𝜎1t ≠ 𝜎0t.
The trends are provided in Figure 3. The availability is 0.5. The average proximal
main effect, d̄ = 0.1 and the day of maximal effect is 22 or 29, and thus the
associated sample sizes are 41 and 42.

Max = 22 (N = 41) Max = 29 (N = 42)

𝜙
𝜎1t

𝜎0t
trend 1 trend 2 trend 3 trend 1 trend 2 trend 3

−0.6 0.8 0.83 0.84 0.80 0.81 0.89 0.79
1.0 0.79 0.80 0.75 0.74 0.85 0.70
1.2 0.76 0.76 0.71 0.72 0.81 0.70

0 0.8 0.85 0.82 0.79 0.81 0.88 0.78
1.0 0.79 0.81 0.74 0.77 0.86 0.72
1.2 0.77 0.77 0.71 0.70 0.83 0.70

0.6 0.8 0.83 0.83 0.81 0.77 0.87 0.77
1.0 0.76 0.79 0.75 0.73 0.85 0.77
1.2 0.78 0.77 0.73 0.72 0.82 0.69

𝜙 is the parameter in AR(1) for {𝜖t}T
t=1. “Max” is the day in which the maximal proximal

effect is attained. Bold numbers are significantly (at .05 level) lower than .80.

Table V. Simulated Power when working assumption (d)
is false. The expected availability is 0.5, the average proxi-
mal main effect d̄ = 0.1 and the maximal effect is attained
at day 29. The associated sample size is 42.

𝛾2

Parameters in It 𝛾1 −0.1 −0.2 −0.3

𝜂1 = −0.1, 𝜂2 = −0.1 −0.2 0.80 0.81 0.79
−0.5 0.79 0.81 0.80
−0.8 0.81 0.82 0.79

𝜂1 = −0.2, 𝜂2 = −0.1 −0.2 0.78 0.82 0.79
−0.5 0.81 0.77 0.77
−0.8 0.81 0.79 0.78

𝜂1 = −0.1, 𝜂2 = −0.2 −0.2 0.78 0.78 0.80
−0.5 0.80 0.79 0.78
−0.8 0.78 0.79 0.80

𝛾1 and 𝛾2 are parameters for the cumulative treatments in the
model of Yt+1. 𝜂1 and 𝜂2 are parameters in the model of It. Bold
numbers are significantly (at .05 level) less than 0.80.

where {𝜖t}T
t=1 are i.i.d N(0, 1) and Trunc(x) ∶= x1|x|⩽1 + sign(x)I|x|>1 (the truncation is used to ensure

that 𝜏t + 𝜏t𝜂1(Ct − E[Ct]) + 𝜏t𝜂2 Trunc(
1
5

∑5
j=1 𝜖t−j) ∈ [0, 1]). Again 𝛼(t) is as in the prior simulation. 𝜎∗

is calculated such that the average variance is equal to 1, e.g., �̄� = 1
T

∑T
t=1 E[Var[Yt+1|It = 1,At]] = 1.

Note that since Ct is centered in both the model for It as well as in the model for Yt+1, the standardized
proximal main effect is Z′

t d and E[It] = 𝜏t = 0.5. 𝛼0(t) is the conditional mean of Yt+1 when It = 0. The
form of E[Yt+1|It = 0] is not essential: only Ys+1 −E[Ys+1|Is = 0] is used to generate It. In the simulation,
E[Ct|It = 1] and 𝜎∗ are calculated by Monte Carlo methods. As before, the simulated type I error are not
affected; see Table B.11 in appendix B. The simulated powers are provided in Table V.

6.3. Some practical guidelines

Third, it is critical to use conservative values of d and availability E[It] in the sample size formula. It is not
surprising that the quality of the sample size formula depends on an accurate or conservative values of the
standardized effects, d, as this is the case for all sample size formulas. Additionally availability provides
the number of decision points as which treatment might be provided per individual and thus the sample
size formula should be sensitive to availability. To illustrate these points we consider two simulations in
which the data is generated by
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It
Ber∼

(
𝜏t

)
, At

Ber∼ (𝜌)
Yt+1 = 𝛼(t) + (At − 𝜌)Z′

t d + 𝜖t, if It = 1

where the 𝜖t’s are i.i.d. standard normals and 𝛼(t) is as in the prior simulations. In the first simulation,
suppose the scientist provides the correct availability pattern, {E[It]}T

t=1, the correct time at which the
maximal standardized proximal main effect is achieved (arg maxt Z′

t d) and the correct initial standardized
proximal main effect (Z′

1d = d1 = 0) but provides too low a value of the averaged across time, standard-
ized proximal main effect d̄ = 1

T

∑T
t=1 Z′

t d. The simulated power is provided in Appendix B, Table B.12.
The degradation in power is pronounced as might be expected.

In the second simulation, suppose the scientist provides the correct arg maxt Z′
t d, correct Z′

1d = d1 = 0,
correct d̄ = 1

T

∑T
t=1 Z′

t d and although the scientist’s time-varying pattern of availability is correct, the
magnitude is underestimated. The simulation result is in Appendix B, Table B.13. Again the degradation
in power is pronounced.

7. Discussion

In this paper, we have introduced the use of micro-randomized trials in mobile health and have provided
an approach to determining the sample size. More sophisticated sample size procedures might be enter-
tained. Certainly it makes sense to include baseline information in the sample size procedure, for example
in HeartSteps, a natural baseline variable is baseline step count. The inclusion of baseline variables in Bt
in the regression (2) is straightforward. An interesting generalization to the sample size procedure would
allow scientists to include time-varying variables (in St) as covariates in Bt in the regression (2). This
might be a useful strategy for reducing the error variance.

An alternate to the micro-randomized trial design is the single case design often used in the behavioral
sciences [28]. These trials usually only involve 1 to 13 participants [29] and the data analyses focus on
the examination of visual trends for each participant separately. For example, during periods when a
participant is on treatment the response might be generally higher than the height of the response during
the time periods in which the participant is off treatment. Dallery et al. [30] provide an excellent overview
of single case designs and their use for evaluating technology based intervention. Their paper illustrates
the visual analyses that would be conducted on each participant’s data. A critical assumption is that the
effect of the treatment is only temporary (no carry-over effect) so that each participant can act as his own
control. We believe that in settings in which treatments are expected to have sufficiently strong effects
so as to overwhelm the within person variability in response (thus a visual analysis can be compelling),
these designs provide an alternative to the micro-randomized trial design.

Although this paper has focused on determining the sample size to detect the proximal main effect
of a treatment with a given power, micro-randomized studies provide data for a variety of interesting
further analyses. For example, it is of some interest to model and understand the predictors of the time-
varying availability indicator. In the case of HeartSteps we will know why the participant is unavailable
(driving a car, already active or has turned off the lock-screen messages) so we will be able to consider
each type of availability indicator. Other very interesting further analyses include assessing interactions
between treatments, At and context, St, past treatment As, s < t on the proximal response, Yt+1. Also there
is much interest in using this type of data to construct ‘dynamic treatment regimes’; in this setting these
are called Just-in-Time Adaptive Interventions [13]. The sequential micro-randomizations enhance all of
these analyses by reducing causal confounding.

Appendix A: Theoretical results and proofs

Lemma 1 (Least Squares Estimator)
The least square estimators �̂�, 𝛽 are consistent estimators of �̃�, 𝛽 in (4) and (5). In particular, if 𝛽(t) =
Z′

t𝛽
∗ for some vector 𝛽∗, then 𝛽 = 𝛽∗. Under moment conditions, we have

√
N(𝛽 − 𝛽) → N(0,Σ𝛽),

where the asymptotic variance Σ𝛽 is given by Σ𝛽 = Q−1WQ−1 where Q =
∑T

t=1 E[It]𝜌t(1 − 𝜌t)ZtZ
′
t ,

W = E
[∑T

t=1 𝜖tIt(At − 𝜌t)Zt ×
∑T

t=1 𝜖tIt(At − 𝜌t)Z′
t

]
and 𝜖t = Yt+1 − B′

t �̃� − Z′
t𝛽(At − 𝜌t).
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Proof
It’s easy to see that the least square estimators satisfy

�̂� = (�̂�, 𝛽) =

(
PN

T∑
t=1

ItXtX
′
t

)−1 (
PN

T∑
t=1

ItYt+1Xt

)
→

(
T∑

t=1

E(ItXtX
′
t )

)−1 ( T∑
t=1

E(ItYt+1Xt)

)

where X′
t = (B′

t , (At − 𝜌t)Z′
t ) ∈ R

1×(p+q) is the covariate at time t. For each t,

E(ItXtX
′
t ) =

(
E[It]BtB

′
t BtZ

′
t E[It(At − 𝜌t)]

ZtB
′
tE[It(At − 𝜌t)] ZtZ

′
t E[It(At − 𝜌t)2]

)
=

(
E[It]BtB

′
t 0

0 E[It]𝜌t(1 − 𝜌t)ZtZ
′
t

)
E(ItYt+1Xt) =

(
E[ItYt+1]Bt

E[ItYt+1(At − 𝜌t)]Zt

)
=

(
E[ItYt+1]Bt

𝜌t(1 − 𝜌t)E[It]𝛽(t)Zt

)
,

so that

�̂� →

(
T∑

t=1

E[It]BtB
′
t

)−1 T∑
t=1

E[ItYt+1]Bt =

(
T∑

t=1

E[It]BtB
′
t

)−1 T∑
t=1

E[It]𝛼(t)Bt

𝛽 →

(
T∑

t=1

𝜌t(1 − 𝜌t)E[It]ZtZ
′
t

)−1 T∑
t=1

E[ItYt+1(At − 𝜌t)]Zt =

(
T∑

t=1

𝜌t(1 − 𝜌t)E[It]ZtZ
′
t

)−1

T∑
t=1

E[It]𝜌t(1 − 𝜌t)𝛽(t)Zt

as in (4) and (5). We can see that if 𝛽(t) = Z′
t𝛽

∗, then
(∑T

t=1 𝜌t(1 − 𝜌t)E[It]ZtZ
′
t

)−1 ∑T
t=1 E[It]𝜌t(1 −

𝜌t)𝛽(t)Zt =
(∑T

t=1 𝜌t(1 − 𝜌t)E[It]ZtZ
′
t

)−1 ∑T
t=1 E[It]𝜌t(1−𝜌t)ZtZ

′
t𝛽

∗ = 𝛽∗. This is true even if E[Yt+1|It =
1] ≠ B′

t �̃�.
We can easily see that,

√
N(�̂� − 𝜃) =

√
N

⎧⎪⎨⎪⎩
(
PN

T∑
t=1

ItXtX
′
t

)−1 [(
PN

T∑
t=1

ItYt+1Xt

)
−

(
PN

T∑
t=1

ItXtX
′
t

)
𝜃

]⎫⎪⎬⎪⎭
=

√
N

⎧⎪⎨⎪⎩E

[
T∑

t=1

ItXtX
′
t

]−1 (
PN

T∑
t=1

It𝜖tXt

)⎫⎪⎬⎪⎭ + op(𝟏),

(A.1)

where op(𝟏) is a term that converges in probability to zero as N goes to infinity. By the definitions of �̃�
and 𝛽, we have

E

[
T∑

t=1

It𝜖tXt

]
=

( ∑T
t=1 E[It]

(
𝛼(t) − B′

t �̃�
)

Bt∑T
t=1 E[It]𝜌t(1 − 𝜌t)

(
𝛽(t) − Z′

t𝛽
)

Zt

)
= 𝟎

So that under moments conditions, we have
√

N(�̂� − 𝜃) → N(0,Σ𝜃), where Σ𝜃 is given by

Σ𝜃 = E

[
T∑

t=1

ItXtX
′
t

]−1

E

[
T∑

t=1

It𝜖tXt ×
T∑

t=1

It𝜖tX
′
t

]
E

[
T∑

t=1

ItXtX
′
t

]−1

=
[
Σ𝛼 Σ𝛼𝛽

Σ′
𝛼𝛽

Σ𝛽

]
.

In particular, 𝛽 satisfies
√

N(𝛽 − 𝛽) → N(0,Σ𝛽) and Σ𝛽 is given by
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Σ𝛽 =

(
T∑

t=1

E[It]𝜌t(1 − 𝜌t)ZtZ
′
t

)−1

E

[
T∑

t=1

𝜖tIt(At − 𝜌t)Zt ×
T∑

t=1

𝜖tIt(At − 𝜌t)Z′
t

](
T∑

t=1

E[It]𝜌t(1 − 𝜌t)ZtZ
′
t

)−1

= Q−1WQ−1.

Lemma 2 (Asymptotic Variance Under Working Assumptions)
Assuming working assumptions (a)–(d) are true, then under the alternative hypothesis H1 in (7), Σ𝛽 and
cN are given by

Σ𝛽 = �̄�2

(
T∑

t=1

E[It]𝜌t(1 − 𝜌t)ZtZ
′
t

)−1

,

cN = Nd′

(
T∑

t=1

E[It]𝜌t(1 − 𝜌t)ZtZ
′
t

)
d.

Proof
Note that under assumptions (b) and (c), we have Z′

t𝛽 = 𝛽(t) and Var(Yt+1|It = 1,At) = �̄� for each t,

and d̃ = d. The middle term, W, in Σ𝛽 can be separated by two terms, e.g., E
[∑T

t=1 𝜖tIt(At − 𝜌t)Zt×∑T
t=1 𝜖tIt(At − 𝜌t)Z′

t

]
=

∑T
t=1 E

[
𝜖2

t It(At − 𝜌t)2
]

ZtZ
′
t +

∑T
i≠j E

[
𝜖i𝜖jIiIj(Ai − 𝜌i)(Aj − 𝜌j)

]
ZiZ

′
j . Under

assumptions (a), (b) and (c), we have E[𝜖t|It = 1,At] = 0 and E
[
𝜖2

t It(At − 𝜌t)2
]
= E[It]𝜌t(1 − 𝜌t)�̄�2. Fur-

thermore, suppose i > j, then E
[
𝜖i𝜖jIiIj(Ai − 𝜌)(Aj − 𝜌)

]
= E[IiIj(Aj − 𝜌)(Ai − 𝜌)] × E[𝜖t𝜖s|It = 1, Is =

1,At,As] = 0, because Ai ⟂⟂ {Ii, Ij,Aj} and the first term is 0. W is then given by

W = �̄�2
T∑

t=1

E[It]𝜌t(1 − 𝜌t)ZtZ
′
t ,

so that Σ𝛽 = �̄�2
(∑T

t=1 E[It]𝜌t(1 − 𝜌t)ZtZ
′
t

)−1
and cN = N(�̄�d̃)′Σ−1

𝛽
(�̄�d̃) = Nd′

(∑T
t=1 E[It]𝜌t(1 − 𝜌t)

ZtZ
′
t

)
d.

Remark
Working assumption (d) can be replaced by assuming E[Yt+1|It = 1,At, Is = 1,As] − E[Yt+1|It = 1,At]
does not depend on At for any s < t, or some Markovian type of assumption, e.g. Yt+1 ⟂⟂ {Ys+1, Is,As, s <
t}|It,At. Either of them implies E

[
𝜖i𝜖jIiIj(Ai − 𝜌i)(Aj − 𝜌j)

]
= 0, so thatΣ𝛽 and cN have the same simplified

forms.

Rationale for multiple of F distribution The distribution of the quadratic form, n(X̄ − 𝜇)′Σ̂−1(X̄ − 𝜇)
constructed from a random sample of size n of N(𝜇,Σ) random variables in which Σ̂ is the sample covari-
ance matrix follows a Hotelling’s T-squared distribution. The Hotelling’s T-squared distribution is a
multiple of the F distribution, d1(d1+d2−1)

d2
Fd1,d2

in which d1 is the dimension of 𝜇, and d2 is the sample
size. Our sample sample approximation replaces d1 by p (the number of parameters in the test statistic)
and d2 by n − q − p (the sample size minus the number of nuisance parameters minus d1).

Formula for adjusted Ŵ and Q̂ Define a individual-specific residual vector ê as the T × 1 vector with
tth entry êt = Yt+1 − ItB

′
t �̂� − It(At − 𝜌t)Z′

t𝛽. For each individual define the tth row of the T × (p + q)
individual-specific matrix X by (ItB

′
t , It(At − 𝜌t)Zt). Then define H = X

[
PNX′X

]−1
X′. The matrix Q̂−1 is

given by the lower right p × p block in the inverse of
[
PNX′X

]
; the matrix Ŵ is given by the lower right

p × p block in PN

[
XT (I − H)−1êê′(I − H)−1X

]
.

Appendix B: Further simulations and details

B.1. Simulation results when working assumptions are true

We conduct a variety of simulations in settings in which the working assumptions hold, the scientist pro-
vides the correct pattern for the expected availability, 𝜏t = E[It] and under the alternate, the standardized
proximal main effect is d(t) = Z′

t d. Here we will mainly focus on the setup where the duration of the
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study is 42 days and there are 5 decision times within each day, but similar results can be obtained in
different setups; see later. The randomization probability is 0.4, that is, 𝜌 = 𝜌t = P(At = 1) = 0.4. The
sample size formula is given in (8) and (9). The test statistic is given by (6) in which Bt and Zt equal to(

1, ⌊ t−1
5
⌋, ⌊ t−1

5
⌋2
)′

. All simulations are based on 1000 simulated data sets. The significance level is 0.05
and the desired power is 0.80.

In the first simulation, the data for each simulated subject is generated sequentially as follows. For
t = 1,… ,T = 210, It, At and Yt+1 are generated by

It
Ber∼

(
𝜏t

)
, At

Ber∼ (𝜌)
Yt+1 = 𝛼(t) + (At − 𝜌)d(t) + 𝜖t, if It = 1

Table B.1. Sample Sizes when the proximal treatment effect satisfies d(t) = Z′
t d. The significance level

is 0.05. The desired power is 0.80.

𝜏 = 0.5 𝜏= 0.7

Average Proximal Effect

Duration of Study Availability Pattern Max 0.10 0.08 0.06 0.10 0.08 0.06

4-week Pattern 1 15 59 89 154 43 65 112
22 60 91 158 44 66 114
29 58 87 152 43 64 110

Pattern 2 15 59 89 154 43 65 112
22 60 92 159 44 67 115
29 58 89 154 43 64 111

Pattern 3 15 59 90 157 44 66 113
22 63 96 167 46 69 119
29 62 94 163 45 67 115

Pattern 4 15 59 89 155 43 65 112
22 57 86 150 43 64 110
29 54 82 142 41 61 105

6-week Pattern 1 22 41 61 105 31 45 76
29 42 64 109 32 47 79
36 41 62 106 31 45 77

Pattern 2 22 41 61 105 31 45 76
29 43 64 110 32 47 80
36 42 62 107 31 46 77

Pattern 3 22 42 62 106 31 46 77
29 44 66 114 33 48 82
36 43 65 112 32 47 80

Pattern 4 22 41 62 106 31 45 77
29 41 62 106 31 46 78
36 40 59 101 30 44 74

8-week Pattern 1 29 32 47 80 25 35 58
36 33 49 84 26 37 61
43 33 48 82 25 36 60

Pattern 2 29 32 47 80 25 35 58
36 34 49 84 26 37 61
43 33 49 82 25 36 60

Pattern 3 29 33 48 82 25 36 59
36 35 51 87 26 38 63
43 34 50 86 26 37 62

Pattern 4 29 33 48 81 25 36 59
36 33 49 83 25 36 61
43 32 47 80 25 35 59

“Max” is the day in which the maximal proximal effect is attained. 𝜏 = (1∕T)
∑T

t=1 E[It] is the average availability.
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Table B.2. Simulated Type I error rate (%) when working assumptions are true. Duration of the study is 6-week.
The associated sample size is given in Table B.1.

𝜏 = 0.5 𝜏= 0.7

Average Proximal Effect

Error Term Availability Pattern Max 0.10 0.08 0.06 0.10 0.08 0.06

i.i.d. Normal Pattern 1 22 3.8 4.5 4.9 4.6 5.3 4.8
29 4.7 6.0 4.6 4.0 3.2 5.0
36 5.0 5.4 4.9 4.3 4.8 4.6

Pattern 2 22 4.8 4.1 4.8 4.4 3.5 4.1
29 4.3 6.2 3.2 4.6 4.2 4.2
36 4.5 4.8 5.2 4.5 3.5 5.4

Pattern 3 22 4.7 4.5 6.3 4.4 4.9 4.9
29 4.1 5.1 4.6 4.3 6.0 5.6
36 4.7 4.4 4.6 4.1 5.1 4.4

Pattern 4 22 5.4 3.5 4.5 4.8 4.7 5.0
29 5.2 4.5 4.5 5.0 5.0 5.1
36 3.8 4.1 5.4 4.7 5.0 5.9

i.i.d. t dist. Pattern 1 22 4.3 4.4 3.2 4.1 4.1 5.2
29 5.0 3.8 3.2 3.7 4.2 6.3
36 4.3 4.5 4.0 5.0 5.7 5.4

i.i.d. Exp. Pattern 1 22 4.5 4.6 4.4 3.7 7.1 3.1
29 4.5 4.6 4.2 4.5 4.5 4.7
36 2.7 4.8 4.8 3.9 3.7 3.4

AR(1), 𝜙 = −0.6 Pattern 1 22 4.3 5.3 4.6 3.8 4.2 4.0
29 4.6 5.4 5.1 4.0 4.4 4.3
36 4.7 4.0 4.0 4.1 4.2 3.9

AR(1), 𝜙 = −0.3 Pattern 1 22 5.8 3.4 4.4 3.3 4.0 5.4
29 4.9 4.7 4.6 5.5 5.5 4.5
36 4.0 4.7 4.4 4.9 5.0 4.7

AR(1), 𝜙 = 0.3 Pattern 1 22 4.6 4.6 4.9 4.3 5.4 4.1
29 4.8 5.3 4.1 4.3 4.2 5.2
36 3.6 3.9 4.9 4.8 4.9 4.9

AR(1), 𝜙 = 0.6 Pattern 1 22 4.4 5.1 4.9 3.6 5.2 3.7
29 3.7 4.9 4.6 4.5 4.3 5.8
36 4.4 6.7 5.2 5.6 3.6 5.1

AR(5), 𝜙 = −0.6 Pattern 1 22 4.4 4.7 5.1 4.2 4.5 5.5
29 4.3 5.1 4.3 3.2 3.5 4.2
36 5.3 4.5 6.1 4.2 4.6 5.4

AR(5), 𝜙 = −0.3 Pattern 1 22 3.7 4.4 6.0 5.0 4.5 3.5
29 4.4 4.7 5.2 5.3 4.5 5.0
36 4.5 5.0 5.1 4.1 5.3 4.8

AR(5), 𝜙 = 0.3 Pattern 1 22 5.3 4.3 5.7 4.8 4.1 4.3
29 3.9 4.8 4.1 4.0 4.3 4.9
36 4.2 5.5 5.1 3.6 4.5 3.6

AR(5), 𝜙 = 0.6 Pattern 1 22 5.1 4.5 4.0 4.5 3.8 5.2
29 5.2 4.8 4.5 2.9 5.3 4.4
36 4.1 3.6 4.6 3.9 4.4 4.9

“Max” is the day in which the maximal proximal effect is attained. 𝜏 = (1∕T)
∑T

t=1 E[It] is the average availability. 𝜙 is
the parameter for AR(1) and AR(5) process. Bold numbers are significantly(at .05 level) greater than .05.
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Table B.3. Simulated Power(%) when working assumptions are true. Duration of the study is 6-week. The
associated sample size is given in Table B.1.

𝜏 = 0.5 𝜏= 0.7

Average Proximal Effect

Error Term Availability Pattern Max 0.10 0.08 0.06 0.10 0.08 0.06

i.i.d. Normal Pattern 1 22 80.9 80.0 81.0 78.7 77.5 80.7
29 78.4 80.6 77.8 80.6 78.7 79.0
36 80.2 80.0 79.6 79.4 80.2 77.0

Pattern 2 22 80.3 78.1 78.8 80.6 79.6 79.8
29 80.3 79.1 80.2 77.4 79.9 79.9
36 76.8 79.3 80.2 78.5 78.4 80.0

Pattern 3 22 83.5 81.5 77.7 78.5 81.3 78.7
29 77.9 79.1 78.5 77.8 78.8 79.0
36 77.3 78.1 79.8 79.8 79.9 79.1

Pattern 4 22 77.2 79.7 81.8 80.2 79.0 78.8
29 80.1 78.8 80.3 79.4 80.6 80.1
36 80.5 79.4 80.0 78.9 79.9 78.1

i.i.d. t dist. Pattern 1 22 80.4 81.9 81.0 79.7 79.4 80.7
29 81.7 82.2 82.2 79.1 82.3 77.3
36 80.8 78.8 79.5 81.8 81.6 79.9

i.i.d. Exp. Pattern 1 22 81.0 81.6 79.7 77.2 80.1 80.2
29 80.6 82.4 80.3 79.0 79.8 80.3
36 82.1 79.8 80.8 79.8 79.5 80.3

AR(1), 𝜙 = −0.6 Pattern 1 22 78.5 80.3 78.5 82.3 79.8 80.3
29 78.7 80.8 80.0 77.1 79.5 77.9
36 77.7 80.3 80.2 78.2 77.4 83.6

AR(1), 𝜙 = −0.3 Pattern 1 22 77.9 79.0 79.6 80.0 77.8 80.4
29 77.9 79.1 80.0 79.0 78.0 78.4
36 78.1 81.2 80.2 80.7 80.9 78.4

AR(1), 𝜙 = 0.3 Pattern 1 22 80.2 78.5 80.8 80.5 79.6 82.6
29 78.0 80.0 80.0 78.0 79.4 80.1
36 77.6 82.5 80.6 77.0 78.9 82.0

AR(1), 𝜙 = 0.6 Pattern 1 22 80.4 79.8 79.5 80.7 79.5 82.0
29 78.9 81.5 79.3 79.5 81.3 79.5
36 79.5 78.4 78.8 80.1 77.9 77.8

AR(5), 𝜙 = −0.6 Pattern 1 22 79.9 79.4 80.0 78.7 79.2 79.4
29 80.0 78.3 79.1 76.8 79.6 79.3
36 80.5 80.0 79.2 80.1 78.0 80.4

AR(5), 𝜙 = −0.3 Pattern 1 22 79.2 80.4 81.9 81.3 77.7 79.1
29 80.0 82.3 80.5 80.5 82.2 79.2
36 75.9 78.7 79.3 79.0 79.4 79.9

AR(5), 𝜙 = 0.3 Pattern 1 22 79.4 80.8 79.8 79.5 77.3 81.2
29 78.0 79.2 79.2 79.2 80.5 78.4
36 78.3 79.1 78.1 80.7 80.5 79.5

AR(5), 𝜙 = 0.6 Pattern 1 22 80.2 77.9 80.3 78.6 78.4 80.3
29 76.9 79.3 80.2 79.1 80.6 80.5
36 78.7 84.0 80.1 78.8 79.3 78.8

“Max” is the day in which the maximal proximal effect is attained. 𝜏 = (1∕T)
∑T

t=1 E[It] is the average availability. 𝜙 is
the parameter for AR(1) and AR(5) process. Bold numbers are significantly(at .05 level) less than .80.
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Table B.4. Simulated Type I error rate(%) and power(%) when the duration of study is 4-week and 8-week.
Error terms follow i.i.d. N(0,1). The associated sample size is given in Table B.1.

𝜏 = 0.5 𝜏= 0.7

Average Proximal Effect

Duration of Study Availability Pattern Max 0.10 0.08 0.06 0.10 0.08 0.06

4-week Pattern 1 15 4.1 4.7 6.3 5.3 5.5 5.6
22 5.2 4.4 4.7 3.1 4.7 4.4
29 5.7 5.5 5.6 4.3 4.2 4.2

Pattern 2 15 4.8 4.8 5.0 5.0 5.2 5.3
22 5.1 5.2 4.7 3.7 4.2 3.7
29 5.6 5.1 4.2 4.2 4.9 4.4

Pattern 3 15 4.7 5.0 4.6 6.1 5.3 5.1
22 4.9 4.0 6.6 4.2 3.8 4.1
29 4.7 4.3 5.1 4.6 5.8 3.5

Pattern 4 15 4.9 4.6 4.8 3.0 5.9 3.8
22 3.5 5.1 4.5 5.2 3.8 6.0
29 4.4 6.4 4.7 4.4 4.3 4.7

8-week Pattern 1 29 4.1 4.6 4.0 5.3 5.0 5.9
36 3.3 4.7 6.5 4.6 5.4 4.3
43 3.2 5.1 5.2 5.0 3.4 5.0

Pattern 2 29 3.9 5.0 4.5 4.2 3.7 4.1
36 3.8 4.6 4.9 4.5 3.4 5.2
43 3.9 5.4 5.0 3.4 3.8 5.0

Pattern 3 29 4.6 4.2 3.7 5.2 4.1 4.0
36 4.3 5.1 6.1 4.6 5.0 4.6
43 4.6 6.0 4.1 5.0 4.9 4.0

Pattern 4 29 4.5 5.2 2.9 3.6 5.3 4.4
36 4.5 5.2 3.7 2.7 3.7 4.7
43 4.2 7.1 4.9 4.4 4.5 4.8

4 week Pattern 1 15 80.4 79.0 78.5 79.6 82.8 80.3
22 78.8 78.7 80.7 78.7 79.2 80.0
29 76.2 80.6 80.1 81.3 80.1 79.1

Pattern 2 15 82.4 77.8 77.2 75.9 80.0 78.9
22 77.2 80.3 81.5 75.8 80.7 82.0
29 80.1 79.3 80.1 78.0 77.7 76.9

Pattern 3 15 79.3 79.8 79.2 79.1 76.5 80.8
22 80.0 80.0 79.0 79.0 80.2 81.8
29 79.4 80.7 79.3 80.4 79.6 79.2

Pattern 4 15 82.6 78.3 79.2 80.5 80.0 79.5
22 80.4 80.7 79.3 79.1 78.5 79.2
29 78.4 79.2 78.5 79.6 79.2 80.5

8 week Pattern 1 29 79.7 77.3 76.4 79.1 82.2 79.6
36 78.8 78.6 81.5 80.3 78.2 79.6
43 80.4 77.8 78.7 79.1 80.3 80.1

Pattern 2 29 79.3 81.1 79.8 78.7 79.7 80.2
36 81.2 78.5 79.0 81.3 80.8 78.2
43 80.3 81.5 77.5 75.1 78.8 78.1

Pattern 3 29 80.1 79.0 77.1 78.2 80.4 78.8
36 79.5 79.9 79.6 80.0 80.8 79.6
43 80.5 79.5 79.6 79.4 79.4 80.2

Pattern 4 29 82.1 79.7 80.7 79.7 79.0 78.4
36 77.8 78.2 80.1 77.9 76.9 79.5
43 79.6 78.5 78.1 79.4 80.6 79.5

“Max” is the day in which the maximal proximal effect is attained. 𝜏 = (1∕T)
∑T

t=1 E[It] is the average availability. Bold
numbers are significantly(at .05 level) greater than .05 (for type I error)and less than .80 (for power).
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where d(t) = Z′
t d and 𝜏t are same as in the sample size model. The conditional mean, E[Yt+1|It = 1] = 𝛼(t)

is given by 𝛼(t) = 𝛼1 + 𝛼2⌊ t−1
5
⌋ + 𝛼3⌊ t−1

5
⌋2, where 𝛼1 = 2.5, 𝛼2 = 0.727, 𝛼3 = −8.66 × 10−4 (so that

(1∕T)
∑

t 𝛼(t) − 𝛼(1) = 1, argmaxt 𝛼(t) = T). We consider 5 differing distributions for the errors {𝜖t}T
t=1:

independent normal; independent (scaled) Student’s t distribution with 3 degrees of freedom; independent
(centered) exponential distribution with 𝜆 = 1; a Gaussian AR(1) process, for example, 𝜖t = 𝜙𝜖t−1 + vt,
where vt is white noise with variance 𝜎2

v such that Var(𝜖t) = 1; and lastly a Gaussian AR(5) process, e.g.

𝜖t =
𝜙

5

∑5
j=1 𝜖t−j +vt, where vt is white noise with variance 𝜎2

v such that Var(𝜖t) = 1. In all cases the errors
are scaled to have mean 0 and variance 1 (i.e., E[𝜖t|It = 1] = 0, Var[𝜖t|At, It = 1] = 1). Additionally four
availability patterns, e.g. time varying values for 𝜏t = E[It], are considered; see Figure 1. The simulated
Type I error rate and power when the duration of study is 42 days are reported in Table B.2 and B.3.
The simulation results in other setups, for example, the length of the study is 4 weeks and 8 weeks, are
reported in Table B.4. The associated sample sizes are given in Table B.1.

Because neither the working assumptions nor the inputs to the sample size formula specify the depen-
dence of the availability indicator, It on past treatment. In the second simulation, we consider the setting
in which the availability decreases as the number of treatments provided in the recent past increase. In
particular, the data are generated as follows,

Table B.6. Simulated type I error rate(%) and power(%) when working assumption (a) is violated.
Scenario 1. The average availability is 0.5. The day of maximal proximal effect is 29.

Availability Pattern

𝜃 d̄ Pattern 1 Pattern 2 Pattern 3 Pattern 4 Pattern 1 Pattern 2 Pattern 3 Pattern 4

0.5d̄ 0.10 5.5 4.6 4.2 5.1 79.7 79.4 80.5 80.1
0.08 5.1 4.4 5.4 4.6 80.4 78.9 80.4 78.7
0.06 4.1 5.5 4.6 4.3 77.5 82.7 81.0 81.0

d̄ 0.10 4.8 4.3 3.7 4.1 79.3 78.3 77.8 79.4
0.08 5.4 4.9 4.6 5.5 78.8 79.3 78.0 80.6
0.06 4.4 3.5 5.1 4.6 78.4 79.3 79.0 80.4

1.5d̄ 0.10 4.4 4.1 4.4 4.8 78.3 80.5 78.4 79.9
0.08 5.0 4.3 4.3 3.9 80.5 79.7 78.7 81.9
0.06 4.0 5.1 5.5 5.6 77.2 80.8 81.6 80.3

2d̄ 0.10 4.1 3.8 5.0 5.5 77.7 78.8 79.0 78.4
0.08 4.0 5.0 3.7 5.7 79.3 81.5 79.1 79.4
0.06 4.9 4.3 5.2 5.3 80.8 79.0 77.5 80.9

d̄ = (1∕T)
∑T

t=1 Z′
t d is the average proximal effect. 𝜃 is the coefficient of Wt in E[Yt+1It = 1]. Bold numbers are

significantly (at .05 level) greater than .05 (for type I error rate) and lower than 0.80 (for power).
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Figure B.1. Conditional expectation of proximal response, E[Yt+1|It = 1]. The horizontal axis is the decision
time point. The vertical axis is E[Yt+1|It = 1].
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It
Ber∼

(
𝜏t + 𝜂

5∑
j=1

(At−jIt−j − E[At−jIt−j])

)
, At

Ber∼ (𝜌)

Yt+1 = 𝛼(t) + (At − 𝜌)d(t) + 𝜖t, if It = 1

Table B.7. Simulated Type I error rate(%) and power (%) when working assumption (a) is violated. Scenario
2. The shapes of 𝛼(t) = E[Yt+1|It = 1] and patterns of availability are provided in Figure B.1 and Figure 1.
The average availability is 0.5. The day of maximal proximal effect is 29. The associated sample size is given
in Table B.1.

Availability Pattern

𝛼(t) d̄ Pattern 1 Pattern 2 Pattern 3 Pattern 4 Pattern 1 Pattern 2 Pattern 3 Pattern 4

Shape 1 0.10 3.6 4.3 4.7 4.5 77.4 80.2 76.2 75.9
0.08 5.9 3.8 4.1 3.4 79.7 80.1 78.9 80.6
0.06 4.6 5.7 4.2 6.5 78.7 76.3 78.3 79.9

Shape 2 0.10 4.8 4.8 4.4 4.1 79.2 79.1 78.5 79.7
0.08 3.9 5.4 4.8 4.3 77.7 80.4 76.8 80.9
0.06 5.1 5.5 3.4 4.9 78.3 79.4 79.8 80.2

Shape 3 0.10 5.1 3.5 4.3 4.4 79.1 79.4 75.6 78.0
0.08 4.6 5.0 6.2 3.8 78.3 78.1 79.1 78.1
0.06 4.8 4.4 5.4 4.2 78.0 78.3 79.8 77.7

d̄ = (1∕T)
∑T

t=1 Z′
t d is the average standardized treatment effect. Bold numbers are significantly (at .05 level) greater

than .05 (for type I error rate) and lower than 0.80 (for power).
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Figure B.2. Proximal Main Effects of Treatment, {d(t)}T
t=1: representing maintained, slightly degraded and

severely degraded time-varying treatment effects. The horizontal axis is the decision time point. The vertical
axis is the standardized treatment effect. The "Max" in the title refers to the day of maximal effect. The average

standardized proximal effect is 0.1 in all plots.
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Table B.8. Sample Sizes when working assumption (b) is violated. The vector of standardized effects
sizes, d, used in the sample size formula provides the projection of d(t). The sample size formula is used
with the correct availability pattern, {E[It]}T

t=1. The shape of the standardized proximal effect, d(t) =
𝛽(t)∕�̄� and pattern for availability, E[It] are provided in Figure B.2 and in Figure 1. The significance level
is 0.05. The desired power is 0.80.

𝜏 = 0.5 𝜏 = 0.7

Shape of d(t)

Availability Slightly Severely Slightly Severely
d̄ Pattern Max Maintained Degraded Degraded Maintained Degraded Degraded

0.10 15 43 41 39 32 31 29
Pattern 1 22 43 41 40 33 31 30

29 38 37 38 29 28 29

15 43 41 39 33 31 30
Pattern 2 22 43 42 40 33 31 30

29 38 37 38 29 28 29

15 45 43 41 33 32 31
Pattern 3 22 44 43 42 33 32 31

29 37 38 39 28 28 29

15 42 39 37 32 30 28
Pattern 4 22 44 41 39 33 31 30

29 39 38 38 29 28 28

0.08 15 65 61 58 48 45 43
Pattern 1 22 65 62 60 48 46 44

29 56 55 56 42 41 42

15 65 61 59 48 45 43
Pattern 2 22 65 62 60 48 46 44

29 56 55 56 42 41 42

15 67 64 62 49 47 45
Pattern 3 22 66 64 63 48 47 46

29 56 56 59 41 41 43

15 63 59 55 47 44 41
Pattern 4 22 65 61 58 48 45 43

29 58 56 56 43 41 41

0.06 15 111 105 100 81 76 73
Pattern 1 22 112 106 103 81 77 75

29 96 94 96 70 69 70

15 112 105 100 81 77 73
Pattern 2 22 112 106 103 81 77 75

29 96 94 96 70 68 70

15 116 111 106 83 79 76
Pattern 3 22 114 110 108 82 79 78

29 95 96 101 69 69 72

15 108 100 94 79 74 70
Pattern 4 22 112 105 99 81 76 73

29 100 95 95 72 69 70

“Max” is the day in which the maximal proximal effect is attained. d̄ = (1∕T)
∑T

t=1 Z′
t d is the average standardized

treatment effect.

Note that since we center
∑5

j=1 At−jIt−j in the generative model of It, the expected availability is 𝜏t. The
specification of 𝛼(t), 𝛽(t) and 𝜖t are same as in the first simulation. The simulated type I error rate and
power are reported Table B.5.

B.2. Further details when working assumptions are false

Copyright © 2015 John Wiley & Sons, Ltd. Statist. Med. 2015
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Table B.9. Simulated Power(%) when working assumption (b) is violated. The shape of the standardized
proximal effect, d(t) = 𝛽(t)∕�̄� and pattern for availability, E[It] are provided in Figure B.2 and in Figure 1.
The corresponding sample sizes are given in Table B.8.

𝜏 = 0.5 𝜏 = 0.7

Shape of d(t)

Availability Slightly Severely Slightly Severely
d̄ Pattern Max Maintained Degraded Degraded Maintained Degraded Degraded

0.10 15 78.4 78.8 78.6 79.1 80.1 77.6
Pattern 1 22 80.4 79.5 81.2 80.0 76.9 77.9

29 80.4 79.2 78.9 77.3 76.8 81.1

15 78.6 79.9 79.9 80.1 80.4 81.3
Pattern 2 22 78.3 81.2 78.8 79.2 80.8 80.5

29 77.9 80.8 79.3 78.1 77.7 82.2

15 81.0 79.7 77.4 77.9 80.9 77.6
Pattern 3 22 78.9 79.1 80.0 79.7 79.4 75.9

29 80.9 77.5 77.7 80.6 79.2 78.5

15 79.7 79.5 77.9 79.5 81.7 78.0
Pattern 4 22 78.9 77.9 80.4 82.2 78.9 78.8

29 77.9 79.7 79.0 78.0 80.2 80.8

0.08 15 80.5 79.5 78.6 80.6 79.2 78.7
Pattern 1 22 78.9 78.7 78.8 78.9 80.7 80.3

29 76.6 78.0 78.3 80.9 78.6 80.4

15 81.0 79.3 78.7 82.0 80.5 80.1
Pattern 2 22 82.4 80.6 80.0 78.0 79.6 79.4

29 79.2 76.9 81.9 78.3 78.8 79.7

15 78.2 81.6 80.9 79.1 79.2 77.5
Pattern 3 22 80.9 79.5 78.6 79.2 78.3 81.4

29 80.4 79.3 77.5 77.9 80.2 82.3

15 79.4 79.4 78.1 78.6 77.4 78.8
Pattern 4 22 81.3 78.4 78.4 80.6 79.4 80.4

29 79.9 79.3 79.8 79.5 79.7 81.2

0.06 15 81.2 80.5 79.0 77.8 78.7 79.6
Pattern 1 22 80.0 81.7 79.8 80.7 80.5 80.2

29 81.2 78.7 79.2 81.2 79.7 80.1

15 78.7 77.5 81.4 80.7 81.0 80.7
Pattern 2 22 80.6 81.8 79.2 80.3 81.6 80.2

29 78.5 80.2 80.0 77.7 78.1 78.0

15 78.1 80.0 80.9 79.7 79.3 78.8
Pattern 3 22 81.2 80.2 80.0 78.3 82.2 81.1

29 79.6 81.6 79.8 80.2 81.6 76.9

15 78.2 79.8 78.9 79.5 77.3 79.2
Pattern 4 22 79.2 81.1 79.4 76.8 79.2 80.4

29 79.9 78.5 79.8 80.1 78.9 81.8

“Max” is the day in which the maximal proximal effect is attained. d̄ = (1∕T)
∑T

t=1 Z′
t d is the average standardized

treatment effect. Bold numbers are significantly (at .05 level) lower than .80.

B.2.1. Working assumption (a) is violated. Here we consider another setting in which the working
assumption (a) is violated, e.g. the underlying true E[Yt+1|It = 1] follows a non-quadratic form (recall

that Bt is given by
(

1, ⌊ t−1
5
⌋, ⌊ t−1

5
⌋2
)′

). The data is generated as follows

It
Ber∼

(
𝜏t

)
, At

Ber∼ (𝜌)
Yt+1 = 𝛼(t) + (At − 𝜌)Z′

t d + 𝜖t, if It = 1
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Table B.10. Simulated Type I error rate(%) and power(%) when working assumption (c) is violated. The
trends of �̄�t are provided in Figure 3. The standardized average effect is 0.1. E[It] = 0.5. The associated
sample sizes are 41 and 42 when the day of maximal effect is 22 and 29.

Max = 22 Max = 29

𝜙 in AR(1)
𝜎1t

𝜎0t

const. trend 1 trend 2 trend 3 const. trend 1 trend 2 trend 3

−0.6 0.8 4.1 4.3 3.3 5.4 4.7 4.9 2.8 4.1
1.0 4.6 5.0 4.0 4.4 4.4 4.8 4.2 4.3
1.2 3.8 4.5 5.2 5.5 4.3 4.1 4.5 3.8

−0.3 0.8 5.2 4.7 4.0 3.4 5.4 4.9 6.2 4.5
1.0 4.9 4.5 4.5 4.3 5.2 5.1 4.0 3.7
1.2 5.4 4.6 4.1 3.8 3.7 5.2 4.3 5.0

0 0.8 4.8 4.0 4.1 3.9 4.7 5.2 3.7 4.2
1.0 5.4 4.0 5.8 3.9 4.1 4.0 5.9 5.7
1.2 4.4 4.9 5.0 4.6 3.7 4.8 4.4 4.9

0.3 0.8 5.3 4.4 4.7 3.2 4.6 5.4 5.6 4.1
1.0 5.5 4.0 3.4 3.7 5.0 4.6 4.0 3.6
1.2 3.8 4.5 4.5 4.8 4.5 5.0 6.2 4.3

0.6 0.8 5.5 3.9 5.3 3.8 3.3 3.5 5.1 4.2
1.0 4.0 3.7 5.2 5.1 4.8 5.1 5.0 4.7
1.2 4.5 5.1 4.6 4.9 4.5 4.4 4.7 4.8

−0.6 0.8 82.8 82.7 83.7 79.9 83.6 80.6 88.7 79.2
1.0 81.1 79.1 79.9 74.8 77.7 74.3 84.8 70.4
1.2 76.6 76.3 76.3 70.6 77.6 72.0 80.7 70.4

−0.3 0.8 83.0 83.0 86.0 80.3 82.7 79.2 87.9 78.0
1.0 77.6 81.4 80.7 74.9 79.1 74.5 86.0 73.7
1.2 78.2 76.9 77.3 73.4 74.4 71.2 81.0 70.7

0 0.8 84.6 84.6 82.1 79.0 81.8 81.5 88.0 78.0
1.0 80.1 78.6 80.9 73.6 77.7 76.5 86.1 71.8
1.2 76.0 76.7 77.4 70.6 74.5 69.9 83.4 69.6

0.3 0.8 83.6 79.7 84.6 79.7 82.1 81.7 88.2 75.7
1.0 81.5 82.4 82.3 73.9 79.5 74.6 85.1 71.5
1.2 74.8 76.6 78.2 71.1 75.5 71.1 82.5 70.1

0.6 0.8 81.4 83.1 83.5 80.5 83.1 77.1 86.6 76.9
1.0 80.7 76.4 79.0 74.8 80.4 73.4 84.7 76.8
1.2 77.0 77.5 77.0 73.5 74.4 72.5 81.6 69.4

𝜙 is the parameter in AR(1) process for {𝜖t}T
t=1. Bold numbers are significantly(at .05 level) greater than .05 (for

type I error)and less than .80 (for power).

where 𝛼(t) = E[Yt+1|It = 1] is provided in Figure B.1. For each case, 𝛼(t) satisfies 𝛼(1) = 2.5 and
(1∕T)

∑T
t=1 −𝛼(1) = 0.1. The error terms {𝜖t}N

t=1 are i.i.d N(0, 1). The day of maximal proximal effect
is assumed to be 29. Additionally, different values of averaged standardized treatment effect and four
patterns of availability in Figure 1 with average 0.5 are considered. The simulation results are reported
in Table B.7.

B.2.2. Additional simulation results when other working assumptions are false. The main body of the
paper reports part of the results when working assumptions (b), (c) and (d) are violated. Additional
simulation results are provided here. In particular, the simulation result is reported in Table B.9 when
d(t) follows other non-quadratic forms, e.g. working assumption (b) is false; see Figure B.2. The simu-
lated Type I error rate and power when working assumption (c) is false are reported in Table B.10. The
simulated Type I error rate when working assumption (d) is violated is reported in Table B.11.

B.2.3. Simulation results when d̄ and 𝜏 are misspecified. As discussed in the paper, the first scenario
considers the setting in which the scientist provides the correct availability pattern, {E[It]}T

t=1, the correct
time at which the maximal standardized proximal main effect is achieved (arg maxt Z′

t d) and the correct
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Table B.11. Simulated Type I error rate(%) when working assumption (d) is
violated. E[It] = 0.5. The proximal effect Z′

t d satisfies the average is 0.1 and
day of maximal effect is 29. N = 42.

𝛾2

Parameters in It 𝛾1 −0.1 −0.2 −0.3

𝜂1 = −0.1, 𝜂2 = −0.1 −0.2 5.7 3.2 3.9
−0.5 3.2 4.2 4.9
−0.8 4.2 5.1 5.5

𝜂1 = −0.2, 𝜂2 = −0.1 −0.2 5.4 3.8 3.9
−0.5 4.4 4.4 4.8
−0.8 4.7 4.3 4.6

𝜂1 = −0.1, 𝜂2 = −0.2 −0.2 4.5 5.0 5.0
−0.5 4.9 3.8 6.0
−0.8 4.7 4.8 4.8

𝜂1, 𝜂2 are parameters in generating It. 𝛾1, 𝛾2 are coefficients in the model of Yt+1. All
numbers in this table are significantly (at .05 level) greater than .05.

Table B.12. Degradation in Power when average proximal main effect is under-
estimated. The day of maximal treatment effect is attained at day 29 and the
average availability is 0.5 in all cases. The associated sample sizes for each value
of average treatment effect are provided in first column.

Availability Pattern

d̄ in Sample Size Formula True d̄ Pattern 1 Pattern 2 Pattern 3 Pattern 4

0.10 (N = 42) 0.098 76.2 78.9 77.6 78.6
0.096 75.1 74.6 78.8 74.0
0.094 73.7 70.7 75.4 73.4
0.092 71.5 71.6 73.2 71.6
0.090 68.9 68.4 69.6 67.3
0.088 65.4 65.6 66.1 65.7
0.086 66.4 67.9 65.2 66.7
0.084 62.3 63.4 63.0 59.6
0.082 60.0 60.2 60.5 58.2
0.080 58.9 59.8 57.8 61.4

0.08(N = 64) 0.078 78.2 80.2 76.8 75.8
0.076 77.3 76.7 76.2 75.4
0.074 73.1 72.2 71.2 71.4
0.072 70.7 71.0 69.4 68.2
0.070 68.2 66.0 65.2 66.1
0.068 65.5 64.3 64.6 65.7
0.066 62.8 62.3 61.8 59.4
0.064 61.9 58.5 59.5 62.1
0.062 53.9 52.6 57.0 56.9
0.060 54.6 51.1 54.8 53.4

0.06(N = 109) 0.058 75.6 76.9 74.0 78.1
0.056 73.9 73.1 73.1 72.7
0.054 68.6 71.1 69.3 68.5
0.052 65.4 69.4 63.6 66.8
0.050 61.0 62.8 64.1 63.2
0.048 57.4 58.6 56.4 56.1
0.046 53.6 53.4 52.9 54.8
0.044 52.0 48.9 50.1 53.0
0.042 45.7 43.9 44.9 46.4
0.040 40.4 42.2 42.3 42.7
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Table B.13. Degradation in power when average availability is underestimated. The
day of maximal treatment effect is attained at day 29 and the average proximal main
effect is 0.1 in all cases. The associated sample sizes are given in first column.

Availability Pattern
(1∕T)

∑T
t=1 𝜏t in True

Sample Size Formula (1∕T)
∑T

t=1 𝜏t Pattern 1 Pattern 2 Pattern 3 Pattern 4

0.5 (N = 42) 0.048 76.4 81.7 76.0 78.2
0.046 73.9 75.5 73.6 75.8
0.044 70.6 72.1 71.0 71.7
0.042 70.8 70.6 74.2 70.3
0.040 70.3 69.2 65.7 68.6
0.038 66.0 66.8 67.8 67.0
0.036 64.0 62.5 62.4 62.9
0.034 60.8 61.3 59.4 63.9
0.032 56.4 59.2 54.7 59.8
0.030 51.4 53.1 51.9 54.5

0.7 (N = 32) 0.068 79.5 76.1 79.1 75.0
0.066 77.3 75.7 74.0 76.4
0.064 74.5 74.7 73.5 77.1
0.062 73.2 73.0 75.1 72.5
0.060 69.8 70.5 73.5 72.5
0.058 71.0 69.6 71.3 67.3
0.056 68.8 70.3 66.6 64.0
0.054 68.1 65.8 65.3 68.6
0.052 62.4 64.9 65.6 62.9
0.050 60.6 63.3 62.8 61.4

initial standardized proximal main effect (Z′
1d = d1 = 0) but provides too low a value of the averaged

across time, standardized proximal main effect d̄ = 1
T

∑T
t=1 Z′

t d. The simulated power is provided in
Table B.12. In the second scenario, the scientist provides the correct arg maxt Z′

t d, correct Z′
1d = d1 = 0,

correct d̄ = 1
T

∑T
t=1 Z′

t d and although the scientist’s time-varying pattern of availability is correct, the
magnitude, e.g., the average availability, is underestimated. The simulation result is in Table B.13.
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