
Proceedings of Machine Learning Research vol 291:1–37, 2025 38th Annual Conference on Learning Theory

Generation through the lens of learning theory

Jiaxun Li* JASONLI@UMICH.EDU

Vinod Raman* VKRAMAN@UMICH.EDU

Ambuj Tewari TEWARIA@UMICH.EDU

Department of Statistics, University of Michigan

Editors: Nika Haghtalab and Ankur Moitra

Abstract
We study generation through the lens of learning theory. First, we formalize generation as a se-
quential two-player game between an adversary and a generator, which generalizes the notion of
“language generation in the limit” from Kleinberg and Mullainathan (2024). Then, we extend
the notion of “generation in the limit” to two new settings, which we call “uniform” and “non-
uniform” generation. We provide a characterization of hypothesis classes that are uniformly and
non-uniformly generatable. As is standard in learning theory, our characterizations are in terms
of the finiteness of a new combinatorial dimension termed the Closure dimension. By doing so,
we are able to compare generatability with predictability (captured via PAC and online learnabil-
ity) and show that these two properties of hypothesis classes are incomparable – there are classes
that are generatable but not predictable and vice versa. Finally, we extend our results to capture
prompted generation and give a complete characterization of which classes are prompt generatable,
generalizing some of the work by Kleinberg and Mullainathan (2024).
Keywords: Learning Theory, Generative Machine Learning

1. Introduction

Over the past 50 years, predictive machine learning has been a cornerstone for both theorists and
practitioners. Predictive tasks like classification and regression have been extensively studied, in
both theory and practice, due to their applications to face recognition, pedestrian detection, fraud
detection, protein structure prediction, etc. Recently, however, a new paradigm of machine learning
has emerged: generation. Unlike predictive models, which focus on making accurate predictions
of the true label given examples, generative models aim to create new examples based on observed
data. For example, in language modeling, the goal might be to generate coherent text in response
to a prompt, while in drug development, one might want to generate candidate molecules. In fact,
generative models have already been applied to these tasks and others (Zhao et al., 2023; Jumper
et al., 2021).

The vast potential of generative machine learning has spurred a surge of research across diverse
fields like natural language processing (Wolf et al., 2020), computer vision (Khan et al., 2022),
and molecular sciences (Vanhaelen et al., 2020). Despite this widespread adoption, the learning-
theoretic foundations of generative machine learning lags behind its predictive counterpart. While
prediction has been extensively studied by learning theorists through frameworks like PAC and on-
line learning (Shalev-Shwartz and Ben-David, 2014; Mohri et al., 2012; Cesa-Bianchi and Lugosi,
2006), generative machine learning has, for the most, part remained elusive. One reason for this is
that generation is fundamentally an unsupervised task. Unlike classification or regression, where

* Equal contribution

© 2025 J. Li, V. Raman & A. Tewari.

LI RAMAN TEWARI

there is a true label or response to guide the model, generation lacks a clear notion of correct-
ness. This makes it challenging to define a loss function – the primary tool used in predictive tasks
to quantify the quality of a model. Another reason is that existing theory in generative machine
learning often places strong distributional/probabilistic assumptions on the data generation process
(Murphy, 2023). Such assumptions are typically absent in the game-theoretic, worst-case flavor of
learning theory in settings like PAC and online learning.

In light of this difficulty, we take a step back and view the task of generation in its simplest form
– one sees a sequence of examples, and is tasked with producing new, valid examples. Using this
perspective:

(1) We formalize generation as a sequential two-player game between an adversary and a gener-
ator. In this game, the adversary picks a binary hypothesis h ∈ H and an infinite sequence
of positive examples x1, x2, . . . such that h(xi) = 1. In each round t ∈ N, the adver-
sary reveals xt to the generator, who is then tasked with producing an example x̂t such that
x̂t /∈ {x1, . . . , xt} (i.e., x̂t is new) and h(x̂t) = 1 (i.e., x̂t is valid). The goal of the generator
is to “eventually” produce new and valid examples in h. This formulation generalizes the no-
tion of “language generation in the limit” from Kleinberg and Mullainathan (2024), enabling
our results to apply to other generative tasks like image and molecule generation.

(2) We go beyond the notion of “generation in the limit” from Kleinberg and Mullainathan (2024)
by introducing two stronger paradigms of generation called “uniform” and “non-uniform“
generation. These models differ in how one quantifies the time after which the generator
must perfectly produce new, valid examples. While Kleinberg and Mullainathan (2024) show
that finite hypothesis classes are uniformly generatable, they leave the full characterization of
uniform generatability open. We close this gap and provide a complete characterization of
which hypothesis classes are uniformly generatable in terms of a new combinatorial dimen-
sion we call the Closure dimension.

Theorem (Informal) A class H ⊆ {0, 1}X is uniformly generatable if and only if C(H) <
∞, where C(H) is the Closure dimension of H.

In addition, we use the Closure dimension to fully characterize which classes are non-uniformly
generatable.

Theorem (Informal) A class H ⊆ {0, 1}X is non-uniformly generatable if and only if there
exists a non-decreasing sequence of classes H1 ⊆ H2 ⊆ . . . such that H =

⋃∞
n=1Hn and

C(Hn) < ∞ for every n ∈ N.

In fact, while Kleinberg and Mullainathan (2024) show that all countable classes are generat-
able in the limit, our characterization of non-uniform generatability shows that all countable
classes are non-uniformly generatable. This provides an improvement as non-uniform gen-
eration is a strictly harder than generation in the limit. With respect to generatability in the
limit, we provide an alternate sufficiency condition in terms of the Closure dimension which,
in conjunction with countableness, significantly expands the collection of classes that are
known to be generatable in the limit.

Theorem (Informal) A class H ⊆ {0, 1}X is generatable in the limit if there exists a finite
sequence of classes H1,H2, . . . ,Hn such that H =

⋃n
i=1Hi and C(Hi) < ∞ for all i ∈ [n].

2

GENERATION THROUGH THE LENS OF LEARNING THEORY

In addition to the above theorem, we give two other sufficiency conditions for generatability
in the limit in terms of what we call the “Eventually Unbounded Closure” property. We leave
the complete characterization of generatability in the limit as an important future question
(see Section 5).

(3) We uncover fundamental differences between generation and prediction for countable classes,
the latter of which we measure through PAC and online learnability. In particular, we find
that these two tasks are incomparable – there exist hypothesis classes for which generation is
possible but prediction is not, and vice versa.

(4) We extend our results to capture a notion of prompted generation, generalizing some of the re-
sults from Section 7 of Kleinberg and Mullainathan (2024). By extending the Closure dimen-
sion to the Prompted Closure dimension, we prove identical characterizations of prompted
uniform and non-uniform generatability as in the informal theorems in Contribution (2).

Our results extend the study of generation beyond language modeling, but are mainly information-
theoretic in nature. That said, for all our algorithms, we point out natural computational primitives
that can make our algorithms computable.

1.1. Related Works

Language Identification and Generation. The literature on generative machine learning is too
vast to be surveyed in complete detail. Thus, we refer the reader to the books and surveys by Jebara
(2012), Harshvardhan et al. (2020), and Murphy (2023). The works most related to our work are
those regarding language identification and generation in the limit (Gold, 1967; Angluin, 1979,
1980). Instead of an example space X and a hypothesis class H ⊆ {0, 1}X , these works consider a
countable set U of strings and a countable language family C = {L1, L2, . . . }, where Li ⊂ U for
all i ∈ N.

In the Gold-Angluin model, an adversary first picks a language K ∈ C, and begins to enumerate
the strings one by the one to the player in rounds t = 1, 2, After observing the string wt in round
t ∈ N, the player guesses a language Lt in C with the hope that Lt = K. Crucially, the player gets
no feedback at all. The player has identified K in the limit, if there exists a finite time step t⋆ ∈ N
such that for all s ≥ t, we have that Ls = K.

In full generality, Gold (1967) showed that language identification in the limit is impossible –
there are simple language families C, like those produced by finite automata, for which no algo-
rithm can perform language identification in the limit. Following this work, Angluin (1979, 1980)
provide a precise characterization of which language families C is language identification in the
limit possible. This characterization further emphasized the impossibility of language identification
in the limit by ruling out the vast majority of language families.

Very recently, and inspired by large language models, Kleinberg and Mullainathan (2024) study
the problem of language generation in the limit. In this problem, the adversary also picks a language
K ∈ C, and begins to enumerate the strings one by the one to the player in rounds t = 1, 2,
However, now, after observing the string wt in round t ∈ N, the player guesses a string ŵt ∈ U with
the hope that ŵt ∈ K \{w1, . . . , wt}. Once again, the player gets no feedback at all. The player has
generated from K in the limit, if there exists a finite time step t ∈ N such that for all s ≥ t, we have
that ŵs ∈ K \ {w1, . . . , ws}. Remarkably, Kleinberg and Mullainathan (2024) prove a strikingly
different result – while Gold-Angluin show that identification in the limit is impossible for most
language families, Kleinberg and Mullainathan (2024) show that generation in the limit is possible

3

LI RAMAN TEWARI

for every countable language family C. This shows that language identification and generation are
drastically different in the limit.

Concurrently and independently from our work, Kalavasis et al. (2024b) study generation in
the stochastic setting, where the positive examples revealed to the generator are sampled i.i.d. from
some unknown distribution. In this model, they study the trade-offs between generating with breadth
and generating with consistency and resolve the open question posed by Kleinberg and Mullainathan
(2024) for a large family of language models. In addition, Kalavasis et al. (2024b) quantify the
error rates for generation with breadth/consistency according to the universal rates framework of
Bousquet et al. (2021).

Language Generation with Breadth. One underlying problem in generation is the tension be-
tween “validity” (i.e., produce valid outputs without hallucinating) and “breadth”(i.e., provide out-
puts to capture the richness of the language) (Kleinberg and Mullainathan, 2024). Several follow-
up studies have proposed and studied different definitions of breadth in the language generation
model. Charikar and Pabbaraju (2024) introduce the notion of “exhaustive generation.” Kalavasis
et al. (2024b) and Kalavasis et al. (2024a) introduce three notions: “generation with exact breadth”,
“generation with approximate breadth” and “unambiguous generation.” Although these notions dif-
fer slightly, they all essentially require the generator’s outputs cover nearly, or exactly the entirely of
the true language in the limit. The overall conclusion from these works is that this kind of breadth
requires strong assumptions on the language family. In fact, Kalavasis et al. (2024a) shows that
“generation with exact breadth” is even as hard as language identification (see Appendix A and B
for precise definitions). In response to this hardness, Kleinberg and Wei (2025) consider a weaker
notion of breadth that only requires the generator’s output to cover a proportion of the chosen lan-
guage. Here, they show that the tension between validity and breadth is not as severe.

Other Related Work. In a previous version of this work, we posed whether all countable class
are non-uniformly generatable (see Definition 4) as an open question. In a follow-up work Charikar
and Pabbaraju (2024), independently of us, resolve this affirmatively. In addition to this positive
result, Charikar and Pabbaraju (2024) also show that non-uniform generation is not possible us-
ing only membership queries. This is in contrast to generatability in the limit, where Kleinberg
and Mullainathan (2024) show that every countable classes is generatable in the limit using only
membership queries. Finally, Charikar and Pabbaraju (2024) also characterize which classes are
uniformly generatable when some feedback is available.

There are several subsequent works building on the present paper: Peale et al. (2025) introduce
and study representative generation, in which the generator not only needs to generate new, valid
instances, but also needs to output a distribution that is representative of the data seen so far; Raman
and Raman (2025) consider the noisy setting where the adversary can provide negative examples
and the generator is unaware of which examples are noisy. Both works provide analogous definitions
and characterizations of uniform and non-uniform generation in their respective settings.

2. Preliminaries

Let X denote a countable example space (e.g., text, molecules, images) and H ⊆ {0, 1}X denote
a binary hypothesis class (e.g., class of all vision transformers). Let X ⋆ denote the set of all finite
subsets of X . In the context of language modeling, one can think about X as the collection of all
valid strings, and each hypothesis h ∈ H as a language (i.e., a subset of strings). For a hypothesis

4

GENERATION THROUGH THE LENS OF LEARNING THEORY

h ∈ H, let supp(h) := {x ∈ X : h(x) = 1}, that is, its collection of positive examples. For
any h ∈ H, an enumeration of supp(h) is any infinite sequence x1, x2, . . . such that

⋃
i∈N{xi} =

supp(h). In other words, for every x ∈ supp(h), there exists an i ∈ N such that xi = x. We will
let [N] := {1, . . . , N} and sometimes abbreviate a finite sequence x1, . . . , xn as x1:n.

For any class H and a finite sequence of examples x1, . . . , xn, let H(x1, . . . , xn) := {h ∈ H :
{x1, . . . , xn} ⊆ supp(h)}. In learning theory, H(x1, . . . , xn) is also called the “version space” of
H induced by the sample {(xi, 1)}ni=1 (i.e., the set of all consistent hypothesis). For any class H,
define ⟨·⟩H as its induced closure operator such that

⟨x1, . . . , xn⟩H :=

{⋂
h∈H(x1:n)

supp(h), if |H(x1:n)| ≥ 1

⊥, if |H(x1:n)| = 0
.

In learning-theoretic terms, ⟨x1, . . . , xn⟩H is the set of positive examples common to all hypothesis
in the version space of H consistent with the sample (x1, 1), . . . , (xn, 1). It turns out that one can
check closure membership, i.e. given an example x and a sequence of examples x1, . . . , xn, return
1{⟨x1, . . . , xn⟩H ̸= ⊥ and x ∈ ⟨x1, . . . , xn⟩H}, using access to an Empirical Risk Minimization
(ERM) oracle. See Appendix I.1 for the full discussion. Finally, we will make the following as-
sumption about hypothesis classes.

Assumption 1 (Uniformly Unbounded Support (UUS)) A hypothesis class H ⊆ {0, 1}X satis-
fies the Uniformly Unbounded Support (UUS) property if | supp(h)| = ∞ for every h ∈ H.

As noted by Kleinberg and Mullainathan (2024), such an assumption is necessary to make
generation of new examples possible. In the next section, we introduce and define several notions
of generatability, including the notion of “generatability in the limit” by Kleinberg and Mullainathan
(2024). In Appendix A, we restate the results of Angluin (1979, 1988) for language identification
and review existing notions of predictability using the notation above.

2.1. Generatability

We state the model of generation in Kleinberg and Mullainathan (2024) using our notation. Consider
the following two-player game. At the start, the adversary picks a hypothesis h ∈ H and an enumer-
ation x1, x2, . . . of supp(h) and does not reveal them to the learner. The game then proceeds over
rounds t = 1, 2, In each round t ∈ N, the adversary reveals xt. The generator, after observing
x1, . . . , xt, must output x̂t ∈ X \{x1, . . . , xt} and suffers the loss 1{x̂t /∈ supp(h)\{x1, . . . , xt}}.
Crucially, the generator never observes its loss as it does not know h. The goal of the generator is to
eventually generate new, positive examples x̂t ∈ supp(h) \ {x1, . . . , xt}. To make this all formal,
we first define a generator.

Definition 1 (Generator) A generator is a map G : X ⋆ → X that takes a finite sequence of
examples x1, x2, . . . and outputs a new example x.

We can now use the existence of a good generator to define the property of generatability in the
limit from Section 2 of Kleinberg and Mullainathan (2024).

Definition 2 (Generatability in the Limit) Let H ⊆ {0, 1}X be any hypothesis class satisfying
the UUS property. Then, H is generatable in the limit if there exists a generator G such that for
every h ∈ H, and any enumeration x1, x2, . . . of supp(h), there exists a t⋆ ∈ N such that G(x1:s) ∈
supp(h) \ {x1, . . . , xs} for all s ≥ t⋆.

5

LI RAMAN TEWARI

Roughly speaking, generatability in the limit captures the existence of the ability to eventually
generate positive examples, when no feedback is available and the underlying hypothesis is not
known. Note that the adversary can repeat examples in its stream, but it must eventually enumer-
ate all the positive examples of the chosen hypothesis. On the other hand, the adversary is still
powerful as it can examine/simulate the generator G in any way imaginable before choosing the
true hypothesis and the enumeration of its support. While not explicitly defined, Kleinberg and
Mullainathan (2024) also consider a notion of uniform generatability in Theorem 2.2 of the Section
titled “A Result for Finite Collections.” By “uniform”, we mean that the amount of time required
before the generator should perfectly generate new positive examples should only be a function of
the class H and thus the same across all hypothesis h ∈ H and enumerations of supp(h). This is
in contrast to generatability in the limit, where the time step t⋆ can depend on both the sequence
of examples x1, x2, . . . and the selected hypothesis h ∈ H. Definition 3 formalizes this notion of
uniform generatability.

Definition 3 (Uniform Generatability) Let H ⊆ {0, 1}X be any hypothesis class satisfying the
UUS property. Then, H is uniformly generatable, if there exists a generator G and d⋆ ∈ N, such
that for every h ∈ H and any sequence x1, x2, . . . with {x1, x2, . . . } ⊆ supp(h), if there exists
t⋆ ∈ N such that |{x1, . . . , xt⋆}| = d⋆, then G(x1:s) ∈ supp(h) \ {x1, . . . , xs} for all s ≥ t⋆.

A subtle detail in Definition 3 is the fact that we must force the adversary to play a sufficient
number of distinct examples before we require the generator to be perfect. This is necessary, as
otherwise, the adversary can play the same example in all rounds, and even a simple hypothesis
class with two hypotheses which share exactly one example in their support cannot be uniformly
generatable. This restriction is also captured by Theorem 2.2 in Kleinberg and Mullainathan (2024)
and effectively means that a generator witnessing Definition 3 must be able to generate new, positive
examples after observing a sufficient number of distinct positive examples. In fact, given a generator
G, the number of positive examples needed before perfect generation is akin to “sample complexity”
and “mistake-bounds” in PAC and online learning. We expand more about this in Appendix C.

While natural, one can also arrive at uniform generatability by swapping the order of quantifiers
in Definition 2. Namely, one also gets uniform generatability by moving the generation sample
complexity “left” twice. That is, before the quantifiers on the selected hypotheses and the stream,
and therefore, in line with the existence of the generator. This motivates an intermediate setting,
we term non-uniform generatability, where we only move the generation sample complexity “left”
once, and in particular, only before the quantifier on the stream.

Definition 4 (Non-uniform Generatability) Let H ⊆ {0, 1}X be any hypothesis class satisfying
the UUS property. Then, H is non-uniformly generatable if there exists a generator G such that
for every h ∈ H, there exists a d⋆ ∈ N such that for any sequence x1, x2, . . . with {x1, x2, . . . } ⊆
supp(h), if there exists t⋆ ∈ N such that |{x1, . . . , xt⋆}| = d⋆, then G(x1:s) ∈ supp(h)\{x1, . . . , xs}
for all s ≥ t⋆.

We use the term “non-uniform” to denote the fact that the number of distinct examples needed
before perfect generation can depend on the hypothesis selected by the adversary, and hence, it
is “non-uniform” over the hypothesis class H. But do note that the number of distinct examples
needed is still uniform over the possible stream chosen by the adversary. Hence, we use the term
“uniform” and “non-uniform” only with respect to the hypothesis chosen by the adversary. Again,

6

GENERATION THROUGH THE LENS OF LEARNING THEORY

we require the restriction that the adversary must select a sufficient number of distinct examples, as
otherwise, even trivial classes are not non-uniformly generatable.

By inspecting the order of quantifiers, it is clear that uniform generatability is the strongest of
the three properties, while generatability in the limit is the weakest. In particular, for any class H, we
have that Uniform Generatability =⇒ Non-uniform Generatability =⇒ Generatability in the Limit.
This ordering is tight in the sense that the reverse directions are not true.

Proposition 5 Let X be countable. There exists classes H1,H2 ⊆ {0, 1}X satisfying the UUS
property such that: (i) H1 is non-uniformly generatable but not uniformly generatable and (ii) H2

is generatable in the limit but not non-uniformly generatable.

We will prove Proposition 5 in Appendix H. We end this section by highlighting an important
practical property of uniform and non-uniform generators. Our definitions of uniform and non-
uniform generatability do not require the adversary to select an enumeration of the support of its
selected hypothesis. That is, any valid sequence with a sufficient number of distinct examples
is enough. As a consequence, once enough distinct examples are revealed to the generator, the
adversary can reveal the generator’s prediction on round t as the positive example on round t + 1.
This effectively means that once the generator has observed a sufficient number of distinct example,
it can be used auto-regressively to produce new, unseen positive examples. This property might be
useful when generators are used for downstream tasks.

3. Characterizations of Generatability

In this section, we provide a characterization of which classes are uniformly and non-uniformly
generatable, as well as, a weaker sufficiency condition for generatability in the limit. We start with
characterizing uniform generation.

3.1. Uniform Generatability

In learning theory, it is often the case that the most “obvious” necessary condition is also sufficient.
To that end, we seek a combinatorial dimension of H whose infiniteness implies that H is not
uniformly generatable. By inverting Definition 3, we have that H is not uniformly generatable
if for every generator G and every d ∈ N, there exists a h⋆ ∈ H and a sequence (xi)i∈N with
{x1, x2, . . . } ⊆ supp(h⋆) such that for every time point t ∈ N where |{x1, . . . , xt}| = d, there
exists a s ≥ t such that G(x1:s) /∈ supp(h⋆) \ {x1, . . . , xs}. So, our candidate dimension should
satisfy the property that when it is infinite, we can find arbitrarily large sequences of examples after
which any generator is guaranteed to make a mistake. With this in mind, we are ready to present the
Closure dimension, whose finiteness satisfies exactly this property.

Definition 6 (Closure dimension) The Closure dimension of H, denoted C(H), is the largest nat-
ural number d ∈ N for which there exists distinct x1, . . . , xd ∈ X such that ⟨x1, . . . , xd⟩H ̸= ⊥
and |⟨x1, . . . , xd⟩H| < ∞. If this is true for arbitrarily large d ∈ N, then we say that C(H) = ∞.
On the other hand, if this is not true for d = 1, we say that C(H) = 0.

The following lemma shows that the finiteness of C(H) is necessary for uniform generatability.
The high-level idea is that the adversary can force the learner to make a mistake at time point t, if

7

LI RAMAN TEWARI

there are no common positive examples amongst those hypotheses that contain x1, . . . , xt in their
support. The finiteness of C(H) guarantees the existence of such a t ∈ N and x1, . . . , xt.

Lemma 7 (Necessity in Theorem 9) Let X be countable and H ⊆ {0, 1}X be any class satisfying
the UUS property. If C(H) = ∞, then H is not uniformly generatable.

The proof of Lemma 7, provided in Appendix D, shows that the Closure dimension also provides
a quantitative lower bound on the optimal uniform generation sample complexity. Namely, for any
class H and generator G, we have that dG ≥ C(H), where dG is the smallest number of distinct
examples that G needs in order to generate new samples correctly (see Appendix C for a formal
definition of dG). Next, we move to the sufficiency condition. The following lemma shows that the
finiteness of C(H) is also sufficient for uniform generatability. The main idea is that if C(H) = d,
then one only needs to observe d+1 distinct examples before one can identify an infinite “core” set
S ⊆ X that lies in the support of the hypothesis chosen by the adversary. The generator can then
just play from the set S for all future rounds.

Lemma 8 (Sufficiency in Theorem 9) Let X be countable and H ⊆ {0, 1}X be any class sat-
isfying the UUS property. When C(H) < ∞, there exists a generator G, such that for every
h ∈ H and any sequence (xi)i∈N with {x1, x2, . . . } ⊆ supp(h), if there exists a t ∈ N such
that |{x1, . . . , xt}| = C(H) + 1, then G(x1:s) ∈ supp(h) \ {x1, . . . , xs} for all s ≥ t.

Proof Let 0 ≤ d < ∞ and suppose C(H) = d. Then, for every distinct sequence of d+1 examples
x1, . . . , xd+1 such that ⟨x1:d+1⟩H ̸= ⊥, we have that |⟨x1, . . . , xd+1⟩H| = ∞. Consider the follow-
ing generator G. Until d + 1 distinct examples are observed, G plays any x̂s. Suppose on round
t⋆, G observes d + 1 distinct examples. Then, G plays any x̂s ∈ ⟨x1, . . . , xt⋆⟩H \ {x1, . . . , xs}
for all s ≥ t⋆ . Let h⋆ be the hypothesis chosen by the adversary. It suffices to show that
x̂s ∈ supp(h⋆) \ {x1, . . . , xs} for all s ≥ t⋆. However, this just follows from the fact that
|⟨x1, . . . , xt⋆⟩H| = ∞ and ⟨x1, . . . , xt⋆⟩H ⊆ supp(h⋆). In particular, |⟨x1, . . . , xt⋆⟩H| = ∞
ensures that x̂s is well-defined and ⟨x1, . . . , xt⋆⟩H ⊆ supp(h⋆) ensures that it always lies in
supp(h⋆) \ {x1, . . . , xs}.

The generator in Lemma 8 can be efficiently implemented given access to the following max-
min oracle Omax-min : 2{0,1}

X × X ⋆ → X . Given a hypothesis class H ⊆ {0, 1}X and a finite se-
quence of examples x1, . . . , xt, Omax-min returns argmaxx∈X\{x1,...,xt} minh∈H

∑t
i=1 1{h(xi) ̸=

1} + 1{h(x) ̸= 0}. This max-min oracle should remind the reader of the min-max objective/two-
player game used to motivate Generative Adversarial Networks (see Equation 1 in Goodfellow et al.
(2014)). In particular, for our max-min oracle, one can think of the minimizer as the discriminator
and the outer maximizer as the generator. See Appendix I.2 for the full discussion. Composing
Lemmas 7 and 8 gives a characterization of uniform generatability.

Theorem 9 (Characterization of Uniform Generatability) Let X be countable and H ⊆ {0, 1}X
satisfy the UUS property. Then, H is uniformly generatable if and only if C(H) < ∞.

We highlight that the Closure dimension not only provides a qualitative characterization of uni-
form generatability, but also a quantitative characterization – the optimal uniform generation sam-
ple complexity is exactly Θ(C(H)). Kleinberg and Mullainathan (2024) proved that all countable
classes are generatable in the limit. Our next result, proved in Appendix D, improves upon this by
proving the existence of uncountably infinite hypothesis classes that are uniformly generatable.

8

GENERATION THROUGH THE LENS OF LEARNING THEORY

Corollary 10 Let X be countable. There exists a class H ⊆ {0, 1}X that is uncountably large,
satisfies the UUS property, and is uniformly generatable.

3.2. Non-uniform Generatability

We next move to characterize non-uniform generatability. Similar to non-uniform PAC and online
learnability, we show that our characterization of uniform generatability leads to a characterization
of non-uniform generatability. The proof of Theorem 11 is in Appendix E.1. While the proof of
necessity uses non-constructive arguments, for the sufficiency direction, we explicitly construct a
non-uniform generator for H using uniform generators for H1,H2,

Theorem 11 (Characterization of Non-uniform Generatability) Let X be countable and H ⊆
{0, 1}X satisfy the UUS property. Then, H is non-uniformly generatable if and only if there exists
a non-decreasing sequence of classes H1 ⊆ H2 ⊆ . . . such that H =

⋃
i∈NHi and C(Hn) < ∞

for every n ∈ N.

One might wonder whether we can drop “non-decreasing” condition in Theorem 11 and write
H as the countable union of uniformly generatable classes H1,H2, However, this is false as
we will show in Lemma 15 – while such a condition is necessary, it is not sufficient. Nevertheless,
we can use Theorem 11 and the fact that all finite classes are uniformly generatable (Kleinberg
and Mullainathan, 2024) to show that every countable hypothesis class is actually non-uniformly
generatable. The proof of Corollary 12 is in Appendix E.2.

Corollary 12 (Countable Classes are Non-uniformly Generatable) Let X be countable and H ⊆
{0, 1}X be any hypothesis class that satisfies the UUS property. If H is countable, then H is non-
uniformly generatable.

This improves upon Kleinberg and Mullainathan (2024)’s result that every countable hypothesis
class is generatable in the limit since non-uniform generation implies generation in the limit, but not
vice versa. We note that Charikar and Pabbaraju (2024) also independently establish Corollary 12.

3.3. Generatability in the Limit

Kleinberg and Mullainathan (2024) showed that all countable classes are generatable in the limit.
Here, we provide an alternate sufficiency condition for generatability in the limit which, in conjunc-
tion with countableness, expands the collection of classes which are generatable in the limit.

Theorem 13 (Sufficient Condition for Generatability in the Limit) Let X be countable and H ⊆
{0, 1}X be any class satisfying the UUS property. If there exists a finite sequence of classes
H1, . . . ,Hn such that H =

⋃n
i=1Hi and C(Hi) < ∞ for all i ∈ [n], then H is generatable in

the limit.

In fact, the following corollary, proved in Appendix F, gives examples of uncountably infinite
classes that, using Theorem 13, are generatable in the limit.

Corollary 14 Let X = N and S1, . . . , Sn ⊆ N be any finite sequence of countable infinite subsets
of N. For every i ∈ [n], let Hi = {x 7→ 1{x ∈ Si ∪ A} : A ∈ 2N}. Then, H =

⋃n
i=1Hi is

generatable in the limit.

9

LI RAMAN TEWARI

Proof (of Theorem 13) Let H =
⋃n

i=1Hi be such that C(Hi) < ∞ for all i ∈ [n]. Let c :=
maxi∈[n]C(Hi). Consider the following generator G. Let t⋆ ∈ N be the smallest time point for
which |{x1, . . . , xt⋆}| = c + 1. G plays arbitrarily up to, but not including, time point t⋆. On time
point t⋆, G computes ⟨x1, . . . , xt⋆⟩Hi for all i ∈ [n]. Let S ⊆ [n] be the subset of indices such that
i ∈ S if and only if ⟨x1, . . . , xt⋆⟩Hi ̸= ⊥. For every i ∈ S, let (z(i)j)j∈N be the natural ordering
of ⟨x1, . . . , xt⋆⟩Hi , which is guaranteed to exist since X is countable. For every t ≥ t⋆, sequence
of revealed examples x1, . . . , xt, and i ∈ S, G computes ni

t := max{n ∈ N : {z(i)1 , . . . , z
(i)
n } ⊂

{x1, . . . , xt}} and it ∈ argmaxi∈S ni
t. Finally, G plays any x̂t ∈ ⟨x1, . . . , xt⋆⟩Hit

\ {x1, . . . , xt}.
We claim that G generates from H in the limit.

Let h⋆ ∈ H be the hypothesis chosen by the adversary and x1, x2, . . . be the selected enu-
meration of supp(h⋆). Let c = maxi∈[n]C(Hi) and t⋆ ∈ N be the smallest time point for which
|{x1, . . . , xt⋆}| = c + 1. By definition of C(·), we know that for every j ∈ S, |⟨x1, . . . , xt⋆⟩Hj | =
∞. Let S⋆ ⊆ S be such that i ∈ S⋆ if and only if ⟨x1, . . . , xt⋆⟩Hi ⊆ supp(h⋆). It suffices to show
that there exists a finite time point s⋆ ∈ N such that for all t ≥ s⋆, we have that it ∈ S⋆. To see why
such an s⋆ must exist, pick some j⋆ ∈ S⋆. Note that nj⋆

t → ∞ because x1, x2, . . . is an enumera-
tion of supp(h⋆). On the other hand, observe that for every j /∈ S⋆, there exists a nj ∈ N such that
nj
t ≤ nj . This is because, if j /∈ S⋆, then there must be an index nj ∈ N such that z(j)

nj /∈ supp(h⋆).

Thus, nj
t must be at most nj . Since there are at most a finite number of indices not in S⋆, we have

that maxj /∈S⋆ nj < ∞, which means that eventually, nj⋆

t > nj
t for all j /∈ S⋆, and thus there exists

a s⋆ ∈ N such that it ∈ S⋆ for all t ≥ s⋆. This completes the proof.

The algorithm in the proof of Theorem 13 can be efficiently implemented given access to an ERM
oracle O : 2{0,1}

X × (X × {0, 1})⋆ → N∪ {0} and an oracle OC : H → N that can compute upper
bounds on the Closure dimension. See Appendix I.3 for more details. One might ask whether the
sufficiency condition in Theorem 13 can be extended to account for classes H which can be written
as the countable union of uniformly generatable classes. Lemma 16 shows that this is actually
not the case – there exists a countable sequence of uniformly generatable classes whose union is
not generatable in the limit! Nevertheless, in Appendix G, we do give an even weaker sufficiency
condition for generatability in the limit.

3.4. Generation is Unlike Prediction

In this section, we flesh out the landscape of generation versus prediction for countable hypothesis
classes. Namely, we seek to compare generation with prediction and understand how these two
properties of hypothesis classes compare with one another. To evaluate the predictability of a hy-
pothesis class H, we use the standard notions of PAC and online learnability. It is well known that
the VC dimension and Littlestone dimension characterize PAC and online learnability respectively
(Vapnik and Chervonenkis, 1971; Littlestone, 1987). See Appendix A for precise definitions and
characterizations of predictability.

Informally, our main result is Figure 1 which captures the landscape of generatability and pre-
dictability for countable classes. Figure 1 shows that even amongst countable classes H (which we
know, via Corollary 12, are always non-uniformly generatable), uniform generatability and predic-
tion are truly incomparable – knowing whether a class is PAC or online learnable tells you nothing
about whether it is uniformly generatable, and vice versa. As such, these are two fundamentally
different properties of a hypothesis class. Perhaps the best evidence of this is the difference in their

10

GENERATION THROUGH THE LENS OF LEARNING THEORY

Figure 1: Generation vs. Prediction for countable classes. (i-vi) map to items in Theorem 47.

behavior under unions. PAC and online learnability behave very nicely under unions – if H1 and
H2 are PAC/online learnable, then their union H1∪H2 is also PAC/online learnable (Dudley, 1978;
Alon et al., 2020). However, the same cannot be said for generation – both uniform generation and
non-uniform generation are not closed under finite unions.

Lemma 15 Let X be countable. There exists a UUS class H ⊆ {0, 1}X and a hypothesis h : X →
{0, 1} with | supp(h)| = ∞ such that C(H) = 0, but H ∪ {h} is not non-uniformly generatable.

Lemma 15 shows something stronger – the addition of a single hypothesis can change uniform
and non-uniform generatability! Such divergent behavior is not present in PAC/online learnability.
Surprisingly, a similar, but weaker, statement can be said about generatability in the limit.

Lemma 16 Let X be countable. There exists a countable sequence of classes H1,H2, . . . , all
satisfying the UUS property, such that C(Hi) = 0 for all i ∈ N, but the class H =

⋃
i∈NHi is not

generatable in the limit.

Lemma 16 shows that even generatability in the limit, the weakest definition of generatability, is
not very well behaved under (countable) unions. An interesting question is whether generatability
in the limit is even closed under finite unions. We leave this as an open question in Section M.
Lemma 15 and 16 are proved in Appendix J.1.

4. Extension to Prompted Generation

So far, generators are only required to eventually produce new positive examples. This setup does
not account for the fact that in many real-life situations, we would like to generate objects with
respect to a prompt. For example, we may like to generate an image based on a text caption,
respond to a query from a user, or generate a protein from a protein family (Madani et al., 2023).

Inspired by recent interests in multiclass learning, we capture a prompted-version of generation
by taking Y to be an abstract prompt space and H ⊆ YX to be a multiclass hypothesis class. Given
a hypothesis h ∈ H and a prompt y ∈ Y , one should think of the set {x ∈ X : h(x) = y} as the
collection of valid generatable objects for prompt y with respect to hypothesis h. Roughly speaking,
if h ∈ H captures the true world, and the prompt on round t is yt ∈ Y , then the goal of the generator
should be to output an example x̂t such that h(x̂t) = yt.

11

LI RAMAN TEWARI

To handle prompts, we need a slight modification of the game defined in Section 2. As in the
binary case, the adversary first selects a hypothesis h ∈ H ⊆ YX and a sequence of examples
x1, x2, But now, it also selects a sequence of prompts y1, y2, In each round t ∈ N, the
adversary reveals the tuple (xt, h(xt), yt) and the goal of the learner is output x̂t ∈ {x ∈ X :
h(x) = yt} \ {x1, . . . , xt}.

To make the outlined notion of prompted generatability more formal, we extend the “support”
and UUS property to the prompted setting. For any h ∈ H ⊆ YX and any y ∈ Y , define the
y-support of h as supp(h, y) := {x ∈ X : h(x) = y}. Then, the Prompted Uniformly Unbounded
Support property just requires that for every h ∈ H and any y ∈ Y , the y-support of h is unbounded.

Assumption 2 (Prompted Uniformly Unbounded Support (PUUS)) A hypothesis class H ⊆ YX

satisfies the Prompted Uniformly Unbounded Support (PUUS) property if for every y ∈ Y and
h ∈ H, we have that | supp(h, y)| = ∞.

Like the UUS property, the PUUS property is only needed for bookkeeping purposes to prevent
the adversary from presenting the generator with an impossible task (i.e. generating new examples
for prompt y ∈ Y when no new, examples exist.) One can remove the PUUS restriction, but
restrict the adversary to choose a prompted sequence so that the generator is always guaranteed the
existence of new, unseen examples with the selected prompt y. This assumption is also captured in
Section 7 of Kleinberg and Mullainathan (2024), where they assume that the adversary only reveals
“non-trivial” prompts to the generator.

Next, we extend the definition of Generator to a Prompted Generator.

Definition 17 (Prompted Generator) A prompted generator is a map G : (X × Y × Y)⋆ → X
that takes a finite sequence of tuples (x1, h(x1), y1), (x2, h(x1), y2), . . . and outputs an example x.

Then, we can then define analogous notion of prompted uniform generatability, non-uniform
generatability, and generatability in the limit.

Definition 18 (Prompted Uniform Generatability) Let H ⊆ YX be any hypothesis class satis-
fying the PUUS property. Then, H is prompted uniformly generatable, if there exists a prompted
generator G and a number d⋆ ∈ N, such that for every h ∈ H, any sequence (xi, yi)i∈N, and any
y⋆ ∈ Y , if there exists t⋆ ∈ N such that |{x1, . . . , xt⋆} ∩ supp(h, y⋆)| = d⋆, then

G((x1, h(x1), y1), . . . , (xs, h(xs), ys)) ∈ supp(h, ys) \ {x1, . . . , xs}.

for all s ≥ t⋆ where ys = y⋆.

Definition 19 (Prompted Non-uniform Generatability) Let H ⊆ YX be any hypothesis class
satisfying the PUUS property. Then, H is prompted non-uniformly generatable, if there exists a
prompted generator G, such that for every h ∈ H, there exists a number d⋆ ∈ N, such that for
every sequence (xi, yi)i∈N, and any y⋆ ∈ Y , if there exists t⋆ ∈ N such that |{x1, . . . , xt⋆} ∩
supp(h, y⋆)| = d⋆, then

G((x1, h(x1), y1), . . . , (xs, h(xs), ys)) ∈ supp(h, ys) \ {x1, . . . , xs}

for all s ≥ t⋆ where ys = y⋆.

12

GENERATION THROUGH THE LENS OF LEARNING THEORY

Definition 20 (Prompted Generatability in the Limit) Let H ⊆ YX be any hypothesis class
satisfying the PUUS property. Then, H is prompted generatable in the limit, if there exists a
prompted generator G, such that for every h ∈ H, any sequence (xi, yi)i∈N, and any y⋆ ∈ Y ,
if supp(h, y⋆) ⊆ {x1, x2, . . . }, then there exists t⋆ ∈ N such that

G((x1, h(x1), y1), . . . , (xs, h(xs), ys)) ∈ supp(h, ys) \ {x1, . . . , xs}.

for all s ≥ t⋆ where ys = y⋆.

Roughly speaking, Definitions 18, 19, and 20 state that a class H ⊆ YX is prompted generatable
if for any prompt y ∈ Y , after a sufficient number of distinct examples with prompt y are observed,
one can generate new examples with prompt y. Like in the binary case, generators G that witness
Definitions 18 and 19 have the following nice property – for any prompt y ∈ Y , once a sufficient
number of distinct examples are observed with prompt y, G can produce new, unseen examples for
prompt y auto-regressively and without any form of supervision. We highlight the differences and
similarities between our notion of prompted generation and that by Kleinberg and Mullainathan
(2024) in Appendix K.

4.1. Characterizations of Prompted Generatability

To characterize prompted uniform and non-uniform generatability, we extend the Closure dimension
to the prompted case. To do so, we need an extension of the closure operator to a prompted closure
operator ⟨·, ·⟩H. Namely, for every finite sequence of examples x1, . . . , xn and prompt y ∈ Y , we
define H(x1:n, y) := {h ∈ H : h(xi) = y, i = 1, . . . , n} and

⟨x1:n, y⟩H :=

{⋂
h∈H(x1:n,y)

supp(h, y), if |H(x1:n, y)| ≥ 1

⊥, if |H(x1:n, y)| = 0

We are now ready to define the Prompted Closure dimension.

Definition 21 (Prompted Closure dimension) The Prompted Closure dimension of H, denoted
PC(H), is the largest number d ∈ N for which there exists distinct x1, . . . , xd ∈ X and a prompt
y ∈ Y such that |⟨(x1, . . . , xd), y⟩H| ̸= ⊥ and |⟨(x1, . . . , xd), y⟩H| < ∞. If this is true for arbi-
trarily large d ∈ N, then we say that PC(H) = ∞. On the other hand, if this is not true for d = 1,
we say that PC(H) = 0.

Using analogous techniques, one can prove that finiteness of the Prompted Closure dimension
is both necessary and sufficient for prompted uniform generatability.

Theorem 22 (Characterization of Prompted Uniform Generatability) Let X and Y be count-
able. Let H ⊆ YX be any hypothesis class satisfying the PUUS property. Then, H is prompted
uniformly generatable if and only if PC(H) < ∞.

Likewise, the same characterization of non-uniform generatability for the binary case also goes
through when considering the prompted setting.

13

LI RAMAN TEWARI

Theorem 23 (Characterization of Prompted Non-uniform Generatability) Let X and Y be count-
able. Let H ⊆ YX be any hypothesis class satisfying the PUUS property. Then, H is prompted
non-uniformly generatable if and only if there exists a non-decreasing sequence of classes H1 ⊆
H2 ⊆ . . . such that H =

⋃
n∈NHn and PC(Hn) < ∞ for every n ∈ N.

We highlight that we make no assumptions about the size Y in Theorems 22 and 23 apart from
its countableness. That is, these theorems hold even when Y is countably infinite. The proofs of
Theorem 22 and 23 are very similar to that of Theorem 9 and 11. For the sake of conciseness,
we omit the details in the main text, but provide proof sketches in Appendix L. When |Y| < ∞,
we can show that all finite classes are prompted uniformly generatable and all countable classes are
prompted non-uniformly generatable. The latter also implies that all countable classes are prompted
generatable in the limit.

Corollary 24 Let X be countable and Y be finite. Let H ⊆ YX be any hypothesis class satisfying
the PUUS property. The following statements are true: (i) |H| < ∞ =⇒ H is prompted uniformly
generatable and (ii) H is countably infinite =⇒ H is prompted non-uniformly generatable and
hence prompted generatable in the limit.

However, quite surprisingly, we find that this is not the case when |Y| = ∞ – there exists a
finite class which is not prompted non-uniformly generatable!

Lemma 25 Let X be countable and Y be countably infinite. There exists a finite class H ⊆ YX

satisfying the PUUS property such that H is not prompted non-uniformly generatable.

We prove Corollary 24 and Lemma 25 in Appendix L. We leave as an open question whether
such a separation exists for prompted generatability in the limit. These results highlight that the
behavior of prompted generatability changes significantly when the prompt space is allowed to be
unbounded. This sort of phase transition is not unique to generation, and has also been observed in
the context of multiclass PAC/online learning and uniform convergence (Natarajan, 1992; Daniely
et al., 2011; Daniely and Shalev-Shwartz, 2014; Hanneke et al., 2023).

5. Discussion and Future Directions

In this work, we reinterpreted the model and results of Kleinberg and Mullainathan (2024) for
language generation through the lens of modern learning theory. By doing so, we are able to for-
malize three frameworks for generation rooted in learning theory, i.e. generation in the limit, non-
uniform generation, and uniform generation, and draw connections between multiclass learning
and prompted generation. By abstracting the problem of generation to an arbitrary example space
and binary hypothesis classes, we are able to study the fundamental nature of generation beyond
language modeling. In Appendix M, we highlight several important directions for future work.

Acknowledgments

VR acknowledges the support of the NSF Graduate Research Fellowship Program.

14

GENERATION THROUGH THE LENS OF LEARNING THEORY

References

Noga Alon, Amos Beimel, Shay Moran, and Uri Stemmer. Closure properties for private classifica-
tion and online prediction. In Conference on Learning Theory, pages 119–152. PMLR, 2020.

Dana Angluin. Finding patterns common to a set of strings. In Proceedings of the eleventh annual
ACM Symposium on Theory of Computing, pages 130–141, 1979.

Dana Angluin. Inductive inference of formal languages from positive data. Information and control,
45(2):117–135, 1980.

Dana Angluin. Identifying languages from stochastic examples. Yale University. Department of
Computer Science, 1988.

Shai Ben-David, Dávid Pál, and Shai Shalev-Shwartz. Agnostic online learning. In COLT, vol-
ume 3, page 1, 2009.

Olivier Bousquet, Steve Hanneke, Shay Moran, Ramon Van Handel, and Amir Yehudayoff. A
theory of universal learning. In Proceedings of the 53rd Annual ACM SIGACT Symposium on
Theory of Computing, pages 532–541, 2021.

Nicolo Cesa-Bianchi and Gábor Lugosi. Prediction, learning, and games. Cambridge university
press, 2006.

Moses Charikar and Chirag Pabbaraju. Exploring facets of language generation in the limit. arXiv
preprint arXiv:2411.15364, 2024.

Amit Daniely and Shai Shalev-Shwartz. Optimal learners for multiclass problems. In Conference
on Learning Theory, pages 287–316. PMLR, 2014.

Amit Daniely, Sivan Sabato, Shai Ben-David, and Shai Shalev-Shwartz. Multiclass learnability
and the erm principle. In Sham M. Kakade and Ulrike von Luxburg, editors, Proceedings of the
24th Annual Conference on Learning Theory, volume 19 of Proceedings of Machine Learning
Research, pages 207–232, Budapest, Hungary, 09–11 Jun 2011. PMLR.

Richard M Dudley. Central limit theorems for empirical measures. The Annals of Probability, pages
899–929, 1978.

E Mark Gold. Language identification in the limit. Information and control, 10(5):447–474, 1967.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural informa-
tion processing systems, 27, 2014.

Steve Hanneke, Shay Moran, Vinod Raman, Unique Subedi, and Ambuj Tewari. Multiclass online
learning and uniform convergence. Proceedings of the 36th Annual Conference on Learning
Theory (COLT), 2023.

GM Harshvardhan, Mahendra Kumar Gourisaria, Manjusha Pandey, and Siddharth Swarup
Rautaray. A comprehensive survey and analysis of generative models in machine learning. Com-
puter Science Review, 38:100285, 2020.

15

LI RAMAN TEWARI

Tony Jebara. Machine learning: discriminative and generative, volume 755. Springer Science &
Business Media, 2012.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Žı́dek, Anna Potapenko, et al. Highly accurate
protein structure prediction with alphafold. nature, 596(7873):583–589, 2021.

Alkis Kalavasis, Anay Mehrotra, and Grigoris Velegkas. Characterizations of language generation
with breadth. 2024a. URL https://arxiv.org/abs/2412.18530.

Alkis Kalavasis, Anay Mehrotra, and Grigoris Velegkas. On the limits of language generation:
Trade-offs between hallucination and mode collapse. arXiv preprint arXiv:2411.09642, 2024b.

Salman Khan, Muzammal Naseer, Munawar Hayat, Syed Waqas Zamir, Fahad Shahbaz Khan, and
Mubarak Shah. Transformers in vision: A survey. ACM computing surveys (CSUR), 54(10s):
1–41, 2022.

Jon Kleinberg and Sendhil Mullainathan. Language generation in the limit. arXiv preprint
arXiv:2404.06757, 2024.

Jon Kleinberg and Fan Wei. Density measures for language generation. 2025. URL https:
//arxiv.org/abs/2504.14370.

Nick Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold algo-
rithm. Machine Learning, 2:285–318, 1987.

Zhou Lu. Non-uniform online learning: Towards understanding induction. arXiv preprint
arXiv:2312.00170, 2023.

Ali Madani, Ben Krause, Eric R Greene, Subu Subramanian, Benjamin P Mohr, James M Holton,
Jose Luis Olmos, Caiming Xiong, Zachary Z Sun, Richard Socher, et al. Large language models
generate functional protein sequences across diverse families. Nature Biotechnology, 41(8):1099–
1106, 2023.

Maryanthe Malliaris and Shay Moran. The unstable formula theorem revisited via algorithms. arXiv
preprint arXiv:2212.05050, 2022.

Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of Machine Learning.
The MIT Press, 2012. ISBN 026201825X.

Kevin P. Murphy. Probabilistic Machine Learning: Advanced Topics. MIT Press, 2023. URL
http://probml.github.io/book2.

BK Natarajan. Probably approximate learning over classes of distributions. SIAM Journal on
Computing, 21(3):438–449, 1992.

Charlotte Peale, Vinod Raman, and Omer Reingold. Representative language generation. 2025.
URL https://arxiv.org/abs/2505.21819.

Ananth Raman and Vinod Raman. Generation from noisy examples. 2025. URL https://
arxiv.org/abs/2501.04179.

16

https://arxiv.org/abs/2412.18530
https://arxiv.org/abs/2504.14370
https://arxiv.org/abs/2504.14370
http://probml.github.io/book2
https://arxiv.org/abs/2505.21819
https://arxiv.org/abs/2501.04179
https://arxiv.org/abs/2501.04179

GENERATION THROUGH THE LENS OF LEARNING THEORY

Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning: From Theory to
Algorithms. Cambridge University Press, USA, 2014.

Quentin Vanhaelen, Yen-Chu Lin, and Alex Zhavoronkov. The advent of generative chemistry. ACS
Medicinal Chemistry Letters, 11(8):1496–1505, 2020.

Vladimir Vapnik and Alexey Chervonenkis. Theory of pattern recognition, 1974.

Vladimir Naumovich Vapnik and Aleksei Yakovlevich Chervonenkis. On uniform convergence of
the frequencies of events to their probabilities. Teoriya Veroyatnostei i ee Primeneniya, 16(2):
264–279, 1971.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Transformers: State-of-the-art
natural language processing. In Proceedings of the 2020 conference on empirical methods in
natural language processing: system demonstrations, pages 38–45, 2020.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. arXiv
preprint arXiv:2303.18223, 2023.

17

LI RAMAN TEWARI

Appendix A. Identifiability and Predictability

A.1. Identifiability

In identification, one seeks not to output new, positive examples x ∈ X , but rather, to identify the
true, underlying hypothesis h ∈ H chosen by the adversary. Historically, identification has been
studied in the context of language modeling, with works dating as far back as Gold’s seminal work
on language identification in the limit (Gold, 1967). For consistency sake, we will formally define
Gold’s model in the notation of this paper. As in generation, we start by defining an Identifier.

Definition 26 (Identifier) An Identifier is a map I : X ⋆ → {0, 1}X that takes as input a finite
sequence of examples x1, x2, . . . and outputs a hypothesis.

The notion of identifiability in the limit can now be written in terms of the existence of good
identifiers, and one can verify that our definition of identifiability in the limit is equivalent to that
from Gold (1967) and Angluin (1979, 1980).

Definition 27 (Identifiability in the limit) Let H ⊆ {0, 1}X be any hypothesis class. Then, H is
identifiable in the limit if there exists a identifier I such that for every h ∈ H and any enumeration
x1, x2, . . . of supp(h), there exists a t⋆ ∈ N such that I(x1:s) = h for all s ≥ t⋆.

Although analogous definitions of uniform and non-uniform identifiability exist, we do not de-
fine or focus on them here as they are stronger than identifiability in the limit, which is already a
very restrictive requirement.

A.2. Predictability

It is also natural to understand the predictability of a hypothesis class H. Informally, the predictabil-
ity of a class H should measure how easy it is to predict the labels of new examples x1, x2, . . .
when the labels are produced by some unknown hypothesis h ∈ H. In this paper, we will measure
predictability of a hypothesis class H through their PAC and online learnability – properties of hy-
pothesis classes that have been extensively studied by learning theorists (Vapnik and Chervonenkis,
1974; Littlestone, 1987; Ben-David et al., 2009).

In the PAC learning model, an adversary picks both a distribution D over X and a hypothesis
h ∈ H. The learner receives n iid samples S = {xi, h(xi)}ni=1 ∼ (D × h)n, where we use
D × h to denote the distribution over X × {0, 1} defined procedurally by first sampling x ∼ D
and then outputting (x, h(x)). The goal of the learner is to use the sample S to output a hypothesis
f ∈ {0, 1}X such that f has low error probability on a future labeled example drawn from D.

Definition 28 (PAC Learnability) A hypothesis class H is PAC learnable, if there exists a function
m : (0, 1)2 → N and a learning algorithm A : (X × {0, 1})⋆ → {0, 1}X with the following
property: for every ϵ, δ ∈ (0, 1), distribution D on X , and h ∈ H, algorithm A when run on n ≥
m(ϵ, δ) iid samples S = {(xi, h(xi))}ni=1 ∼ (D × h)n, outputs a predictor f := A(S) ∈ {0, 1}X
such that with probability at least 1− δ over S ∼ (D × h)n,

Ex∼D[1{f(x) ̸= h(x)}] ≤ ϵ.

The seminal result by Vapnik and Chervonenkis (1971) shows that the finiteness of the Vap-
nik–Chervonenkis (VC) dimension characterizes which hypothesis classes are PAC learnable.

18

GENERATION THROUGH THE LENS OF LEARNING THEORY

Definition 29 (VC dimension) A sequence (x1, . . . , xd) ∈ X d is shattered by H, if ∀ (y1, . . . , yd) ∈
{0, 1}d, ∃h ∈ H, such that ∀i ∈ [d], h(xi) = yi. The VC dimension of H, denoted VC(H), is the
largest number d ∈ N such that there exists a sequence (x1, . . . , xd) ∈ X d that is shattered by H.
If there exists shattered sequences of arbitrarily large length d ∈ N, then we say that VC(H) = ∞.

In the online learning model, no distributional assumptions are placed (Littlestone, 1987; Ben-
David et al., 2009). Instead, an adversary plays a sequential game with the learner over T ∈ N
rounds. Before the game begins, the adversary selects a sequence of examples x1, x2, . . . , xT and
a hypothesis h ∈ H. Then, in each round t ∈ [T], the reveals first reveals xt to the learner, the
learner makes a prediction ŷt ∈ {0, 1}, the adversary reveals the true label h(xt), and finally the
learner suffers the loss 1{ŷt ̸= h(xt)}.The goal of the learner is to output predictions ŷt such that
its cumulative number of mistakes is “small.”

Definition 30 (Online Learnability) A hypothesis class H is online learnable if there exists an
algorithm A and sublinear function R : N → N such that for any T ∈ N, any sequence of examples
x1, . . . , xT , and any h ∈ H, the algorithm outputs ŷt ∈ {0, 1} at every time point t ∈ [T] such that

T∑
t=1

1{ŷt ̸= h(xt)} ≤ R(T).

The online learnability of a hypothesis class H is characterized by the finiteness of a different
combinatorial parameter called the Littlestone dimension (Littlestone, 1987). To define the Little-
stone dimension, we first need to define a Littlestone tree and an appropriate notion of shattering.

Definition 31 (Littlestone tree) A Littlestone tree of depth d is a complete binary tree of depth d
where the internal nodes are labeled by examples of X and the left and right outgoing edges from
each internal node are labeled by 0 and 1 respectively.

Given a Littlestone tree T of depth d, a root-to-leaf path down T is a bitstring σ ∈ {0, 1}d
indicating whether to go left (σi = 0) or to go right (σi = 1) at each depth i ∈ [d]. A path
σ ∈ {0, 1}d down T gives a sequence of labeled examples {(xi, σi)}di=1, where xi is the example
labeling the internal node following the prefix (σ1, . . . , σi−1) down the tree. A hypothesis hσ ∈ H
shatters a path σ ∈ {0, 1}d, if for every i ∈ [d], we have hσ(xi) = σi. In other words, hσ is
consistent with the labeled examples when following σ. A Littlestone tree T is shattered by H if
for every root-to-leaf path σ down T , there exists a hypothesis hσ ∈ H that shatters it. Using this
notion of shattering, we define the Littlestone dimension of a hypothesis class.

Definition 32 (Littlestone dimension) The Littlestone dimension of H, denoted L(H), is the largest
d ∈ N such that there exists a Littlestone tree T of depth d shattered by H. If there exists shattered
Littlestone trees T of arbitrary large depth, then we say that L(H) = ∞.

It is well known that online learnability implies PAC learnability, but not the other way around.
That is, for every H ⊆ {0, 1}X , we have that L(H) ≥ VC(H), and that the inequality can be strict.
Our definitions of PAC and online learnability are uniform in nature, as is standard in learning
theory literature (Shalev-Shwartz and Ben-David, 2014). There are also non-uniform and “in-the-
limit” versions of PAC and online learnability. However, we will not be concerned with them in this

19

LI RAMAN TEWARI

paper and will not make explicit the distinction between uniform and non-uniform predictability.
We refer the reader Chapter 7 in Shalev-Shwartz and Ben-David (2014) and Lu (2023) for more
details about the non-uniform versions of PAC and online learnability respectively and Malliaris
and Moran (2022) for an “in-the-limit” version of PAC learnability (termed PEC learnability).

Appendix B. Existing Results in Identification and Generation

In this section, we restate the results for language identification and generation in learning theory
notation. Gold (1967), Angluin (1979), and Angluin (1980) studied the problem of identification
in the context of language modeling. In our notation, they showed that many natural hypothesis
classes are not identifiable in the limit according to Definition 27. This result is often interpreted as
a hardness result – identification in the limit is impossible in full generality, even for some natural
countable classes.

Theorem 33 (Gold (1967); Angluin (1979, 1980)) Let X be countable. There exists a countable
H ⊆ {0, 1}X which is not identifiable in the limit.

In particular, Angluin (1980) provides a precise characterization of which classes are identifiable
in the limit. Roughly, the condition states that every language L must have a “tell-tale” finite subset
of strings S ⊂ L such that any other language L′ which also contains S cannot be a proper subset
of L. Theorem 34 restates this condition in the notation of this paper.

Theorem 34 (Theorem 1 in Angluin (1980)) Let X be countable and H ⊆ {0, 1}X be any hy-
pothesis class. Then H is identifiable in the limit if and only if for every h ∈ H, there exists
S ⊆ supp(h) such that:

(i) |S| < ∞.

(ii) ∀h′ ∈ H, S ⊆ supp(h′) =⇒ supp(h′) ̸⊂ supp(h).

On the other hand, Kleinberg and Mullainathan (2024) recently show that this is not the case
for generatability in the limit – all countable H that satisfy the UUS property are generatable in the
limit!

Theorem 35 (Theorem 4.1 in Kleinberg and Mullainathan (2024)) Let X be countable and H ⊆
{0, 1}X . If H is countable and satisfies the UUS property, then H is generatable in the limit.

In addition, they also prove that finite hypothesis classes satisfy the stronger notion of uniform
generatability.

Theorem 36 (Theorem 2.2 in Kleinberg and Mullainathan (2024)) Let X be countable and H ⊆
{0, 1}X . If H is finite and satisfies the UUS property, then H is uniformly generatable.

Unfortunately, Kleinberg and Mullainathan (2024) do not give a full characterization of which
classes are uniformly generatable, non-uniformly generatable, and generatable in the limit. In this
paper, we are interested in closing these gaps. In particular, we are interested in identifying nec-
essary and sufficient conditions under which a hypothesis class H is uniformly and non-uniformly

20

GENERATION THROUGH THE LENS OF LEARNING THEORY

generatable. In learning theory, such conditions are often derived in terms of combinatorial dimen-
sions, which are mappings

dim : 2{0,1}
X → N ∪ {0,∞}

such that dim(H) measures an appropriate notion of expressivity of a class H. For example, the PAC
learnability of a binary hypothesis class is fully characterized by the finiteness of the VC dimension
(Vapnik and Chervonenkis, 1974). Similarly, the online learnability of a binary hypothesis class is
characterized by the finiteness of its Littlestone dimension (Littlestone, 1987). Are there analogous
dimensions that characterize uniform, non-uniform generatability, and generatability in the limit?
These questions are the main focus of this paper.

Appendix C. Sample Complexity for Uniform Generation

In this section, we formalize the intuition in Section 2 regarding a notion of “sample complexity”
for uniform generation.

Definition 37 (Uniform Generation Sample Complexity) Given a class H ⊆ {0, 1}X and a gen-
erator G, the uniform generation sample complexity of a generator G is the smallest number dG ∈ N,
such that G perfectly generates according to Definition 3 after it observes dG unique positive exam-
ples. If no such number exists, we set dG = ∞.

Appendix D. Proofs for Uniform Generation

D.1. Proof of Lemma 7

Proof Let G be any generator and suppose C(H) = ∞. We need to show that for every d ∈ N,
there exists a h⋆ ∈ H and a sequence (xi)i∈N with {x1, x2, . . . } ⊆ supp(h⋆) such that for every
time point t ∈ N where |{x1, . . . , xt}| = d, there exists s ≥ t such that G(x1:s) /∈ supp(h⋆) \
{x1, . . . , xs}.

To that end, fix a d ∈ N. Since C(H) = ∞, we know that there exists some d⋆ ≥ d and distinct
z1, . . . , zd⋆ such that H(z1, . . . , zd⋆) ̸= ⊥ and |⟨z1, . . . , zd⋆⟩H| < ∞. Since H(z1:d⋆) ⊆ H(z1:d),
we also know that |⟨z1, . . . , zd⟩H| < ∞.

Let p := |⟨z1, . . . , zd⟩H|. Note that for every x ∈ X \ ⟨z1, . . . , zd⟩H, there exists a h ∈
H(⟨z1, . . . , zd⟩H) such that x /∈ supp(h). Let x̂p = G(⟨z1, . . . , zd⟩H) denote the prediction of
G when given as input ⟨z1, . . . , zd⟩H sorted in its natural order. Without loss of generality suppose
that x̂p /∈ ⟨z1, . . . , zd⟩H. Then, using the previous observation, there exists h⋆ ∈ H(⟨z1, . . . , zd⟩H)
such that x̂p /∈ supp(h⋆)\⟨z1, . . . , zd⟩H. Pick this h⋆ and consider the stream x1, x2, . . . by sorting
⟨z1, . . . , zd⟩H in its natural ordering and then appending the stream xp+1, xp+2, · · · ⊆ supp(h⋆)
such that ⟨z1, . . . , zd⟩H ∩

⋃∞
i=p+1{xi} = ∅.

It remains to show that for every time point t ∈ N where |{x1, . . . , xt}| = d, there exists s ≥ t
such that G(x1:s) /∈ supp(h⋆) \ {x1, . . . , xs}. By definition, we know that x1, . . . , xd are distinct.
Thus, when t = d, we have that |x1, . . . , xt| = d. Moreover, this is the only such time point.
Accordingly, it suffices to show that there exists s ≥ t such that G(x1:s) /∈ supp(h⋆)\{x1, . . . , xs}.
However, by definition, we know that G(x1:p) /∈ supp(h⋆) \ {x1, . . . , xp}. Since p ≥ d and d ∈ N
was chosen arbitrarily, our proof is complete.

21

LI RAMAN TEWARI

D.2. Proof of Corollary 10

Proof Let X = Z and H = {x 7→ 1{x ∈ A or x ≤ 0} : A ∈ 2N}. It is not hard to see that H
satisfies the UUS property. Moreover, since 2N is uncountably large, so is H. Finally, to see that H
is uniformly generatable, note that for every x ∈ Z, we have that ⟨x⟩H = Z≤0. Thus, C(H) = 0
and H is trivially uniformly generatable.

Appendix E. Proofs for Non-uniform Generation

E.1. Proof of Theorem 11

We prove Theorem 11 across two lemmas, starting with the necessity direction.

Lemma 38 (Necessity in Theorem 11) Let X be countable and H ⊆ {0, 1}X be any class satis-
fying the UUS property. If H is non-uniformly generatable, then there exists a sequence of non-
decreasing, uniformly generatable classes H1 ⊆ H2 ⊆ · · · such that H =

⋃
n∈NHn.

Proof Suppose H is non-uniformly generatable and G is a non-uniform generator for H. For every
h ∈ H, let dh ∈ N be the smallest natural number such that for any sequence x1, x2, . . . with
{x1, x2, . . . } ⊂ supp(h), if there exists a t ∈ N such that |{x1, . . . , xt}| = dh, then G(x1:s) ∈
supp(h) \ {x1, . . . , xs} for all s ≥ t. Let Hn := {h ∈ H : dh ≤ n} for all n ∈ N. Then, by the
definition of G, we know for every n ∈ N, G is a uniform generator for Hn, and therefore Hn is
uniformly generatable. The proof is complete after noting that H1 ⊆ H2 ⊆ · · · and H =

⋃
n∈NHn.

The next lemma shows that the condition in Theorem 11 is sufficient. Our proof is constructive
and by a reduction – given uniform generators G1,G2, . . . for H1,H2, . . . and their uniform gener-
ation sample complexities dG1 , dG2 , . . .

1 (see Definition 37), we construct a non-uniform generator
G for H =

⋃
n∈NHn. This aligns with existing sufficiency proofs for non-uniform PAC and online

learning (Shalev-Shwartz and Ben-David, 2014; Lu, 2023), which are also through reductions.

Lemma 39 (Sufficiency in Theorem 11) Let X be countable and H ⊆ {0, 1}X be any class satis-
fying the UUS property. If there exists a sequence of non-decreasing, uniformly generatable classes
H1 ⊆ H2 ⊆ . . . such that H =

⋃
n∈NHn, then H is non-uniformly generatable.

Proof Suppose H ⊆ {0, 1}X is a class satisfying the UUS property for which there exists a se-
quence of non-decreasing, uniformly generatable classes H1 ⊆ H2 ⊆ . . . with H =

⋃∞
n=1Hn. By

definition of uniform generatability, for every n ∈ N, there exists a uniform generator Gn for Hn.
Let dGn denote the uniform generation sample complexity of Gn with respect to Hn.

Consider the following generator G. Fix t ∈ N and consider any sequence {x1, . . . , xt} such
that |H(x1, . . . , xt)| ≥ 1. Let dt := |{x1, . . . , xt}| be the number of unique examples up to and
including time point t. G first computes nt = max{n ∈ [t] : dGn ≤ dt} ∪ {0}. If nt = 0, G
plays any x̂t ∈ X . If nt > 0, G uses Gnt to generate new instances, which means G(x1, . . . , xt) =
Gnt(x1, . . . , xt).

1. One actually only needs an upper bound on the uniform generation sample complexities.

22

GENERATION THROUGH THE LENS OF LEARNING THEORY

We now prove that such a G is a non-uniform generator for H. To that end, let h⋆ be the
hypothesis chosen by the adversary and suppose that h⋆ belongs to Hn⋆ . Let d⋆ = max{dGn⋆ , n

⋆}.
We show that for any sequence x1, x2, . . . with {x1, x2, . . . } ⊆ supp(h⋆), if there exists t⋆ ∈ N
such that |{x1, . . . , xt⋆}| = d⋆, then G(x1:s) ∈ supp(h) \ {x1, . . . , xs} for all s ≥ t⋆. Fix any valid
sequence x1, x2, · · · ⊆ supp(h⋆), and suppose, without of loss of generality, that |{x1, . . . , xt⋆}| =
d⋆ for some t⋆ ∈ N. Fix any s ≥ t⋆. By definition, G first computes ns = max{n ∈ [s] :
dGn ≤ ds} ∪ {0}. Note that ns ≥ n⋆ since s ≥ n⋆ and dGn⋆ ≤ ds. Thus, |Hns(x1:s)| ≥ 1 since
h⋆ ∈ Hns . Accordingly, by construction of G, it uses Gns to generate a new instance. The proof
is complete by noting that h⋆ ∈ Hns and ds ≥ dGns

which guarantees that Gns(x1, . . . , xs) ∈
supp(h⋆) \ {x1, . . . , xs}.

Since only upper bounds on the uniform generation sample complexities of G1, G2, . . . are
needed in the proof of Lemma 11, the algorithm in the proof of Lemma 11 can be efficiently im-
plemented as long as each Gi is efficient. This is because in each round t ∈ N, the number nt

can be efficiently computed if the sample complexities dG1 , dG2 , . . . are non-decreasing. However,
even if the sample complexities dG1 , dG2 , . . . are not presented in non-decreasing order, we can run
the algorithm on a new sequence of sample complexities d′G1

, d′G2
, . . . such that d′G1

= dG1 and
d′Gi

= max{d′Gi−1
, dGi} for all i ≥ 2.

E.2. Proof of Corollary 12

Proof Suppose H is a countable hypothesis class satisfying the UUS property. Consider an arbitrary
enumeration h1, h2, . . . of H. Let Hn = {h1, . . . , hn} for all n ∈ N. Then, H1,H2, . . . is a non-
decreasing sequence of classes such that H =

⋃
n∈NHn. Moreover, since for every n ∈ N, we have

that |Hn| = n < ∞, Theorem 36 gives that Hn is uniformly generatable, completing the proof.

Appendix F. Proofs for Generatability in the Limit

Proof (of Corollary 14) Note that C(Hi) = 0 for all i ∈ [n]. Thus, Theorem 13 gives that H is
generatable in the limit.

Appendix G. Weaker Sufficiency Conditions for Generatability in the Limit

In this section, we prove a weaker sufficiency condition than the one in Theorem 13 for generata-
bility in the limit. Before we present the main result, we define a new property of a class termed the
Eventually Unbounded Closure property.

Definition 40 (Eventually Unbounded Closure) A class H ⊆ {0, 1}X has the Eventually Un-
bounded Closure (EUC) property if for every h ∈ H and any enumeration of its support x1, x2, . . . ,
there exists a t ∈ N such that |⟨x1, x2, . . . , xt⟩H| = ∞

Because the closure with respect to a class H does not depend on any one particular hypothesis,
Definition 40 is really only a stream dependent property. That is, an equivalent representation of
Definition 40 is as follows – H satisfies the EUC property if and only if for every sequence of
examples x1, x2, · · · there exists a t ∈ N such that |⟨x1, . . . , xt⟩H| = ∞ or ⟨x1, . . . , xt⟩H = ⊥.

23

LI RAMAN TEWARI

The EUC property is sufficient for generation in the limit. Indeed, just consider the generator
that plays arbitrarily until the closure is unbounded, after which it only plays from this infinite set.
Since the EUC property guarantees that the closure will become infinite in finite time, this is a valid
generator. Moreover, note that such a generator is eventually auto regressive – once the closure is
infinite in size, the generator no longer needs to observe positive examples to generate new, unseen
examples in the future. One might be tempted to think that the EUC property is also necessary for
generatability in the limit. However, the following lemma shows that this is not the case. For an
infinite bit string b ∈ {0, 1}N, let |b| denote the number of 1’s.

Lemma 41 Let X be countable. There exists a class H ⊆ {0, 1}X such that H satisfies the UUS
property, is non-uniformly generatable, but does not satisfy the EUC property.

Proof Let X = N and {pn}n∈N be the sequence of prime numbers. Consider the class H := {hb :
b ∈ {0, 1}N, |b| < ∞} where hb is defined such that supp(hb) := {p1+

∑n
i=1 bi

n }n∈N. Note that H
satisfies the UUS property. Moreover, H is countable since the collection of all countably infinite
bit strings with finite size is countable. Thus, by Corollary 12, H is non-uniformly generatable.
Finally, to see that H does not satisfy the EUC property, observe that for every finite sequence of
prime powers, its closure can only contain this sequence itself. To see why, note that for any prime
not in the sequence and any power, one can always construct a hypothesis which contains the finite
sequence, but not that prime power.

That said, we can use the EUC property to weaken our sufficiency condition in Theorem 13 by
replacing finite Closure dimension with the EUC property.

Theorem 42 Let X be countable and H ⊆ {0, 1}X be any class satisfying the UUS property. If
there exists a finite sequence of classes H1,H2, . . . ,Hn, all satisfying the EUC property, such that
H =

⋃n
i=1Hi, then H is generatable in the limit.

Theorem 42 replaces the constraint that each of the finite number of sub-classes need to be
uniformly generatable with the constraint that they need to satisfy the EUC property. This is a
weakening as uniform generatability implies EUC but not the other way around. The proof is
effectively the same as the proof of Theorem 13 with the only difference being that the amount of
time before which the generator computes closures is now stream dependent.
Proof (sketch of Theorem 42) Let H =

⋃n
i=1Hi be such that Hi satisfies the EUC property for all

i ∈ [n]. Consider the following generator G. On a valid input sequence x1, x2, . . . , let ti ∈ N be the
smallest time point such that either ⟨x1, . . . , xti⟩Hi = ⊥ or |⟨x1, . . . , xti⟩Hi | = ∞ for all i ∈ [n].
Note that such an ti ∈ N must exist because Hi satisfies the EUC property. Let t⋆ = maxi∈[n] ti
be the largest time point. G plays arbitrarily up to, but not including, time point t⋆. On time point
t⋆, G computes ⟨x1, . . . , xti⟩Hi for all i ∈ [n]. Let S ⊆ [n] be the subset of indices such that
i ∈ S if and only if ⟨x1, . . . , xti⟩Hi ̸= ⊥. For every i ∈ S, let (z(i)j)j∈N be the natural ordering of
⟨x1, . . . , xti⟩Hi , which is guaranteed to exist since X is countable. For every t ≥ t⋆, valid sequence
of revealed examples x1, . . . , xt, and i ∈ S, G computes

ni
t := max{n ∈ N : {z(i)1 , . . . , z(i)n } ⊂ {x1, . . . , xt}} (1)

and it ∈ argmaxi∈S ni
t. Finally, G plays any x̂t ∈ ⟨x1, . . . , xti⟩Hit

\ {x1, . . . , xt}. The rest of the
proof is identical to that of Theorem 13.

24

GENERATION THROUGH THE LENS OF LEARNING THEORY

Due to its connection to autoregressive generation in the limit, understanding which classes sat-
isfy the EUC property is an interesting property on its own. For example, while it is clear that the
EUC property is weaker than uniform generatability but stronger than generatability in the limit,
its relationship to non-uniform generatability is less clear. Lemma 41 shows that if one restricts
to countable classes, then the EUC property is strictly stronger than non-uniform generatability –
there exists a countable class which does not have the EUC property. We leave as an open ques-
tion whether the EUC property is strictly stronger than non-uniform generatability even amongst
uncountable classes.

Question 43 Does there exists an uncountable class H which is non-uniformly generatable, but
does not satisfy the EUC property?

We can also provide a sufficient condition for generatability in the limit akin to that of non-
uniform generatability in terms of the EUC property.

Theorem 44 Let X be countable and H ⊆ {0, 1}X be any class satisfying the UUS property. If
there exists a non-decreasing sequence of classes H1 ⊆ H2 ⊆ . . . , all satisfying the EUC property,
such that H =

⋃∞
i=1Hi, then H is generatable in the limit.

Note the sufficiency condition in Theorem 44 is weaker than the sufficiency condition for non-
uniform generation as uniform generatability is stronger than EUC. Our proof of Theorem 44 is
constructive – we give an algorithm which generates in the limit as long as the sufficiency condition
is met. The algorithm can be thought of as a generalization of the algorithm by Kleinberg and Mul-
lainathan (2024) for countable classes. The high-level idea is to play from the closure of rightmost
class whose closure is infinite in size.

Algorithm 1 Generator
Input: Hypothesis class H =

⋃∞
n=1Hn such that H1 ⊆ H2 ⊆ . . . and Hn satisfies EUC for all

n ∈ N
for t = 1, 2, . . . do

Adversary reveals positive example xt
Let nt = max {n ∈ [t] : |⟨x1, . . . , xt⟩Hn | = ∞} ∪ {0}
if nt = 0 then

Play arbitrarily from X
else

Play arbitrarily from ⟨x1, . . . , xt⟩Hnt
\ {x1, . . . , xt}

end

Proof We will show that Algorithm 1 generates in the limit. To that end, let h⋆ ∈ H be the
hypothesis and x1, x2, . . . be an enumeration of supp(h⋆) chosen by the adversary. Let n⋆ ∈ N be
the smallest number such that h⋆ ∈ Hn⋆ . For every n ∈ N, since Hn satisfies the EUC property,
there exists a tn ∈ N such that either |⟨x1, . . . , xtn⟩Hn | = ∞ or ⟨x1, . . . , xtn⟩Hn = ⊥.

We claim that for all n ≥ n⋆, we have that |⟨x1, . . . , xs⟩Hn | = ∞ and ⟨x1, . . . , xs⟩Hn ⊆
supp(h⋆) for all s ≥ tn. Fix some n ≥ n⋆. By definition, we know that h⋆ ∈ Hn. In addition, since
the stream x1, x2, . . . is an enumeration of h⋆ and Hn satisfies the EUC property, it must be the
case that |⟨x1, . . . , xtn⟩Hn | = ∞. Moreover, ⟨x1, . . . , xtn⟩Hn ⊆ supp(h⋆) because h⋆ ∈ Hn. Now,

25

LI RAMAN TEWARI

fix some s ≥ tn. Then, it must be the case that ⟨x1, . . . , xs⟩Hn ⊇ ⟨x1, . . . , xtn⟩Hn and therefore
|⟨x1, . . . , xs⟩Hn | = ∞. Because h⋆ ∈ Hn, it also must be the case that ⟨x1, . . . , xs⟩Hn ⊆ supp(h⋆).
This completes the proof of the claim as n ≥ n⋆ was chosen arbitrarily.

Now, we complete the overall proof of Theorem 44 by showing that Algorithm 1 generates
perfectly on and after round tn⋆ . On round t = tn⋆ , nt = n⋆, and thus by Line 7, Algorithm 1
generates from supp(h⋆) \ {x1, . . . , xt} since ⟨x1, . . . , xt⟩Hn⋆ ⊆ supp(h⋆). Now fix a round t >
tn⋆ . Then, observe that by the claim above we have that nt ≥ n⋆ and h⋆ ∈ Hnt . Accordingly, we
have that ⟨x1, . . . , xt⟩Hnt

⊆ supp(h⋆) and therefore by Line 7, Algorithm 1 plays from supp(h⋆) \
{x1, . . . , xt}. Since t > tn⋆ was picked arbitrarily, the proof is complete.

We note that in addition to Theorem 11, Theorem 44 also recovers the result by Kleinberg and
Mullainathan (2024) that all countable classes are generatable in the limit.

Appendix H. Proof of Proposition 5

We prove Proposition 5 over two lemmas. The first shows that uniform generation is strictly harder
than non-uniform generation.

Lemma 45 (Uniform Generatability ̸= Non-uniform Generatability) Let X be countable. There
exists a countable class H ⊆ {0, 1}X that satisfies the UUS property, is non-uniformly generatable,
but not uniformly generatable.

Proof Let X = Z. Let E denote the set of all even negative integers and O the set of all odd
negative integers. Consider the hypothesis classes

He =

{
x 7→ 1

{
x ∈

{d(d− 1)

2
+ 1, . . . ,

d(d− 1)

2
+ d

}
or x ∈ E

}
: d ∈ N

}
(2)

and

Ho =

{
x 7→ 1

{
x ∈

{d(d− 1)

2
+ 1, . . . ,

d(d− 1)

2
+ d

}
or x ∈ O

}
: d ∈ N

}
(3)

and define H = He ∪ Ho. First, its not too hard to see that H satisfies the UUS. Second, we
claim that C(H) = ∞. To see why, we need to show that for every d ∈ N, there exists a d⋆ ≥ d and
a distinct sequence of examples x1, . . . , xd⋆ , such that |H(x1, . . . , xd⋆)| ≥ 1 and

|⟨x1, . . . , xd⋆⟩H| < ∞.

To that end, pick any d ∈ N and let d⋆ = d. Consider the sequence of examples x1 = d(d−1)
2 +

1, . . . , xd = d(d−1)
2 + d. First, observe that this is a sequence of d = d⋆ distinct examples. Then,

⟨x1, . . . , xd⟩H = supp(hed) ∩ supp(hod) = {x1, . . . , xd}

where we let

hed := 1

{
x ∈

{d(d− 1)

2
+ 1, . . . ,

d(d− 1)

2
+ d

}
or x ∈ E

}
,

26

GENERATION THROUGH THE LENS OF LEARNING THEORY

and

hod := 1

{
x ∈

{d(d− 1)

2
+ 1, . . . ,

d(d− 1)

2
+ d

}
or x ∈ O

}
.

Thus, we have that
|⟨x1, . . . , xd⟩H| < ∞.

Since d was chosen arbitrarily, this is true for all d ∈ N, implying that C(H) = ∞. Thus, by Theo-
rem 9, we have that H is not uniformly generatable. To show that H is non-uniformly generatable,
note that H is countable. Thus, Corollary 12 completes the proof.

The second lemma shows that non-uniform generation can be strictly harder than generation in
the limit.

Lemma 46 (Non-uniform Generatability ̸= Generatability in the Limit) Let X be countable.
There exists a class H ⊆ {0, 1}X which satisfies the UUS property that is generatable in the limit
but not non-uniformly generatable.

Proof Let X = Z and H = {x 7→ 1{x ∈ A or x ≤ 0} : A ∈ 2N} ∪ {x 7→ 1{x ∈ N}}. Observe
that H satisfies the UUS property. We first show that H is generatable in the limit. Let G be a
generator such that for any valid sequence {x1, . . . , xt}, if x1, . . . , xt are all positive, then G plays
any x̂t ∈ N \ {x1, . . . , xt}. Otherwise, it plays any x̂t ∈ Z≤0 \ {x1, . . . , xt}. Now, suppose the
adversary picks a h⋆ ∈ H and an enumeration x1, x2, . . . of supp(h⋆). If supp(h⋆) = N, then by
our construction of G, we have that G(x1:s) ∈ supp(h⋆) \ {x1, . . . , xs} for all s ≥ 1. Otherwise
if Z≤0 ⊆ supp(h⋆), since

⋃
i∈N{xi} = supp(h⋆), there exists a t⋆ ∈ N such that xt⋆ ≤ 0. Then,

G(x1:s) ∈ Z≤0 \ {x1, . . . , xs} ⊆ supp(h⋆) \ {x1, . . . , xs} for any s ≥ t⋆. Thus, G is a valid
generator and H is generatable in the limit.

Now, we will show that H is not non-uniformly generatable. Suppose for the sake of contra-
diction that H is non-uniformly generatable. Then, there exists a non-uniform generator G for
H. For every h ∈ H, let dh ∈ N be the smallest natural number such that for any sequence
(xi)i∈N with {x1, x2, . . . } ⊆ supp(h), if there exists a t ∈ N such that |{x1, . . . , xt}| = dh,
then G(x1:s) ∈ supp(h) \ {x1, . . . , xs} for all s ≥ t. We now construct a h ∈ H such that
dh ≥ n, ∀n ∈ N, which leads to a contradiction.

Let h0 ∈ H and supp(h0) = N, then for any observed sequence {x1, . . . , xt} ⊂ N = supp(h0)
such that |{x1, . . . , xt}| ≥ dh0 , we have that G(x1:t) ∈ N \ {x1, . . . , xt}. Now let {pn}n∈N =
{2, 3, 5, 7, . . . } be the set of all prime numbers. Let h1 ∈ H be such that supp(h1) = {pn}n∈N ∪
Z≤0. Let d1 = max(dh1 , dh0), then by definition, we have that

G({2, . . . , pd1}) ∈ (N ∩ {pn}n∈N) \ {2, . . . , pd1} = {pn}n∈N \ {2, . . . , pd1}.

Let h2 ∈ H be such that

supp(h2) = {2, . . . , pd1 , p2d1+1, p
2
d1+2, . . . } ∪ Z≤0.

Denote d2 = dh2 , then d2 ≥ d1 +1 since G({2, . . . , pd1}) ∈ (N∩ supp(h1)) \ {2, . . . , pd1}, which
means that,

G({2, . . . , pd1}) /∈ supp(h2) \ {2, . . . , pd1}.

27

LI RAMAN TEWARI

Let h3 ∈ H such that

supp(h3) = {2, . . . , pd1 , p2d1+1, . . . , p
2
d2 , p

3
d2+1, p

3
d2+2, . . . } ∪ Z≤0.

Denote d3 = dh3 . Suppose, we observe

{x1, . . . , xd2} = {2, . . . , pd1 , p2d1+1, . . . , p
2
d2}.

Then, it must be the case that G(x1:d2) ∈ N ∩ supp(h2) \ {x1, . . . , xd2}. Since

(N ∩ supp(h2) \ {x1, . . . , xd2}) ∩ supp(h3) = ∅,

we have G(x1:d2) /∈ supp(h3) \ {x1:d2} and as a result d3 ≥ d2 + 1. Inductively, suppose
h1, h2, . . . , hn and d1, d2, . . . , dn are all defined. Let hn+1 ∈ H be such that

supp(hn+1) = {2, . . . , pd1 , , pndn−1+1, . . . , p
n
dn , p

n+1
dn+1, p

n+1
dn+2, } ∪ Z≤0.

Let dn+1 = dhn+1 . Then dn+1 ≥ dn + 1 since

G({2, . . . , pd1 , , pndn−1+1, . . . , p
n
dn}) /∈ supp(hn+1).

Finally, let h∞ ∈ H be such that

supp(h∞) = {2, . . . , pd1 , p2d1+1, . . . , p
2
d2 , p

3
d2+1, . . . , p

3
d3 , p

4
d3+1, } ∪ Z≤0.

For every t ∈ N, consider the sequence

{x1, . . . , xdt} = {2, . . . , pd1 , p2d1+1, . . . , p
2
d2 , p

3
d2+1, . . . , p

t
dt−1+1, . . . , p

t
dt}.

Then, G(x1:dt) ∈ N ∩ supp(ht) \ {x1, . . . , xdt}. Since

(N ∩ supp(ht) \ {x1, . . . , xdt}) ∩ (supp(h∞) \ {x1, . . . , xdt}) = ∅,

it must be the case that dh∞ ≥ dt,∀t ∈ N. Since dt → ∞ as t → ∞, this leads to a contradiction,
as we have found a hypothesis h∞ ∈ H for which there is no uniform upper bound d ∈ N such that
G perfectly generates new examples after observing d unique examples.

Appendix I. Remarks on Computability

I.1. Computing Closures

In learning-theoretic terms, ⟨x1, . . . , xn⟩H is the set of positive examples common to all hypothesis
in the version space of H consistent with the sample (x1, 1), . . . , (xn, 1). From this perspective, one
can check closure membership, i.e. given an example x and a sequence of examples x1, . . . , xn,
return 1{⟨x1, . . . , xn⟩H ̸= ⊥ and x ∈ ⟨x1, . . . , xn⟩H}, using access to an Empirical Risk Mini-
mization (ERM) oracle. Formally, an ERM oracle is a mapping O : 2{0,1}

X × (X × {0, 1})⋆ →
N ∪ {0}, which given a class H ⊆ {0, 1}X and a labeled sample S ∈ (X × {0, 1})⋆, outputs
minh∈H

∑
(x,y)∈S 1{h(x) ̸= y}. Then, given a class H, a sequence of examples x1, . . . , xn, one

28

GENERATION THROUGH THE LENS OF LEARNING THEORY

can compute 1{⟨x1, . . . , xn⟩H ̸= ⊥ and x ∈ 1{⟨x1, . . . , xn⟩H} using the following procedure.
First, pass to O the sample S = {(x1, 1), . . . , (xn, 1)} and H, and let r be its output. If r ≥ 1,
output 0. Otherwise, define the sample Sx = {(x1, 1), . . . , (xn, 1), (x, 0)}. Query O on Sx and
H and let rx be its output. Output rx. To see why the latter step works, suppose rx = 0. Then,
that means there exists a hypothesis h ∈ H such that {x1,xn} ⊆ supp(h) but x /∈ supp(h).
Thus, it cannot be the case that x ∈ ⟨x1, . . . , xn⟩H. On the other hand, if rx = 1, then it must mean
that for every h ∈ H such that {x1, . . . , xn} ⊆ supp(h), we have that h(x) = 1. Accordingly,
x ∈ ⟨x1, . . . , xn⟩H by definition.

I.2. Uniform Generator

The generator in Lemma 8 can be efficiently implemented given access to the following max-min
oracle Omax-min : 2{0,1}

X × X ⋆ → X . Given a hypothesis class H ⊆ {0, 1}X and a finite sequence
of examples x1, . . . , xt, Omax-min returns

argmax
x∈X\{x1,...,xt}

min
h∈H

t∑
i=1

1{h(xi) ̸= 1}+ 1{h(x) ̸= 0}.

The inner minimization is simply the output of an ERM oracle OERM , whch given H and the
sample S ∈ (X × {0, 1})⋆, outputs the minimal empirical loss on S amongst all h ∈ H. Thus, the
output of Omax-min can be equivalently written as:

Omax-min(H, x1:t) = argmax
x∈X\{x1,...,xt}

OERM (H, {(x1, 1), . . . , (xt, 1), (x, 0)}).

In fact, the generator in Lemma 8 can be implemented with a single call to the max-min oracle
on every round. To see why, suppose that t ≥ C(H) + 1. Then, since |⟨x1, . . . , xt⟩H| = ∞, it must
be the case that |⟨x1, . . . , xt⟩H \ {x1, . . . , xt}| ≠ ∅ and for every x ∈ ⟨x1, . . . , xt⟩H \ {x1, . . . , xt},
we have that

OERM (H, {(x1, 1), . . . , (xt, 1), (x, 0)}) ≥ 1.

Accordingly,

max
x∈X\{x1,...,xt}

OERM (H, {(x1, 1), . . . , (xt, 1), (x, 0)}) ≥ 1

and therefore Omax-min(H, x1:t) returns an element x̂t ∈ X \ {x1, . . . , xt} such that:

OERM (H, {(x1, 1), . . . , (xt, 1), (x̂t, 0)}) ≥ 1.

But, such an x̂t must lie in ⟨x1, . . . , xt⟩H, completing the proof. As a concluding remark, note
that the max-min oracle should remind the reader of the min-max objective/two-player game used
to motivate Generative Adversarial Networks (see Equation 1 in Goodfellow et al. (2014)). In
particular, for our min-max oracle, one can think of the minimizer/ERM oracle as the discriminator
and the outer maximizer as the generator.

29

LI RAMAN TEWARI

I.3. Generator in the Limit

The algorithm in the proof of Theorem 13 can be efficiently implemented given access to an ERM
oracle O : 2{0,1}

X × (X × {0, 1})⋆ → N ∪ {0} and an oracle OC : H → N that can compute the
Closure dimension. In particular, before the game begins, the algorithm uses OC to compute Closure
dimension for each class. After this, the algorithm only needs to use finite calls to an ERM oracle in
each round t ∈ N. To see why, first note that the algorithm plays arbitrarily until time point t⋆ where
c + 1 distinct examples are revealed, where c = maxi∈[n]C(Hi) (which can be computed from n
calls to OC at the start.) On round t⋆, the subset of indices S ⊆ [n] for which the closure is not ⊥
can be computed using at most n calls to OERM by the discussion in Appendix I.1. Next, note that
for every t ≥ t⋆, and every i ∈ S, the number ni

t can be computed using on finite number of calls to
a closure membership oracle (see Appendix I.1). Since closure membership can be computed using
a single call to OERM , the computation of ni

t for all i ∈ S can be computed using only a finite
number of calls to OERM . Finally, because x̂t only needs a finite number of closure membership
calls to compute, it can also be computed using a finite number of calls to OERM .

Appendix J. Proofs for Generation vs. Prediction

The written form of Figure 1 is Theorem 47, whose proof we provde below.

Theorem 47 (Generation v. Prediction) Let X be countable. The following statements are true.

(i) There exists a countable class H ⊆ {0, 1}X which is uniformly generatable but not PAC
learnable.

(ii) There exists a countable class H ⊆ {0, 1}X which is online learnable but not uniformly
generatable.

(iii) There exists a countable class H ⊆ {0, 1}X which is online learnable and uniformly gener-
atable.

(iv) There exists a countable class H ⊆ {0, 1}X that is PAC learnable but neither online learnable
nor uniformly generatable.

(v) There exists a countable class H ⊆ {0, 1}X that is PAC learnable and uniformly generatable,
but not online learnable.

(vi) There exists a countable class H ⊆ {0, 1}X that is neither PAC learnable nor uniformly
generatable.

Proof (of (i) in Theorem 47) Let X = Z and consider the hypothesis class H = {x 7→ 1{x ∈
A or x ≤ 0} : A ⊂ N, |A| < ∞}. First, note that H satisfies the UUS since for every x ∈ Z≤0 and
every h ∈ H, we have that h(x) = 1. Second, its not too hard to see that VC(H) = ∞ since it
can shatter arbitrary length sequence of examples of the form x1 = 1, x2 = 2, . . . , xd = d. Finally,
observe that C(H) = 0 since ⟨x⟩H = Z≤0 for all x ∈ X .

Such a separation also occurs for the more natural hypothesis class of convex polygons defined
over the rationals. This result is also noted by Kleinberg and Mullainathan (2024) in Section 3.2,
but we summarize it below.

30

GENERATION THROUGH THE LENS OF LEARNING THEORY

Let X = Q2 and H ⊆ {0, 1}X be the class of all convex polygons over X . That is H := {h ∈
{0, 1}X : supp(h) is a convex polygon.}. It is well known that VC(H) = ∞. Moreover, its not
too hard to see that H satisfies the UUS property. We now show that C(H) < ∞. In fact, we can
show that C(H) = 0. Indeed, pick any x ∈ X , and note that the set ⟨x⟩H is a convex polygon since
supp(h) is a convex polygon for all h ∈ H. Accordingly, we have that |⟨x⟩H|= ∞, completing the
proof.

Proof (of (ii) in Theorem 47) Let X = Z and consider the same class H from Lemma 45. Recall,
that C(H) = ∞. Thus, it suffices to show that L(H) = 2. First, we prove that L(H) ≥ 2 by showing
that VC(H) ≥ 2. Indeed, it is not hard to verify that any x1, x2 such that x1 ∈ Z<0 and x2 ∈ Z>0

can be shattered by H, completing this direction.
In fact, we can show that this is the only way that two examples can be shattered. Pick any two

examples x1, x2 ∈ Z. None of x1, x2 can be 0, as otherwise all hypothesis output 0 on this example.
Thus, assume that x1, x2 and are non-zero. Our proof will now be in cases.

Suppose that x1, x2 > 0. For every d ∈ N, define Ad := {d(d−1)
2 + 1, , . . . , d(d−1)

2 + d}. Note
that A1, A2, . . . are all pairwise disjoint. If there exists a d ∈ N such that x1, x2 lie in Ad, then the
labeling (1, 0) is not possible. If x1, x2 lie in different sets, then the labeling (1, 1) is not possible.
Thus, when x1, x2 > 0, they cannot be shattered by H.

Suppose, x1, x2 < 0. If they are both even, then one cannot get the labeling (1, 0). Likewise
for odd. If one of them is even, say x1 without loss of generality, then one cannot get the labeling
(1, 0). Likewise for odd. Thus, whenever x1, x2 < 0, they cannot be shattered by H.

Thus, the only way x1, x2 can be shattered is if one of them is strictly negative, but the other is
strictly positive.

Using this observation, we will now show that L(H) ≤ 2. Consider any Littlestone tree T of
depth 3. We will show that T cannot be shattered by H. There are two cases to consider.

Suppose the root node is labeled by a strictly negative integer. Then, using the above analysis
it must be the case that the nodes on the second level must be labeled by strictly positive integers
in order for T to be shattered. Now, pick any root-to-leaf path prefix b = (1, 1) down T . Let
(x1, 1), (x2, 1) denote the sequence of labeled examples obtained by traversing down T according
to the prefix b. By our observation above, we know that x1 < 0 and x2 > 0. However, there can be
exactly one hypothesis h ∈ H that is consistent with (x1, 1) and (x2, 1). Thus, any completion of
the path b cannot be shattered by H.

Suppose the root node is labeled by a strictly positive integer. Then, using the above analysis,
it must be the case that the nodes on the second level must be labeled by strictly negative integers
in order for T to be shattered. Now, pick the root-to-leaf path prefix b = (1, 1) down T . Let
(x1, 1), (x2, 1) denote the sequence of labeled examples obtained by traversing down T according
to the prefix b. By our observation above, we know that x1 > 0 and x2 < 0. However, there can be
exactly one hypothesis h ∈ H that can be consistent with (x1, 1) and (x2, 1). Thus, any completion
of the path b cannot be shattered by H. Since T was arbitrary, it must be the case that L(H) ≤ 2.

Proof (of (iii)-(vi) in Theorem 47) To see (iii), observe that the class H = {x 7→ 1{x = a or x ≤
0} : a ∈ N} is trivially online learnable and uniformly generatable. To see (iv), observe that the
class Hthresh ∪ He ∪ Ho is PAC learnable but neither uniformly generatable nor online learnable,
where Hthresh := {x 7→ 1{x ≥ a} : a ∈ N} and He,Ho are defined in Equations 2 and 3. To see
(v), observe that the class Hthresh is PAC learnable, uniformly generatable, but not online learnable.
Finally, to see (vi), consider the class H = {x 7→ 1{x /∈ A} : A ⊂ N, |A| < ∞}.

31

LI RAMAN TEWARI

J.1. Proofs of Lemma 15 and 16

Proof (of Lemma 15) Let X = Z and consider H = {x 7→ 1{x ∈ A or x ≤ 0} : A ⊆ N} and
h(x) = 1{x ∈ N}. Its not hard to see that C(H) = 0. Moreover, since H is the same class used in
the proof of Lemma 46, we know that H = H1 ∪ {h} is not non-uniformly generatable.

Proof (of Lemma 16) Let X = Q+ be all the positive rational numbers. Let P = {pn}∞n=1 be the
set of prime numbers, indexed in increasing order. For each i ∈ N, define

Qi =
{ p

pi
, p ∈ P

}
, Hi = {x 7→ 1{x ∈ Qi or x ∈ A} : A ∈ 2Q+}.

Note that C(Hi) = 0 for all i ∈ N. We now show that H =
⋃∞

i=1Hi is not generatable in the limit.
Suppose H is generatable in the limit and G is such a generator, we now prove a contradiction.

Let h2 ∈ H2 be such that supp(h2) = Q2 ∪ {3
2}. Let {x2,t}∞t=1 be an enumeration of supp(h2)

such that
{x2,1, x2,2, x2,3, x24, . . . } =

{p2
p1

,
p1
p2

,
p2
p2

,
p3
p2

, . . .
}
.

By definition, there exists a time t2 ≥ 4 such that G(x21, . . . , x2t2) ∈ supp(h2)\{x21, . . . , x2,t2},
which implies G(x21, . . . , x2,t2) ∈ Q2 \ {x2,1, . . . , x2,t2}. Note that t2 ≥ 4 implies that 1 ∈
{x2,1, . . . , x2,t2}. Let h3 ∈ H3 be such that supp(h3) = Q3 ∪ {5

2} ∪ {x2,1, . . . , x2,t2}. Let
{x3,t}∞t=1 be an enumeration of supp(h3) such that

{x3,1, . . . , x3,t2} = {x2,1, . . . , x2,t2}

and
{x3,t2+1, x3,t2+2, x3,t2+3, x3,t2+4, . . . } =

{p3
p1

,
p1
p3

,
p2
p3

,
p3
p3

, . . .
}
.

We know there exists a time t3 ≥ t2+1 such that G(x3,1, . . . , x3,t3) ∈ supp(h3)\{x3,1, . . . x3,t3},
which means G(x3,1, . . . , x3,t3) ∈ Q3 \ {x3,1, . . . x3,t3}.

Inductively, suppose h2, . . . , hn and t2, . . . , tn are all defined. Let hn+1 ∈ Hn+1 be such that

supp(hn+1) = Qn+1 ∪ {pn+1

p1
} ∪ {xn,1, . . . , xn,tn}.

Let {xn+1,t}∞t=1 be an enumeration of supp(hn+1) such that

{xn+1,1, . . . , xn+1,tn} = {xn,1, . . . , xn,tn}

and
{xn+1,tn+1, xn+1,tn+2, xn+1,tn+3, xn+1,tn+4, . . . } =

{pn
p1

,
p1
pn

,
p2
pn

,
p3
pn

, . . .
}
.

By our construction, there exists a time tn+1 ≥ tn+1 such that G(xn+1,1, . . . , xn+1,tn+1) ∈ Qn+1\
{xn+1,1, . . . , xn+1,tn+1} Now, let h1 be a hypothesis such that

supp(h1) =

∞⋃
i=2

{xi,1, . . . , xi,ti}.

It is clear that h1 ∈ H1. Moreover, let {xi}∞i=1 be an enumeration of h1 such that for all n ≥ 2,

{x1, x2, . . . , xtn} = {xn,1, xn,2, . . . , xn,tn}.

Then, by our construction, we know that for all n ≥ 2, G(x1, x2, . . . , xtn) ∈ Qn \ supp(h1), which
means h1 is not generatable in the limit.

32

GENERATION THROUGH THE LENS OF LEARNING THEORY

Appendix K. Comparison to Kleinberg and Mullainathan (2024)’s Prompted
Generation

Our setting of prompted generation generalizes the model of prompting studied in Section 7 of
Kleinberg and Mullainathan (2024). Namely, Kleinberg and Mullainathan (2024) consider the fol-
lowing model. Let X be a suffix space, Y be the prompt space, and Z ⊆ {y ◦ x : x ∈ X , y ∈ Y} be
the space of completed prompts, where ◦ denotes the concatenation operator. Let L = {L1, L2, . . . }
denote a language family defined over Z . Before the game begins, the adversary picks language
K ∈ L, a sequence of its completed prompts z1, z2, · · · ∈ K, and a sequence of prompts y1, y2,
On round t ∈ N, the adversary reveals (zt, yt), and the goal of the generator is to output x̂t ∈ X
such that yt ◦ x̂t ∈ K \ {z1, . . . , zt}. This model is equivalent to our setting after picking H =
{hL : L ∈ L} ⊆ YX as the hypothesis class, where hL : X → Y such that hL(x) = y if and only
if y ◦ x ∈ L.

That said, our definitions of prompted generatability differ from the notion of “prompted gen-
eration in the limit” in Section 7 of Kleinberg and Mullainathan (2024). We highlight the key
differences below. Notice that in all our definitions of prompted generatability, the time point after
which perfect generation must occur can be prompt specific. This means that the generator only
needs to perfectly generate with respect to a prompt after it has seen a sufficient number of exam-
ples with this prompt. This, however, is not the case for the definition of prompted generation in
the limit studied by Kleinberg and Mullainathan (2024). In their model, the generator must even-
tually perfectly complete prompts it may have never seen in the past. In this sense, our notions of
prompted generatability are weaker.

Appendix L. Proofs for Prompted Generatability

L.1. Proof of Corollary 24

Proof (ii) follows from (i) and Theorem 23 and (iii) follows from (ii), so we only focus on prov-
ing (i). Let H be any finite class. Fix some y ∈ Y and consider the binary hypothesis class:
Hy := {x 7→ 1{h(x) = y} : h ∈ H}. Since H is finite, so is Hy. Accordingly, by Theorem 36,
we know that there exists dy ∈ N that witnesses the fact that Hy is uniform generatable accord-
ing to Definition 3. We claim that PC(H) = maxy∈Y dy. For the sake of contradiction, suppose
this is not the case. That is, PC(H) ≥ (maxy∈Y dy) + 1. Then, by definition, there exists a dis-
tinct sequence x1, . . . , xPC(H) and a prompt y⋆ ∈ Y such that |⟨(x1, . . . , xPC(H)), y⟩H| ≠ ⊥ and
|⟨(x1, . . . , xPC(H)), y

⋆⟩H| < ∞. This implies that dy⋆ ≥ PC(H) which contradicts the fact that
PC(H) = maxy∈Y dy. This completes the proof, as PC(H) = maxy∈Y dy < ∞ and thus, by
Theorem 22, H is prompted uniformly generatable.

L.2. Proof of Lemma 25

Proof Let X = Z and Y = N. For every n ∈ N, define the set

An :=

{
n(n− 1)

2
+ 1, . . . ,

n(n− 1)

2
+ n

}
.

Let {pn}n∈N be the set of all prime numbers. Consider the hypotheses h1 : X → Y and h2 : X → Y
defined as

33

LI RAMAN TEWARI

h1(x) :=


n, if x ∈ An

n, if x ∈ {−pn,−p2n,−p3n, . . . }
1, otherwise

,

and

h2(x) :=


n, if x ∈ An

n, if x ∈ {−pn+1,−p2n+1,−p3n+1, . . . }
1, otherwise

.

Let H = {h1, h2}. Observe that H satisfies the PUUS property. Our proof will be in two steps.
First, we will now show that H is not prompted uniformly generatable. Then, we will use Theorem
23 to show that H is not prompted non-uniformly generatable.

By Theorem 22, to show that H is not prompted uniformly generatable it suffices to show that
PC(H) = ∞. In particular, it suffices to show that for every d ∈ N \ {1}, there exists distinct
x1, . . . , xd and a prompt y ∈ Y such that |⟨(x1, . . . xd), y⟩| ̸= ⊥ and |⟨(x1, . . . xd), y⟩| < ∞.
To that end, fix some d ∈ N \ {1}. Consider the sequence x1, . . . , xd obtained by sorting Ad in
increasing order and consider the prompt y = d. Then, we have that H(x1:d, y) = H and

⟨x1:d, y⟩H =
⋂
h∈H

supp(h, d) = Ad,

so that |⟨x1:d, y⟩H| < ∞. The proof that H is not prompted uniformly generatable is complete after
noting that d ∈ N \ {1} is picked arbitrarily.

Now, we complete the overall proof by showing that H is not prompted non-uniformly gener-
atable. By Theorem 23, H is not prompted non-uniformly generatable if for every non-decreasing
sequence of classes H1 ⊆ H2 ⊆ . . . satisfying H =

⋃
n∈NHn, there exists a i ∈ N such that

PC(Hi) = ∞. Trivially, for every non-decreasing sequence of classes H1 ⊆ H2 ⊆ . . . satisfying
H =

⋃
n∈NHn, there must be an index i ∈ N such that H = Hi. Since PC(H) = ∞, our proof is

complete.

L.3. Proof of Theorem 22

Proof (of sufficiency) Let H ⊆ YX be such that it satisfies the PUUS property and PC(H) < ∞.
Consider the following prompted generator G. For any finite sequence of tuples (x1, p1, y1), . . . , (xt, pt, yt) ∈
(X ,Y,Y)t, G extracts Bt := {xi : pi = yt}, the subset of examples where pi is yt. Then, G checks
whether |Bt| ≥ PC(H) + 1. If so, G computes ⟨Bt, yt⟩H and plays x̂t ∈ ⟨Bt, yt⟩H \ {x1, . . . , xt}.
Otherwise, G, plays an arbitrary x̂t ∈ X . We claim that G is a prompted uniform generator for H.
To see this, let h ∈ H and (x1, h(x1), y1), (x2, h(x2), y2), . . . be the hypothesis and sequence of
tuples chosen by the adversary. Fix an arbitrary reference label y⋆ ∈ Y . It suffices to show that if
there exists a t⋆ ∈ N such that

|{x1, . . . , xt⋆} ∩ supp(h, y⋆)| = PC(H) + 1,

then

34

GENERATION THROUGH THE LENS OF LEARNING THEORY

G((x1, h(x1), y1), . . . , (xs, h(xs)), ys) ∈ supp(h, ys) \ {x1, . . . , xs}

for all s ≥ t⋆ where ys = y⋆. To that end, suppose there exists a t⋆ ∈ N such that

|{x1, . . . , xt⋆} ∩ supp(h, y⋆)| = PC(H) + 1.

Fix an arbitrary s ≥ t⋆ such that ys = y⋆. By construction, we have that |Bs| ≥ PC(H) + 1. Ac-
cordingly, G computes ⟨Bs, ys⟩H = ⟨Bs, y

⋆⟩H. By definition of the Prompted Closure dimension,
it must be the case that |⟨Bs, ys⟩H| = ∞. Accordingly, ⟨Bs, ys⟩H \ {x1, . . . , xs} ≠ ∅, and we have
that x̂s ∈ supp(h, ys) \ {x1, . . . , xs}, completing the proof.

Proof (of necessity) Let H ⊆ YX be such that it satisfies the PUUS property and PC(H) = ∞.
Let G be any prompted generator. It suffices to show that for arbitrarily large d ∈ N, there exists
a sequence of distinct examples x1, . . . , xd, a prompt y ∈ Y , and a hypothesis h ∈ H such that
h(xi) = y for all i ∈ [d], and

G((x1, h(x1), y), . . . , (xd, h(xd)), y) /∈ supp(h, y) \ {x1, . . . , xd}.

By definition of the Prompted Closure dimension, for every n ∈ N there exists distinct x1, . . . , xn ∈
X and a label y⋆ ∈ Y such that |⟨(x1, . . . , xn), y⋆⟩H| ≠ ⊥ and |⟨(x1, . . . , xn), y⋆⟩H| < ∞. Thus,
for some d ≥ n, there exists a distinct x1, . . . , xd ∈ X such that |⟨(x1, . . . , xd), y⋆⟩H| ≠ ⊥
and |⟨(x1, . . . , xd), y⋆⟩H \ {x1, . . . , xd}| = 0. Accordingly, for every x ∈ X \ {x1, . . . , xd},
there exists a h ∈ H((x1, . . . , xd), y

⋆) such that x /∈ supp(h, y⋆) \ {x1, . . . , xd}. Let x̂d =
G((x1, h(x1), y⋆), . . . , (xd, h(xd), y⋆)), and suppose without loss of generality that x̂d /∈ {x1, . . . , xd}.
Then, by the previous observation, there exists a h⋆ ∈ H((x1, . . . , xd), y

⋆) for which x̂d /∈ supp(h⋆, y⋆).
Thus, we have shown that there exists a sequence of distinct examples x1, . . . , xd, a label y ∈ Y ,
and a hypothesis h ∈ H such that h(xi) = y for all i ∈ [d], and

G((x1, h(x1), y), . . . , (xd, h(xd), y)) /∈ supp(h, y) \ {x1, . . . , xd}.

The proof is complete after noting that n was arbitrary, and thus this holds for all n ∈ N.

L.4. Proof of Theorem 23

The proof of the necessity direction follows identically to that of Theorem 11, so we omit that
proof and only prove the sufficiency direction. Although one can prove the sufficiency direction in
Theorem 23 through a reduction to prompted uniform generation (like we did for Theorem 11), we
provide a more direct proof using the prompted closure dimension to avoid repetition.

Proof (sketch of sufficiency) Suppose H ⊆ YX is a hypothesis class satisfying the PUUS property
such that there exists a non-decreasing sequence of classes H1 ⊆ H2 ⊆ . . . with H =

⋃
i∈NHi and

PC(Hn) < ∞ for every n ∈ N. First note that PC(Hn) is monotonic increasing in n. We consider
two cases: limn→∞ PC(Hn) = ∞ and limn→∞ PC(Hn) < ∞.

In the first case, consider the following generator G. Fix t ∈ N and consider any finite sequence
of tuples (x1, p1, y1), . . . , (xt, pt, yt) ∈ (X ,Y,Y)t. G extracts Bt := {xi : pi = yt}. Let dt := |Bt|
be the number of unique examples whose label is yt. G first computes

35

LI RAMAN TEWARI

nt = max{n ∈ N : PC(Hn) < dt} ∪ {0}.

If nt = 0, meaning PC(H1) ≥ dt, G plays any x̂t ∈ X . If nt > 0 but |Hnt(Bt, yt)| = 0, G also
plays any x̂t ∈ X . If nt > 0 and |Hnt(Bt, yt)| ≥ 1, G plays any

x̂t ∈ ⟨Bt, yt⟩Hnt
\ {x1, . . . , xt}.

We now prove that such a G is a non-uniform generator for H. To that end, let h⋆ be the
hypothesis chosen by the adversary and suppose that h⋆ belongs to Hn⋆ . Let d⋆ := PC(Hn⋆).
We show that for a label sequence (x1, h

⋆(x1), y1), . . . , (xt, h
⋆(xt), yt), such that dt := |{xi :

h⋆(xi) = yt}| ≥ d⋆ + 1, we have

G((x1, h⋆(x1), y1), . . . , (xt, h⋆(xt), yt)) ∈ supp(h⋆, yt) \ {x1, . . . , xt}.

By definition, G first computes

nt = max{n ∈ N : PC(Hn) < dt} ∪ {0}.

Note that nt ≥ n⋆ since PC(Hn⋆) = d⋆ < d⋆ + 1 ≤ dt. Thus, |Hnt(Bt, yt)| ≥ 1 since
h⋆ ∈ Hnt , where Bt = {xi : h⋆(xi) = yt}. Accordingly, by construction of G, we have that it
computes

Vt := ⟨Bt, yt⟩Hnt
,

and plays any x̂t ∈ Vt \ {x1, . . . , xt}. The proof is complete by noting that h⋆ ∈ Hnt and dt ≥
PC(Hnt) + 1 which gives that |Vt| = ∞ and Vt ⊆ supp(h⋆).

In the second case, suppose limn→∞ PC(Hn) := c < ∞. Consider the following generator G.
Fix t ∈ N and consider any finite sequence of tuples (x1, p1, y1), . . . , (xt, pt, yt) ∈ (X ,Y,Y)t, G
extracts Bt = {xi : pi = yt}. Let dt := |Bt| be the number of unique examples whose label is yt.
If dt < c or |Hdt(Bt, yt)| = 0, G plays any x̂t ∈ X . Otherwise, if dt ≥ c and |Hdt(Bt, yt)| > 0, G
plays any

x̂t ∈ ⟨Bt, yt⟩Hdt
\ {x1, . . . , xt}.

Let h⋆ be the hypothesis chosen by the adversary and suppose h⋆ belongs to Hn⋆ . We show that
for every labeled sequence (x1, h⋆(x1), y1), . . . , (xt, h⋆(xt), yt) such that dt := |{xi : h⋆(xi) = yt}| >
max(c, n⋆), we have

G((x1, h⋆(x1), y1), . . . , (xt, h⋆(xt), yt)) ∈ supp(h⋆, yt) \ {x1, . . . , xt}.

Because dt ≥ n⋆, we have that h⋆ ∈ Hdt . Therefore, by construction, G computes

Vt := ⟨{xi : h⋆(xi) = yt}, yt⟩H[dt]
,

and plays any x̂t ∈ Vt \ {x1, . . . , xt}. The proof is complete after noting that |Vt| = ∞ and
Vt ⊆ supp(h⋆, yt) using the fact that dt > max(c, n⋆).

36

GENERATION THROUGH THE LENS OF LEARNING THEORY

Appendix M. Open Questions

We highlight several important directions for future work.

Characterizing Generatability in the Limit. Kleinberg and Mullainathan (2024) proved that ev-
ery countable hypothesis class is generatable in the limit. We gave an alternate sufficiency condition
which showed the existence of many uncountably infinite classes that are generatable in the limit.
However, it is unclear (and unlikely) that our sufficiency condition, in conjunction with count-
ableness, provides a characterization of generatability in the limit. This motivates our first open
question.

Question 48 What characterizes generatability in the limit?

Ideally, a characterization of generatability in the limit can be written neatly in set-theoretic lan-
guage like Angluin’s characterization of identifiability in the limit.

Generatability in the Limit under Finite Unions. In Section 3.4, we showed that uniform and
non-uniform generatability are not closed under finite unions. However, we were able to only show
that generatability in the limit is not closed under countable unions. This motivates our second open
question.

Question 49 Is generatability in the limit closed under finite unions?

Resolving Question 49 is important for two reasons: (1) it may lead to a complete character-
ization of generatability in the limit and (2) it may provide insight on how to optimally combine
generators. Recall that Theorem 42 shows that the finite union of uniformly generatable classes are
generatable in the limit. Thus, as a first step towards resolving Question 49, it might be helpful to
resolve the following open question.

Question 50 Is the finite union of non-uniformly generatable classes generatable in the limit?

Characterizing Prompted Generatability in the Limit. In Section 4, we provided complete char-
acterizations of prompted uniform and non-uniform generation. When |Y| < ∞, we showed that
all countable classes are prompted generatable in the limit. However, we left open the complete
characterization of prompted generatability in the limit, which motivates our first question.

Question 51 When |Y| < ∞, what characterizes prompted generatability in the limit?

When |Y| = ∞, we show that there are finite classes which are not even prompted non-
uniformly generatable. This begs the question of whether all countable classes continue to be
prompted generatable in the limit when |Y| = ∞.

Question 52 When |Y| = ∞, are all countable classes prompted generatable in the limit?

Unlike the case for prompted uniform and non-uniform generatability, we conjecture that all
countable classes are still prompted generatable in the limit when |Y| = ∞. Our claim is due to the
positive result by Kleinberg and Mullainathan (2024), who show that in their model of prompting,
which can be stronger than ours (see Section K), all countable classes are still prompted generatable
in the limit.

37

	Introduction
	Related Works

	Preliminaries
	Generatability

	Characterizations of Generatability
	Uniform Generatability
	Non-uniform Generatability
	Generatability in the Limit
	Generation is Unlike Prediction

	Extension to Prompted Generation
	Characterizations of Prompted Generatability

	Discussion and Future Directions
	Identifiability and Predictability
	Identifiability
	Predictability

	Existing Results in Identification and Generation
	Sample Complexity for Uniform Generation
	Proofs for Uniform Generation
	Proof of Lemma 7
	Proof of Corollary 10

	Proofs for Non-uniform Generation
	Proof of Theorem 11
	Proof of Corollary 12

	Proofs for Generatability in the Limit
	Weaker Sufficiency Conditions for Generatability in the Limit
	Proof of Proposition 5
	Remarks on Computability
	Computing Closures
	Uniform Generator
	Generator in the Limit

	Proofs for Generation vs. Prediction
	Proofs of Lemma 15 and 16

	Comparison to kleinberg2024language's Prompted Generation
	Proofs for Prompted Generatability
	Proof of Corollary 24
	Proof of Lemma 25
	Proof of Theorem 22
	Proof of Theorem 23

	Open Questions

