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Abstract
Leveraging offline data is an attractive way to ac-
celerate online sequential decision-making. How-
ever, it is crucial to account for latent states in
users or environments in the offline data, and la-
tent bandits form a compelling model for doing
so. In this light, we design end-to-end latent ban-
dit algorithms capable of handing uncountably
many latent states. We focus on a linear latent
contextual bandit – a linear bandit where each
user has its own high-dimensional reward param-
eter in RdA , but reward parameters across users
lie in a low-rank latent subspace of dimension
dK ≪ dA. First, we provide an offline algo-
rithm to learn this subspace with provable guar-
antees. We then present two online algorithms
that utilize the output of this offline algorithm
to accelerate online learning. The first enjoys
Õ(min(dA

√
T , dK

√
T (1 +

√
dAT/dKN))) re-

gret guarantees, so that the effective dimension
is lower when the size N of the offline dataset
is larger. We prove a matching lower bound on
regret, showing that our algorithm is minimax op-
timal up to coverage terms. The second is a prac-
tical algorithm that enjoys only a slightly weaker
guarantee, but is computationally efficient. We
also establish the efficacy of our methods using
experiments on both synthetic data and real-life
movie recommendation data from MovieLens. Fi-
nally, we theoretically establish the generality of
the latent bandit model by proving a de Finetti
theorem for stateless decision processes.

1. Introduction
Many sequential-decision making problems can be effec-
tively modeled using the bandit framework. This can span
domains as diverse as healthcare (Lu et al., 2021b), ran-
domized clinical trials (Press, 2009), search and recommen-
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dation (Li et al., 2010), distributed networks (Kar et al.,
2011), and portfolio design (Brochu et al., 2011). There is
often a wealth of offline data in such domains, which has
led to a growing interest in using offline data to accelerate
online learning. However, there often also exist unobserved
contexts in the population that influence the distribution of
rewards, making it non-trivial to leverage offline data. In
Hong et al. (2020), it is shown that this uncertainty can be
modeled by a latent bandit (or mixture of bandits). This is
a bandit where an unobserved latent state determines the
reward model for the trajectory. For example, a patient’s un-
derlying genetic conditions in healthcare and a user’s tastes
in recommendation systems are both examples of latent
states in sequential decision making. Typically, these latent
states are less complex than the actual models underlying
users or patients, making it valuable to reduce the online
task to learning the latent state (Hong et al., 2020; 2022).

The latent bandit framework therefore has high practical
value, and efficient principled algorithms are needed for
using offline data to speed up online learning. Using tradi-
tional bandit algorithms in this setting does not leverage the
offline data that is often available to the agent. Naturally,
one also cannot treat the offline data as coming from a sin-
gle bandit. For example, different user tastes or different
underlying genetic conditions require modeling the offline
data as coming from a latent bandit. So, we have to develop
algorithms specific to the latent bandit setting that leverage
the offline data to improve online performance.

We note that in bandit literature, it is common to impose
a structure on bandit rewards when designing algorithms,
the most popular one being a linear structure (Li et al.,
2010; Abbasi-Yadkori et al., 2011). In this light, we study a
linear contextual bandit setting where each user has its own
high-dimensional reward parameter, but reward parameters
across users lie in a low-rank subspace. This is a linear
latent contextual bandit1, and is much more general than
existing models that restrict themselves to finitely many
latent states (Hong et al., 2020; 2022). We design a two-
pronged algorithm to tackle this setting. First, we provide
a method to approximate the low-dimensional subspace
spanned by latent states from an offline dataset of unlabeled
trajectories collected under some behavior policy πb. This is
non-trivial since the trajectories are unlabeled, and standard

1This can also be thought of as a continuous mixture of bandits.
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unsupervised learning methods fail. Second, we use this
subspace to speed up online learning. However, since the
subspace is only learnt approximately, we also tackle the
non-trivial task of accounting for the uncertainty in the
subspace. We design two methods for the latter, facing a
trade-off between computational tractability and tightness of
guarantees. Experiments show the efficacy of our methods.

While latent bandits have thus shown to be a powerful and
tractable framework for accounting for uncertainty in re-
ward models, the extent of their generality is unclear. Are
there other stateless decision processes that generalize over
latent bandits? We end by theoretically demonstrating that
under very reasonable assumptions, the answer is no. We
show a de Finetti theorem for decision processes, demon-
strating that every "coherent" and "exchangeable" stateless
(contextual) decision process is a latent (contextual) bandit.
With this in mind, we outline our contributions below:

• Offline method: We present SOLD, a novel offline
method for learning low-dimensional subspaces of re-
ward parameters with guarantees, inspired by the novel
spectral methods in Kausik et al. (2023).

• Tight online algorithm: We present LOCAL-
UCB, an online algorithm leveraging the subspace
estimated offline to sharpen optimism, achieving
Õ(min(dA

√
T , dK

√
T (1 +

√
dAT/dKN))) regret.

• Lower Bound: We establish a matching lower bound
showing that LOCAL-UCB is minimax optimal. To the
best of our knowledge, this is the first lower bound in a hy-
brid (offline-online) sequential decision-making setting.

• Tractable online algorithm: Finally, we present
ProBALL-UCB, a practical and computationally efficient
online algorithm with a slightly looser regret guarantee.
This also illustrates a general algorithmic idea for integrat-
ing offline subspace estimation into optimistic algorithms.

• Experiments: We establish the efficacy of our algo-
rithms outlined above through a simulation study and
a demonstration on a real recommendation problem with
the MovieLens-1M (Harper and Konstan, 2015) dataset.

• Theoretical generality: We are the first, to our knowl-
edge, to prove a de Finetti theorem for decision processes.
This establishes the generality of the latent bandit model.

Related work. There are three main threads of related work.

• Latent Bandits. The line of work most relevant to us has
been on latent bandits. The work of Hong et al. (2020;
2022) studies the latent bandit problem under finitely
many states. However, they black-box the offline step
and do not provide end-to-end guarantees, and their ideas
do not extend to infinitely many states. Our work seeks
to provide end-to-end guarantees for both the offline and
online component under infinitely many latent states.

• Meta learning, multi-task learning and mixture learn-
ing. A long line of work studies learning with multiple
underlying tasks or models. For example, the work of
Vempala and Wang (2004); Kong et al. (2020); Anandku-
mar et al. (2014); Tripuraneni et al. (2022) study learning
under latent variable or multi-task models in a supervised
setting. The work of Kausik et al. (2023); Chen and
Poor (2022) extend some of these ideas to unsupervised
but purely offline learning in a time-series setting. On
the other hand, work like Yang et al. (2022); Cella et al.
(2022) instead focuses on the purely online setting of
learning the low-rank structure while simultaneously in-
teracting with multiple finitely many bandit instances.
Finally, Zhou et al. (2024); Lu et al. (2021a) work with
multiple underlying models in MDPs but in a purely of-
fline and generative model setting respectively. Unlike
these papers, we crucially combine the offline and online
settings for sequential data and study the problem of using
offline data to accelerate online learning in bandits.

• Hybrid (offline-online) RL. Work in hybrid RL studies
the use of offline data to accelerate online RL, first pro-
posed by Song et al. (2023), with extensions to linear
MDPs by Wagenmaker and Pacchiano (2023); Tan et al.
(2024). Cai et al. (2024) studies the same problem for
contextual bandits. However, all work so far assumes that
the offline data is generated by a single model, and does
not account for latent states. Our work explores a hybrid
offline-online setting while also accounting for the offline
data being generated by multiple underlying models.

2. Linear Bandits With Latent Structure
We will first introduce latent contextual bandits, and then
specialize to our linear model later in this section. A latent
contextual bandit is a decision process with contexts X ,
actions A and an random latent state θ that is sampled
independently at the beginning of each trajectory. Given a
sequence of contexts and actions, the rewards at all steps are
independent conditioned on θ, and depend on the latent state
θ, the context and the action. Since we often have access
to an offline dataset of trajectories coming from different
kinds of users or patients, it is important to account for a
changing latent state θ between trajectories.

As we will see in Section 8, latent bandits are a powerful
and general framework for encoding uncertainty in reward
models. However, this generality is both a blessing and
a curse. It is hard to design concrete algorithms without
further assumptions on the structure and effect of the latent
state θ. We therefore focus on a linear structure here. We
consider the natural generalization of the linear contextual
bandit to the latent bandit setting, where we impose a lin-
ear structure on the effect of low-dimensional latent states.
We further justify this by noting that in most application
domains, it is reasonable to assume that a parsimonious,
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low-dimensional latent state affects the reward distribution.
This motivates the following definition.

Definition 1. A linear latent contextual bandit is a lin-
ear bandit equipped with a feature map for context-action
pairs ϕ : X × A → RdA , a latent random variable
θ ∈ RdK with distribution Dθ and a map U⋆ : RdK →
RdA such that for any H and context-action sequence
((x1, a1), . . . (xH , aH)), the rewards (Y1, . . . YH) are in-
dependent conditioned on θ. Moreover, Yh | θ ∼
ϕ(xh, ah)

⊤β + ϵ, where ϵ is subgaussian noise indepen-
dent of all actions and all other observations, and β = U⋆θ.

Further, we note that WLOG U⋆ has orthonormal columns:
U⊤

⋆ U⋆ = IdA
. This is because for any invertible map A :

RdK → RdK , the observation distribution does not change
upon replacing θ with Aθ and U⋆ with U⋆A

−1. One can
see this as a generalization of the fact that with finitely many
latent states, the observations are not changed by permuting
the latent states. That is, the observations are not changed by
permuting latent trajectory labels while keeping trajectories
with the same label together.

Let us now assume that we have access to a dataset
Doff of N short trajectories τn = ((xn,1, an,1, rn,1),
..., (xn,H , an,H , rn,1)) of length H , collected by some be-
havior policy πb. The trajectories are short in the sense that
in most relevant domains, individual trajectories are not long
enough to learn the underlying reward model. Each trajec-
tory τn has a different βn = U⋆θn. In online deployment,
a single latent label θ⋆ is chosen and rewards are generated
using β⋆ = U⋆θ⋆. At each timestep t, an agent observes
contexts xt and uses both the offline data and the online
data at time t to execute a policy πt. Define the optimal
action at time t by a⋆t := maxa ϕ(xt, at)

⊤β⋆ We tackle the
problem of minimizing the frequentist regret in linear latent
contextual bandits, given by

RegT :=

T∑
t=1

ϕ(xt, a
⋆
t )

⊤β⋆ − Ea∼πt
[ϕ(xt, a)

⊤β⋆].

For example, in medical applications, data from short ran-
domized controlled trials can be used to help an agent sug-
gest treatment decisions for a new patient online. In this
case, we would like the algorithm to administer the cor-
rect treatments for each patient. This means that the fre-
quentist regret is the relevant performance metric here, and
not the Bayesian regret over some prior. Additionally, any
worst-case bound on the frequentist regret is a bound on the
Bayesian regret for arbitrary priors.

Challenges with latent bandits. Despite the linear as-
sumption, and the dimension reduction obtained in the com-
mon case when dK ≪ dA, significant challenges remain.
First, the value of the latent state θ and the map U⋆ are

both unknown a priori, making it hard to leverage the low-
dimensional structure of the problem. Second, a good choice
of dimension dK is itself unknown a priori, and must be
determined from data in a principled manner. Third, even
if we learn the low-dimensional structure, our learning will
be approximate, and the online procedure must account for
this uncertainty. In the following sections, we will provide
a method to estimate and use latent subspaces given offline
data that allows us to overcome these challenges.

Additional Notation. We use V to denote regularized de-
sign matrices given by µI +

∑
(x,a) ϕ(x, a)ϕ(x, a)

⊤. We

define Dn,i = I − µV−1
n,i and DN,i =

1
N

∑N
n=1 Dn,i. De-

note by β̂n,1, β̂n,2 independent estimates of βn from τn. Let
Mn = 1

2 (β̂n,1β̂
⊤
n,2 + β̂n,2β̂

⊤
n,1) and MN ← 1

N

∑N
n=1 Mn.

3. Estimating Latent Subspaces Offline
Although we do not have access to the values of the latent
states θ or to the map U⋆, we can still extract useful informa-
tion from data. To that effect, recall that we have access to a
dataset Doff of N trajectories τn = ((xn,h, an,h, rn,h))

H
h=1

of length H , collected by some behavior policy πb.

How can offline data help us in online deployment? To
minimize the regret, one must learn the reward parameter β⋆

online. However, it is much easier to search among all latent
states θ ∈ RdK than to search among all possible reward
parameters β ∈ RdA since typically, dK ≪ dA. So, it will
help to learn some projection matrix Û⊤ ≈ U⊤

∗ : RdA →
RdK offline so that for any estimate β̂t of β⋆, Û⊤β̂t is an
estimate of θ̂t ∈ RdK . This amounts to learning a subspace
of the feature space from logged bandit data. We therefore
provide a method for Subspace estimation from Offline
Latent bandit Data (SOLD) in Algorithm 1. Recall that
since the learnt subspace is approximate, we also need to
compute the uncertainty over the subspace to get a subspace
confidence set that we can use online.

On trajectory splitting and corrections. To extract the
dK-dimensional subspace, we aim to estimate E[ββ⊤] =
U⋆E[θθ⊤]U⊤

⋆ , which has the same dK -dimensional span as
U⋆. This cannot be achieved by using a single estimator
β̂n for each trajectory τn and averaging the outer products
β̂nβ̂

⊤
n across all n. That is because the per-reward noise ϵ

will be shared by both copies of β̂n, and so the variance of
ϵ will make E[β̂nβ̂

⊤
n ] full rank. We therefore split each tra-

jectory τn to obtain two independent estimators β̂n,1, β̂n,2,
compute the outer products β̂⊤

n,1β̂n,2, and obtain the top dK
eigenvectors of the mean outer product across trajectories.

However, there is a further wrinkle here. We cannot simply
take the top dK eigenvectors of the mean outer product MN .
One can compute that E[MN ] = E[Dn,1βnβ

⊤
n Dn,2] =

3
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Algorithm 1 Subspace estimation from Offline Latent ban-
dit Data (SOLD)

1: Input: Dataset Doff of collected trajectories τn =
((xn,1, an,1, rn,1), ..., (xn,H , an,H , rn,1)) under a be-
havior policy πb, dimension of latent subspace dK .

2: Divide each τn into odd and even steps, giving trajec-
tory halves τn,1 and τn,2.

3: Estimate reward parameters β̂n,i ← V−1
n,ibn,i, where

Vn,i ← µI +
∑

(x,a,r)∈τn,i
ϕ(x, a)ϕ(x, a)⊤ and

bn,i ←
∑

(x,a,r)∈τn,i
ϕ(x, a)r for i = 1, 2.

4: Compute Mn ← 1
2 (β̂n,1β̂

⊤
n,2 + β̂n,2β̂

⊤
n,1) and com-

pute MN ← 1
N

∑N
n=1 Mn.

5: Compute DN,i ← 1
N

∑N
n=1(I − µV−1

n,i), i = 1, 2.

6: Obtain Û, the top dK eigenvectors of D−1

N,1MND−1

N,2.
7: return Projection matrix ÛÛ⊤, ∆off as in Theorem 1

E[Dn,1U⋆θnθ
⊤
n U⊤

⋆ Dn,2]. To separate E[βnβ
⊤
n ] from this,

we need Dn,1,βn,Dn,2 to be independent. If πb does not
use θ and contexts are generated independently of each
other and of θ, then this is satisfied. Intuitively, we need
the offline trajectories to be non-adaptive. In fact, we show
in the lemma below that if any of these three conditions is
violated, then it is in fact impossible to determine the latent
subspace U⋆ using any method, even with infinitely many
infinitely long trajectories.

Lemma 1 (Contexts, θ, and πb cannot be dependent). For
each of these conditions:

1. Contexts in a trajectory are dependent but do not depend
on θ, and πb also does not use θ,

2. Contexts are generated independently using θ, while πb

does not use θ,

3. Contexts are generated independently without using θ,
while πb uses θ,

there exist two different linear latent contextual bandits with
orthogonal latent subspaces satisfying the condition, and a
behavior policy πb so that the offline data distributions are
indistinguishable and cover all (x, a) pairs with probability
at least 1/4. Since the latent subspaces are orthogonal, an
action that gives the maximum reward on one latent bandit
gives reward 0 on the other.

To estimate the latent subspace, one is thus forced to make
the following assumption.

Assumption 1 (Unconfounded Offline Actions). The offline
behavior policy πb does not use θ to choose actions, and
contexts xn,h are stochastic and generated independently of
each other and of θ.

This is satisfied when the offline data comes from random-

ized controlled trials or A/B testing, which are common
sources of offline datasets. Even if this is not satisfied, Algo-
rithm 1 can learn a good subspace whenever D−1

N,1MND−1

N,2

has eigenspace close to the span of U⋆, e.g. when high-
reward actions contribute heavily to Dn,i. This can happen
if offline trajectories were collected to maximize rewards.

Returning to our scrutiny of MN , let the covariance ma-
trix of θ be Λ and let its mean be µθ. Then we have
that E[MN ] = E[Dn,1βnβ

⊤
n Dn,2] = E[Dn,1]U⋆(Λ +

µθµ
⊤
θ )U

⊤
⋆ E[Dn,2]. So, we still cannot merely consider the

top dK eigenvectors of MN without accounting for Dn,1.
Intuitively, Dn,1 captures the distortion in reward estimation
caused by regularization in ridge regression2. We there-
fore construct correction matrices DN,i and use them to
"neutralize" the distortion from regularization. In particular,
D−1

N,1MND−1

N,2 is an estimator for U⋆(Λ + µθµ
⊤
θ )U

⊤
⋆ . Cru-

cially, this allows us to aggregate information across many
trajectories to overcome the challenge of learning from short
trajectories. We can now take the top dK eigenvectors of
D−1

N,1MND−1

N,2 to estimate the subspace determined by U⋆.
To give guarantees, we must make a coverage assumption.
Unlike in standard offline RL, where only coverage along
actions is needed, we also need coverage along latent states.

Assumption 2 (Boundedness and Coverage). Rewards
|rn,h| ≤ R 3 for all n, h, ∥ϕ(x, a)∥2 ≤ 1 and ∥β∥2 ≤ R.
Also, λA := mini=1,2 λmin(E[Dn,i]) > 0 and λθ :=
1
R2λmin(Λ) > 0.

Intuitively, λA measures coverage along actions, while λθ

measures coverage along latent states θ. Both must be
non-zero to expect satisfactory estimation of the subspace.
Unlike the setting of Yang et al. (2022), whose setting is
purely online, we work with an offline dataset of trajectories
spanning multiple bandit instances. The learner has no con-
trol over the behavior policy that collected the data. Without
structural assumptions on the dataset, estimating a useful
subspace becomes infeasible, and the regret degenerates
to the standard dA

√
T . Similar coverage assumptions are

commonplace within the offline linear MDP literature (Jin
et al., 2021; Duan and Wang, 2020).

We can then use confidence bounds for MN and DN,i to give
a data-dependent confidence bound ∆off for the projection
matrix ÛÛ⊤, as in Theorem 1 below. In one instantiation,
Propositions 1 and 2 in Appendix C derive simple data-
dependent bounds for MN and DN,i respectively. Under
this choice, we control the growth of ∆off in terms of the
unknown problem parameters at the end of Theorem 1.

2This is not unique to regularization. Pseudo-inverses cause an
analogous problem of distortion caused by unseen actions.

3R-bounded rewards are automatically R-subgaussian. We can
easily extend our results to more general subgaussian rewards, but
stick to bounded rewards for simplicity of proofs.
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Theorem 1 (Computing and Bounding ∆off ). Let ∥MN −
E[M1]∥2 ≤ ∆M and ∥DN,i−E[Dn,i]∥2 ≤ ∆D for i = 1, 2
with probability 1− δ/3 each. Then, with probability 1− δ,
∥ÛÛ⊤ − U⋆U⊤

⋆ ∥2 ≤ ∆off , where for BD = ∥D−1

N ∥2 and
λ̂ := λdK

(MN )− λdK+1(MN ),

∆off =
2
√
2dK

λ̂

(
B3

D(2−BD∆D)

(1−BD∆D)2
(R2 +∆M )∆D

+

(
BD

1−BD∆D

)2

∆M

)
.

Obtaining ∆M and ∆D from Propositions 1 and 2, ∆off =
Õ( 1

λθλ3
A
N−1/2

√
dKdA log(dA/δ)).

Estimating dK offline. As our estimator D−1

N,1MND−1

N,2 is
approximately rank-dK , the number of nonzero eigenvalues
of the estimator is a principled heuristic for determining dK .

Insufficiency of PCA and PMF for subspace estimation.
Naively performing PCA on the raw rewards or on single
reward estimates β̂n can lead to erroneous subspaces – as
while the PCA target is linear-algebraically similar to MN ,
it is statistically different. The PCA target (e.g. E[β̂nβ̂

⊤
n ])

is typically full rank due to the variance of the per-reward
noise ϵ. On the other hand, PMF (Mnih and Salakhutdinov,
2007a) offers neither confidence bounds on the estimated
subspace, nor a principled method for determining dK .

4. Offline Data Sharpens Online Optimism
Here, we motivate and describe LOCAL-UCB, a natural
algorithm that accelerates LinUCB with offline data. The
core idea is sharpening optimism by being optimistic over
the intersection of two confidence sets – one obtained using
offline and online data and another purely from online data.

We geometrically motivate our update rule here, and illus-
trate it in Figure 1. After any t steps, we can construct a
dK-dimensional confidence ellipsoid for every subspace in
the subspace confidence set obtained from SOLD. The union
of all these ellipsoids gives us our "offline confidence set"4,
called Ctoff(β). The usual dA-dimensional ellipsoid forms
our "online confidence set." We call this Cton(β). Since the
true parameter lies in both confidence sets with high proba-
bility, being optimistic over their intersection allows us to
sharpen or "further localize" optimism. Even though the of-
fline confidence set uses both offline and online data, it will
never shrink to a point due to the frozen subspace confidence
set. So, we need the intersection of both sets to be sharply
optimistic. This is the intuition behind LOCAL-UCB.

4The set is not only dependent on offline data, since online data
is used to construct the dK -dimensional ellipsoids.

Algorithm 2 Latent Offline subspace Constraints for Accel-
erating Linear UCB (LOCAL-UCB)

1: Input: Projection matrix ÛÛ⊤, confidence bound ∆off

from an offline uncertainty-aware method, e.g. SOLD.
2: Initialize V1 ← IdA

, b1 ← 0, αt

3: for t = 1, . . . T do
4: Play action at and receive reward rt according to:

at, β̃t, Ũt ← argmaxa,β,U ϕ(xt, a)
⊤β such that

β̂1,t ← U(UT VtU)−1U⊤bt,

∥U⊤(β − β̂1,t)∥(U⊤VtU)−1 ≤ α1,t

β̂2,t ← V−1
t bt, ∥(β − β̂2,t)∥V−1

t
≤ α2,t

∥β∥2 ≤ R,U⊤U = IdK
,UU⊤β = β,

∥Û⊤U∥F ≥
√
dK −∆2

off/2

5: Compute bt+1 ← bt + ϕ(xt, a)rt, Vt+1 ← Vt +
ϕ(xt, a)ϕ(xt, a)

⊤, αt+1

6: end for

We formalize this intuition in Algorithm 2 by formulating
the sharpened optimism as an optimization problem in step
4. The first two constraints represent the low dimensional
confidence ellipsoids in the subspace spanned by a given U,
while the next two merely represent the usual high dimen-
sional ellipsoid. The remaining constraints let U range over
our subspace confidence set.

We provide the following guarantee for LOCAL-UCB. No-
tice that our guarantee shows that for enough offline data
with N ≫ T , the effective dimension of the problem is dK .
It increases to dA as T gets closer to N . The quality of the
offline data is reflected in the coverage constants λθ and λA.

Theorem 2 (LOCAL-UCB Regret). Under Assumptions 1
and 2, if α1,t = R

√
µ + CR

√
dK log(2T/δ) and α2,t =

R
√
µ + CR

√
dA log(2T/δ) for a universal constant C,

then with probability at least 1 − δ over offline data and
online rewards, LOCAL-UCB has regret RegT bounded by

O

(
min

(
RdA
√
T ,RdK

√
T

(
1 +

1

λθλ3
A

√
dAT

dKN

)))
.

However, the subspace constraint ∥Û⊤U∥F ≥√
dK −∆2

off/2 is nonconvex. In fact, we lower bound a
convex function in the constraint, making us search for
Ũt over a complicated star-shaped set. So, it is unclear if
LOCAL-UCB can be made computationally efficient.
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5. Lower Bound
We now establish that LOCAL-UCB is in fact minimax
optimal up to the coverage constants λA, λθ defined in As-
sumption 2. While we provide a full statement and proof
of our lower bound in Appendix F, we provide an informal
version here. Much like how we generate families of reward
parameters in lower bound proofs for purely online regret,
we are now generating a family of tuples of latent bandits
(for the offline data) and reward parameters represented in
the latent bandit (for the online interaction).

Theorem 3. There exists a family of tuples (F,β), where
F is a latent bandit with a rank dK latent subspace and β
is a reward parameter in its support, so that for any offline
behavior policy πb and any learner, (i) λθ is uniformly
bounded from below for all F , (ii) there exists a (F,β) such
that the regret Reg(T,β) of the learner under offline data
from πb and F and online reward parameter β is bounded
below by

Ω

(
min

(
dA
√
T , dK

√
T

(
1 +

√
dAT

dKN

)))

To the best of our knowledge, this is the first lower bound
in a hybrid (offline-online) sequential decision-making set-
ting.5 The key challenge is in selecting an instance space
that yields an informative lower bound. When the offline
data has insufficient coverage, one can show a trivial dA

√
T

lower bound. Assuming λθ is uniformly bounded from
below for all F models scenarios with sufficient offline
coverage, and our lower bound shows that even in these
non-trivial settings, no algorithm can achieve a regret better

than min
(
dA
√
T , dK

√
T
(
1 +

√
dAT
dKN

))
. While we an-

alyze worst-case performance over a meaningful class of
instances where the offline data is of sufficiently high quality,
there remains room for future work on sharper, instance-
dependent lower bounds that reflect explicit dependence on
both λθ and λA.

6. Practical Optimism with ProBALL-UCB
While LOCAL-UCB is minimax-optimal, it is not computa-
tionally efficient due to the non-convex constraint discussed
in Section 4. We address this by introducing ProBALL-UCB
(Algorithm 3), a practical and computationally efficient al-
gorithm. In this section, we first sketch the algorithm and
then describe how it can be geometrically motivated as a
relaxation of LOCAL-UCB.

ProBALL-UCB works in the subspace estimated by SOLD
until the online confidence set is small enough. The algo-

5Pal et al. (2023) give lower bounds on the cumulative regret
for a structure type of latent bandits (with hidden clusters). Their
setting is purely online, although they rely on an offline matrix
completion oracle during online learning.

Figure 1: Left: Geometric interpretations of LOCAL-UCB.
Showing Cton(β)∩Ctoff(β) in green for three timepoints t =
t1, t2, t3. The dotted lines delineate the subspace confidence
set. Right: Geometric interpretation of ProBALL-UCB.
Ct1on(β) ̸⊂ C̃

t1
off(β), so we continue to use projections; but

by time t2, Ct2on(β) ⊂ C̃
t2
off(β), so we stop using projections.

rithm maintains a low-dimensional confidence set, a high-
dimensional confidence set, and swaps between them to
achieve acceleration. Once the cumulative error of using the
low-dimensional confidence set (≈ ∆offT in ProBALL-
UCB) exceeds the cumulative error of using the high-
dimensional confidence set (≈ dA

√
T ), we stop using the

former. This is instantiated with LinUCB, but the same idea
can be immediately applied to other algorithms like SupLin-
UCB or Bayesian algorithms like Thompson sampling.

We geometrically motivate our update rule here as a relax-
ation of LOCAL-UCB, and illustrate it in Figure 1, like
in Section 4. We go through three stages of simplification
over LOCAL-UCB, which suprisingly only leads to a minor
degradation in provable guarantees.

• Cruder offline confidence sets are used. We take the sub-
space estimated by SOLD, compute a point estimate for
β⋆ within the subspace, and construct a ball that contains
the LOCAL-UCB offline confidence set. The online con-
fidence set is still the standard dA-dimensional ellipsoid.

• We wait for the offline confidence ball to contain the
online confidence set, instead of taking intersections.

• We use a computable proxy for this subset condition in-
stead of explicitly checking it.

As a final note before presenting the regret bound proper,
there is a technical challenge with analyzing ProBALL-
UCB. Since β̂1,t lies in Û but β⋆ might not, the dK-
dimensional confidence ellipsoid bound no longer applies.
We therefore prove our own confidence ellipsoid bound in
Lemma 6, to bypass this issue.

Theorem 4 (Regret for ProBALL-UCB). Let α1,t =

R
√
µ + τ ′R∆offκt + CR

√
dK log(T/δ) and let α2,t =

R
√
µ+CR

√
dA log(T/δ). Let S be the first timestep when

Algorithm 3 does not play Line 6 and let S = T if no such
timestep exists. For τ = τ ′ = 1 we have that

RegT = Õ
(
min

(
Regon,T ,Reghyb,T

))
.
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Algorithm 3 Projection and Bonuses for Accelerating La-
tent bandit Linear UCB (ProBALL-UCB)

1: Input: Projection matrix ÛÛ⊤, confidence bound ∆off .
Hyperparameters α1,t, α2,t, τ, τ

′.
2: Initialize V1 ← I , b1 ← 0, Ct ← 0
3: for t = 1, . . . T do
4: if ∆offτ

√
t+∆offτ

′
√
dK
∑t

s=1κ
2
s/t ≤ dA then

5: Compute β̂1,t ← Û(Û⊤VtÛ)−1Û⊤bt

6: Play at ← argmaxa ϕ(xt, a)
⊤ÛÛ⊤β̂1,t +

α1,t∥ϕ(xt, a)
⊤Û∥(Û⊤VtÛ)−1

7: else
8: Compute β̂2,t ← V−1

t bt

9: Play at ← argmaxa ϕ(xt, a)
⊤β̂2,t +

α2,t ∥ϕ(xt, a)∥V−1
t

10: end if
11: Observe reward rt and update bt+1 ← bt +

ϕ(xt, a)rt, Vt+1 ← Vt + ϕ(xt, a)ϕ(xt, a)
⊤

12: Update Ct+1 ← Ct + Û⊤ϕ(xt, at)ϕ(xt, at)
⊤,

κt+1 ← ∥Ct+1∥(Û⊤Vt+1Û)−1

13: end for

where Regon,T = RdA
√
T and Reghyb,T is defined as

RdK
√
T

1 +
1

λ3
Aλθ

√ dAT

dKN
+

√√√√ dA
SN

S∑
t=1

κ2
t

 .

In the worst case, κt = O(t) and so 1
S

∑S
t=1 κ

2
t = O(T 2),

but if all features ϕ(xt, at) lie in the span of Û for t ≤ S,
then 1

S

∑S
t=1 κ

2
t = O(T ).

While the regret bound looks weaker in the worst case,
we emphasize that the "good case" in Theorem 4 is quite
common. As an illustrative example, if the feature set Ft =
{ϕ(xt, a) | a ∈ A} is an ℓ2 ball, then the maximization
problem in Step 6 will always choose at with ϕ(xt, at) in
the span of Û. This can also approximately hold if the
features are roughly isotropic or close to the span of Û. We
direct the reader to Appendix E.2.1 for further discussion.

Furthermore, Theorem 4 shows that ProBALL-UCB per-
forms no worse than LinUCB, and can significantly outper-
form it both in theory and in practice, as we will see in the
following section.

7. Experiments
We now establish the practical efficacy of SOLD (Algorithm
1) and ProBALL-UCB (Algorithm 3) for linear latent con-
textual bandits through a series of numerical experiments.6

We perform a simulation study and a demonstration using

6See https://github.com/hetankevin/probono for source code.

real-life data. While specific details of the experiments and
many ablation studies are in Appendix H, we sketch our
experiments and discuss key observations in this section.

In all experiments, we obtain confidence bounds ∆off using
three different concentration inequalities – (1) Hoeffding
as in Proposition 2 (H-ProBALL), (2) empirical Bernstein
as in Proposition 1 (E-ProBALL), and (3) the martingale
Bernstein concentration inequalities of (Waudby-Smith and
Ramdas, 2023) (M-ProBALL). We use a simpler expres-
sion for ∆off , set τ ′ = 0, and choose a suitable value
of the hyperparameter τ to adjust for overly conservative
∆off

7. We later vary τ in ablation experiments to demon-
strate that our results are not a consequence of our choice of
hyperparameters. Finally, for the MovieLens experiments,
we additionally design a natural Thompson sampling ver-
sion of ProBALL-UCB to highlight the applicability of the
ProBALL idea called ProBALL-TS in Appendix G. All
experiments for ProBALL-TS are in Appendix H.3.2.

Simulation study. We first perform a simulation study on a
latent linear bandit with dA = 50 and dK = 2, with 5000
trajectories generated offline. Further details are provided
in Appendix H, and the results are presented in Figure 2.
Note that ProBALL-UCB (Algorithm 3) performs no worse
than LinUCB, no matter what we choose for τ and ∆off .
However, we see a clear benefit from using tighter confi-
dence bounds – as ∆off gets smaller, Algorithm 3 chooses
to utilize the projected estimate β̂1,t more often, resulting in
better performance. Note that the kinks in the regret curves
correspond to points where Algorithm 3 switches over to
the higher dimensional optimism in step 7.

MovieLens dataset. In line with (Hong et al., 2020), we
assess the performance of our algorithms on real data using
the MovieLens dataset. Like them, we filter the dataset to
include only movies rated by at least 200 users and vice
versa, and apply probabilistic matrix factorization (PMF) to
the rating matrix to generate ground truth user preferences
for online experiments. Applying PMF gives dK = 18
and we choose dA = 200, generating 5000 trajectories
offline. For baselines, we reproduce the methods of (Hong
et al., 2020; 2022) and implement LinUCB with canonical
hyperparameter choices.

We initialize ProBALL-UCB with a subspace estimated with
an unregularized variant of SOLD (see Appendix G) that
uses pseudo-inverses instead of inverses. This is due to dif-
ficulties in finding an appropriate regularization parameter
for this large, noisy, and high-dimensional dataset. Figure 2
depicts the result of this experiment. Once again, ProBALL-
UCB performs no worse than LinUCB, no matter what we
choose for τ and ∆off , and the benefit of using tighter con-

7Namely, we set ∆D = 0 in ∆off . Also, Lemma 6 and some
thought reveal that choosing τ ′ = 0 recovers the "good" version
of ProBALL-UCB guarantees, if features are isotropic enough.

7
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Figure 2: Left to Right. First: Simulation study comparison of ProBALL-UCB against LinUCB for τ = 5. Second/Third:
Comparison of ProBALL-UCB initialized with SOLD against {LinUCB, mUCB, and mmUCB, TS, mmTS, and MixTS},
for τ = 0.1 and various confidence bound constructions. ProBALL-UCB outperforms all other algorithms, and approaches
the performance of LinUCB when Hoeffding confidence sets are used. Fourth: ProBALL-UCB regret on MovieLens against
offline samples used in SOLD, compared to LinUCB on ground-truth low-dimensional features. Here, τ = 0.1, T = 200.
As the number of offline samples increases, SOLD recovers a low-rank subspace almost as good as ground-truth. The
shaded area in each sub-figure depicts 1-s.e. confidence intervals over 30 trials with fresh θ, accounting for the variation in
frequentist regret for changing θ.

fidence bounds remains. With τ = 0.5, ProBALL-UCB
with martingale Bernstein confidence bands stops using the
projected estimates at around timestep 70, but still continues
to outperform LinUCB. Although mUCB and mmUCB per-
form slightly better than ProBALL-UCB and LinUCB at the
beginning, the model misspecification incurred by discretiz-
ing the features into dK clusters ensures that it typically
suffers linear regret in this scenario. The lower initial perfor-
mance of ProBALL-UCB and Lin-UCB is a consequence
of their higher initial exploration.

Ablation study. While the end-to-end performance of
ProBALL-UCB significantly improves over existing algo-
rithms, we also address further questions about various com-
ponents of our method in Appendix H. We first show that
the rank dK can be determined from offline data via the
procedure outlined in Section 3 of using the eigenvalues
of D

−1

N,1MND
−1

N,2 to determine the rank of our subspace.
Second, we study the effect of varying the hyperparame-
ter τ and note that our method stably outperforms existing
methods at all reasonable values of τ . Third, we compare
different combinations of algorithms in our figures above,
side by side. Finally, we evaluate the effect of offline data
by plotting the online regret against the number of offline
samples used to estimate the latent subspace.

8. How General Are Latent Bandits?
While have established that latent bandits are a powerful
framework for accounting for uncertainty in reward models,
the extent of their generality is unclear. Are there other state-
less decision processes that generalize over latent bandits?
We cap off our contributions by establishing the general-
ity of latent bandits. In this section, we show a de Finetti

theorem for decision processes, demonstrating that every
"coherent" and "exchangeable" stateless (contextual) deci-
sion process is a latent (contextual) bandit. We first define a
stateless decision process at a high level of generality.8

Definition 2. A stateless decision process (SDP) with ac-
tion set A is a probability space (Ω,G,P) with a family of
random maps FH : Ω→ (AH → RH) for H ∈ N ∪ {∞}.

That is, given a sequence of actions (a1, . . . aH), an SDP
generates a random sequence of rewards (Y1, . . . YH). As
such, we abuse notation to denote by FH(a1, . . . aH) the
random variable ω 7→ FH(ω)(a1, . . . aH). Without any
coherence between FH across H , a stateless process can
behave arbitrarily for different horizons H . We present a
natural coherence condition below, essentially requiring that
a given action sequence should produce consistent rewards.

Definition 3. A stateless decision process is coherent if
for any h ≤ k ≤ H,H ′ ∈ N ∪ {∞} and for any
two action sequences τ, τ ′ of lengths H and H ′ sharing
the same actions (ah, . . . ak) from index h to k, with
FH(τ) = (Y1, . . . YH) and FH′(τ ′) = (Y ′

1 , . . . Y
′
H′), we

have (Yh, . . . Yk) = (Y ′
h, . . . Y

′
k), viewed as functions of Ω.

It is natural to require equality in value and not just in
distribution, since after taking an extra action, the values of
past rewards stay the same, not just their distribution. For
example, if we pull 10 different jackpot levers and then pull
a new one, the previous 10 outcomes stay the same in value,
not just in distribution. We also give a natural definition for
exchangeability of a stateless decision process – namely that

8(Liu et al., 2023) work with a much more restrictive notion
of a generalized bandit and use the original de Finetti theorem
in some of their lemmas. See Appendix B.1 for a discussion.

8
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exchanging any two rewards should lead to the distribution
obtained by exchanging the corresponding actions.

Definition 4. A stateless decision process is ex-
changeable if for any permutation π : [H] →
[H] and FH(a1, . . . aH) = (Y1, . . . YH), we have
Fh(aπ(1), . . . aπ(H)) ∼ (Yπ(1), . . . Yπ(H)).

Finally, a latent bandit is an SDP that behaves like a bandit
conditioned on a random latent state F that determines the
reward distribution. As F determines a distribution, it is a
random measure-valued function on A.

Definition 5. A latent bandit is a stateless decision pro-
cess equipped with a random measure-valued function F :
Ω→ (A → P(R)) so that for any H and action sequence
(a1, . . . aH), the rewards (Y1, . . . YH) := FH(a1, . . . aH)
are independent conditioned on F . Moreover, the condi-
tional distribution L[Yh | F ] = F (ah) for all h ≤ H .9

As such, the latent bandit is indeed a special case of an SDP,
where the function FH is induced by the latent state random
variable F .

While exchangeability and coherence are reasonable condi-
tions on an SDP and are clearly satisfied by latent bandits,
it is a-priori unclear if they are sufficient to ensure that the
SDP is a latent bandit. As only exchanging rewards from the
same action preserves the distribution, standard de Finetti
proof ideas do not immediately apply. After all, it is possible
that an SDP could be cleverly designed to choose rewards
adaptively across time and satisfy these properties. Reas-
suringly, no such counterexamples exist, guaranteed by the
following theorem.

Theorem 5 (De Finetti Theorem for Stateless Decision Pro-
cesses). Every exchangeable and coherent stateless decision
process is a latent bandit.

We show in Lemma 2 in Appendix A that coherence is
not a consequence of exchangeability – it is a necessary
condition for being a latent bandit. Finally, we analogously
consider contexts and define "transition-agnostic contextual
decision processes" (TACDPs) in Appendix B.2. We define
coherence and coherence and exchangeability for TACDPs,
and define latent contextual bandits by simply replacing
A with X × A in the definitions above. We then show an
analogous de Finetti theorem, as a corollary of our proof of
Theorem 5. See Appendix B.6 for more details.

Linear latent contextual bandits and SDPs. Finally,
note that this section is faithful to the rest of this paper.

9We abuse notation twice here. First, we write F (ah) :=
(ω 7→ F (ω)(ah)). Second, as the regular conditional distribution
L[Yh | F ] is a kernel that maps from Ω × B → R, we view
F (ah) as its curried map (ω,B) 7→ F (ah)(ω)(B). A discussion
of issues (measurability and well-definedness) is in Appendix B.2.

A linear latent contextual bandit is a latent contextual ban-
dit where the random measure-valued function F : Ω →
((X × A) → P(R)) is defined by setting F (ω)(x, a) to
be the distribution given by ϕ(x, a)⊤U⋆θ(ω) + ϵ, for any
ω ∈ Ω and (x, a) ∈ (X × A). We have seen that every
coherent and exchangeable stateless contextual decision
process is a latent contextual bandits, of which the linear
latent contextual bandit is an important special case.

9. Discussion, Limitations and Further Work
In this paper, we have addressed the problem of leverag-
ing offline data to accelerate online learning in linear la-
tent bandits. Our work has a few limitations. First, while
ProBALL-UCB is practical and computationally efficient, it
has a slightly weaker worse-case guarantee than LOCAL-
UCB. Second, when the data is noisy, it can be hard to tune
the regularization µ. We use a pseudoinverse-based version
of SOLD in such a case (Appendix G), implemented in our
code. This variant is easy to tune and performs well empir-
ically. Third, the offline uncertainty sets computed using
∆off can be overly conservative, and a discount hyperpa-
rameter τ for deciding when to switch between using the
offline confidence ball and the online confidence set within
ProBALL-UCB must be fine-tuned online.

Despite these limitations, our work enjoys strong theoretical
guarantees and convincing empirical performance. We hope
that this method opens the door for developing other efficient
and scalable algorithms for sequential decision-making with
continuous latent states. One can use ideas presented in this
paper to design similar algorithms for MDPs, linear MDPs,
and RL or bandits with general function approximation.
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of Machine Learning. There are many potential societal
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A. Additional Lemmas and Discussion
A.1. Broader Impacts
Often, protected groups with private identities have temporal behavior correlated with their private identities. Latent state
estimation methods have the potential to identify such private identities online, and must be used with care. Use of such
methods should comply with the relevant privacy and data protection acts, and corporations with access to a large customer
base as well as governments should be mindful of the impact of the use of latent state methods on their customers and
citizens respectively.

A.2. Coherence with Equality is Necessary
Lemma 2 (Coherence with Equality is Necessary). There exists a stateless decision process that is exchangeable and not
coherent but satisfies the following property: for any two action sequences τ, τ ′ of lengths H and H ′ sharing the same
actions (ah, . . . ak) from index h to k, with FH(τ) = (Y1, . . . YH) and FH′(τ ′) = (Y ′

1 , . . . Y
′
H′), we have (Yh, . . . Yk) ∼

(Y ′
h, . . . Y

′
k). Additionally, since the SDP is not coherent, it is not a latent bandit.

Proof. Consider an SDP with action set A = {0, 1} equipped with a random variable θ ∈ {0, 1} distributed as Ber(1/2).
If the first action is 0, then all rewards are given by θ. If the first action is 1, then the first reward X1 = θ while all future
rewards are 1− θ.

Notice now that for any timestep h, its rewards are Ber(1/2). We note that this process is clearly exchangeable. Moreover,
this process is coherent in a weaker sense – for any two action sequences τ, τ ′ of lengths H and H ′ sharing the same
actions (ah, . . . ak) from index h to k, with FH(τ) = (Y1, . . . YH) and FH′(τ ′) = (Y ′

1 , . . . Y
′
H′), we have (Yh, . . . Yk) ∼

(Y ′
h, . . . Y

′
k). That is, the reward subsequences are only equal in distribution. This is easy to see, since if a1 is not included in

the action subsequence or if a1 = 0, the reward subsequence is always given by (X, . . .X) for X ∼ Ber(1/2). If a1 = 1
and a1 is in the action subsequence, then the reward subsequence is always given by (−X,X, . . .X) for X ∼ Ber(1/2).

However, the reward subsequences are not equal in value. If the action subsequence is inside two action sequences
τ = (a1, . . . aH) and τ ′ = (a′1, . . . a

′
H) with a1 = 0 and a′1 = 1, then their rewards are negatives of each other. So, this

SDP is not coherent. This means that this SDP is not a latent bandit.

A.3. Contexts, Latent State and Behavior Policy cannot be Dependent

Lemma 1 (Contexts, θ, and πb cannot be dependent). For each of these conditions:

1. Contexts in a trajectory are dependent but do not depend on θ, and πb also does not use θ,

2. Contexts are generated independently using θ, while πb does not use θ,

3. Contexts are generated independently without using θ, while πb uses θ,

there exist two different linear latent contextual bandits with orthogonal latent subspaces satisfying the condition, and a
behavior policy πb so that the offline data distributions are indistinguishable and cover all (x, a) pairs with probability at
least 1/4. Since the latent subspaces are orthogonal, an action that gives the maximum reward on one latent bandit gives
reward 0 on the other.

Proof. Let e1, e2 be the standard basis of R2. For all these examples, our two latent bandits will satisfy the following:

• Latent contextual bandit 1: Let θ take values e1 + e2 and −e1 − e2 with probability 1/2 each.

• Latent contextual bandit 2: Let θ take values e1 − e2 and e2 − e1 with probability 1/2 each.

A.3.1. CONTEXTS CANNOT BE DEPENDENT ON EACH OTHER

We consider two actions, so A = {0, 1}We have two contexts x, y so that ϕ(x, 0) = e1, ϕ(x, 1) = 2e1 while ϕ(y, 0) = e2,
ϕ(y, 1) = 2e2. We design them to be dependent so that any trajectory either only sees x or only sees y. However, x and y are
both seen with probability 1/2. Pick πb so that it takes each action with probability 1/2. Now note that the mean reward of
x, 0 in either latent bandit takes values ±1 with probability 1/2. So, the offline data distributions are also indistinguishable
and every context-action pair is seen with probability at least 1/4.
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A.3.2. CONTEXTS AND LATENT STATE CANNOT BE DEPENDENT

We consider two actions, so A = {0, 1} Again, consider two contexts x, y so that ϕ(x, 0) = e1, ϕ(x, 1) = 2e1 while
ϕ(y, 0) = e2, ϕ(y, 1) = 2e2. Let us say that for either latent bandit and for any θ, the context distribution is a Dirac-δ
over the context whose features have a positive dot product with θ. Then, note that either context is seen in both latent
bandits with probability 1/2. Again, let πb take either action with probability 1/2. So, the offline data distributions are
indistinguishable and every context-action pair is seen with probability at least 1/4.

A.3.3. LATENT STATE AND BEHAVIOR POLICY CANNOT BE DEPENDENT

We consider four actions, so thatA = {0, 1, 2, 3}. Let there be a single context x with ϕ(x, 0) = e1, ϕ(x, 1) = e2, ϕ(x, 2) =
−e1, ϕ(x, 3) = −e2. For any latent state θ in either bandit, let πb be uniform over the actions that have a positive dot
product with θ. It is then easy to see that the offline data distributions are indistinguishable and every context-action pair is
seen with probability at least 1/4.
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B. A de Finetti Theorem for decision processes
B.1. Discussion on (Liu et al., 2023)’s smaller class of generalized bandits
We prove the de Finetti theorem for a very general formulation of decision processes. However, past work (Liu et al., 2023)
has studied a simpler generalization of bandits, namely a stochastic process valued in RA. A sample point in this space is a
sequence of functions in A → R, which rules out the possibility of adaptivity. In contrast, a sample point in our space is a
function of sequences, which subsumes all sample points of their space, but allows for adaptivity.

(Liu et al., 2023) are able to use the original de Finetti theorem on their random process directly, but work with a much more
restrictive kind of decision process. We show that even when considering much more general stateless decision processes,
latent bandits are the "right" objects produced by a de Finetti theorem for stateless decision processes.

B.2. Proof of the De Finetti Theorem for Stateless Decision Processes
A note on F , measurability and well-definedness in the definition of a latent bandit. Recall that F in the definition of
a latent bandit needs to be a measurable map Ω→ (A → P(R)). To define measurability for the output space of functions
(A → P(R)), we endow P(R) with the topology of weak convergence, endow the space P(R)A of maps A → P(R)
with the topology of point-wise convergence, and require F to be measurable w.r.t. the induced Borel σ-algebra. We also
recall two abuses of notation in the definition of a latent bandit. First, we abuse notation to define the random measure
F (a) := (ω 7→ F (ω)(a)). Second, we also abuse notation to conflate F (a) with the curried map κa(ω,B) := F (a)(ω)(B),
which is a map Ω × B → [0, 1]. This map κa will turn out to be a kernel by the construction of F . Equating F (a) to a
regular conditional distribution in the definition of a latent bandit requires that κa be a kernel.

We recall our de Finetti theorem for stateless decision processes here.

Theorem 5 (De Finetti Theorem for Stateless Decision Processes). Every exchangeable and coherent stateless decision
process is a latent bandit.

Proof. Consider an exchangeable and coherent stateless decision process. We will establish that there is a latent bandit with
the same reward distribution as this process for any sequence of actions.

For any sequence τ = (a1, . . . aH), denote by (Yτ,1, . . . Yτ,H) := FH(a1, . . . aH). We intend to establish that there is a
random measure-valued function F such that (Yτ,1, . . . Yτ,H) are independent given F and L[Yτ,h | F ] = F (ah) for all
h ≤ H almost surely. Since conditional independence is a property of finite subsets of a set of random variables, it suffices
to show this for finite H . The version for H =∞ will immediately follow by coherence.

First recall that regular conditional distributions L[Y | F ] are almost surely unique under if the σ-algebra of the output
space of Y is countably generated. Since the Borel σ-algebra on R is countably generated, this is true for our case. We also
recall for the rusty reader that conditioning on a random variable is the same as conditioning on the induced σ-algebra in the
domain.

B.3. Constructing F

Fix any finite trajectory τ = (a1, . . . aH) and index h.

The trick: Consider the infinite sequence τ∞ := (ah, ah, . . . ). By coherence, Yτ,h = Yτ∞,h. Now τ∞ is a sequence where
exchanging any finite set of rewards preserves the reward distribution, since all actions are identical. Since R is locally
compact, we can apply the usual de Finetti representation theorem (Theorem 12.26 in (Klenke, 2008)) to conclude that:

• The random measure Ξah
= wlimn→∞

1
n

∑n
j=1 δYτ∞,j

is well defined. Here wlim is the weak limit of measures.

• The regular conditional distribution L[Yτ∞,j | Ξah
] = Ξah

for all j.

Since Yτ,h = Yτ∞,h, we conclude that the conditional distribution L[Yτ,h | Ξah
] = L[Yτ∞,h | Ξah

] = Ξah
.

Constructing F : For every action, consider such a random measure Ξah
and define a random measure-valued function

F : Ω→ (A → P(R)) in the following manner: for any ω ∈ Ω, define F (ω)(a) := Ξah
(ω). We know that for any a, Ξah

is measurable w.r.t. the topology of weak convergence on P(R). It is now tedious but straightforward to verify that F is
measurable w.r.t. the Borel σ-algebra generated by the topology of pointwise convergence on P(R)A.
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B.4. Establishing that L[Yτ,h | F ] = F (ah) almost surely for all h
Again, fix any finite trajectory τ = (a1, . . . aH) and index h. Recall that we abuse notation to denote by F (a) the
random-measure ω 7→ F (ω)(a). In particular, for any measurable set B ⊂ R, we conflate F (a)(ω)(B) = F (ω)(a)(B) =
F (a)(ω,B), where the last equality holds since F is a regular conditional distribution. Note that F (ah) = Ξah

by the
construction of F . Since Ξah

= F (ah), we have L[Yτ,h | F (ah)] = F (ah). Thus, it suffices to show that L[Yτ,h | F ] =
L[Yτ,h | F (ah)].

Lemma 3. L[Yτ,h | F ] = L[Yτ,h | F (ah)] almost surely.

Proof. First note that F (ah) is measurable w.r.t. F . For showing this, view the set of maps P(R)A as the product set∏
a′ P(R)a′ . Now merely note that F−1(E ×

∏
a′ ̸=a P(R)a′) = (F (ah))

−1(E) for any measurable subset E ⊂ P(R)a.
Hence, F (ah) is measurable w.r.t. F .

Let B be the Borel σ-algebra on R. Now recall that the regular conditional distribution L[X | G] for a real-valued random
variable X is the almost surely unique kernel κG,X : Ω× B → R such that:

• ω → κG,X(ω,B) is G-measurable for any set B ∈ B

• B → κG,X(ω,B) is a probability measure on R for any sample point ω ∈ Ω.

• For any measurable set B ⊂ R and any G-measurable set A,

E[1B(Y )1A] =

∫
1B(Y (ω))1A(ω)dP(ω) =

∫
κG,X(ω,B)1A(ω)dP(ω)

We will show our claim using the definition and a.s. uniqueness of the regular conditional distribution in our case.
Consider any F -measurable set A ⊂ Ω and Borel-measurable set B ⊂ R, B ∈ B. Denote by κF := L[Yτ,h | F ] and by
κah

:= L[Yτ,h | F (ah)] = F (a). Note that by the coherence and exchangeability in section B.3,∫
κF (ω,B)1A(ω)dP(ω) = E[1B(Yτ,h)1A] = E[1B(Yτ∞,h)1A] = E[1B(Yτ∞,j)1A]

for all j. Averaging all these equations and taking a limit, we get that∫
κF (ω,B)1A(ω)dP(ω) = E[1B(Yτ,h)1A] = E[1B(Yτ∞,h)1A]

= lim
n→∞

1

n

n∑
j=1

E[1B(Yτ∞,j)1A]

= E

 lim
n→∞

1

n

n∑
j=1

1B(Yτ∞,j)

1A


where the last equality holds by the dominated convergence theorem, if the limit exists. To establish that the limit exists and
compute it, we apply the usual de Finetti theorem – specificaly point (i) of remark 12.27 in (Klenke, 2008) with f set to
the identity map. This gives us that limn→∞

1
n

∑n
j=1 1B(Yτ∞,j) = E[1B(Yτ∞,h) | Ξah

] = Ξah
(B), where Ξah

(B) is the
random variable ω 7→ Ξah

(ω)(B). This in turn satisfies Ξah
(ω)(B) = F (ah)(ω)(B) = κah

(ω,B). This establishes that
for any F -measurable set A and Borel set B,∫

κF (ω,B)1A(ω)dP(ω) =
∫

κah
(ω,B)1A(ω)dP(ω)

. In conclusion, κah
satisfies:

• F (ah)(B) := ω → κah
(ω,B) is F -measurable for any set B ∈ B since F (ah)(B) is F (ah) measurable by definition

of κah
and F (ah) is F -measurable from above.

• B → κah
(ω,B) is a probability measure on R for any sample point ω ∈ Ω by definition of κah
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• For any measurable set B ⊂ R and any F -measurable set A, by the argument above,

E[1B(Yτ,h)1A] =

∫
κF (ω,B)1A(ω)dP(ω) =

∫
κah

(ω,B)1A(ω)dP(ω)

By the definition as well as a.s. uniqueness of regular conditional distributions in our case, this establishes that L[Yτ,h |
F ] = κF = κah

= E[E[Yτ,h | F (ah)] almost surely.

B.5. Establishing conditional independence of rewards
This is the trickier to establish. It suffices to show that for any finite length h trajectory τ = (a1, . . . aH) and any tuple
(f1, . . . fH) of bounded measurable functions, E

[∏H
h=1 fh(Yτ,h) | F

]
=
∏H

h=1 E[fh(Yτ,h) | F ]. Equivalently, it suffices
to show that for any bounded F -measurable real-valued random variable U , the following holds.

E

[
U

H∏
h=1

fh(Yτ,h)

]
= E

[
U

H∏
h=1

E[fh(Yτ,h) | F ]

]

We will show this by induction on H . This clearly holds for H = 1 by section B.3 above. Now assume that this holds for
H = l − 1.

Replacing the last term, fl(Yτ,l), by an empirical average: Fix any trajectory τ = (a1, . . . al). First consider the infinite
trajectory τ ′ = (a1, . . . al−1, al, al, al, . . . ). This creates a random sequence of rewards Yτ ′,1, Yτ ′,2, . . . . Define τ ′j by
switching indices l and l + j in τ ′ and considering the first l actions. In particular, τ ′j gives the sequence of rewards
(Yτ ′,1, . . . Yτ ′,l−1, Yτ ′,l+j).

First note that τ ′0 = τ . By coherence, (Yτ,1, . . . Yτ,l) = (Yτ ′,1, . . . Yτ ′,l). By exchangeability and coherence,
(Yτ ′,1, . . . Yτ ′,l−1, Yτ ′,l) ∼ (Yτ ′,1, . . . Yτ ′,l−1, Yτ ′,l+j). This means that for any j ≥ 0,

E

[
U

l∏
h=1

fh(Yτ,h)

]
= E

[
U

(
l−1∏
h=1

fh(Yτ ′,h)

)
fl(Yτ ′,l+j)

]

We can then consider the average over all these equations for j = 0→ n− 1 and get that for all n ≥ 1,

E

[
U

l∏
h=1

fh(Yτ,h)

]
= E

U ( l−1∏
h=1

fh(Yτ ′,h)

) 1

n

n−1∑
j=0

fl(Yτ ′,l+j)


Taking limits and using the dominated convergence theorem, we get that

E

[
U

l∏
h=1

fh(Yτ,h)

]
= E

U ( l−1∏
h=1

fh(Yτ ′,h)

) lim
n→∞

1

n

n−1∑
j=0

fl(Yτ ′,l+j)

 (1)

if the limit on the right side exists.

Showing that the empirical average is the conditional expectation: Again, consider a different infinite trajectory
τl = (al, al, . . . ). Again, by coherence, Yτl,l+j = Yτ ′,l+j for all j ≥ 0. From the usual de Finetti theorem, specifically
point (i) of remark 12.27 in (Klenke, 2008), we have that 1

m

∑m
j=1 fl(Yτl,j)→ E[fl(Yτl,l) | F ]. We can then observe that

by general properties of convergence, the following holds.

E[fl(Yτl,l) | F ] = lim
m→∞

1

m

m∑
j=1

fl(Yτl,j) = lim
m→∞

1

m− l

m−1∑
j=l

fl(Yτl,j)

= lim
m→∞

1

m− l

m−1∑
j=l

fl(Yτ ′,j) = lim
n→∞

1

n

n−1∑
j=0

fl(Yτ ′,l+j)
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We can combine this with equation 1 to get that

E

[
U

l∏
h=1

fh(Yτ,h)

]
= E

[
U

(
l−1∏
h=1

fh(Yτ ′,h)

)
E[fl(Yτl,l) | F ]

]

Since both U and E[fl(Yτl,l) | F ] are now F measurable, we can apply the induction hypothesis to τ ′ truncated at l − 1 and
conclude that

E

[
U

l∏
h=1

fh(Yτ,h)

]
= E

[
UE[fl(Yτl,l) | F ]

l−1∏
h=1

fh(Yτ,h)

]
= E

[
U

(
l∏

h=1

E[fh(Yτ ′,h) | F ]

)]

Thus, the induction step holds and the claim holds for all finite H . We discussed at the beginning of the section how this
implies conditional independence for H =∞ as well.

B.6. A de Finetti theorem for TACDPs
We consider contexts and define contextual decision processes in a manner agnostic to context transitions. That is, the
process only carries the data of how rewards are generated from given sequences of contexts and actions, while the context
transitions themselves may be generated by a different process.

Definition 6. A transition-agnostic contextual decision process (TACDP) with action setA and context set X is a probability
space (Ω,G,P) equipped with a family of random maps FH : Ω → ((X × A)H → RH) for H ∈ N as well as a map
F∞ : Ω→ ((X ×A)N → RN).

It is natural to isolate away context dynamics for processes like stochastic contextual bandits, in which actions do not affect
the context transitions – in contrast to transition-aware definitions in (Jiang et al., 2016).

Definition 7. A TACDP is said to be coherent if for any h ≤ k ≤ H,H ′ ∈ N ∪ {∞} and for any two context-action
sequences τ, τ ′ of lengths H and H ′ sharing the same context-action pairs ((xh, ah), . . . (xk, ak)) from index h to k, with
FH(τ) = (Y1, . . . YH) and FH′(τ ′) = (Y ′

1 , . . . Y
′
H′), we have (Yh, . . . Yk) = (Y ′

h, . . . Y
′
k), viewed as functions of Ω.

Definition 8. A stateless decision process is said to be exchangeable if for any permutation π : [H] → [H] and
FH((x1, a1), . . . (xH , aH)) = (Y1, . . . YH), we have Fh((xπ(1), aπ(1)), . . . (xπ(H), aπ(H))) ∼ (Yπ(1), . . . Yπ(H)).

Definition 9. A latent contextual bandit is a stateless decision process equipped with a random measure-valued function
F : Ω → ((X × A) → P(R)) so that for any H and context-action sequence ((x1, a1), . . . (xH , aH)), the rewards
(Y1, . . . YH) := FH((x1, a1), . . . (xH , aH)) are independent conditioned on F . Moreover, the conditional distribution
L[Yh | F ] = F ((xh, ah)) for all h ≤ H .10

Theorem 6 (De Finetti Theorem for Stateless Decision Processes). Every exchangeable and coherent TACDP is a latent
contextual bandit.

Proof. The proof is verbatim the same as that for Theorem 5 after merely replacing A with X ×A and a with (x, a).

10We abuse notation twice here. First, we write F ((xh, ah)) := (ω 7→ F (ω)((xh, ah))). Second, as the regular conditional distribution
L[Yh | F ] is a kernel that maps from Ω×B → R, we view F ((xh, ah)) as its curried map (ω,B) 7→ F ((xh, ah))(ω)(B). A discussion
of issues like measurability and well-definedness is in Appendix B.2.
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C. Proofs for SOLD
Recall that µθ := E[θ] and define µβ := E[β] = U⋆µθ. Also recall that Λ := E[θnθ⊤

n ]. For a trajectory with index n,
denote by βn := U⋆θn. Denote by Xn := [ϕ(x1, a1), . . . ϕ(xH , aH)]⊤. Denote by ηn := [ϵn,1, ϵn,2 . . . ϵn,H ]⊤ the vector
of subgaussian noises with subgaussian parameter σ2. Since rewards are bounded by R, we know that σ2 ≤ R2. Denote by
Xn,i and ηn,i the action matrix and noise vector corresponding to the trajectory halves τn,i for i = 1, 2. Since rewards are
bounded by R, ϵn,h is subgaussian for all h and so ηn,i is σ2-subgaussian for i = 1, 2. Also note that

β̂n,i = (µI +X⊤
n,iXn,i)

−1X⊤
n,irn,i

= (µI +X⊤
n,iXn,i)

−1X⊤
n,i(Xn,iβn + ηn,i)

= (I − µ(µI +X⊤
n,iXn,i)

−1)βn + (µI +X⊤
n,iXn,i)

−1X⊤
n,iηn,i

= (I − µ(µI +X⊤
n,iXn,i)

−1)βn + (µI +X⊤
n,iXn,i)

−1X⊤
n,iηn,i

Note that β̂n,1 and β̂n,2 are identically distributed. Now recall that

Mn =
1

2
(β̂n,1β̂

⊤
n,2 + β̂n,2β̂

⊤
n,1)

are i.i.d. random matrices. Denote by Dn,i := (I−µ(µI+X⊤
n,iXn,i)

−1) and denote by ui := (µI+X⊤
n,iXn,i)

−1X⊤
n,iηn,i.

Lemma 4. If the per-reward noise is σ2-subgaussian, then the following inequalities hold

∥Mn∥2 ≤ R2

(
2 +

H

2µ

)
∥E[M2

n]∥2 ≤ R4 +
σ4(dA + 1)

8µ2

Proof. We prove various bounds and assemble them.

Bounding ∥(µI +X⊤
n,iXn,i)

−1X⊤
n,i∥2: Consider any X with SVD X = U⊤ΣV . This means that

∥(µI +X⊤X)−1X⊤∥2 = V ⊤(Σ2 + µ)−1ΣU

= ∥V ⊤(Σ2 + µ)−1Σ∥2 = ∥(Σ2 + µ)−1Σ∥2

≤ max
a

a

a2 + µ

=
1

2
√
µ

We can now apply this to X = Xn,i and conclude that ∥(µI +X⊤
n,iXn,i)

−1X⊤
n,i∥2 ≤ 1

2
√
µ

ui are independent, σ2

4µ -subgaussian and σ
√
H

2
√
µ -bounded: We claim that ui are independent, σ2

4µ -subgaussian and ∥ui∥22 ≤
σ
√
H

2
√
µ . Recall that ηn,i are σ2-subgaussian vectors and ∥(µI + X⊤

n,iXn,i)
−1X⊤

n,i∥2 ≤ 1
2
√
µ . So, we have that ui =

(µI +X⊤
n,iXn,i)

−1X⊤
n,iηn,i is σ2

4µ -subgaussian. Also recall that u1 and u2 are independent since both contexts and reward-
noise are generated independently at each timestep. Finally, since |ϵn,h| ≤ R, we also have that ∥ηn,i∥22 ≤ R2H , so
∥ui∥22 ≤ R2H

4µ since ∥(µI +X⊤
n,iXn,i)

−1X⊤
n,i∥2 ≤ 1

2
√
µ .

Bounding ∥Mn∥2: Note that ∥Dn,i∥2 ≤ 1, ∥β2∥n ≤ R and ∥ui∥2 ≤ σ
√
H

2
√
µ . So, we have that

∥Mn∥2 ≤

(
R+

R
√
H

2
√
µ

)2

≤ R2

(
2 +

H

2µ

)

Bounding ∥E[M2
n]∥2: We compute that

E[M2
n] =

1

4

(
E[Dn,1βnβ

⊤
n Dn,1]E[β

⊤
n D2

n,2βn] + E[Dn,2βnβ
⊤
n Dn,2]E[β

⊤
n D2

n,1βn]
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+ E[(β⊤
n Dn,2Dn,1βn)Dn,1βnβ

⊤
n Dn,2]] + E[(β⊤

n Dn,1Dn,2βn)Dn,2βnβ
⊤
n Dn,1]]

E[∥u1∥22]E[u2u
⊤
2 ] + E[∥u2∥22]E[u1u

⊤
1 ] + E[u1u

⊤
2 u1u

⊤
2 ] + E[u2u

⊤
1 u2u

⊤
1 ]
)

Now since ∥Dn,i∥2 ≤ 1 and ∥βn∥2 ≤ R, the norm of the first four terms is bounded by R4. Now note that

∥E[uiu
⊤
i ]∥2 = max

v,∥v∥2≤1
E[v⊤uiu

⊤
i v] = max

v,∥v∥2≤1
E[(u⊤

i v)2] ≤ σ2

2µ

∥E[∥ui∥22]∥2 = Tr(E[uiu
⊤
i ]) ≤ ∥E[uiu

⊤
i ]∥2dA ≤

σ2dA
2µ

∥E[u2u
⊤
1 u2u

⊤
1 ]∥2 = ∥E[u1u

⊤
2 u1u

⊤
2 ]∥2 = max

v,∥v∥2≤1
E[v⊤u1u

⊤
2 u1u

⊤
2 v]

max
v,∥v∥2≤1

E[v⊤u1u
⊤
2 u1u

⊤
2 v] = max

v,∥v∥2≤1
Tr(v⊤E[u1u

⊤
1 ]E[u2u

⊤
2 ]v] = ∥E[u1u

⊤
1 ]E[u2u

⊤
2 ]∥2 ≤

σ4

4µ2

Combining all of these, we get that

∥E[M2
n]∥2 ≤ R4 +

σ4(dA + 1)

8µ2

Proposition 1 (Confidence Bound for MN ). With probability at least 1− δ/2, we have that ∥MN − E[M1]∥2 ≤ ∆M with

∆M :=

√√√√2

∥∥∥∥∥
N∑

n=1

M2
n

∥∥∥∥∥
2

log(4dA/δ)

N
+ 2R2

(
2 +

H

2µ

)(
2 log(4dA/δ)

N

)3/4

+ 4R2

(
2 +

H

2µ

)
log(4dA/δ)

3N

Proof. Now since ∥M2
n∥2 ≤ ∥Mn∥22 ≤ R4

(
2 + H

4µ

)2
, we have that ∥M2

n − E[M2
1]∥2 ≤ 2R4

(
2 + H

4µ

)2
by the matrix

Hoeffding bound, we have that with probability 1− δ/2,∥∥∥∥∥ 1

N

N∑
n=1

M2
n − E[M2

1]

∥∥∥∥∥
2

≤ 4R4

(
2 +

H

2µ

)2
√

log(dA/δ)

N

Further, by the matrix Bernstein inequality, we have that with probability 1− δ/2,∥∥∥∥∥ 1

N

N∑
n=1

Mn − E[M1]

∥∥∥∥∥
2

≤
√
2∥E[M2

1]∥2
log(dA/δ)

N
+ 4R2

(
2 +

H

2µ

)
log(dA/δ)

3N

Combining the two results and using a union bound, we get that with probability 1− δ/2

∥MN − E[M1]∥2 =

∥∥∥∥∥ 1

N

N∑
n=1

Mn − E[M1]

∥∥∥∥∥
2

≤

√√√√2

∥∥∥∥∥
N∑

n=1

M2
n

∥∥∥∥∥
2

log(2dA/δ)

N
+ 2R2

(
2 +

H

2µ

)(
2 log(2dA/δ)

N

)3/4

+ 4R2

(
2 +

H

2µ

)
log(dA/δ)

3N

21



Leveraging Offline Data in Linear Latent Contextual Bandits

Proposition 2 (Confidence Bound for DN,i). With probability 1 − δ/4, for i = 1, 2, we have that ∥DN,i − E[Dn,i]∥2 =∥∥∥ 1
N

∑N
n=1 Dn,i − E[Dn,i]

∥∥∥
2
≤ ∆D with

∆D ≤
√

8 log(4dA/δ)

N

Proof. Since ∥Dn,i∥2 ≤ 1, this immediately follows by the matrix Hoeffding inequality.

Lemma 5 (Confidence Bound for D−1

N,1MND−1

N,2). We have that with probability 1− δ

∥D−1

N,1MND−1

N,2 − E[DN,1]
−1E[MN,1]E[DN,2]

−1∥2 ≤
(
B3

D(2−BD∆D)

(1−BD∆D)2

)
(R2 +∆M )∆D

+

(
BD

1−BD∆D

)2

∆M

where BD = maxi=1,2 ∥D
−1

N,i∥2.

Proof. For brevity, just for this proof, we define Di = E[DN,i] for i = 1, 2 and by M := E[M1] = E[MN ]. By a union
bound, Propositions 1 and 2 hold with probability at least 1 − δ. The statements in the rest of this proof thus hold with
probability at least 1− δ. Now note that

∥D−1

N,1MN,1D−1

N,2 − D−1
1 MD−1

2 ∥2 ≤ ∥D
−1

N,1∥2∥MN,1∥2∥D
−1

N,2 − D−1
2 ∥2

+ ∥D−1

N,1 − D−1
1 ∥2∥MN,1∥2∥D−1∥2

+ ∥D−1
1 ∥2∥MN,1 −M∥2∥D−1

2 ∥2

Now note that by inequality (1.1) from Wei et al. (2005), we have that

∥D−1

N,i − D−1
i ∥2 ≤

B2
D∆D

1−BD∆D

This means that
∥D−1

i ∥2 ≤ ∥D
−1

N,i∥2 + ∥D
−1

N,i − D−1
i ∥2 ≤

BD

1−BD∆D

Also, since contexts in both trajectory halves have the same distribution and contexts are generated independently, M =
E[M1] = DiE[β1β

⊤
1 ]Di. So, ∥M∥2 ≤ ∥D1∥2∥D2∥2R2 ≤ R2. This implies that

∥MN,1∥2 ≤ R2 + ∥MN,1 −M∥2 ≤ R2 +∆M

Combining all these with the bound above, we get that

∥D−1

N,1MND−1

N,2 − E[DN,1]
−1E[Mn,1]E[DN,2]

−1∥2 ≤
(
B3

D(2−BD∆D)

(1−BD∆D)2

)
(R2 +∆M )∆D

+

(
BD

1−BD∆D

)2

∆M

Proof. First note that E[DN,1]
−1E[MN,1]E[DN,2]

−1 = U⋆(Λ + µθµ
⊤
θ )U

⊤
⋆ . Also recall that Û is given by the top-dK

eigenvectors for E[D−1
N,1MN,1D−1

N,2]. This means that there is a dK × dK unitary matrix W such that U⋆W forms the
eigenvectors for U⋆(Λ + µθµ

⊤
θ )U

⊤
⋆ . This means that by the Davis-Kahan theorem for statisticians (Yu et al., 2014) and

Lemma 5, we have that with probability 1− δ

∥ÛÛ⊤ − U⋆U⊤
⋆ ∥2 = ∥ÛÛ⊤ − U⋆WW⊤U⊤

⋆ ∥2 =
√
2(dK − ∥Û⊤U⋆∥2F )
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≤ 2
√
2dK

λ̂
∥E[DN,1]

−1E[MN,1]E[DN,2]
−1 − D−1

N,1MN,1D−1
N,2∥2

≤ 2
√
2dK

λ̂

((
B3

D(2−BD∆D)

(1−BD∆D)2

)
(R2 +∆M )∆D +

(
BD

1−BD∆D

)2

∆M

)

We thus set ∆off to be the value above.

Bounding ∆off : Now note that for large enough N , ∥E[Dn,1]
−1∥2∆D =

√
8 log(dA/δ)

λAN ≤ 1
2 . In particular, by applying

inequality (1.1) from Wei et al. (2005), we have that BD ≤ 2∥E[Dn,1]
−1∥2 = 2

λA
. This already gives us the much simpler

expression

∆off ≤
2
√
2dK

λ̂

(
64

λ3
A

(R2 +∆M )∆D +
16

λ2
A

∆M

)
Also note that by Lemma 4 and the matrix Hoeffding inequality, we have that

∥ 1
N

N∑
n=1

M2
n∥ ≤ ∥E[M

2
1]∥+ 4R4

(
2 +

H

2µ

)2
√

log(dA/δ)

N

≤ R4 +
σ4(dA + 1)

8µ2
+ 4R4

(
2 +

H

2µ

)2
√

log(dA/δ)

N

We combine this with Proposition 1 to get that

∆M = O

((
R2 +

σ2
√
dA

µ

)√
log(dA/δ)

N

)

Since σ2 ≤ R2, we get that

∆M = O

(
R2

√
dA log(dA/δ)

N

)
= O(R2)

Also recall from Proposition 2, we get that

∆D =

√
8 log(dA/δ)

N

Also recall that λθ is the minimum eigenvalue of 1
R2Λ, and so the minimum eigenvalue of U⋆(Λ + µθµ

⊤
θ )U

⊤
⋆ is larger than

R2λθ. We then conclude that λ̂ ≥ R2λθ − 2∆M ≥ λθ

2 for large enough N . Combining all these, we get that

∆off = O

(√
dK

R2λθ

(
R2

λ3
A

+
R2

λ2
A

√
dA

)√
log(dA/δ)

N

)

= O

(
1

λθλ3
A

√
dKdA log(dA/δ)

N

)
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D. Proofs for LOCAL-UCB
Theorem 2 (LOCAL-UCB Regret). Under Assumptions 1 and 2, if α1,t = R

√
µ + CR

√
dK log(2T/δ) and α2,t =

R
√
µ+ CR

√
dA log(2T/δ) for a universal constant C, then with probability at least 1− δ over offline data and online

rewards, LOCAL-UCB has regret RegT bounded by

O

(
min

(
RdA
√
T ,RdK

√
T

(
1 +

1

λθλ3
A

√
dAT

dKN

)))
.

Proof. Let the true latent state for the given trajectory be θ⋆, so that the reward parameter β⋆ = U⋆θ⋆.

Showing that U⋆,β⋆ are in our confidence set: We check all our constraints:

• Note that with probability 1− δ/3, U⋆ satisfies ∥Û⊤U⋆∥F ≥
√

dK −∆2
off/2.

• From the standard confidence ellipsoid bound for linear models applied to dimension dA, with probability 1− δ/3T ,
∥β̂2,t − β⋆∥V−1

t
≤ α2,t for all t.

• Note that U⋆U⊤
⋆ β⋆ = β⋆.

• Finally, we apply the standard confidence ellipsoid bound for linear models to dimension dK instead of dA with
model rt = (ϕ(xt, at)

⊤U⋆)(U⊤
⋆ β⋆) + ϵt. This means that ∥U⊤

⋆ β⋆ − U⊤
⋆ β̂1,t∥V−1

1,t
≤ α1,t where V1,t = (IdK

+∑t−1
s=1 U⊤

⋆ ϕ(xt, at)ϕ(xt, at)
⊤U⋆). Note that since U⋆U⊤

⋆ = IdK
, we have that V1,t = (U⊤

⋆ VtU⋆). So, ∥U⊤
⋆ (β −

β̂1,t)∥(UT
⋆ VtU⋆)−1 ≤ α1,t holds with probability at least 1− δ/3T for all t.

So, by a union bound over all events, we get that for all actions a, the tuple (a,β⋆,U⋆) satisfies our conditions with
probability 1− δ.

Leveraging optimism in low dimension: From above and by the optimistic design of the algorithm, with probability 1− δ,
ϕ(xt, at)

⊤β̃t is an upper bound on ϕ(xt, a)
⊤β⋆ for any action a. Thus, we have the following regret decomposition with

probability at least 1− δ:

RegT =

T∑
t=1

ϕ(xt, a
⋆
t )

⊤β⋆ − ϕ(xt, at)
⊤β⋆

≤
T∑

t=1

ϕ(xt, at)
⊤β̃t − ϕ(xt, at)

⊤β⋆

(i)
=

T∑
t=1

ϕ(xt, at)
⊤ŨtŨ⊤

t β̃t − ϕ(xt, at)
⊤U⋆U⊤

⋆ β⋆

≤
T∑

t=1

ϕ(xt, at)
⊤(̃UtŨ⊤

t − U⋆U⊤
⋆ )β̃t + ϕ(xt, at)

⊤U⋆U⊤
⋆ (βt − β⋆)

≤ RT∥UtŨ⊤
t − U⋆U⊤

⋆ ∥2 +
T∑

t=1

ϕ(xt, at)
⊤U⋆U⊤

⋆ (βt − β⋆)

≤ RT∆off +

T∑
t=1

ϕ(xt, at)
⊤U⋆U⊤

⋆ (βt − β⋆)

≤ RT∆off +

T∑
t=1

∥ϕ(xt, at)
⊤U⋆∥(U⊤

⋆ VtU⋆)−1∥U⊤
⋆ (βt − β⋆)∥(U⊤

⋆ VtU⋆)−1

≤ RT∆off +

T∑
t=1

α2,t∥ϕ(xt, at)
⊤U⋆∥(U⊤

⋆ VtU⋆)−1

(ii)
= RT∆off +

T∑
t=1

α2,t∥ϕ(xt, at)
⊤U⋆∥V−1

1,t
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(iii)

≤ RT∆off +O
(
dK
√
T log (T/δ)

)
(iv)
= O

(
RdK

√
T log (T/δ) +

Rλ3
D

λmin

√
T 2dKdA log(dA/δ)

N

)

= O

RdK
√

T log (T/δ)

1 +
λ3
D

λmin

√
TdA log(dA)

dKN


= Õ

(
RdK

√
T

(
1 +

√
TdA
dKN

))

where (i) holds since ŨtŨ⊤
t β̃t = β̃t and U⋆U⊤

⋆ β⋆ = β⋆ (ii) holds since V−1
1,t = (U⊤

⋆ VtU⋆)
−1, (iii) holds by the usual

proof of LinUCB applied to dimension dK , and (iv) holds by Theorem 1.

Leveraging optimism in high dimension: This is merely the proof of LinUCB. From above and by the optimistic design of
the algorithm, with probability 1− δ, ϕ(xt, at)

⊤β̃t is an upper bound on ϕ(xt, a)
⊤β⋆ for any action a. Thus, we have the

following regret decomposition with probability at least 1− δ:

RegT =

T∑
t=1

ϕ(xt, a
⋆
t )

⊤β⋆ − ϕ(xt, at)
⊤β̃⋆

≤
T∑

t=1

ϕ(xt, at)
⊤β̃t − ϕ(xt, at)

⊤β⋆

=

T∑
t=1

∥ϕ(xt, at)
⊤∥V−1

t
∥β̃t − β⋆∥Vt

= O(RdA
√

T log(T/δ))

= Õ(RdA
√
T )

where the last line follows from the standard regret bound for LinUCB applied to dimension dA.

Combining the two bounds, we have our result.

RegT = O

min

RdA
√

T log(T/δ), RdK
√
T log (T/δ)

1 +
λ3
D

λmin

√
TdA log(dA)

dKN


= Õ

(
min

(
RdA
√
T ,RdK

√
T

(
1 +

√
TdA
dKN

)))
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E. Proofs for ProBALL-UCB
E.1. Confidence bound for the low-dimensional reward parameter
Lemma 6 (Confidence Bound for β̂1,t). If for all timesteps t, ϕ(xt, at) lies in the span of Û, we have that for a universal
constant C, ∥∥∥Û⊤β̂1,t − Û⊤β⋆

∥∥∥
V−1
1,t

≤ R
√
µ+ CR

√
dA log(t/δ)

Otherwise, we have that ∥∥∥Û⊤β̂1,t − Û⊤β⋆

∥∥∥
V−1
1,t

≤ R
√
µ+Rκt +∆offCR

√
dA log(t/δ)

where κt = ∥Û⊤X⊤
t Xt∥(Û⊤VtÛ)−1 , with notation ∥A∥C :=

√
∥A⊤CA∥2

Proof. For brevity, in this proof we will denote by Xt := [ϕ(x1, a1), . . . ϕ(xt−1, at−1)]
⊤, which is a t× dA matrix. Recall

that Vt = µIdA
+ X⊤

t Xt. We will also denote V1,t = Û⊤VtÛ. Note that the vector of rewards is given by Xtβ⋆ + ηt,
where ηt is a random vector of t independent R2-subgaussian entries. So, bt = X⊤

t (Xtβ⋆ + ηt). Also define the notation
∆U := ÛÛ⊤ − U⋆U⊤

⋆ .

If all actions lie in the span of Û. Note that since all actions taken lie in the span of Û, Xt = XtÛÛ⊤. This is the key
observation. Now note that

β̂1,t = ÛV−1
1,t Û⊤X⊤

t (Xtβ⋆ + ηt)

= ÛV−1
1,t Û⊤X⊤

t Xtβ⋆ + ÛV−1
1,t Û⊤X⊤

t ηt

= ÛV−1
1,t Û⊤X⊤

t XtÛÛ⊤β⋆ + ÛV−1
1,t Û⊤X⊤

t ηt

= ÛV−1
1,t (V1,t − µIdK

)Û⊤β⋆ + ÛV−1
1,t Û⊤X⊤

t ηt

= ÛU⊤β⋆ − µÛV−1
1,t Û⊤β⋆ + ÛV−1

1,t Û⊤X⊤
t ηt

The rest of the proof is similar to Theorem 2 in (Abbasi-Yadkori et al., 2011). We first note that for any x, we have that

x⊤(β̂1,t − ÛÛ⊤β⋆) ≤
∣∣∣(x⊤Û)V−1

1,t (−µÛ⊤β⋆ + Û⊤X⊤
t ηt)

∣∣∣
≤ ∥Û⊤x∥V−1

1,t

∥∥∥(−µÛ⊤β⋆ + Û⊤X⊤
t ηt)

∥∥∥
V−1

1,t

≤ ∥Û⊤x∥V−1
1,t

(
µ∥Û⊤β⋆∥V−1

1,t
+ ∥Û⊤X⊤

t ηt∥V−1
1,t

)

Now note that µ∥Û⊤β⋆∥V−1
1,t
≤ ∥Û⊤β⋆∥2

√
µ ≤ R

√
µ and by the self normalized martingale concentration inequality

from (Abbasi-Yadkori et al., 2011) applied to dK dimensional vectors Û⊤Xt, we have that with probability at least 1− δ,
∥Û⊤X⊤

t ηt∥V−1
1,t
≤ CR

√
dA log(t/δ) for some universal constant C. So we have with probability at least 1− δ that

=
∥∥∥Û(β̂1,t − ÛÛ⊤β⋆)

∥∥∥2
V−1

1,t

≤
∥∥∥β̂1,t − ÛÛ⊤β⋆

∥∥∥
V−1

1,t

(
R
√
µ+ CR

√
dA log(t/δ)

)
This means that ∥∥∥Û⊤β̂1,t − Û⊤β⋆

∥∥∥
V−1

1,t

=
∥∥∥β̂1,t − ÛÛ⊤β⋆

∥∥∥
V−1

1,t

≤ R
√
µ+ CR

√
dA log(t/δ)
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If all actions don’t lie in the span of Û. This time note that

β̂1,t = ÛV−1
1,t Û⊤X⊤

t (Xtβ⋆ + ηt)

= ÛV−1
1,t Û⊤X⊤

t Xtβ⋆ + ÛV−1
1,t Û⊤X⊤

t ηt

= ÛV−1
1,t Û⊤X⊤

t XtÛ⋆U⊤
⋆ β⋆ + ÛV−1

1,tU⊤X⊤
t ηt

= ÛV−1
1,t Û⊤X⊤

t XtÛÛ⊤β⋆ + ÛV−1
1,t Û⊤X⊤

t Xt∆Uβ⋆ + ÛV−1
1,t Û⊤X⊤

t ηt

= ÛV−1
1,t (V1,t − µIdK

)Û⊤β⋆ + ÛV−1
1,t Û⊤X⊤

t Xt∆Uβ⋆ + ÛV−1
1,t Û⊤X⊤

t ηt

= ÛU⊤β⋆ − µÛV−1
1,t Û⊤β⋆ + ÛV−1

1,t Û⊤X⊤
t Xt∆Uβ⋆ + ÛV−1

1,t Û⊤X⊤
t ηt

The rest of the proof is similar to Theorem 2 in (Abbasi-Yadkori et al., 2011). We first note that for any x, we have that

x⊤(β̂1,t − ÛÛ⊤β⋆) ≤
∣∣∣(x⊤Û)V−1

1,t (−µÛ⊤β⋆ + Û⊤X⊤
t Xt∆Uβ⋆ + Û⊤X⊤

t ηt)
∣∣∣

≤ ∥Û⊤x∥V−1
1,t

∥∥∥(−µÛ⊤β⋆ + Û⊤X⊤
t Xt∆Uβ⋆ + Û⊤X⊤

t ηt)
∥∥∥

V−1
1,t

≤ ∥Û⊤x∥V−1
1,t

(
µ∥Û⊤β⋆∥V−1

1,t
+ ∥Û⊤X⊤

t Xt∆Uβ⋆∥V−1
1,t

+ ∥Û⊤X⊤
t ηt∥V−1

1,t

)
(i)

≤ ∥Û⊤x∥V−1
1,t

(
µ∥Û⊤β⋆∥V−1

1,t
+ ∥∆Uβ⋆∥2∥Û⊤X⊤

t Xt∥V−1
1,t

+ ∥Û⊤X⊤
t ηt∥V−1

1,t

)
≤ ∥Û⊤x∥V−1

1,t

(
µ∥Û⊤β⋆∥V−1

1,t
+R∥∆U∥2∥Û⊤X⊤

t Xt∥V−1
1,t

+ ∥Û⊤X⊤
t ηt∥V−1

1,t

)
≤ ∥Û⊤x∥V−1

1,t

(
µ∥Û⊤β⋆∥V−1

1,t
+R∆off∥Û⊤X⊤

t Xt∥V−1
1,t

+ ∥Û⊤X⊤
t ηt∥V−1

1,t

)
Here, (i) holds because for any matrices A,C and any vector v, we have that ∥Av∥C =

√
v⊤A⊤CAv ≤

∥v∥2
√
∥A⊤CA∥2 = ∥v∥2∥A∥C, where we recall that ∥A∥C :=

√
∥A⊤CA∥2.

Now note that µ∥Û⊤β⋆∥V−1
1,t
≤ ∥Û⊤β⋆∥2

√
µ ≤ R

√
µ and by the self normalized martingale concentration inequality

from (Abbasi-Yadkori et al., 2011) applied to dK dimensional vectors Û⊤Xt, we have that with probability at least 1− δ,
∥Û⊤X⊤

t ηt∥V−1
1,t
≤ CR

√
dA log(t/δ) for some universal constant C. Also recall that ∥Û⊤X⊤

t Xt∥V−1
1,t

= κt. So we have
with probability at least 1− δ that∥∥∥Û(β̂1,t − ÛÛ⊤β⋆)

∥∥∥2
V−1

1,t

≤
∥∥∥Û⊤(β̂1,t − ÛÛ⊤β⋆)

∥∥∥
V−1

1,t

(
R
√
µ+R∆offκt + CR

√
dA log(t/δ)

)
This means that ∥∥∥Û⊤β̂1,t − Û⊤β⋆

∥∥∥
V−1

1,t

=
∥∥∥Û(β̂1,t − ÛÛ⊤β⋆)

∥∥∥
V−1

1,t

≤ R
√
µ+R∆offκt + CR

√
dA log(t/δ)

Note that κt =
∥∥∥∑t−1

s=1 Û⊤ϕ(xs, as)ϕ(xs, as)
⊤
∥∥∥

V−1
1,t

= 1√
µ

∥∥∥∑t−1
s=1 Û⊤ϕ(xs, as)ϕ(xs, as)

⊤
∥∥∥
2
= O(t), but this is a worst

case bound.

We also state a lemma, borrowed from the standard proof of LinUCB regret.

Lemma 7. For any sequence of actions and contexts xt, at and Vt = µI +
∑t−1

s=1 ϕ(xt, at)ϕ(xt, at)
⊤, we have that

T∑
t=1

min
(
∥ϕ(xt, at)∥2V−1

t
, 1
)
= O(

√
dA)

T∑
t=1

min
(
∥Û⊤ϕ(xt, at)∥2(Û⊤VtÛ)−1 , 1

)
= O(

√
dK)
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Proof. This follows immediately from Lemma 11 of (Abbasi-Yadkori et al., 2011).

E.2. Proof of the theorem

Theorem 4 (Regret for ProBALL-UCB). Let α1,t = R
√
µ + τ ′R∆offκt + CR

√
dK log(T/δ) and let α2,t = R

√
µ +

CR
√

dA log(T/δ). Let S be the first timestep when Algorithm 3 does not play Line 6 and let S = T if no such timestep
exists. For τ = τ ′ = 1 we have that

RegT = Õ
(
min

(
Regon,T ,Reghyb,T

))
.

where Regon,T = RdA
√
T and Reghyb,T is defined as

RdK
√
T

1 +
1

λ3
Aλθ

√ dAT

dKN
+

√√√√ dA
SN

S∑
t=1

κ2
t

 .

In the worst case, κt = O(t) and so 1
S

∑S
t=1 κ

2
t = O(T 2), but if all features ϕ(xt, at) lie in the span of Û for t ≤ S, then

1
S

∑S
t=1 κ

2
t = O(T ).

Proof. We will first show that our bonuses give optimistic estimates of the true reward whp and then leverage the optimism.

Showing optimism when τ∆off

√
T ≤ dA: In this case, we are inside the "if" statement and are running a projected and

modified version of LinUCB. In that case, for all timesteps the projected version is run, all features will lie in the span of Û.
This is because the maximization problem is given by

at = arg max
a,∥ϕ(xt,a)∥2≤1

ϕ⊤ÛÛ⊤β̂1,t + ∥Û⊤ϕ(xt, a)∥(Û⊤V1,tÛ)−1

If our features are isotropic, then this is only maximized by a feature in the span of Û. So, the conditions of the first bound in
Lemma 6 are fulfilled. We will denote V1,t = Û⊤VtÛ. We have that with probability 1− δ/2, for all x, a, t, the following
holds.

|ϕ(x, a)⊤β⋆ − ϕ(x, a)⊤ÛÛ⊤β̂1,t| ≤ |ϕ(x, a)⊤Û(Û⊤β⋆ − Û⊤β̂1,t)|+ |ϕ(x, a)⊤(U⋆U⊤
⋆ − ÛÛ⊤)β⋆|

≤ ∥Û⊤ϕ(x, a)∥V−1
1,t
∥Û⊤β⋆ − Û⊤β̂1,t∥V−1

1,t
+R∥U⋆U⊤

⋆ − ÛÛ⊤∥2

≤ α1,t∥Û⊤ϕ(x, a)∥V−1
1,t

+R∆off

This shows that with probability at least 1− δ and for all x, a, t,

ϕ(x, a)⊤β⋆ ≤ ϕ(x, a)⊤ÛÛ⊤β̂1,t + α1,t∥Û⊤ϕ(x, a)∥V−1
1,t

+R∆off

This implies that with probability at least 1− δ, for any action a,

ϕ(xt, a)
⊤β⋆ ≤ max

a
ϕ(xt, a)

⊤ÛÛ⊤β̂1,t + α1,t∥Û⊤ϕ(xt, a)∥V−1
1,t

+R∆off

= ϕ(xt, at)
⊤ÛÛ⊤β̂1,t + α1,t∥Û⊤ϕ(xt, at)∥V−1

1,t
+R∆off

Leveraging optimism when τ∆off

√
T ≤ dA: Consider the standard regret decomposition, which holds with probability

1− δ:

RegT =

T∑
t=1

ϕ(xt, a
⋆
t )

⊤β⋆ − ϕ(xt, at)
⊤β⋆

≤
T∑

t=1

ϕ(xt, at)
⊤ÛÛ⊤β̂1,t − ϕ(xt, at)

⊤β⋆ + α1,t∥Û⊤ϕ(xt, at)∥V−1
1,t

+R∆off
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≤
T∑

t=1

2α1,t∥Û⊤ϕ(xt, at)∥V−1
1,t

+ 2R∆off (2)

(i)

≤
T∑

t=1

2α′
1,t min

(
∥Û⊤ϕ(xt, at)∥V−1

1,t
, 1
)
+ 2R∆off

≤
T∑

t=1

2(R
√
µ+ C

√
dK log(T/δ))min

(
∥Û⊤ϕ(xt, at)∥V−1

1,t
, 1
)
+ 2R∆off

+

T∑
t=1

2R∆offκt min
(
∥Û⊤ϕ(xt, at)∥V−1

1,t
, 1
)

(ii)

≤ 2(R
√
µ+ C

√
dK log(T/δ))

√√√√ T∑
t=1

min

(
∥Û⊤ϕ(xt, at)∥2V−1

1,t

, 1

)
+ 2R∆offT

+ 2R∆off

√√√√ T∑
t=1

κ2
t

√√√√ T∑
t=1

min

(
∥Û⊤ϕ(xt, at)∥2V−1

1,t

, 1

)
(iii)

≤ O(dK
√
T log(T/δ)) + 2R∆offT + 2R∆off

√∑T
t=1 κ

2
t

T

√
dKT (3)

= O

RdK
√
T log(T/δ)

1 + ∆off

√T
dK

+

√√√√ 1

TdK

T∑
t=1

κ2
t


where (i) holds since ϕ(xt, a

⋆
t )

⊤β⋆ − ϕ(xt, at)
⊤β⋆ ≤ 2R, (ii) holds by the Cauchy Schwarz inequality and (iii) holds by

Lemma 7. So, we have that

RegT = O

RdK
√
T log (T/δ)

1 +
1

λ3
Aλθ

√
dA log(dA)

NdK

√T +

√√√√dK
T

S∑
t=1

κ2
t


= Õ

RdK
√
T

1 +
1

λ3
Aλθ

√ dAT

NdK
+

√√√√ dA
TN

T∑
t=1

κ2
t


= Õ

RdK
√
T

1 +
1

λ3
Aλθ

√ dAT

NdK
+

√√√√ dA
min(S, T )N

min(S,T )∑
t=1

κ2
t





where the last inequality holds since T < S for the first timestep S satisfying ∆off

(√
S +

√
dK

S

∑S
t=1 κ

2
t

)
≥ dA.

Additionally, since ∆off

(√
T +

√
dK

T

∑T
t=1 κ

2
t

)
≤ dA, we have using equation 3 that

RegT = Õ(dA
√
T )

as well. So, we have that when τ∆off

√
T ≤ dA,

RegT = Õ

min

dA
√
T ,RdK

√
T

1 +
1

λ3
Aλθ

√ dAT

NdK
+

√√√√ dA
min(S, T )N

min(S,T )∑
t=1

κ2
t






Bounding regret when τ∆off

(√
T +

√
dK

T

∑T
t=1 κ

2
t

)
≥ dA: In this regime, after the first timestep S satisfying

∆off

(√
S +

√
dK

S

∑S
t=1 κ

2
t

)
≥ dA, we run standard LinUCB with dimension dA and incur Õ(dA

√
T ) regret with
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probability 1− δ. Until timestep S − 1, we run the projected and modified version of LinUCB and incur regret bounded by

Õ(dK
√
S) + 2R∆offS + 2R∆off

√∑S
t=1 κ

2
t

S

√
dKS = Õ

(
dA
√
S + dK

√
S
)

= Õ(dA
√
T + dK

√
T )

= Õ(dA
√
T )

Combining these, we incur O(dA
√
T ) regret during the whole method.

Also, since dA
√
T ≤ ∆off

(√
TS +

√
dKT
S

∑S
t=1 κ

2
t

)
, we get that our regret is also bounded by

RegT = Õ

∆off

√TS +

√√√√dKT

S

S∑
t=1

κ2
t


= Õ(dK

√
T +∆off

√TS +

√√√√dKT

S

S∑
t=1

κ2
t

)

= Õ

RdK
√
T

1 +
1

λ3
Aλθ

√ dAT

NdK
+

√√√√ dA
min(S, T )N

min(S,T )∑
t=1

κ2
t





So, our regret satisfies

RegT = Õ

min

dA
√
T ,RdK

√
T

1 +
1

λ3
Aλθ

√ dAT

NdK
+

√√√√ dA
min(S, T )N

min(S,T )∑
t=1

κ2
t






E.2.1. UNDERSTANDING κt

Letting Xt = Û⊤[ϕ(x1, a1), . . . ϕ(xt, at)]
⊤, recall that κt := ∥ÛX⊤

t Xt∥(µI+X⊤
t Xt)−1 . In the worst case, κt ≤ ∥ÛX⊤

t Xt∥2 =

O(t) since actions have norm 1. In that case, 1
S

∑S
t=1 κt = O(S2). However, if Xt lies in the span of Û⊤, then XtÛ⊤Û = Xt.

This means that for Yt := XtÛ⊤,

κt =

√
ÛX⊤

t XtÛ⊤Û(µI + X⊤
t Xt)−1U⊤ÛX⊤

t XtÛ⊤

=

√
Y⊤

t Yt(µI + Y⊤
t Yt)−1Y⊤

t Yt

=

√
(I− µ(µI + Y⊤

t Yt))Y⊤
t Yt

= Õ(
√
t)

So, 1
S

∑S
t=1 κt = O(S) = O(T ).
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F. Lower Bounds
We formally state and prove the lower bound below. Much like how we generate families of reward parameters in lower
bound proofs for purely online regret, we are now generating a family of tuples of latent bandits (for the offline data) and
reward parameters represented in the latent bandit (for the online interaction).

Theorem 7 (Regret Lower Bound). Let d2AH ≤ 2T , d2A ≤ N , dK > 1. Consider the action set A = {a | ∥a∥2 ≤ 1}. For
each regime, either dKT

(dA−dK)N being larger than 1, or between 1 and 1/2, or less than 1/2, there exists a family of tuples
(F,β), where F is a latent bandit with a rank dK latent subspace and β is a reward parameter in its support, satisfying the
following:

(i) For any offline behavior policy πb, all F have uniformly bounded λθ associated to the offline data.

(ii) For any offline behavior policy πb and any learner, there is a (F,β) such that the regret Reg(T,β) of the learner under
offline data from πb and F and online reward parameter β is bounded below by

Reg(T,β) ≥ Ω

(
min

(
dA
√
T , dK

√
T

(
1 +

√
dAT

dKN

)))

Remark 1. • We are stating a version with no contexts and only actions here for notational simplicity, the version for
contextual bandits has the same proof verbatim. One just replaces A with {ϕ(x, a) | x ∈ X , a ∈ A}.

• Note that the theorem statement is complicated to ensure that it is essentially the strongest version of the theorem
possible. Condition (i) is needed to ensure that we aren’t cheating by ensuring that the offline data itself obscures the
correct subspace. Condition (ii) is the actual regret lower bound.

Proof. The proof is inspired by the proof of Theorem 24.2 in Lattimore and Szepesvári (2018), giving a regret lower
bound for standard stochastic linear bandits with a unit ball action set. Without loss of generality, we can assume that
dA ≥ 1.01dK , otherwise both terms in the minimum have the same order and the proof is complete. An astute reader

will note that the regimes are separated based on whether dK
√
T

(
1 +

√
(dA−dK)T

dKN

)
≤ dA

√
T . We will first address the

difficult regime where 1
2 ≤

√
dKT

(dA−dK)N ≤ 1. Until stated otherwise in this proof, we will work in this regime and assume

that 1
2 ≤

√
dKT

(dA−dK)N ≤ 1.

F.1. Setup
Consider ∆in = 1

5
√
3

√
dK/T and ∆out =

1
4
√
3

√
dK/N . Let B := {±∆in}dK−1 × {0} × {±∆out}dA−dK and let β ∈ B.

We set the dthK coordinate to 0 for technical reasons. For any bandit instance β, let the rewards have Gaussian noise with
variance 1. Construct a family of latent bandit-online latent state pairs as follows. Define Fβ to be a latent bandit with
a uniform distribution over all 2dK−1 reward parameters obtained by negating any of the first dK − 1 coordinates of β.
Notice that this latent bandit has 2dK−1 latent states sharing a dK -dimensional subspace. Let us construct the family of pairs
(Fβ,β), where Fβ is the latent bandit used to generate offline data and β is the reward parameter underlying the online
trajectory.

Note that condition (i) is satisfied by merely computing the matrix Eβ[ββ
⊤] and noticing that eigenvalues are merely norms

dK

T∥β∥2
or dK

N∥β∥2
, up to a constant. Now note that ∥β∥2 =

√
d2
K

T + dK(dA−dK)
N up to a constant, so λθ is bounded since

1
2 ≤

dKT
(dA−dK)N ≤ 1

Notice that if β′ is β with any of the first dK − 1 coordinates negated, then Fβ′ is the same latent bandit as Fβ. Assume
that a fixed behavior policy πb is used to produce offline data, producing a known dataset of contexts and actions shared
across all latent bandit instances. We will repeatedly use the fact that dK − 1 ≥ dK/2 in this proof.

F.2. Proof Sketch and Intuition
Notice that we are working in the regime where N is significantly larger than T . That means that we are treating the first dK
coordinates as the main subspace and the rest of the coordinates as perturbations out of the subspace. This is represented in
the notation ∆in and ∆out. In our regime, where

√
dKT

(dA−dK)N ≤ 1, ∆out should be thought of as much smaller than ∆in.
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Eventually, we intend to lower bound the average regret over all pairs (Fβ,β) ranging over the vertices of a hypercuboid
B of reward parameters. This will allow us to claim that there exists one parameter β ∈ B for which the regret is larger
than this average. To lower bound this average, we first use change of measure inequalities, careful computation and clever
design of B to get an intermediate lower bound, bounding the average regret over any pair of "adjacent" tuples (F ′,β′) and
(F,β). These are pairs where the sign of only one coordinate is flipped from β to β′ and F and F ′ at most differ in their
"out of subspace" perturbation. We can then average over all such pairs to lower bound the regret averaged over all β ∈ B,
as desired.

We will need two separate computations for the intermediate lower bound – one for when the pair of adjacent reward
parameters corresponds to a coordinate i < dK , and another for when it corresponds to a coordinate i > dK . The proof
ends with the averaging trick mentioned in the previous paragraph.

F.3. Regret Lower Bound Decomposition
For i < dK , define τi = T ∧ min{t :

∑t
s=1 A

2
si ≥ T/dK}. For i ≥ dK , define τi = T ∧ min{t :

∑t
s=1 A

2
si ≥

T/(dA−dK)}. For now, let us denote the regret under parameter β to be Reg(T,β). Now note the following decomposition
of the lower bound.

Reg(T,β) = Eβ

[
∆in

T∑
t=1

dK−1∑
i=1

(
1√

dK − 1
−Ati sign(βi)

)

+∆out

T∑
t=1

dA∑
i=dK+1

(
1√

dA − dK
−Ati sign(βi)

)]

≥ Eβ

[∆in

√
dK − 1

2

T∑
t=1

dK−1∑
i=1

(
1√

dK − 1
−Ati sign(βi)

)2

+
∆out

√
dA − dK
2

T∑
t=1

dA∑
i=dK+1

(
1√

dA − dK
−Ati sign(βi)

)2 ]

≥ ∆in

√
dK − 1

2

dK−1∑
i=1

Eβ

[
τi∑
t=1

(
1√

dK − 1
−Ati sign(βi)

)2
]

+
∆out

√
dA − dK
2

dA∑
i=dK+1

Eβ

[
τi∑
t=1

(
1√

dA − dK
−Ati sign(βi)

)2
]

The first inequality holds by merely evaluating the square, simplifying and noting that ∥At∥22 ≤ 1. The second inequality

For i < dK and x ∈ {±1}, define Ui(x) :=
∑τi

t=1

(
1√

dK−1
−Ati sign(βi)

)2
. For i > dK and x ∈ {±1}, define

Ui(x) :=
∑τi

t=1

(
1√

dA−dK
−Ati sign(βi)

)2
.

Fix i and let β′ be such that β′
j = βj for j ̸= i and β′

i = −βi. Let P and P′ be the joint laws of the offline data and the
bandit/learner interaction measure for β and β′ respectively. We will bound Eβ[Ui(1)] + Eβ′ [Ui(−1)] in the following
subsections, treating i < dK and i > dK separately. This will allow us to bound

∑
β∈B Eβ[Ui(sign(βi))] later and apply an

averaging trick.

F.4. Bounding Eβ [Ui(1)] + Eβ′ [Ui(−1)] when i < dK
Note that

Eβ[Ui(1)]
(i)

≥ Eβ′ [Ui(−1)]−
(
6T

dK
+ 2

)√
1

2
D(P,P′)

(ii)

≥ Eβ′ [Ui(−1)]−∆in

(
3T

dK
+ 1

)√√√√ τi∑
t=1

A2
ti
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(iii)

≥ Eβ′ [Ui(−1)]−∆in

(
3T

dK
+ 1

)√
T

dK
+ 1

(iv)

≥ Eβ′ [Ui(−1)]−
5
√
3∆inT

dK

√
T

dK
(4)

where in (i), we rely on the bound below and then use the TV distance change of measure inequality, followed by Pinsker’s
inequality. The bound below relies on the fact that dK − 1 ≥ dK/2.

Ui(1) =

τi∑
t=1

(
1√

dK − 1
−Ati sign(βi)

)2

≤ 2

τi∑
t=1

1

dK − 1
+ 2

τi∑
t=1

A2
ti ≤

4T

dK
+

2T

dK
+ 2 =

6T

dK
+ 2

For the bound above, we use the definition of τi. In (ii), we use the chain rule for KL divergence under a stopping time,
and crucially note that the offline data distributions is identical in this case since Fβ = Fβ′ . Inequality (iii) holds by the
definition of τi, and inequality (iv) holds since dK ≤ dA ≤ 2T since d2AH ≤ 2T .

So, we can conclude that

Eβ[Ui(1)] + Eβ′ [Ui(−1)] ≥ Eβ′ [Ui(1) + Ui(−1)]−
5
√
3∆inT

dK

√
T

dK

= 2Eβ′

[
τi

dK − 1
+

τi∑
t=1

Ati2

]
− 5
√
3∆inT

dK

√
T

dK

≥ 2T

dK
− 5
√
3∆inT

dK

√
T

dK

=
T

dK
(5)

F.5. Bounding Eβ [Ui(1)] + Eβ′ [Ui(−1)] when i > dK
Note the following computation, where we let Ar,h be the action chosen at step h of offline trajectories d, where h = 1→ H
and r = 1→ N .

Eβ[Ui(1)]
(i)

≥ Eβ′ [Ui(−1)]−
(

4T

dA − dK
+ 2

)√
1

2
D(P,P′)

(ii)

≥ Eβ′ [Ui(−1)]−∆out

(
2T

dA − dK
+ 1

)√√√√ τi∑
t=1

A2
ti +

dK
48N

Eπb
[

N∑
r=1

H∑
h=1

A2
r,h,i]

(iii)

≥ Eβ′ [Ui(−1)]−∆out

(
2T

dA − dK
+ 1

)√
T

dA − dK
+

dKH

48

(iv)

≥ Eβ′ [Ui(−1)]−
5
√
3∆outT

dA − dK

√
T

dA − dK

where again in (i), we rely on the bound below and use the TV distance change of measure inequality, followed by Pinsker’s
inequality.

Ui(1) =

τi∑
t=1

(
1√

dA − dK
−Ati sign(βi)

)2

≤ 2

τi∑
t=1

1

dA − dK
+ 2

τi∑
t=1

A2
ti ≤

4T

dA − dK
+ 2

For the bound above, we use the definition of τi. In (ii), we use the chain rule for KL divergence under a stopping
time and include the non-zero KL divergence coming from the offline term this time, which appears as the second term
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in the square root. Inequality (iii) holds by the definition of τi and the fact that A2
ri ≤ 1. Inequality (iv) holds since

dk(dA − dK)H ≤ d2AH ≤ 2T .

So, we can conclude that

Eβ[Ui(1)] + Eβ′ [Ui(−1)] ≥ Eβ′ [Ui(1) + Ui(−1)]−
4
√
3∆outT

dA − dK

√
T

dA − dK

= Eβ′

[
τi

dA − dK
+

τi∑
t=1

Ati2

]
− 4
√
3∆outT

dA − dK

√
T

dA − dK

≥ 2T

dA − dK
− 4
√
3∆outT

dA − dK

√
T

dA − dK

=
2T

dA − dK
− T

dA − dK

√
dKT

(dA − dK)N

≥ T

dA − dK
(6)

where crucially, the last inequality holds since
√

dKT
(dA−dK)N ≤ 1.

F.6. Lower bounding regret using an averaging trick
For i ≤ dK , define by B−i := {±∆in}dK−2 × {0} × {±∆out}dA−dK , which is the slice of B where all coordinates but βi

vary. Similarly, for i > dK , define the slice B−i := {±∆in}dK−1 × {0} × {±∆out}dA−dK−1. We will denote the tuple of
coordinates of β other than i by β−i. We thus get the following lower bound on regret, using inequalities 4, 5 and 6.

∑
β∈B

Reg(T,β) ≥ ∆in

√
dK − 1

2

dK−1∑
i=1

∑
β∈B

Eβ[Ui(sign(βi))]

+
∆out

√
dA − dK
2

dA∑
i=dK+1

∑
β∈B

Eβ[Ui(sign(βi))]

=
∆in

√
dK − 1

2

dK−1∑
i=1

∑
β−i∈B−i

∑
βi∈{±∆in}

Eβ[Ui(sign(βi))]

+
∆out

√
dA − dK
2

dA∑
i=dK+1

∑
β−i∈B−i

∑
βi∈{±∆out}

Eβ[Ui(sign(βi))]

≥ ∆in

√
dK − 1

2

dK−1∑
i=1

∑
β−i∈B−i

T

dK
+

∆out

√
dA − dK
2

dA∑
i=dK+1

∑
β−i∈B−i

T

dA − dK

≥ ∆in

√
dK

2
√
2

∑
β−i∈B−i

T

2
+

∆out

√
dA − dK
2

∑
β−i∈B−i

T

=
2dA

80
√
6
dK
√
T

1 + 5

√
2
(dA − dK)T

dKN


That means that there exists β ∈ B so that

Reg(T,β) ≥ 1

80
√
6
dK
√
T

1 +

√
(dA − dK)T

dKN


As desired.
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F.7. The Other Two Regimes
In the regime dKT ≥ (dA− dK)N , one can simply use the 2dA bandit instances in the standard unit ball regret lower bound
from Theorem 24.2 in Lattimore and Szepesvári (2018) with dimension dA, and follow the proof essentially verbatim. The
only difference is that we will be choosing pairs of tuples (F ′,β′) and (F,β) instead of just pairs of reward parameters
β′ and β. One can choose any latent bandit with dK reward parameters in its support, two of which are β and β′, and set
both F and F ′ to this. For this, it is convenient to choose the latent bandit to have a uniform distribution over 2dK reward
parameters obtained by flipping signs of dK chosen coordinates, since then one can easily compute that λθ = 1. This will
ensure that offline data distributions are identical and the KL divergence contribution from the offline data distribution is 0,
allowing us to follow the proof of Theorem 24.2 in Lattimore and Szepesvári (2018) essentially verbatim. This establishes
condition (ii), and we have also establis

Similarly, when dKT ≪ (dA−dK)N , we can use the standard lower bound from Theorem 24.2 in Lattimore and Szepesvári
(2018) again, this time with dimension dK . Fix F to be the latent bandit with a uniform distribution over all 2dK reward
parameters B = {±∆in}dK × {0}dA−dK , and consider the family (F,β) of tuples with fixed F and β varying through B.
We can now follow the proof of Theorem 24.2 in Lattimore and Szepesvári (2018) verbatim. Again, the only difference is
that we will be choosing pairs of tuples (F,β′) and (F,β) instead of just pairs of reward parameters β′ and β. And yet
again, we can check that λθ = 1 and condition (i) is thus satisfied.
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G. Additional Algorithms
We provide a version of SOLD that utilizes pseudoinverses. We use this within our experiments to avoid having to search for
regularization parameters, and recommend that the user use this instead of Algorithm 1 when finding a suitable regularization
parameter is a concern.

Algorithm 4 Subspace estimation from Offline Latent bandit Data (SOLD) – Pseudoinverse Version

1: Input: Dataset Doff of collected trajectories τn = ((xn,1, an,1, rn,1), ..., (xn,H , an,H , rn,1)) under a behavior policy
πb, dimension of latent subspace dK .

2: Divide each τn into odd and even steps, giving trajectory halves τn,1 and τn,2.
3: Estimate reward parameters β̂n,i ← V†

n,ibn,i, where Vn,i ←
∑

(x,a,r)∈τn,i
ϕ(x, a)ϕ(x, a)⊤ and bn,i ←∑

(x,a,r)∈τn,i
ϕ(x, a)r for i = 1, 2.

4: Compute Mn ← 1
2 (β̂n,1β̂

⊤
n,2 + β̂n,2β̂

⊤
n,1) and compute MN ← 1

N

∑N
n=1 Mn.

5: Compute Wn,i, the eigenvectors of Vn,i corresponding to nonzero eigenvalues.
6: Compute DN,i ← 1

N

∑N
n=1(Wn,iW⊤

n,i)
†, i = 1, 2.

7: Obtain Û, the top dK eigenvectors of D−1

N,1MND−1

N,2.
8: return Projection matrix ÛÛ⊤, ∆off as in Theorem 1

We also provide a method of instantiating the ProBALL framework with linear Thompson sampling. Like ProBALL-
UCB, ProBALL-TS operates within the estimated subspace until the online uncertainty is low enough. We therefore
maintain two normal posterior distributions, one over the latent state parameter in the estimated subspace, and one over the
high-dimensional reward parameter, and sample from them as such.

Algorithm 5 Projection and Bonuses for Accelerating Latent bandit Thompson Sampling (ProBALL-TS)

1: Input: Projection matrix ÛÛ⊤, confidence bound ∆off . Hyperparameters α1,t, α2,t, τ, τ
′.

2: Initialize V1 ← I , b1 ← 0, Ct ← 0
3: for t = 1, . . . T do
4: if ∆offτ

√
t+∆offτ

′
√
dK
∑t

s=1κ
2
s/t ≤ dA then

5: Compute θ̄1,t ← (Û⊤VtÛ)−1Û⊤bt

6: Sample θ̂1,t ∼ N
(
β̄1,t, α

2
1,t(Û

⊤VtÛ)−1
)

7: Play at ← argmaxa ϕ(xt, a)
⊤Ûθ̂1,t

8: else
9: Compute β̄2,t ← V−1

t bt

10: Sample β̂2,t ∼ N
(
β̄2,t, α

2
2,tV

−1
t

)
11: Play at ← argmaxa ϕ(xt, a)

⊤β̂2,t

12: end if
13: Observe reward rt and update bt+1 ← bt + ϕ(xt, a)rt, Vt+1 ← Vt + ϕ(xt, a)ϕ(xt, a)

⊤

14: Update Ct+1 ← Ct + Û⊤ϕ(xt, at)ϕ(xt, at)
⊤, κt+1 ← ∥Ct+1∥(Û⊤Vt+1Û)−1

15: end for
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H. Experimental Details and Additional Experiments
H.1. Determining the Latent Rank from Offline Data
We note that as discussed in 3, we can use the eigenvalues of D−1

N,1MND−1

N,2 to determine the rank of our subspace. We
use the version of this arising from pseudo-inverses instead of regularization, just like in the MovieLens experiments. We
demonstrate that we can indeed determine that the dK = 18 by finding the significant eigenvalues of the pseudo-inverse
version of D−1

N,1MND−1

N,2 estimated from the offline dataset of 5000 samples. We show the plots and log plots of these
eigenvalues. We also plot the eigenvalues of the completed ratings matrix for comparison. Notice that they match and both
fall after 18 eigenvalues.

Figure 3: Plot of eigenvalues of aforementioned matrix. Notice the drop after 18 eigenvalues.

Figure 4: Log-plot of eigenvalues of aforementioned matrix. Notice the drop after 18 eigenvalues.
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H.2. Simulation Study
We generate U∗ with Uij i.i.d. Unif(0, 2.5

dKdA
). We simulate the hidden labels θn ∼ N (0, d−1

K IdK
), generate feature vectors

ϕ(xn,h, an,h) ∼ N (0, IdA
) normalized to unit norm, and sample noise ϵn,h i.i.d. N (0, 0.52). We use SOLD to estimate Û

from the offline dataset Doff , which consists of 5000 trajectories of length 20 each. In accordance with the confidence set
determined by (Li et al., 2010), we choose α1,t = 0.33

√
dK log(1 + 10T/dK) and α2,t = 0.33

√
dA log(1 + 10T/dA),

and share the LinUCB and ProBALL-UCB hyperparameters by assigning αt = α2,t. 11

Figure 5: Comparison of ProBALL-UCB with LinUCB, for different choices of τ and confidence bound constructions. All
variants perform no worse than LinUCB, with martingale Bernstein performing the best. The shaded area depicts 1-standard
error confidence intervals over 30 trials.

11All experiments were run on a single computer with an Intel i9-13900k CPU, 128GB of RAM, and a NVIDIA RTX 3090 GPU, in no
more than an hour in total.

38



Leveraging Offline Data in Linear Latent Contextual Bandits

H.3. MovieLens
MovieLens (Harper and Konstan, 2015) is a large-scale movie recommendation dataset comprising 6040 users and 3883
movies, where each user may rate one or more movies. Like (Hong et al., 2020), we filter the dataset to include only
movies rated by at least 200 users and vice-versa. We factor the sparse rating matrix into user parameters β and movie
features Φ using the probabilistic matrix factorization algorithm of (Mnih and Salakhutdinov, 2007b), using nuclear norm
regularization so that the rank of β is dK = 18. However, we consider a much higher dimensional problem than (Hong
et al., 2020) do – we let dA = 200 so β ∈ R1589×200,Φ ∈ R200×1426. At each round for user i, the agent chooses between
20 movies of different genres with features Φa1

, ...,Φa20
, and has to recommend the best movie presented to it to maximize

the user’s rating of the movie. We generate rewards for recommending movie j to user i by βT
i Φj + ϵij , ϵij i.i.d. N (0, 0.5).

Our hyperparameters are chosen and varied just as in the simulation study. To reproduce the methods of (Hong et al., 2020),
we cluster the user features into dK clusters using k-means, and provide mUCB and mmUCB with the mean vectors of each
cluster as latent models. We initialize ProBALL-UCB with a subspace estimated with an unregularized variant of SOLD,
that uses pseudo-inverses instead of inverses, because of difficulties in finding an appropriate regularization parameter for
this large, noisy, and high-dimensional dataset. The subspace was estimated from 5000 trajectories of length 50 simulated
from the reward model and the uniform behavior policy. Note that we assign ∆off for ϵ in mmUCB, as this is their tolerance
parameter for model misspecification.

Figure 6: Comparison of ProBALL-UCB with LinUCB and TS algorithms, for different choices of τ and confidence bound
constructions. All variants perform no worse than LinUCB and outperform the TS algorithms, with martingale Bernstein
performing the best. The shaded area depicts 1-standard error confidence intervals over 30 trials.

Figure 7: Comparison of ProBALL-UCB and ProBALL-TS initialized with SOLD against LinUCB, TS, MixTS, and mmTS,
for different choices of τ and confidence bound constructions. ProBALL-UCB outperforms LinUCB, and ProBALL-TS
outperforms MixTS and mmTS. Shaded area depicts 1-standard error confidence intervals over 30 trials with fresh θ. The
confidence intervals on regret thus account for the variation in frequentist regret for changing θ.

39



Leveraging Offline Data in Linear Latent Contextual Bandits

H.3.1. UCB ALGORITHMS

Figure 8: Comparison of ProBALL-UCB initialized with SOLD against LinUCB, mUCB, and mmUCB, for different
choices of τ and confidence bound constructions, in terms of regret. All variants of ProBALL-UCB perform no worse than
LinUCB, and outperform mUCB and mmUCB. Shaded area depicts 1-standard error confidence intervals over 30 trials with
fresh θ. The confidence intervals on regret thus account for the variation in frequentist regret for changing θ.

Figure 9: Comparison of ProBALL-UCB initialized with SOLD against LinUCB, mUCB, and mmUCB, for different
choices of τ and confidence bound constructions, in terms of rolling average rating over 25 timesteps. ProBALL-UCB
performs no worse than LinUCB, and outperforms mUCB and mmUCB.
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H.3.2. TS ALGORITHMS

Figure 10: Comparison of ProBALL-TS initialized with SOLD against TS, mmTS, and MixTS, for different choices of τ
and confidence bound constructions, in terms of regret. All variants of ProBALL-TS outperform TS, mmTS, and MixTS.

Figure 11: Comparison of ProBALL-TS initialized with SOLD against TS, mmTS, and MixTS, for different choices of
τ and confidence bound constructions, in terms of rolling average rating over 25 timesteps. All variants of ProBALL-TS
outperform TS, mmTS, and MixTS. Shaded area depicts 1-standard error confidence intervals over 30 trials with fresh θ.
The confidence intervals on regret thus account for the variation in frequentist regret for changing θ.

41



Leveraging Offline Data in Linear Latent Contextual Bandits

H.3.3. COMPARISON AGAINST LOW-DIMENSIONAL GROUND TRUTH SUBSPACES

Figure 12: Comparison of ProBALL-UCB initialized with SOLD against LinUCB, mUCB, and mmUCB on low-dimensional
ground-truth features, for different choices of τ and confidence bound constructions. When τ is small enough, all variants
of ProBALL-UCB perform no worse than low-dimensional LinUCB, and outperform mUCB and mmUCB, on ground
truth features. This showcases the efficacy of SOLD, and demonstrates that we recover subspaces that are just as good as
ground-truth. Shaded area depicts 1-standard error confidence intervals over 30 trials with fresh θ. The confidence intervals
on regret thus account for the variation in frequentist regret for changing θ.

Figure 13: Comparison of ProBALL-UCB initialized with SOLD against LinUCB, mUCB, and mmUCB on low-dimensional
ground-truth features, for different choices of τ and confidence bound constructions. When τ is small enough, all variants
of ProBALL-UCB perform no worse than low-dimensional LinUCB, and outperform mUCB and mmUCB, on ground
truth features. This showcases the efficacy of SOLD, and demonstrates that we recover subspaces that are just as good as
ground-truth. Shaded area depicts 1-standard error confidence intervals over 30 trials with fresh θ. The confidence intervals
on regret thus account for the variation in frequentist regret for changing θ.
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H.3.4. NO USAGE OF SOLD

Figure 14: Comparison of ProBALL-UCB initialized with ground truth subspaces against LinUCB, mUCB, and mmUCB,
for different choices of τ and confidence bound constructions. All variants of ProBALL-UCB perform no worse than
LinUCB, and outperform mUCB and mmUCB. Shaded area depicts 1-standard error confidence intervals over 30 trials with
fresh θ. The confidence intervals on regret thus account for the variation in frequentist regret for changing θ.

Figure 15: Comparison of ProBALL-UCB initialized with ground truth subspaces against LinUCB, mUCB, and mmUCB,
for different choices of τ and confidence bound constructions, in terms of rolling average rating over 25 timesteps. All
variants of ProBALL-UCB perform no worse than LinUCB, and outperform mUCB and mmUCB. Shaded area depicts
1-standard error confidence intervals over 30 trials with fresh θ. The confidence intervals on regret thus account for the
variation in frequentist regret for changing θ.
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H.4. Sample Complexity of SOLD
We perform an empirical study of the sample complexity of SOLD on the MovieLens dataset. To do so, we compare the
end-to-end regret at T = 200 timesteps of both ProBALL-UCB and ProBALL-TS, against LinUCB and Linear Thompson
sampling using ground-truth low-dimensional features. When τ is small enough, we see that the end-to-end regret of
both ProBALL-UCB and ProBALL-TS converges to that of LinUCB and Linear Thompson sampling using ground-truth
low-dimensional features. This shows that we lose little from needing to estimate the subspace with SOLD when enough
offline samples are present.

Figure 16: Subspace estimation error of SOLD against the number of offline samples, in the Frobenius norm. This was
performed on the MovieLens dataset. We compare the error of SOLD against the parametric rate of 1/

√
N . This shows that

the error of SOLD indeed decreases very quickly in practice.
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Figure 17: End-to-end regret at T = 200 timesteps of ProBALL-UCB initialized with SOLD, against the number of offline
samples used in fitting SOLD. With a low enough τ , the regret of ProBALL-UCB approaches the regret of LinUCB on
ground-truth low-dimensional features, showing that we lose next to nothing from needing to estimate the subspace with
SOLD. Shaded area depicts 1-standard error confidence intervals over 30 trials with fresh θ.

Figure 18: End-to-end regret at T = 200 timesteps of ProBALL-TS initialized with SOLD, against the number of offline
samples used in fitting SOLD. With a low enough τ , the regret of ProBALL-TS approaches the regret of TS on ground-truth
low-dimensional features, showing that we lose next to nothing from needing to estimate the subspace with SOLD. Shaded
area depicts 1-standard error confidence intervals over 30 trials with fresh θ.
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