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Abstract

We investigate the optimality of perturbation based algorithms in the stochastic
and adversarial multi-armed bandit problems. For the stochastic case, we provide
a unified regret analysis for both sub-Weibull and bounded perturbations when
rewards are sub-Gaussian. Our bounds are instance optimal for sub-Weibull per-
turbations with parameter 2 that also have a matching lower tail bound, and all
bounded support perturbations where there is sufficient probability mass at the
extremes of the support. For the adversarial setting, we prove rigorous barriers
against two natural solution approaches using tools from discrete choice theory
and extreme value theory. Our results suggest that the optimal perturbation, if it
exists, will be of Fréchet-type.

1 Introduction

Beginning with the seminal work of Hannan [12], researchers have been interested in algorithms that
use random perturbations to generate a distribution over available actions. Kalai and Vempala [17]
showed that the perturbation idea leads to efficient algorithms for many online learning problems with
large action sets. Due to the Gumbel lemma [14], the well known exponential weights algorithm [11]
also has an interpretation as a perturbation based algorithm that uses Gumbel distributed perturbations.

There have been several attempts to analyze the regret of perturbation based algorithms with specific
distributions such as Uniform, Double-exponential, drop-out and random walk (see, e.g., [17, 18,
9, 28]). These works provided rigorous guarantees but the techniques they used did not generalize
to general perturbations. Recent work [1] provided a general framework to understand general
perturbations and clarified the relation between regularization and perturbation by understanding
them as different ways to smooth an underlying non-smooth potential function.

Abernethy et al. [2] extended the analysis of general perturbations to the partial information setting
of the adversarial multi-armed bandit problem. They isolated bounded hazard rate as an important
property of a perturbation and gave several examples of perturbations that lead to the near optimal
regret bound of O(

√
KT logK). Since Tsallis entropy regularization can achieve the minimax

regret of O(
√
KT ) [4, 5], the question of whether perturbations can match the power of regularizers

remained open for the adversarial multi-armed bandit problem.

In this paper, we build upon previous works [1, 2] in two distinct but related directions. First, we
provide the first general result for perturbation algorithms in the stochastic multi-armed bandit
problem. We present a unified regret analysis for both sub-Weibull and bounded perturbations when
rewards are sub-Gaussian. Our regrets are instance optimal for sub-Weibull perturbations with
parameter 2 (with a matching lower tail bound), and all bounded support perturbations where there
is sufficient probability mass at the extremes of the support. Since the Uniform and Rademacher
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distribution are instances of these bounded support perturbations, one of our results is a regret bound
for a randomized version of UCB where the algorithm picks a random number in the confidence
interval or randomly chooses between lower and upper confidence bounds instead of always picking
the upper bound. Our analysis relies on the simple but powerful observation that Thompson sampling
with Gaussian priors and rewards can also be interpreted as a perturbation algorithm with Gaussian
perturbations. We are able to generalize both the upper bound and lower bound of Agrawal and Goyal
[3] in two respects; (1) from the special Gaussian perturbation to general sub-Weibull or bounded
perturbations, and (2) from the special Gaussian rewards to general sub-Gaussian rewards.

Second, we return to the open problem mentioned above: is there a perturbation that gives us minimax
optimality? We do not resolve it but provide rigorous proofs that there are barriers to two natural
approaches to solving the open problem. (A) One cannot simply find a perturbation that is exactly
equivalent to Tsallis entropy. This is surprising since Shannon entropy does have an exact equivalent
perturbation, viz. Gumbel. (B) One cannot simply do a better analysis of perturbations used before
[2] and plug the results into their general regret bound to eliminate the extra O(

√
logK) factor. In

proving the first barrier, we use a fundamental result in discrete choice theory. For the second barrier,
we rely on tools from extreme value theory.

2 Problem Setup

In every round t starting at 1, a learner chooses an action At ∈ [K] , {1, 2, · · · ,K} out of K arms
and the environment picks a response in the form of a real-valued reward vector gt ∈ [0, 1]K . While
the entire reward vector gt is revealed to the learner in the full information setting, the learner only
receives a reward associated with his choice in the bandit setting, while any information on other
arms is not provided. Thus, we denote the reward corresponding to his choice At as Xt = gt,At .

In stochastic multi-armed bandit, the rewards gt,i are sampled i.i.d from a fixed, but unknown
distribution with mean µi. Adversarial multi-armed bandit is more general in that all assumptions
on how rewards are assigned to arms are dropped. It only assumes that rewards are assigned by
an adversary before the interaction begins. Such an adversary is called an oblivious adversary. In
both environments, the learner makes a sequence of decisions At based on each history Ht−1 =

(A1, X1, · · · , At−1, Xt−1) to maximize the cumulative reward,
∑T
t=1Xt.

As a measure of evaluating a learner, Regret is the difference between rewards the learner would
have received had he played the best in hindsight, and the rewards he actually received. Therefore,
minimizing the regret is equivalent to maximizing the expected cumulative reward. We consider the
expected regret, R(T ) = E[maxi∈[K]

∑T
t=1 gt,i −

∑T
t=1 gt,At ] in adversarial setting, and the pseudo

regret, R′(T ) = T ·maxi∈[K] µi − E[
∑T
t=1Xt] in stochastic setting. Note that two regrets are the

same where an oblivious adversary is considered. An online algorithm is called a no-regret algorithm
if for every adversary, the expected regret with respect to every action At is sub-linear in T .

We use FTPL (Follow The Perturbed Leader) to denote families of algorithms for both stochastic and
adversarial settings. The common core of FTPL algorithms consists in adding random perturbations
to the estimates of rewards of each arm prior to computing the current “the best arm” (or “leader”).
However, the estimates used are different in the two settings: stochastic setting uses sample means
and adversarial setting uses inverse probability weighted estimates.

3 Stochastic Bandits

In this section, we propose FTPL algorithms for stochastic multi-armed bandits and characterize a
family of perturbations that make the algorithm instance-optimal in terms of regret bounds. This
work is mainly motivated by Thompson Sampling [25], one of the standard algorithms in stochastic
settings. We also provide a lower bound for the regret of this FTPL algorithm.

For our analysis, we assume, without loss of generality, that arm 1 is optimal, µ1 = maxi∈[K] µi,
and the sub-optimality gap is denoted as ∆i = µ1 − µi. Let µ̂i(t) be the average reward received
from arm i after round t written formally as µ̂i(t) =

∑t
s=1 I{As = i}Xs/Ti(t) where Ti(t) =∑t

s=1 I{As = i} is the number of times arm i has been pulled after round t. The regret for stochastic
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bandits can be decomposed into R(T ) =
∑K
i=1 ∆iE[Ti(T )]. The reward distributions are generally

assumed to be sub-Gaussian with parameter 1 [20].
Definition 1 (sub-Gaussian). A random variable Z with mean µ = E[Z] is sub-Gaussian with
parameter σ > 0 if it satisfies P(|Z − µ| ≥ t) ≤ exp(−t2/(2σ2)) for all t ≥ 0.
Lemma 1 (Hoeffding bound of sub-Gaussian [15]). Suppose Zi, i ∈ [n] are i.i.d. random variables
with E(Zi) = µ and sub-Gaussian with parameter σ. Then P(Z̄n − µ ≥ t) ∨ P(Z̄n − µ ≤ −t) ≤
exp(−nt2/(2σ2)) for all t ≥ 0, where Z̄n =

∑n
i=1 Zi/n.

3.1 Upper Confidence Bound and Thompson Sampling

The standard algorithms in stochastic bandit are Upper Confidence Bound (UCB1) [6] and Thompson
Sampling [25]. The former algorithm is constructed to compare the largest plausible estimate of mean
for each arm based on the optimism in the face of uncertainty so that it would be deterministic in
contradistinction to the latter one. At time t+ 1, UCB1 chooses an action At+1 by maximizing upper
confidence bounds, UCBi(t) = µ̂i(t)+

√
2 log T/Ti(t). Regarding the instance-dependent regret of

UCB1, there exists some universal constant C > 0 such that R(T ) ≤ C
∑
i:∆i>0(∆i + log T/∆i).

Thompson Sampling is a Bayesian solution based on randomized probability matching approach
[24]. Given the prior distribution Q0, at time t+ 1, it computes posterior distribution Qt based on
observed data, samples νt from posterior Qt, and then chooses the arm At+1 = arg maxi∈[k] µi(νt).
In Gaussian Thompson Sampling where the Gaussian rewards N (µi, 1) and the Gaussian prior
distribution for each µi with mean µ0 and infinite variance are considered, the policy from Thompson
Sampling is to choose an index that maximizes θi(t) randomly sampled from Gaussian posterior
distribution,N (µ̂i(t), 1/Ti(t)) as stated in Alg.1-(i). Also, its regret bound is restated in Theorem 2.

Initialize Ti(0) = 0, µ̂i(0) = 0 for all i ∈ [K]
for t = 1 to T do

For each arm i ∈ [K],
(i) Gaussian Thompson Sampling : θi(t− 1) ∼ N

(
µ̂i(t− 1), 1

1∨Ti(t−1)

)
(ii) FTPL via Unbounded Perturbation : θi(t− 1) = µ̂i(t− 1) + 1√

1∨Ti(t−1)
· Zit

where Zits are randomly sampled from unbounded Z.

(iii) FTPL via Bounded Perturbation : θi(t− 1) = µ̂i(t− 1) +
√

(2+ε) log T
1∨Ti(t−1) · Zit

where Zits are randomly sampled from Z ∈ [−1, 1].
Learner chooses At = arg maxi∈[K] θi(t− 1) and receives the reward of Xt ∈ [0, 1].

Update : µ̂At(t) =
µ̂At (t−1)·TAt (t−1)+Xt

TAt (t−1)+1 , TAt(t) = TAt(t− 1) + 1.
end

Algorithm 1: Randomized probability matching algorithms via Perturbation

Theorem 2 (Theorem 3 [3]). Assume that reward distribution of each arm i is Gaussian with mean
µi and unit variance. Thompson sampling policy via Gaussian prior defined in Alg.1-(i) has the
following instance-dependent and independent regret bounds, for C ′ > 0,

R(T ) ≤ C ′
∑

∆i>0

(
log(T∆2

i )/∆i + ∆i

)
, R(T ) ≤ O(

√
KT logK).

Viewpoint of Follow-The-Perturbed-Leader The more generic view of Thompson Sampling is
via the idea of perturbation. We bring an interpretation of viewing this Gaussian Thompson Sampling
as Follow-The-Perturbed-Leader (FTPL) algorithm via Gaussian perturbation [20]. If Gaussian
random variables θi(t) are decomposed into the average mean reward of each arm µ̂i(t) and scaled
Gaussian perturbation ηit · Zit where ηit = 1/

√
Ti(t), Zit ∼ N(0, 1). In a round t+ 1, the FTPL

algorithm chooses the action according to At+1 = arg maxi∈[K] µ̂i(t) + ηit · Zit.

3.2 Follow-The-Perturbed-Leader

We show that the FTPL algorithm with Gaussian perturbation under Gaussian reward setting can be
extended to sub-Gaussian rewards as well as families of sub-Weibull and bounded perturbations. The
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sub-Weibull family is an interesting family in that it includes well known families like sub-Gaussian
and sub-Exponential as special cases. We propose perturbation based algorithms via sub-Weibull and
bounded perturbation in Alg.1-(ii), (iii), and their regrets are analyzed in Theorem 3 and 5.
Definition 2 (sub-Weibull [29]). A random variable Z with mean µ = E[Z] is sub-Weibull (p) with
σ > 0 if it satisfies P(|Z − µ| ≥ t) ≤ Ca exp(−tp/(2σp)) for all t ≥ 0.
Theorem 3 (FTPL via sub-Weibull Perturbation, Proof in Appendix A.1). Assume that reward
distribution of each arm i is 1-sub-Gaussian with mean µi, and the sub-Weibull (p) perturbation Z
with parameter σ and E[Z] = 0 satisfies the following anti-concentration inequality,

P(|Z| ≥ t) ≥ exp(−tq/2σq)/Cb, for t ≥ 0 (1)

Then the Follow-The-Perturbed-Leader algorithm via Z in Alg.1-(ii) has the following instance-
dependent and independent regret bounds, for p ≤ q ≤ 2 (if q = 2, σ ≥ 1) and C ′′ = C(σ, p, q) > 0,

R(T ) ≤ C ′′
∑

∆i>0

([
log(T∆2

i )
]2/p

/∆i + ∆i

)
, R(T ) ≤ O(

√
KT (logK)1/p). (2)

Note that the parameters p and q can be chosen from any values p ≤ q ≤ 2, and the algorithm
can achieve smaller regret bound as p becomes larger. For nice distributions such as Gaussian and
Double-exponential, the parameters p and q can be matched by 2 and 1, respectively.
Corollary 4 (FTPL via Gaussian Perturbation). Assume that reward distribution of each arm i is 1-
sub-Gaussian with mean µi. The Follow-The-Perturbed-Leader algorithm via Gaussian perturbation
Z with parameter σ and E[Z] = 0 in Alg.1-(ii) has the following instance-dependent and independent
regret bounds, for C ′′ = C(σ, 2, 2) > 0 and σ ≥ 1,

R(T ) ≤ C ′′
∑

∆i>0

(
log(T∆2

i )/∆i + ∆i

)
, R(T ) ≤ O(

√
KT logK). (3)

Failure of Bounded Perturbation Any perturbation with bounded support cannot yield an optimal
FTPL algorithm. For example, in a two-armed bandit setting with µ1 = 1 and µ2 = 0, rewards of
each arm i are generated from Gaussian distribution with mean µi and unit variance and perturbation
is uniform with support [−1, 1]. In the case where we have T1(10) = 1, T2(10) = 9 during first 10
times, and average mean rewards are µ̂1 = −1 and µ̂2 = 1/3, then perturbed rewards are sampled
from θ1 ∼ U [−2, 0] and θ2 ∼ U [0, 2/3]. This algorithm will not choose the first arm and accordingly
achieve a linear regret. To overcome this limitation of bounded support, we suggest another FTPL
algorithm via bounded perturbation by adding an extra logarithmic term in T as stated in Alg.1-(iii).
Theorem 5 (FTPL algorithm via Bounded support Perturbation, Proof in Appendix A.3). Assume
that reward distribution of each arm i is 1-sub-Gaussian with mean µi, the perturbation distri-
bution Z with E[Z] = 0 lies in [−1, 1] and for any ε > 0, there exists 0 < MZ,ε < ∞ s.t.
P
(
Z ≤

√
2/(2 + ε)

)
/P
(
Z ≥

√
2/(2 + ε)

)
= MZ,ε. Then the Follow-The-Perturbed-Leader algo-

rithm via Z in Alg.1-(iii) has the following instance-dependent and independent regret bounds, for
C ′′′ > 0 independent of T,K and ∆i,

R(T ) ≤ C ′′′
∑

∆i>0

(
log(T )/∆i + ∆i

)
, R(T ) ≤ O(

√
KT log T ). (4)

Randomized Confidence Bound algorithm Theorem 5 implies that the optimism embedded in
UCB can be replaced by simple randomization. Instead of comparing upper confidence bounds,
our modification is to compare a value randomly chosen from confidence interval or between
lower and upper confidence bounds by introducing uniform U [−1, 1] or Rademacher perturbation
R{−1, 1} in UCB1 algorithm with slightly wider confidence interval, At+1 = arg maxi∈[K] µ̂i(t) +√

(2 + ε) log T/Ti(t) · Zit. These FTPL algorithms via Uniform and Rademacher perturbations
can be regarded as a randomized version of UCB algorithm, which we call the RCB (Randomized
Confidence Bound) algorithm, and they also achieve the same regret bound as that of UCB1. The
RCB algorithm is meaningful in that it can be arrived at from two different perspectives, either as
a randomized variant of UCB or by replacing the Gaussian distribution with Uniform in Gaussian
Thompson Sampling.

The regret lower bound of the FTPL algorithm in Alg.1-(ii) is built on the work of Agrawal and Goyal
[3]. Theorem 6 states that the regret lower bound depends on the lower bound of the tail probability
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of perturbation. As special cases, FTPL algorithms via Gaussian (q = 2) and Double-exponential
(q = 1) make the lower and upper regret bounds matched, Θ(

√
KT (logK)1/q).

Theorem 6 (Regret lower bound, Proof in Appendix A.4). If the perturbation Z with E[Z] = 0 has
the lower bound of tail probability as P(|Z| ≥ t) ≥ exp[−tq/(2σq)]/Cb for t ≥ 0, σ > 0, the Follow-
The-Perturbed-Leader algorithm via Z has the lower bound of expected regret, Ω(

√
KT (logK)1/q).

4 Adversarial Bandits

In this section we study two major families of online learning, Follow The Regularized Leader
(FTRL) and Follow The Perturbed Leader (FTPL), as ways of smoothings and introduce the Gradient
Based Prediction Algorithm (GBPA) family for solving the adversarial multi-armed bandit problem.
Then, we mention an important open problem regarding existence of an optimal FTPL algorithm.
The main contributions of this section are theoretical results showing that two natural approaches to
solving the open problem are not going to work. We also make some conjectures on what alternative
ideas might work.

4.1 FTRL and FTPL as Two Types of Smoothings and An Open Problem

Following previous work [2], we consider a general algorithmic framework, Alg.2. There are two
main ingredients of GBPA. The first ingredient is the smoothed potential Φ̃ whose gradient is used to
map the current estimate of the cumulative reward vector to a probability distribution pt over arms.
The second ingredient is the construction of an unbiased estimate ĝt of the rewards vector using the
reward of the pulled arm only by inverse probability weighting. This step reduces the bandit setting
to full-information setting so that any algorithm for the full-information setting can be immediately
applied to the bandit setting.

GBPA(Φ̃): Φ̃ differentiable convex function s.t. ∇Φ̃ ∈ ∆K−1 and ∇iΦ̃ > 0,∀i. Initialize Ĝ0 = 0.
for t = 1 to T do

A reward vector gt ∈ [0, 1]K is chosen by environment.
Learner chooses At randomly sampled from the distribution pt = ∇Φ̃(Ĝt−1).
Learner receives the reward of chosen arm gt,At , and estimates reward vector ĝt =

gt,At
pt,At

eAt .

Update : Ĝt = Ĝt−1 + ĝt.
end

Algorithm 2: Gradient-Based Prediction Algorithm in Bandit setting

If we did not use any smoothing and directly used the baseline potential Φ(G) = maxw∈∆K−1
〈w,G〉,

we would be running Follow The Leader (FTL) as our full information algorithm. It is well known
that FTL does not have good regret guarantees [13]. Therefore, we need to smooth the baseline
potential to induce stability in the algorithm. It turns out that two major algorithm families in online
learning, namely Follow The Regularized Leader (FTRL) and Follow The Perturbed Leader (FTPL)
correspond to two different types of smoothings.

The smoothing used by FTRL is achieved by adding a strongly convex regularizer in the dual
representation of the baseline potential. That is, we set Φ̃(G) = R?(G) = maxw∈∆K−1

〈w,G〉 −
ηR(w), where R is a strongly convex function. The well known exponential weights algorithm
[11] uses the Shannon entropy regularizer, RS(w) =

∑K
i=1 wi log(wi). GBPA with the resulting

smoothed potential becomes the EXP3 algorithm [7] which achieves a near-optimal regret bound
O(
√
KT logK) just logarithmically worse compared to the lower bound Ω(

√
KT ). This lower

bound was matched by Implicit Normalized Forecaster with polynomial function (Poly-INF algorithm)
[4, 5] and later work [2] showed that Poly-INF algorithm is equivalent to FTRL algorithm via the
Tsallis entropy regularizer,RT,α(w) =

1−
∑K
i=1 w

α
i

1−α for α ∈ (0, 1).

An alternate way of smoothing is stochastic smoothing which is what is used by FTPL algorithms. It
injects stochastic perturbations to the cumulative rewards of each arm and then finds the best arm.
Given a perturbation distribution D and Z = (Z1, · · · , ZK) consisting of i.i.d. draws from D, the
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resulting stochastically smoothed potential is Φ̃(G;D) = EZ1,··· ,ZK∼D [maxw∈∆K−1
〈w,G + ηZ〉].

Its gradient is pt = ∇Φ̃(Gt;D) = EZ1,··· ,ZK∼D[ei? ] ∈ ∆K−1 where i? = arg maxiGt,i + ηZi.

In Section 4.3, we recall the general regret bound proved by Abernethy et al. [2] for distributions
with bounded hazard rate. They showed that a variety of natural perturbation distributions can
yield a near-optimal regret bound of O(

√
KT logK). However, none of the distributions they tried

yielded the minimax optimal rateO(
√
KT ). Since FTRL with Tsallis entropy regularizer can achieve

the minimax optimal rate in adversarial bandits, the following is an important unresolved question
regarding the power of perturbations.

Open Problem Is there a perturbation D such that GBPA with a stochastically smoothed potential
using D achieves the optimal regret bound O(

√
KT ) in adversarial K-armed bandits?

Given what we currently know, there are two very natural approaches to resolving the open question
in the affirmative. Approach 1: Find a perturbation so that we get the exactly same choice probability
function as the one used by FTRL via Tsallis entropy. Approach 2: Provide a tighter control on
expected block maxima of random variables considered as perturbations by Abernethy et al. [2].

4.2 Barrier Against First Approach: Discrete Choice Theory

The first approach is motivated by a folklore observation in online learning theory, namely, that the
exponential weights algorithm [11] can be viewed as FTRL via Shannon entropy regularizer or as
FTPL via a Gumbel-distributed perturbation. Thus, we might hope to find a perturbation which is
an exact equivalent of the Tsallis entropy regularizer. Since FTRL via Tsallis entropy is optimal for
adversarial bandits, finding such a perturbation would immediately settle the open problem.

The relation between regularizers and perturbations has been theoretically studied in discrete choice
theory [22, 16]. For any perturbation, there is always a regularizer which gives the same choice proba-
bility function. The converse, however, does not hold. The Williams-Daly-Zachary Theorem provides
a characterization of choice probability functions that can be derived via additive perturbations.
Theorem 7 (Williams-Daly-Zachary Theorem [22]). Let C : RK → SK be the choice probability

function and derivative matrix DC(G) =

(
∂Cᵀ

∂G1
, ∂C

ᵀ

∂G2
, · · · , ∂C

ᵀ

∂GK

)ᵀ

. The following 4 conditions

are necessary and sufficient for the existence of perturbations Zi such that this choice probability
function C can be written in Ci(G) = P(arg maxj∈[K]Gj + ηZj = i) for i ∈ [K].
(1) DC(G) is symmetric, (2) DC(G) is positive definite, (3) DC(G) · 1 = 0, and (4) All mixed

partial derivatives of C are positive, (−1)j
∂jCi0

∂Gi1 ···∂Gij
> 0 for each j = 1, ...,K − 1.

We now show that if the number of arms is greater than three, there does not exist any perturbation
exactly equivalent to Tsallis entropy regularization. Therefore, the first approach to solving the open
problem is doomed to failure.
Theorem 8 (Proof in Appendix A.5). When K ≥ 4, there is no stochastic perturbation that yields
the same choice probability function as the Tsallis entropy regularizer.

4.3 Barrier Against Second Approach: Extreme Value Theory

The second approach is built on the work of Abernethy et al. [2] who provided the-state-of-the-art
perturbation based algorithm for adversarial multi-armed bandits. The framework proposed in this
work covered all distributions with bounded hazard rate and showed that the regret of GBPA via
perturbation Z ∼ D with a bounded hazard is upper bounded by trade-off between the bound of
hazard rate and expected block maxima as stated below.
Theorem 9 (Theorem 4.2 [2]). Assume the support of D is unbounded in positive direction and
hazard rate hD(x) = f(x)

1−F (x) is bounded, then the expected regret of GBPA(Φ̃) in adversarial bandit

is bounded by η · E[MK ] + K suphD
η T , where suphD = supx:f(x)>0 hD(x). The optimal choice of

η leads to the regret bound 2
√
KT · suphD · E[MK ] where MK = maxi∈[K] Zi.

Abernethy et al. [2] considered several perturbations such as Gumbel, Gamma, Weibull, Fréchet
and Pareto. The best tuning of distribution parameters (to minimize upper bounds on the product
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suphD ·E[MK ]) always leads to the boundO(
√
KT logK), which is tantalizingly close to the lower

bound but does not match it. It is possible that some of their upper bounds on expected block maxima
E[MK ] are loose and that we can get closer, or perhaps even match, the lower bound by simply doing
a better job of bounding expected block maxima (we will not worry about supremum of the hazard
since their bounds can easily be shown to be tight, up to constants, using elementary calculations
in Appendix B.2). We show that this approach will also not work by characterizing the asymptotic
(as K →∞) behavior of block maxima of perturbations using extreme value theory. The statistical
behavior of block maxima, MK = maxi∈[K] Zi, where Zi’s is a sequence of i.i.d. random variables
with distribution function F can be described by one of three extreme value distributions: Gumbel,
Fréchet and Weibull [8, 23]. Then, the normalizing sequences {aK > 0} and {bK} are explicitly
characterized [21]. Under the mild condition, E

(
(MK − bK)/aK

)
→ EZ∼G[Z] = C as K → ∞

where G is extreme value distribution and C is constant, and the expected block maxima behave
asymptotically as E[MK ] = Θ(C · aK + bK). See Theorem 11-13 in Appendix B for more details.

Table 1: Asymptotic expected block maxima based on Extreme Value Theory. Gumbel-type and
Fréchet-type are denoted by Λ and Φα respectively. The Gamma function and the Euler-Mascheroni
constant are denoted by Γ(·) and γ respectively.

Distribution Type suph E[MK ]

Gumbel(µ = 0, β = 1) Λ 1 logK + γ + o(1)
Gamma(α, 1) Λ 1 logK + γ + o(logK)

Weibull(α ≤ 1) Λ α (logK)1/α + o((logK)1/α)
Fréchet (α > 1) Φα ∈ ( α

e−1 , 2α) Γ(1− 1/α) ·K1/α

Pareto(xm = 1, α) Φα α Γ(1− 1/α) · (K1/α − 1)

The asymptotically tight growth rates (with explicit constants for the leading term!) of expected block
maximum of some distributions are given in Table 1. They match the upper bounds of the expected
block maximum in Table 1 of Abernethy et al. [2]. That is, their upper bounds are asymptotically tight.
Gumbel, Gamma and Weibull distribution are Gumbel-type (Λ) and their expected block maximum
behave as O(logK) asymptotically. It implies that Gumbel type perturbation can never achieve
optimal regret bound despite bounded hazard rate. Fréchet and Pareto distributions are Fréchet-type
(Φα) and their expected block maximum grows as K1/α. Heuristically, if α is set optimally to logK,
the expected block maxima is independent of K while the supremum of hazard is upper bounded by
O(logK).

Conjecture If there exists a perturbation that achieves minimax optimal regret in adversarial
multi-armed bandits, it must be of Fréchet-type.

Fréchet-type perturbations can still possibly yield the optimal regret bound in perturbation based
algorithm if the expected block maximum is asymptotically bounded by a constant and the divergence
term in regret analysis of GBPA algorithm can be shown to enjoy a tighter bound than what follows
from the assumption of a bounded hazard rate.

The perturbation equivalent to Tsallis entropy (in two armed setting) is of Fréchet-type Further
evidence to support the conjecture can be found in the connection between FTRL and FTPL algorithms
that regularizerR and perturbation Z ∼ FD are bijective in two-armed bandit in terms of a mapping
between FD? andR,R(w)−R(0) = −

∫ w
0
F−1
D? (1− z)dz, where Z1, Z2 are i.i.d random variables

with distribution function, FD, and then Z1 − Z2 ∼ FD? . The difference of two i.i.d. Fréchet-type
distributed random variables is conjectured to be Fréchet-type. Thus, Tsallis entropy in two-armed
setting leads to Fréchet-type perturbation, which supports our conjecture about optimal perturbations
in adversarial multi-armed bandits. See Appendix C for more details.

5 Numerical Experiments

We present some experimental results with perturbation based algorithms (Alg.1-(ii),(iii)) and compare
them to the UCB1 algorithm in the simulated stochastic K-armed bandit. In all experiments,
the number of arms (K) is 10, the number of different episodes is 1000, and true mean rewards
(µi) are generated from U [0, 1] [19]. We consider the following four examples of 1-sub-Gaussian
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reward distributions that will be shifted by true mean µi; (a) Uniform, U [−1, 1], (b) Rademacher,
R{−1, 1}, (c) Gaussian, N (0, 1), and (d) Gaussian mixture, W · N (−1, 1) + (1 −W ) · N (1, 1)
where W ∼ Bernoulli(1/2). Under each reward setting, we run five different algorithms; UCB1,
RCB with Uniform and Rademacher, and FTPL via Gaussian N (0, σ2) and Double-exponential (σ)
after we use grid search to tune confidence levels for confidence based algorithms and the parameter σ
for FTPL algorithms. All tuned confidence level and parameter are specified in Figure 1. We compare
the performance of perturbation based algorithms to UCB1 in terms of average regret R(t)/t, which
is expected to more rapidly converge to zero if the better algorithm is used. 1

The average regret plots in Figure 1 have the similar patterns that FTPL algorithms via Gaussian
and Double-exponential consistently perform the best after parameters tuned, while UCB1 algorithm
works as well as them in all rewards except for Rademacher reward. The RCB algorithms with
Uniform and Rademacher perturbations are slightly worse than UCB1 in early stages, but perform
comparably well to UCB1 after enough iterations. In the Rademacher reward case, which is discrete,
RCB with Uniform perturbation slightly outperforms UCB1.

Note that the main contribution of this work is to establish theoretical foundations for a large family
of perturbation based algorithms (including those used in this section). Our numerical results are not
intended to show the superiority of perturbation methods but to demonstrate that they are competitive
with Thompson Sampling and UCB. Note that in more complex bandit problems, sampling from
the posterior and optimistic optimization can prove to be computationally challenging. Accordingly,
our work paves the way for designing efficient perturbation methods in complex settings, such
as stochastic linear bandits and stochastic combinatorial bandits, that have both computational
advantages and low regret guarantees. Furthermore, perturbation approaches based on the Double-
exponential distribution are of special interest from a privacy viewpoint since that distribution figures
prominently in the theory of differential privacy [10, 27, 26].

(a) Uniform Reward, U [−1, 1] (b) Rademacher Reward,R{−1, 1}

(c) Gaussian Reward,N (0, 1) (d) Gaussian Mixture, 0.5 · N (−1, 1) + 0.5 · N (1, 1)

Figure 1: Average Regret for Bandit algorithms in four reward settings (Best viewed in color)

1https://github.com/Kimbaekjin/Perturbation-Methods-StochasticMAB
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6 Conclusion

We provided the first general analysis of perturbations for the stochastic multi-armed bandit problem.
We believe that our work paves the way for similar extension for more complex settings, e.g.,
stochastic linear bandits, stochastic partial monitoring, and Markov decision processes. We also
showed that the open problem regarding minimax optimal perturbations for adversarial bandits cannot
be solved in two ways that might seem very natural. While our results are negative, they do point the
way to a possible affirmative solution of the problem. They led us to a conjecture that the optimal
perturbation, if it exists, will be of Fréchet-type.
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A Proofs

A.1 Proof of Theorem 3

Proof. For each arm i 6= 1, we will choose two thresholds xi = µi + ∆i

3 , yi = µ1 − ∆i

3 such that
µi < xi < yi < µ1 and define two types of events, Eµi (t) = {µ̂i(t) ≤ xi}, and Eθi (t) = {θi(t) ≤
yi}. Intuitively, Eµi (t) and Eθi (t) are the events that the estimate µ̂i and the sample value θi(t) are
not too far above the mean µi, respectively. E[Ti(T )] =

∑T
t=1 P(At = i) is decomposed into the

following three parts according to events Eµi (t) and Eθi (t),

E[Ti(T )] =

T∑
t=1

P(At = i, (Eµi (t))c)︸ ︷︷ ︸
(a)

+

T∑
t=1

P(At = i, Eµi (t), (Eθi (t))c)︸ ︷︷ ︸
(b)

+

T∑
t=1

P(At = i, Eµi (t), Eθi (t)︸ ︷︷ ︸
(c)

)

Let τk denote the time at which k-th trial of arm i happens. Set τ0 = 0.

(a) ≤ 1 +

T−1∑
k=1

P((Eµi (τk + 1))c) ≤ 1 +

T−1∑
k=1

exp
(
− k(xi − µi)2

2

)
≤ 1 +

18

∆2
i

. (5)

The probability in part (b) is upper bounded by 1 if Ti(t) is less than Li(T ) =
σ2[2 log(T∆2

i )]
2/p

(yi−xi)2 , and
by Ca/(T∆2

i ) otherwise. The latter can be proved as below,

P(At = i, (Eθi (t))c|Eµi (t)) ≤ P(θi(t) > yi|µ̂i(t) ≤ xi) ≤ P
( Zit√

Ti(t)
> yi − xi|µ̂i(t) ≤ xi

)
≤ Ca · exp

(
− Ti(t)

p/2(yi − xi)p

2σp
)
≤ Ca
T∆2

i

if Ti(t) ≥ Li(T ).

The third inequality holds by sub-Weibull (p) assumption on perturbation Zit. Let τ be the largest
step until Ti(t) ≤ Li(T ), then part (b) is bounded as, (b) ≤ Li(T ) +

∑T
t=τ+1 Ca/(T∆2

i ) ≤
Li(T ) + Ca/∆

2
i .

Regarding part (c), define pi,t as the probability pi,t = P(θ1(t) > yi|Ht−1) whereHt−1 is defined
as the history of plays until time t− 1. Let δj denote the time at which j-th trial of arm 1 happens.

Lemma 10 (Lemma 1 [3]). For i 6= 1,

(c) =

T∑
t=1

P(At = i, Eµi (t), Eθi (t))

≤
T∑
t=1

E
[1− pi,t

pi,t
I(At = 1, Eµi (t), Eθi (t))

]
≤
T−1∑
j=0

E
[1− pi,δj+1

pi,δj+1

]
.

Proof. See Appendix A.2.

The average rewards from the first arm, µ̂1(δj + 1), has a density function denoted by φµ̂1,j
.

E
[1− pi,δj+1

pi,δj+1

]
=E
[ 1

P(θ1(δj + 1) ≥ yi|Hδj+1)
− 1
]

=

∫
R

[ 1

P
(
x+ Z√

j
> µ1 − ∆i

3

) − 1
]
φµ̂1,j

(x)dx
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The above integration is divided into three intervals, (−∞, µ1 − ∆i

3 ], (µ1 − ∆i

3 , µ1 − ∆i

6 ], and
(µ1 − ∆i

3 ,∞). We denote them as (i), (ii) and (iii), respectively.

∫ µ1−
∆i
3

−∞

[ 1

P
(
Z > −

√
j(x− µ1 + ∆i

3 )
) − Cb]φµ̂1,j (x)dx

=

∫ ∞
0

[ 1

P(Z > u)
− Cb

] 1√
j
φµ̂1,j

(
− u√

j
+ µ1 −

∆i

3

)
du ∵ u = −

√
j
(
x− µ1 +

∆i

3

)
≤
∫ ∞

0

[
Cb · exp

( uq
2σq

)
− Cb

] 1√
j
φµ̂1,j

(
− u√

j
+ µ1 −

∆i

3

)
du ∵ anti-concentration inequality

=

∫ ∞
0

[ ∫ u

0

G′(v)dv
] 1√

j
φµ̂1,j

(
− u√

j
+ µ1 −

∆i

3

)
du ∵ G(u) = Cb · exp

( uq
2σq

)
≤
∫ ∞

0

exp
(
−

(v +
√
j∆i

3 )2

2

)
·G′(v)dv ∵ Fubini’s Theorem & sub-Gaussian reward

=

∫ ∞
0

exp
(
−

(v +
√
j∆i

3 )2

2

)
· Cb

qvq−1

2σq
exp

( vq
2σq

)
dv

≤ CbMq,σ exp
(
− j∆2

i

18

)
∵ ∃ 0 < Mq,σ <∞ if q < 2 or (q = 2, σ ≥ 1)

(i) =

∫ µ1−
∆i
3

−∞

[[ 1

P
(
Z > −

√
j(x− µ1 + ∆i

3 )
) − Cb]φµ̂1,j (x) + (Cb − 1)φµ̂1,j (x)

]
dx

≤ CbMq,σ exp
(
− j∆2

i

18

)
+ (Cb − 1) exp

(
− j∆2

i

18

)
(ii) =

∫ µ1−
∆i
6

µ1−
∆i
3

2P
(
Z < −

√
j(x− µ1 +

∆i

3
)
)
φµ̂1,j

(x)dx

≤ 2P(Z < 0) · P
(
µ1 −

∆i

3
≤ µ̂1,j ≤ µ1 −

∆i

6

)
≤ 2P

(
µ̂1,j ≤ µ1 −

∆i

6

)
≤ 2 exp

(
− j∆2

i

72

)
(iii) =

∫ ∞
µ1−

∆i
6

2P
(
Z < −

√
j(x− µ1 +

∆i

3
)
)
φµ̂1,j (x)dx

≤ 2P
(
Z < −

√
j∆i

6

) ∫ ∞
µ1−

∆i
6

φµ̂1,j (x)dx ≤ 2P
(
Z < −

√
j∆i

6

)
≤ 2Ca exp

(
− jp/2∆p

i

2 · (6σ)p
)

(c) =

T−1∑
j=0

(i) + (ii) + (iii) <
18Cb(Mq,σ + 1) + 126

∆2
i

+
4Ca(6σ)p

∆p
i

(6)

Combining parts (a), (b), and (c),

E[Ti(T )] ≤ 1 +
144 + Ca + 18Cb(Mq,σ + 1)

∆2
i

+
4Ca(6σ)p

∆p
i

+
σ2[2 log(T∆2

i )]
2/p

(yi − xi)2

We obtain the following instance-dependent regret that there exists C ′′ = C(σ, p, q) independent of
K, T , and ∆i such that

R(T ) ≤ C ′′
∑

∆i>0

(
∆i +

1

∆i
+

1

∆p−1
i

+
log(T∆2

i )
2/p

∆i

)
. (7)

The optimal choice of ∆ =
√
K/T (logK)1/p gives the instance independent regret bound R(T ) ≤

O(
√
KT (logK)1/p).
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A.2 Proof of Lemma 10

Proof. First of all, we will show the following inequality holds for all realizations Ht−1 ofHt−1,

P(At = i, Eθi (t), Eµi (t)|Ht−1) ≤ 1− pi,t
pi,t

· P(At = 1, Eθi (t), Eµi (t)|Ht−1). (8)

To prove the above inequality, it suffices to show the following inequality in (9). This is because
whether Eµi (t) is true or not depends on realizations Ht−1 of historyHt−1 and we would consider
realizations Ht−1 where Eµi (t) is true. If it is not true in some Ht−1, then inequality in (8) trivially
holds.

P(At = i|Eθi (t), Ht−1) ≤ 1− pi,t
pi,t

· P(At = 1|Eθi (t), Ht−1) (9)

Considering realizations Ht−1 satisfying Eθi (t) = {θi(t) ≤ yi}, all θj(t) should be smaller than yi
including optimal arm 1 to choose a sub-optimal arm i.

P(At = i|Eθi (t), Ht−1) ≤ P(θj(t) ≤ yi,∀j ∈ [K]|Eθi (t), Ht−1)

= P(θ1(t) ≤ yi|Ht−1) · P(θj(t) ≤ yi,∀j ∈ [K] \ {1, i}|Eθi (t), Ht−1)

= (1− pi,t) · P(θj(t) ≤ yi,∀j ∈ [K] \ {1, i}|Eθi (t), Ht−1) (10)

The first equality above holds since θ1 is independent of other θj ,∀j 6= 1 and events Eθi (t) given
Ht−1. In the same way it is obtained as below,

P(At = 1|Eθi (t), Ht−1) ≥ P(θ1(t) > yi ≥ θj(t),∀j ∈ [K] \ {1}|Eθi (t), Ht−1)

= P(θ1(t) ≥ yi|Ht−1) · P(θj(t) ≤ yi,∀j ∈ [K] \ {1, i}|Eθi (t), Ht−1)

= pi,t · P(θj(t) ≤ yi,∀j ∈ [K] \ {1, i}|Eθi (t), Ht−1) (11)

Combining two inequalities (10) and (11), inequality (9) is obtained. The rest of proof is as followed.

T∑
t=1

P(At = i, Eµi (t), Eθi (t)) ≤
T∑
t=1

E[P(At = i, Eµi (t), Eθi (t)|Ht−1)]

≤
T∑
t=1

E
[1− pi,t

pi,t
· P(At = 1, Eµi (t), Eθi (t)|Ht−1)

]
≤

T∑
t=1

E
[
E
[1− pi,t

pi,t
· I(At = 1, Eµi (t), Eθi (t))|Ht−1

]]
≤

T∑
t=1

E
[1− pi,t

pi,t
· I(At = 1, Eµi (t), Eθi (t))

]

≤
T−1∑
j=0

E
[1− pi,δj+1

pi,δj+1

δj+1∑
t=δj+1

I(At = 1, Eµi (t), Eθi (t))
]

≤
T−1∑
j=0

E
[1− pi,δj+1

pi,δj+1

]

A.3 Proof of Theorem 5

Proof. For each arm i 6= 1, we will choose two thresholds xi = µi + ∆i

3 , yi = µ1 − ∆i

3 such that
µi < xi < yi < µ1 and define three types of events, Eµi (t) = {µ̂i(t) ≤ xi}, Eθi (t) = {θi(t) ≤ yi},
and Eµ1,i(t) = {µ1 − ∆i

6 −
√

2 log T
T1(t) ≤ µ̂1(t)}. The last event is to control the behavior of µ̂1(t)

not too far below the mean µ1. E[Ti(T )] =
∑T
t=1 P(At = i) is decomposed into the following four
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parts according to events Eµi (t), Eθi (t), and Eµ1,i(t),

E[Ti(T )] =

T∑
t=1

P(At = i, (Eµi (t))c)︸ ︷︷ ︸
(a)

+

T∑
t=1

P(At = i, Eµi (t), (Eθi (t))c)︸ ︷︷ ︸
(b)

+

T∑
t=1

P(At = i, Eµi (t), Eθi (t), (Eµ1,i(t))
c)︸ ︷︷ ︸

(c)

+

T∑
t=1

P(At = i, Eµi (t), Eθi (t), Eµ1,i(t))︸ ︷︷ ︸
(d)

.

Let τk denote the time at which k-th trial of arm i happens. Set τ0 = 0.

(a) ≤ E[

T−1∑
k=0

τk+1∑
t=τk+1

I(At = i)I((Eµi (t))c)] ≤ E[

T−1∑
k=0

I((Eµi (τk + 1))c)

τk+1∑
t=τk+1

I(At = i)]

≤ 1 +

T−1∑
k=1

P((Eµi (τk + 1))c) ≤ 1 +

T−1∑
k=1

exp(−k(xi − µi)2

2
) ≤ 1 +

18

∆2
i

.

The second last inequality above holds by Hoeffding bound of sample mean of k sub-Gaussian
rewards, µ̂i(t) in Lemma 1. The probability in part (b) is upper bounded by 1 if Ti(t) is less than
Li(T ) = 9(2+ε) log T

∆2
i

and is equal to 0, otherwise. The latter can be proved as below,

P(At = i, (Eθi (t))c|Eµi (t)) ≤ P(θi(t) > yi|µ̂i(t) ≤ xi)

≤ P
(
Zit >

√
Ti(t)(yi − xi)2

(2 + ε) log T
|µ̂i(t) ≤ xi

)
= 0 if Ti(t) ≥ Li(T ).

The last equality holds by bounded support of perturbation Zit. Let τ be the largest step until
Ti(t) ≤ Li(T ), then part (b) is bounded by Li(T ). Regarding part (c),

(c) =

T∑
t=1

P(At = i, Eµi (t), Eθi (t), (Eµ1,i(t))
c)

≤
T∑
t=1

P((Eµ1,i(t))
c) =

T∑
t=1

T∑
s=1

P
(
µ1 −

∆i

6
−
√

2 log T

s
≥ µ̂1,s

)
=

T∑
t=1

T∑
s=1

P
(
µ1 −

∆i

6
≥ µ̂1,s +

√
2 log T

s

)
=

T∑
t=1

1

T

T∑
s=1

exp
(
− s∆2

i

72

)
≤ 72

∆2
i

Define pi,t as the probability pi,t = P(θ1(t) > yi|Ht−1) where Ht−1 is defined as the history of
plays until time t − 1. Let δj denote the time at which j-th trial of arm 1 happens. In the history
where the event Eµ1,i(t) holds, then P(θ1(t) > yi|Ht−1) is strictly greater than zero because of wide

14



enough support of scaled perturbation by adding an extra logarithmic term in T . For i 6= 1,

(d) =

T∑
t=1

P(At = i, Eµi (t), Eθi (t), Eµ1,i(t)) ≤
T−1∑
j=0

E
[1− pi,δj+1

pi,δj+1
I(Eµ1,i(δj + 1))

]

=

T−1∑
j=0

E
[1− P

(
µ̂1,j +

√
(2+ε) log T

j Z ≥ µ1 − ∆i

3

)
P
(
µ̂1,j +

√
(2+ε) log T

j Z ≥ µ1 − ∆i

3

) I
(
µ̂1,j ≥ µ1 −

∆i

6
−

√
2 log T

j

)]

=

T−1∑
j=0

P
(
Z ≤

√
2

2+ε −
√
j∆i

6
√

(2+ε) log T

)
P
(
Z ≥

√
2

2+ε −
√
j∆i

6
√

(2+ε) log T

) ∵ maximized when µ̂1,j = µ1 −
∆i

6
−

√
2 log T

j

=

Mi(T )∑
j=0

P
(
Z ≤

√
2

2+ε −
√
j∆i

6
√

(2+ε) log T

)
P
(
Z ≥

√
2

2+ε −
√
j∆i

6
√

(2+ε) log T

)
≤Mi(T ) ·

P
(
Z ≤

√
2

2+ε

)
P
(
Z ≥

√
2

2+ε

) = Mi(T ) · CZ,ε ∵ maximized when j = 0

The first inequality holds by Lemma 10, and the last equality works since the term inside expectation
becomes zero if j ≥Mi(T ) =

(
36(
√

2 +
√

(2 + ε))2 log T
)
/∆2

i . This is because the lower bound
of perturbed average rewards from the arm 1 becomes larger than yi for j ≥ Mi(T ). Combining
parts (a), (b), (c) and (d),

E[Ti(T )] ≤ 1 +
90

∆2
i

+
9(2 + ε) log T

∆2
i

+ CZ,ε ·
36(
√

2 +
√

(2 + ε))2 log T

∆2
i

Thus, the instance-dependent regret bound is obtained as below, there exist a universal constant
C ′′′ > 0 independent of T,K and ∆i,

R(T ) = C ′′′
∑

∆i>0

(
∆i +

log(T )

∆i

)
.

The optimal choice of ∆ =
√
K log T/T , the instance-independent regret bound is derived as it

follows,

R(T ) ≤ O(
√
KT log T )

A.4 Proof of Theorem 6

Proof. The proof is a simple extension of the work of Agrawal and Goyal [3]. Let µ1 = ∆ =√
K/T (logK)1/q, µ2 = µ3 = · · · = µK = 0 and each reward is generated from a point distribution.

Then, sample means of rewards are µ̂1(t) = ∆ and µ̂i(t) = 0 if i 6= 1. The normalized θi(t) sampled
from the FTPL algorithm is distributed as

√
Ti(t) · (θi(t)− µ̂i(t)) ∼ Z.

Define the event Et−1 = {
∑
i6=1 Ti(t) ≤ c

√
KT (logK)1/q/∆} for a fixed constant c. If Et−1 is

not true, then the regret until time t is at least c
√
KT (logK)1/q. For any t ≤ T , P(Et−1) ≤ 1/2.

Otherwise, the expected regret until time t, E[R(t)] ≥ E[R(t)|Ect−1] · 1/2 = Ω(
√
KT (logK)1/q).

If Et−1 is true, the probability of playing a suboptimal is at least a constant, so that regret is
Ω(T∆) = Ω(

√
KT (logK)1/q).

P(∃i 6= 1, θi(t) > µ1|Ht−1) = P(∃i 6= 1, θi(t)
√
Ti(t) > ∆

√
Ti(t)|Ht−1)

= P(∃i 6= 1, Z > ∆
√
Ti(t)|Ht−1)

≥ 1−
∏
i 6=1

(
1− exp

(
− (
√
Ti(t)∆/σ)q/2

)
/Cb

)
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Given realization Ht−1 of history Ht−1 such that Et−1 is true, we have
∑
i 6=1 Ti(t) ≤

c
√
KT (logK)1/q

∆ and it is minimized when Ti(t) = c
√
KT (logK)1/q

(K−1)∆ for all i 6= 1. Then,

P(∃i 6= 1, θi(t) > µ1|Ht−1) ≥ 1−
∏
i6=1

(
1− exp

(
−
(√

Ti(t)∆
)q

2σq
)
/Cb

)
= 1−

(
1− σ(q,K)

K

)K−1

where σ(q,K) = exp
(
cq/2

2νq ( K
K−1 )q/2

)
/Cb. Accordingly,

P(∃i 6= 1, At = i) ≥ 1

2

(
1−

(
1− σ(q,K)

K

)K−1
)
· 1

2
→ p? ∈ (0, 1).

Therefore, the regret in time T is at least Tp?∆ = Ω(
√
KT (logK)1/q).

A.5 Proof of Theorem 8

Proof. Fix η = 1 without loss of generality in FTRL algorithm via Tsallis entropy. For any α ∈ (0, 1),

Tsallis entropy yields the following choice probability, Ci(G) =
(

1−α
α

) 1
α−1 (λ(G)−Gi)

1
α−1 , where∑K

i=1 Ci(G) = 1, λ(G) ≥ maxi∈[K] Gi. Then for 1 ≤ i 6= j ≤ K, the first derivative is negative
as shown below,

∂Ci(G)

∂Gj
=
(1− α

α

) 1
α−1

1

α− 1

(λ(G)−Gi)
1

α−1−1(λ(G)−Gj)
1

α−1−1∑K
l=1(λ(G)−Gl)

1
α−1−1

< 0.

and it implies that DC(G) is symmetric. For, 1 ≤ i 6= j 6= k ≤ K, the second partial derivative,
∂2Ci(G)
∂Gj∂Gk

is derived as

Ci(G)·
(

(

K∑
l=1

(λ(G)−Gl)
2−α
α−1 )(

1

λ(G)−Gi
+

1

λ(G)−Gj
+

1

λ(G)−Gk
)−

K∑
l=1

(λ(G)−Gl)
3−2α
α−1

)
.

(12)
If we set 1/(λ(G) − Gi) = Xi, the term in (12) except for the term Ci(G) is simplified to∑K
i=1X

2−α
1−α
i · (X1 +X2 +X3)−

∑K
i=1X

3−2α
1−α
i where

∑K
i=1X

1
1−α
i =

(
α

1−α
) 1
α−1 . If we set K = 4,

C(G) = (ε, ε, ε, 1− 3ε), and Xi = C1−α
i

1−α
α , then it is equal to(1− α

α

) 3−2α
1−α

(
6ε3−2α + 3ε1−α(1− 3ε)2−α − (1− 3ε)3−2α

)
. (13)

So, there always exists ε > 0 small enough to make the value of (13) negative where α ∈ (0, 1),
which means condition (4) in Theorem 7 is violated.

B Extreme Value Theory

B.1 Extreme Value Theorem

Theorem 11 (Proposition 0.3 [23]). Suppose that there exist {aK > 0} and {bK} such that

P((MK − bK)/aK ≤ z) = FK(aK · z + bK)→ G(z) as K →∞ (14)

where G is a non-degenerate distribution function, then G belongs to one of families; Gumbel,
Fréchet and Weibull. Then, F is in the domain of attraction of G, written as F ∈ D(G).
1. Gumbel type (Γ) with G(x) = exp(− exp(−x)) for x ∈ R.
2. Fréchet type (Φα) with G(x) = 0 for x > 0 and G(x) = exp(−x−α) for x ≥ 0.
3. Weibull type (Ψα) with G(x) = exp(−(−x)α) for x ≤ 0 and G(x) = 1 for x > 0.

Let γK = F←(1− 1/K) = inf {x : F (x) ≥ 1− 1/K}.
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Theorem 12 (Proposition 1.1 [23]). Type 1 - Gumbel (Λ)
1. If F ∈ D(Γ), there exists some strictly positive function g(t) s.t. limt→ωF

1−F (t+x·g(t))
1−F (t) =

exp(−x) for all x ∈ R with exponential tail decay. Its corresponding normalizing sequences are
aK = g(γK) and bK = γK , where g = (1− F )/F ′.
2. If limx→∞

F ′′(x)(1−F (x))

{F ′(x)}2 = −1, then F ∈ D(Λ).

3. If
∫ 0

−∞ |x|F (dx) < ∞, then limK→∞ E
(
(MK − bK)/aK

)
= −Γ(1)(1). Accordingly, EMK

behaves as −Γ(1)(1) · g(γK) + γK .

Theorem 13 (Proposition 1.11 [23]). Type 2 - Fréchet (Φα)
1. If F ∈ D(Φα), its upper end point is infinite, ωF = ∞, and it has tail behavior that decays
polynomially limt→∞

1−F (tx)
1−F (t) = x−α, for x > 0, α > 0. Its corresponding normalizing sequences

are aK = γK and bK = 0.
2. If limx→∞

xF ′(x)
1−F (x) = α for some α > 0, then F ∈ D(Φα).

3. If α > 1 and
∫ 0

−∞ |x|F (dx) < ∞, then limK→∞ E
(
MK/aK

)
= Γ

(
1 − 1/α

)
. Accordingly,

EMK behaves as Γ
(
1− 1

α

)
· γK .

B.2 Asymptotic Expected Block Maxima and Supremum of Hazard Rate

B.2.1 Gumbel distribution

Gumbel has the following distribution function, the first derivative and the second derivative, F (x) =

exp(−e−x), F ′(x) = e−xF (x), and F ′′(x) = (e−x − 1)F ′(x). limx→∞
F ′′(x)(1−F (x))

{F ′(x)}2 = −1,

thus this is Gumbel-type distribution by Theorem 12, F ∈ D(Λ). If g(x) = ex(ee
−x − 1), then

normalizing constants are obtained as bK = − log(− log(1− 1/K)) ∼ logK, and aK = g(bK) =
(1− F (bK))/(exp(−bK)F (bK)) = 1 + 1/K + o( 1

K ). Accordingly, EMK = −Γ(1)(1) · (1 + 1
K ) +

logK + o(1/K).

Its hazard rate is derived as h(x) = F ′(x)
1−F (x) = e−x

exp(e−x)−1 , and since it increases monotonically and
converges to 1 as x goes to infinity, it has an asymptotically tight bound 1.

B.2.2 Gamma distribution

For x > 0, the first derivative and the second derivative of distribution function are given as F ′(x) =

(xα−1e−x)/Γ(α) and F ′′(x) = −F ′(x)(1 + (α − 1)/t) ∼ −F ′(x). It satisfies F ′′(1−F (x))
(F ′(x))2 ∼

− 1−F (x)
F ′(x) → −1 so it is Gumbel-type by Theorem 12, F ∈ D(Λ). It has g(x)→ 1 and thus aK = 1.

Since F ′(bK) ∼ 1 − F (bK) = 1/K, (α − 1) log bK − bK − log Γ(α) = − logK. Thus, we have
bK = logK + (α − 1) log logK − log Γ(α). Accordingly, EMK = −Γ(1)(1) + logK + (α −
1) log logK − log Γ(α).

Its hazard function is expressed by h(x) = (xα−1 exp(−x))/[
∫∞
x
tα−1 exp(−t)dt]. It increases

monotonically and converges to 1, and thus has an asymptotically tight bound 1.

B.2.3 Weibull distribution

The Weibull distribution function and its first derivative are obtained as as F (x) = 1− exp(−(x+
1)α+1) and F ′(x) = α(x+1)α−1(1−F (x)). Its second derivative is (α−1

x+1 −α(x+1)α−1) ·F ′(x).
The second condition in Theorem 12 is satisfied, and thus F ∈ D(Λ) and g(x) = x−α+1/α.
Corresponding normalizing constants are derived as bK = (1 + logK)1/α − 1 ∼ (logK)1/α and
aK = g(bK) = (logK)1/α−1/α. So, EMK = −Γ(1)(1) · (logK)1/α−1/α+ (logK)1/α.

Its hazard rate function is h(x) = α(x+ 1)α−1 for x ≥ 0. If α > 1, it increases monotonically and
becomes unbounded. If the case for α ≤ 1 is only considered, then the hazard rate is tightly bounded
by α.
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B.2.4 Fréchet distribution

The first derivative of Fréchet distribution function is F ′(x) = exp(−x−α)αx−α−1 for x > 0 and
the second condition in Theorem 13 is satisfied as limx→∞

xF ′(x)
1−F (x) = limx→∞

αx−α

exp(x−α)−1 → α.

Thus, it is Fréchet-type distribution (Φα) so that bK = 0 and aK = [− log(1 − 1/K)]−1/α =
[1/K + o(1/K)]−1/α ∼ K1/α. So, EMK = Γ(1− 1/α) ·K1/α.

The hazard rate is h(x) = αx−α−1 1
exp(x−α)−1 . It is already known that supremum of hazard is upper

bound by 2α in Appendix D.2.1 in Abernethy et al. [2]. Regarding the lower bound of a hazard rate,
supx>0 h(x) ≥ h(1) = α/(e− 1).

B.2.5 Pareto distribution

The modified Pareto distribution function is F (x) = 1− 1
(1+x)α for x ≥ 0. The second condition

in Theorem 13 is met as limx→∞
xF ′(x)
1−F (x) = limx→∞

αx
1+x → α > 1. Thus, it is Fréchet-type

distribution (Φα), and has normalizing constants, bK = 0 and aK = K1/α − 1. Accordingly,
EMK ≈ Γ(1− 1/α) · (K1/α − 1).

Its hazard rate is h(x) = α
1+x for x ≥ 0 so that it is tightly bounded by α.

C Two-armed Bandit setting

C.1 Shannon entropy

There is a mapping betweenR and FD? ,

R(w)−R(0) = −
∫ w

0

F−1
D? (1− z)dz. (15)

LetR(w) be one-dimensional Shannon entropic regularizer,R(w) = −w logw−(1−w) log(1−w)

for w ∈ (0, 1) and its first derivative isR′(w) = log 1−w
w = F−1

D? (1−w). Then FD?(z) = exp(z)
1+exp(z) ,

which can be interpreted as the difference of two Gumbel distribution as follows,

P(arg max
w∈∆1

〈w, (G1 + Z1, G2,+Z2)〉 = 1) = P(G1 + Z1 > G2 + Z2))

= P(Y > G2 −G1) where Y = Z1 − Z2 ∼ D?

= 1− FD?(G2 −G1) =
exp(G1)

exp(G1) + exp(G2)

If Z1, Z2 ∼ Gumbel(α, β) and are independent, then Z1 − Z2 ∼ Logistic(0, β). Therefore, the
perturbation, FD? is not distribution function for Gumbel, but Logistic distribution which is the
difference of two i.i.d Gumbel distributions. Interestingly, the logistic distribution turned out to be
also Gumbel types extreme value distribution as Gumbel distribution. It is naturally conjectured
that the difference between two i.i.d Gumbel types distribution with exponential tail decay must be
Gumbel types as well. The same holds for Fréchet-type distribution with polynomial tail decay.

C.2 Tsallis entropy

Theorem 8 states that there does not exist a perturbation that gives the choice probability function
same as that from FTRL via Tsallis entropy when K ≥ 4. In two-armed setting, however, there
exists a perturbation equivalent to Tsallis entropy and this perturbation naturally yields an optimal
perturbation based algorithm.

Let us consider Tsallis entropy regularizer in one dimensional decision set expressed by R(w) =
1

1−α (−1 + wα + (1 − w)α) for w ∈ (0, 1) and its first derivative is R′(w) = α
1−α (wα−1 − (1 −

w)α−1) = F−1
D? (1−w). If we set u = 1−w, then the implicit form of distribution function and density

function are given as FD?( α
1−α ((1− u)α−1 − uα−1)) = u and fD?( α

1−α ((1− u)α−1 − uα−1)) =
1

α((1−u)α−2+uα−2) . As u converges to 1, then z = α
1−α ((1−u)α−1−uα−1) goes to positive infinity.
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This distribution satisfies the second condition in Theorem 13 so that it turns out to be Fréchet-type.

lim
z→∞

zfD?(z)

1− FD?(z)
= lim
u→1

α
1−α ((1− u)α−1 − uα−1)

(1− u)× α((1− u)α−2 + uα−2)
=

1

1− α
.

If the conjecture above holds, the optimal perturbation that corresponds to Tsallis entropy regularizer
must be also Fréchet-type distribution in two armed bandit setting. This result strongly support our
conjecture that the perturbation in an optimal FTPL algorithm must be Fréchet-type.
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