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Abstract

The versatility of exponential families, along
with their attendant convexity properties,
make them a popular and effective statisti-
cal model. A central issue is learning these
models in high-dimensions when the optimal
parameter vector is sparse. This work char-
acterizes a certain strong convexity property
of general exponential families, which allows
their generalization ability to be quantified.
In particular, we show how this property can
be used to analyze generic exponential fami-
lies under L1 regularization.

1 INTRODUCTION

Exponential models are perhaps the most versatile and
pragmatic statistical models for a variety of reasons:
modelling flexibility (encompassing discrete variables,
continuous variables, covariance matrices, time series,
graphical models, etc); convexity properties allowing
easy optimization; and robust generalization ability.
For large scale problems, a key issue is estimating these
models when the dimension p of parameters is much
larger than the sample size n (the “p� n” regime).

Much recent work has focused on this problem in the
special case of linear regression in high dimensions,
where it is assumed that the optimal parameter vec-
tor is sparse (e.g. Zhao and Yu (2006); Candes and
Tao (2007); Meinshausen and Yu (2009); Bickel et al.
(2008)). This body of prior work focused on: sharply
characterizing the convergence rates for the prediction
loss; consistent model selection; and obtaining sparse
models. As we tackle more challenging problems, there
is a growing need for model selection in more general
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exponential families. Recent work here includes learn-
ing Gaussian graphs (Ravikumar et al., 2008b)) and
Ising models (Ravikumar et al., 2008a).

Classical results established that consistent estima-
tion in general exponential families is possible, in the
asymptotic limit where the number of dimensions is
held constant (though some work establishes rates un-
der certain conditions as p is allowed to grow slowly
with n (Portnoy, 1988; Ghosal, 2000)). However, in
modern problems, we typically grow p rapidly with n.
While we have a handle on this question for a variety of
special cases, a pressing question here is understand-
ing how fast p can scale as a function of n in general
exponential families. We need to quantify the relevant
aspects of the particular family at hand that govern its
convergence rate. This is the focus of this work. We
should emphasize that throughout this paper, while we
are interested in modelling with an exponential family,
we do not necessarily assume that the data generating
process is from this family.

Our Contributions and Related Work The key
issue in analyzing the convergence rates of exponen-
tial families in terms of their prediction loss (which we
take to be the log loss) is in characterizing the nature
in which they are strictly convex. Roughly speaking,
in the large n regime (with p kept fixed), we have a
central limit theorem effect where the log loss of any
exponential family approaches the log loss of a Gaus-
sian, with a covariance matrix corresponding to the
Fisher information matrix. Our first main contribu-
tion is quantifying the rate at which this effect occurs
in general exponential families.

In particular, we show that every exponential family
satisfies a certain rather natural growth rate condition
on their standardized moments and standardized cu-
mulants (recall that the k-th standardized moment is
the unitless ratio of the k-th central moment to the k-
th power of the standard deviation, which for k = 3, 4
is the skew and kurtosis). This condition is rather
mild: these moments can grow as fast as k!. We show
that this growth rate characterizes the rate at which
the prediction loss of the exponential family behaves as
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a strongly convex loss function. In particular, our anal-
ysis draws many parallels to that of Newton’s method,
where there is a “burn in” phase in which a number
of iterations must occur until the function behaves as
a locally quadratic function. In our statistical setting,
we show that beyond a (quantified) “burn-in” sam-
ple size, the prediction loss inherits the desired strong
convexity properties.

Our second contribution is an analysis of L1 regular-
ization in generic families, in terms of both predic-
tion loss and the sparsity level of the selected model.
Under a particular condition on the design matrix
(the Restricted Eigenvalue (RE) condition in Bickel
et al. (2008)), we show how L1 regularization in gen-
eral exponential families enjoys a convergence rate of
O( s log p

n ) (where s is the number of relevant features).
The RE condition is one of the least stringent condi-
tions which permit this optimal convergence rate for
linear regression (see Bickel et al. (2008)). Stronger
mutual incoherence/irrepresentable conditions consid-
ered in Zhao and Yu (2006) also provide this rate. We
show that an essentially identical convergence rate can
be achieved for general exponential families. Our re-
sults are non-asymptotic and precisely relate n and p.
Also, our results hold no matter what the distribu-
tion generating the data is. For recent related work
under distributional assumptions, see Bunea (2008);
Bach (2009); Negahban et al. (2009). Distribution-
free results are obtained in van de Geer (2008) but the
strong convexity aspect of the problem is not investi-
gated but assumed away.

Our final contribution is one of approximate sparse
model selection, i.e. obtaining a sparse model with
low prediction loss. A drawback of the RE condition in
comparison to the more stringent mutual incoherence
condition is that the latter permits perfect recovery of
the true features. However, for the case of the linear
regression, Zhao and Yu (2006); Bickel et al. (2008)
show that, under a sparse eigenvalue or RE condition,
the L1 solution itself is sparse (with a multiplicative
increase in the sparsity level, that depends on a certain
condition number of the design matrix). So, while the
L1 solution may not precisely recover the true model,
it still is sparse and does recover those features with
large true weights.

For general exponential families, while we do not have
a characterization of the sparsity level of the L1 solu-
tion (an interesting open question), we do provide a
simple 2-stage procedure (thresholding and refitting)
that provides a sparse model, with support on no more
than merely 2s features and that has nearly as good
performance. This result is novel even for the square
loss case. Thus, even under the rather mild RE condi-
tion, we can obtain both a favorable convergence rate

and a sparse model for generic families.

2 THE SETTING

Our samples t ∈ Rp are distributed independently ac-
cording to D, and we model the process with P (t|θ),
where θ ∈ Θ. However, we do not necessarily assume
that D lies in this model class. The class of interest is
exponential families, which, in their natural form, we
denote by P (t|θ) = ht exp{〈θ, t〉 − logZ(θ)}, where t
is the natural sufficient statistic for θ, and Z(θ) is the
partition function. Here, Θ is the natural parameter
space: the (convex) set where Z is finite. While we
work with an exponential family in this general form,
it should be kept in mind that t can be the sufficient
statistic for some prediction variable y, or, for a gener-
alized linear model (such as for logistic/linear regres-
sion), t can be a function of both y and some covariate
X (see Dobson (1990)). We return to this point later.

Our prediction loss is the log-loss and θ∗ is the optimal
parameter vector, i.e. L(θ) = Et∼D[− logP (t|θ)], and
θ? = argminθ∈Θ L(θ). We assume that θ∗ is an interior
point of Θ. Later we consider the case where θ? is
sparse. We denote the Fisher information of P (·|θ?)
as F? = Et∼P (·|θ?)

[
−∇2 logP (t|θ?)

]
, under the model

of θ?. The induced “Fisher risk” is ‖θ − θ?‖2F? = (θ −
θ?)>F?(θ−θ?). We also consider the L1 risk ‖θ−θ?‖1.

For a sufficiently large sample size, we expect that the
Fisher risk of a reasonable estimator θ̂, ‖θ̂ − θ?‖2F? ,
will be close to L(θ̂) − L(θ?). One of our main con-
tributions (Thm. 3.4) is quantifying when this occurs
in general exponential families. This characterization
is then used to quantify the convergence rate for L1

methods in these families. We expect this strong con-
vexity property to be useful for characterizing the per-
formance of other regularization methods as well. All
proofs are postponed till the appendix.

3 (Almost) STRONG CONVEXITY
OF EXPONENTIAL FAMILIES

We first consider a certain bounded growth rate con-
dition for standardized moments and standardized cu-
mulants, satisfied by all exponential families. This
growth rate is fundamental in establishing how fast
the prediction loss behaves as a quadratic function.

3.1 ANALYTIC STANDARDIZED
MOMENTS AND CUMULANTS

Moments: For a univariate random variable (r.v.)
z distributed as ρ, denote its k-th central moment
by mk,ρ(z) = Ez∼ρ [z −m1,ρ(z)]

k, where m1,ρ(z) is
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the mean Ez∼ρ[z]. Recall that the k-th standard-
ized moment is the ratio of the k-th central mo-
ment to the k-th power of the standard deviation, i.e.
mk,ρ(z)/m2,ρ(z)k/2. This normalization by the stan-
dard deviation makes the standard moments unitless
quantities. For k = 3, 4, the standardized moments
are the skew and kurtosis. We now define the analytic
standardized moment for z. We use the term analytic
to reflect that if the moment generating function of z
is analytic1 then z has an analytic moment.

Definition 3.1. Let z be a univariate r.v. under ρ.
Then z has an analytic standardized moment of α if
the standardized moments exist and,

∀k ≥ 3,
∣∣∣ mk,ρ(z)

m2,ρ(z)k/2

∣∣∣ ≤ 1
2k! αk−2

(where the above is assumed to hold if the denominator
is 0). If t ∈ Rp is a multivariate r.v., we say that t
has an analytic standardized moment of α with respect
to a subspace V ⊂ Rp if the above bound holds for all
univariate z = 〈v, t〉 where v ∈ V.

This condition is rather mild: the standardized mo-
ments can increase as fast as k!αk−2. This condition
is closely related to those used in obtaining sharp ex-
ponential type tail bounds for the convergence of a r.v.
to its mean. In fact, the Bernstein conditions (Bern-
stein, 1946) are almost identical, except that they use
the k-th raw moments2. These moment conditions are
weaker than requiring “sub-Gaussian” tails.

Cumulants: Recall that the cumulant-generating
function f of z under ρ is the log of the moment-
generating function, if it exists: f(s) = log E[esz].
The cumulants are given by the derivatives of f at
0: ck,ρ(z) = f (k)(0). The 1st, 2nd and 3rd cumu-
lants and central moments are identical. Higher cu-
mulants are neither moments nor central moments, but
rather more complicated polynomial functions of the
moments. Analogously, the k-th standardized cumu-
lant is ck,ρ(z)/c2,ρ(z)k/2. Again, normalization by the
standard deviation (the 2nd cumulant is the variance)
makes these unitless quantities. Cumulants are viewed
as equally fundamental as central moments, and we
make use of their behavior as well. In certain settings,
it is more natural to work with the cumulants. We de-
fine the analytic standardized cumulant analogously:

Definition 3.2. Let z be a univariate r.v. under ρ.
Then z has an analytic standardized cumulant of α if

1Recall that a real valued function is analytic on some
domain of Rp if the derivatives of all orders exist, and if
for each interior point, the Taylor series converges in some
sufficiently small neighborhood of that point.

2The Bernstein inequalities used in deriving tail bounds

require that, for all k ≥ 2, E[zk]

E[z2]
≤ 1

2
k!Lk−2 for some con-

stant L (which has units of z).

the standardized cumulants exist and,

∀k ≥ 3,
∣∣∣ ck,ρ(z)

c2,ρ(z)k/2

∣∣∣ ≤ 1
2k! αk−2

(where the above is assumed to hold if the denominator
is 0). If t ∈ Rp is a multivariate r.v., we say that t has
an analytic standardized cumulant of α with respect to
a subspace V ⊂ Rp if the above bound holds for all
univariate z = 〈v, t〉 where v ∈ V.

Existence: While we do not expect analytic moments
to exist for all distributions (e.g. heavy tailed ones),
the next lemma shows that exponential families have
(finite) analytic standardized moments and cumulants.

Lemma 3.3. If t is the sufficient statistic of an ex-
ponential family with parameter θ and θ is an interior
point of the natural parameter space, then t has both a
finite analytic standardized moment and a finite ana-
lytic standardized cumulant, with respect to all of Rp.

We skip the technical proof that follows easily from the
analyticity of the moment and cumulant generating
functions. Reassured by this existence result, let us
now consider some concrete examples.

3.2 EXAMPLES

Going through the examples, there are two issues to
bear in mind. First, α is quantified only at a partic-
ular θ (later, θ? is the point we will be interested in).
Note that we do not require any uniform conditions on
any derivatives over all θ. Second, we are interested in
how α could depend on the dimensionality. In some
cases, α is dimension free and in other cases (like for
generalized linear models), α depends on the dimen-
sion through spectral properties of F? (this dimension
dependence can be relaxed in the sparse case that we
consider, as discussed later).

3.2.1 One Dimensional Families

Bernoulli In the canonical form, the Bernoulli dis-
tribution is P (y|θ) = exp

(
yθ − log(1 + eθ)

)
with θ ∈

R = Θ. We have m1(θ?) = eθ
?

/(1 + eθ
?

). The central
moments satisfy m2(θ?) = m1(θ?)(1 − m1(θ?)) and
mk(θ?) ≤ m2(θ?) for k ≥ 3. Thus, α = 1/

√
m2(θ?) is

a standardized analytic moment at any θ? ∈ Θ. Fur-
ther, ck(θ?) ≤ c2(θ?) = m2(θ?) for k ≥ 3. Thus, α is
also a standardized analytic cumulant at any θ? ∈ Θ.

Unit variance Gaussian In the canonical form, unit
variance Gaussian is P (y|θ) ∝ exp(−y2/2) exp(yθ −
θ2/2) with θ ∈ R = Θ and m1(θ?) = θ?, m2(θ?) = 1.
Odd central moments are 0 and for even k ≥ 4, we
have mk(θ?) = k!/2k/2(k/2)!. Thus, α = 1 is a stan-
dardized analytic moment at any θ? ∈ Θ. However,
the log-likelihood is already quadratic in this case (as
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we shall see, there should be no “burn in” phase un-
til it begins to look like a quadratic!). This becomes
evident if we consider the cumulants instead. All cu-
mulants ck(θ?) = 0 for k ≥ 3 and hence α = 0 is a
standardized analytic cumulant at any θ? ∈ Θ.

3.2.2 Gaussian Covariance Estimation

Consider a mean zero high-dimensional (p � 1) mul-
tivariate Normal parameterized by the precision ma-
trix Θ, P (Y |Θ) ∝ exp

(
− 1

2 〈Θ, Y Y
>〉+ log det(Θ)

)
.

A “direction” here is a positive semi-definite (p.s.d.)
matrix V , and we seek the cumulants of the r.v.
〈V, Y Y >〉. Note that Y Y > has Wishart distribu-
tion Wp(Θ−1, 1) with the moment generating func-
tion, det

(
I− 2VΘ−1

)−1/2. Let λi’s be the eigenval-
ues of VΘ−1. Then, taking logs, the cumulant gen-
erating function is f(s) = log E

[
exp(s〈V, Y Y >〉)

]
=

−1
2

∑p
i=1 log(1 − 2sλi). The derivatives are f (k)(s) =

1
2

∑p
i=1

(k−1)!(2λi)
k

(1−2sλi)k
. Thus, the cumulant ck,Θ(V ) =

f (k)(0) = 2k−1(k − 1)!
∑
i λ

k
i . Hence, for k ≥ 3,

ck,Θ(V )

(c2,Θ(V ))k/2 = 2k−1(k−1)!
∑
i λ
k
i

(2
∑
i λ

2
i )
k/2 ≤ 1

22k/2−1 · k! .

Thus, α =
√

2 is a standardized analytic cumulant at
Θ. It is harder to estimate the central moments in this
case. This example is also interesting in connection to
the analysis of Newton’s method as log det(Θ) is self-
concordant on the cone of p.s.d. matrices.

3.2.3 Generalized Linear Models

Suppose we have some covariate, response pair (X,Y )
drawn from some distribution D. Consider a family
of distributions P (·|θ;X) such that, for each X, it is
an exponential family with natural sufficient statistic
ty,X , P (y|θ;X) = hy exp (〈θ, ty,X〉 − logZX(θ)). The
loss we consider is L(θ) = EX,Y∼D [− logP (y|θ;X)]. A
special case of this setup is as follows. Say we have a
1-dimensional exponential family qν(y) = hy exp(yν −
logZ(ν)), where y, ν ∈ R. The family P (·|θ;X)
can be simply q〈θ,X〉 (i.e. take ν = 〈θ,X〉). Thus,
P (y|θ;X) = hy exp (y〈θ,X〉 − logZ(〈θ,X〉)). We see
that ty,X = yX and ZX(θ) = Z(〈θ,X〉). For ex-
ample, when qν is either the Bernoulli family or the
Gaussian family, this corresponds to logistic regres-
sion or least squares regression, respectively. It turns
out that the analog of having a standardized analytic
moment of α at θ w.r.t. a direction v is to have
mk,θ(v)/(m2,θ(v))k/2 ≤ 1

2k!αk−2, where mk,θ(v) =
EX

[
mk,P (·|θ;X)(〈ty,X , v〉)

]
. Here, the expectation is

under X ∼ DX , the marginal of D on X. If ‖ty,X‖2 ≤
B and the expected Fisher information matrix3 has

3i.e. EX
[
Ey∼P (·|θ;X)

[
−∇2 logP (y|θ;X)

]]
.

minimum eigenvalue λmin, then α = B/λmin. Note
that λmin could be small but it arose only because
we are considering arbitrary directions v. If the set
of directions is smaller, one can often get less pes-
simistic bounds (see Sec. 5.0.3). Also note that similar
bounds can be derived assuming subgaussian tails for
ty,X rather than assuming it is bounded.

3.3 ALMOST STRONG CONVEXITY

Recall that a strictly convex function F is strongly
convex if the Hessian ∇2F has a (uniformly) lower
bounded eigenvalue. In general, exponential families
behave in a strongly convex manner only in a (suf-
ficiently small) neighborhood of θ?. Our first main
result quantifies when this behavior is exhibited.

Theorem 3.4. (Almost Strong Convexity) Let α be
the analytic standardized moment/cumulant under θ?

w.r.t. a subspace V. For any θ s.t. θ − θ? ∈ V, if

L(θ)− L(θ?) ≤ 1
65α2 or ‖θ − θ?‖2F? ≤ 1

16α2

then

1
4‖θ − θ

?‖2F? ≤ L(θ)− L(θ?) ≤ 3
4‖θ − θ

?‖2F? .

Both preconditions can be thought of as a “burn in”
phase. The idea is that initially, a certain number
of samples is needed until the loss of θ is somewhat
close to the minimal loss; after which, the quadratic
lower bound engages. This is analogous to the analysis
of the Newton’s method, which quantifies the number
of steps needed to enter the quadratically convergent
phase. The constants of 1/4 and 3/4 can be made ar-
bitrarily close to 1/2 (with a longer “burn in” phase).
A key idea in the proof is an expansion of the predic-
tion regret in terms of the moments/cumulants. We
use the shorthand notation of ck,θ(∆) and mk,θ(∆) to
denote the cumulants and moments of the r.v. 〈∆, t〉
under the distribution P (·|θ).
Lemma 3.5. (Moment and Cumulant Expansion) De-
fine ∆ = θ − θ?. For all s ∈ [0, 1],

L(θ? + s∆)− L(θ?) =
∞∑
k=2

1
k!ck,θ?(∆)sk

L(θ? + s∆)− L(θ?) = log

(
1 +

∞∑
k=2

1
k!mk,θ?(∆)sk

)

where the equalities hold if the r.h.s. converges.

The relatively straightforward proof of this lemma
is skipped. The key technical step in the proof of
Thm. 3.4 is characterizing when these expansions con-
verge. Even if ‖θ−θ?‖2F? ≤ 1

16α2 (one of our precondi-
tions), a direct attempt at lower bounding L(θ)−L(θ?)
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using the above expansions with the analytic moment
condition would not imply these expansions converge;
the proof requires a more delicate argument.

4 SPARSITY

We now consider the case where θ∗ is sparse, with
support S and sparsity level s, i.e.

S = {i : [θ?]i 6= 0}, s = |S| .

To understand when L1 regularized algorithms (for lin-
ear regression) converge at a rate comparable to that
of L0 algorithms (subset selection), Meinshausen and
Yu (2009) considered a sparse eigenvalue condition on
the design matrix, where the eigenvalues on any small
(sparse) subset are bounded away from 0. Bickel et al.
(2008) relaxed this condition by considering vectors
most of whose support is on a small subset (see Bickel
et al. (2008) for a discussion). We also consider this
relaxed condition, but now on the Fisher matrix.

Assumption 4.1. (Restricted Fisher Eigenvalues)
For δ ∈ Rp, let δS ∈ Rp be defined as [δS ]i = δi1(i∈S)

and let SC be the complement of S. Assume that:

∀δ s.t. ‖δSC‖1 ≤ 3‖δS‖1, ‖δ‖F? ≥ κ?min‖δS‖2
∀δ s.t. δSC = 0, ‖δ‖F? ≤ κ?max‖δS‖2

The constant of 3 is for convenience. Note we only
quantify on the support S: a substantially weaker con-
dition than in Meinshausen and Yu (2009); Bickel et al.
(2008), who quantify over all subsets (in fact, many
previous algorithms/analysis actually use this condi-
tion on subsets different from S, e.g. Meinshausen
and Yu (2009); Candes and Tao (2007); Zhang (2008)).
Furthermore, with regards to our analyticity condi-
tions, our proof shows that the subspace of directions
we need to consider is now restricted to the set:

V = {v : ‖vSC‖1 ≤ 3‖vS‖1} (1)

Under this Restricted Eigenvalue (RE) condition, we
can replace the minimal eigenvalue used in Exam-
ple 3.2.3 by κ?min (section 5.0.3 in appendix), which
could be significantly smaller.

4.1 FISHER RISK

Consider the L1 regularized problem:

θ̂ = argminθ∈Θ Ê[− logP (y|θ)] + λ‖θ‖1 (2)

where the empirical expectation is with respect to a
sample. This reduces to the usual linear regression
example (for Gaussian means) and involves the log-
determinant in Gaussian graph setting (considered in

Ravikumar et al. (2008b)) where θ is the precision
matrix (see Example 3.2.2). Our next main result
provides risk bounds for θ̂, under the RE condition.
Typically, the regularization parameter λ is specified
as a function of the noise level, under a particular
noise model (e.g. for linear regression case, where
Y = βX + η with the noise model η ∼ N (0, σ2), λ

is specified as σ
√

log p
n (Meinshausen and Yu, 2009;

Bickel et al., 2008)). Here, our theorem is stated in a
deterministic manner, to explicitly show that an ap-
propriate value of λ is determined by the L∞ norm of
the measurement error ‖E[t]− Ê[t]‖∞. We then easily
quantify λ in a corollary under a mild distributional as-
sumption. Also, we must have that this measurement
error be (quantifiably) sufficiently small such that our
“burn in” condition holds.
Theorem 4.2. (Risk) Suppose that Assumption 4.1
holds and λ satisfies both

‖E[t]− Ê[t]‖∞ ≤ λ
2 and λ ≤ 1

100α?2‖θ?‖1 (3)

where α? is the analytic standardized moment or cu-
mulant of θ? for the subspace V defined in (1). Then
if θ̂ is a solution to (2), the Fisher risk is bounded as:

1
4‖θ̂ − θ

?‖2F? ≤ L(θ̂)− L(θ?) ≤ 9sλ2

κ?min
2

and the L1 risk is bounded as:

‖θ̂ − θ?‖1 ≤ 24sλ
κ?min

2 .

We expect the measurement error ‖E[t] − Ê[t]‖∞ to
be O(σ

√
log p/n), so we think of λ = O(σ

√
log p/n).

This would recover the usual (optimal) risk bound of
O(σ2 s log p

n ) Note that the mild dimension dependence
enters through the measurement error. Hence, our the-
orem shows that all exponential families exhibit favor-
able convergence rates under the RE condition. The
following proposition and corollary quantify this under
a mild (and standard) distributional assumption.
Proposition 4.3. If t is sub-Gaussian, ie. there exists
σ ≥ 0 such that ∀i and ∀s ∈ R, E

[
es(ti−Eti)

]
≤ eσ2s2/2,

then for any δ > 0, with probability at least 1− δ,

‖E[t]− Ê[t]‖∞ ≤ σ

√
log
(p
δ

)
n

Bounded r.v.’s are sub-Gaussian (though boundedness
is not necessary: Gaussian r.v.’s are obviously sub-
Gaussian). The following corollary is immediate.
Corollary 4.4. Suppose Assumption 4.1 and sub-
Gaussian condition in Proposition 4.3 hold. For n ≥
Kα?4‖θ?‖21σ2 log

(
p
δ

)
, (K is a universal constant), and

λ = 2σ
√

log(p/δ)
n , with probability at least 1− δ,

‖θ̂ − θ?‖2F? ≤
(

36
κ?min

2

) σ2s log
(p
δ

)
n ,
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‖θ̂ − θ?‖1 ≤ 48σs
κ?min

2

√
log(

p
δ )

n .

4.2 APPROXIMATE MODEL SELECTION

An important issue unaddressed by the previous result
is the sparsity level of our estimate θ̂. For the linear re-
gression case, Meinshausen and Yu (2009); Bickel et al.
(2008) show that the L1 solution is actually sparse,
with a sparsity level of roughly O((κ

?
max
κ?min

)2s), In the
general setting, we do not have a characterization of
the sparsity level of the L1 solution. However, we now
present a 2-stage procedure, which provides an esti-
mate with support on merely 2s features, with nearly
as good risk. Consider the procedure where we select
the set of coordinates which have large weight under
θ̂ (greater than some threshold τ). Then we refit to
find an estimate with support only on these coordi-
nates. That is, we restrict our estimate to the set
Θτ = {θ ∈ Θ : θi = 0 if |θ̂i| ≤ τ}. This algorithm is:

θ̃ = argminθ∈Θτ L̂(θ) + λ‖θ‖1 (4)

Theorem 4.5. (Sparsity) Suppose that 4.1 holds and
the regularization parameter λ satisfies both

‖E[t]− Ê[t]‖∞ ≤ λ
2

λ ≤ min{ 1
270α?2‖θ?‖1 ,

κ?min
2

340κ?maxα
?
√
s
}

(5)

where α? is the analytic standardized moment or cu-
mulant of θ? for the subspace V defined in (1). If θ̂, θ̃
are solutions of (2), (4) respectively with this λ and
τ = 18λ

κ?min
2 , then (i) θ̃ has support on at most 2s coor-

dinates, and (ii) the Fisher risk is bounded as:

1
4‖θ̂ − θ

?‖2F? ≤ L(θ̂)− L(θ?) ≤
(

12κ
?
max
κ?min

)2
9 sλ2

κ?min
2

Using Proposition 4.3, we have following corollary.

Corollary 4.6. Suppose Assumption 4.1 and sub-
Gaussian condition in Proposition 4.3 hold. For
n ≥ Kα?2σ2 log(p/δ) max{ sκ

?
max

2

κ?min
4 , α?

2‖θ?‖21} (K is

a universal constant), λ = 2
√
σ2 log(p/δ)/n, and

τ = 36
√
σ2 log(p/δ)/(nκ?min

2), with probability at least
1− δ,

‖θ̃ − θ?‖2F? ≤
(

12κ
?
max
κ?min

)2 (
36

κ?min
2

)
sσ2 log( pδ )

n .
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5 APPENDIX

5.0.1 Proof of Theorem 3.4

We slightly abuse notation and let mk(∆) be the k-th
central moment of the univariate r.v. 〈∆, t〉 distributed
under θ?. The following upper and lower bounds are
useful in that they guarantee the sum converges for
the choice of s specified.
Lemma 5.1. Let α and θ be defined as in Thm. 3.4.
Let ∆ = θ− θ? and set s = min{ 1

4α
√
m2(∆)

, 1}. If α is

an analytic moment, then

1
3

m2(∆)
max{16α2m2(∆),1} ≤

∞∑
k=2

mk(∆)sk

k! ≤ 2
3

m2(∆)
max{16α2m2(∆),1}
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If α is an analytic cumulant, then

1
3

c2(∆)
max{16α2c2(∆),1} ≤

∞∑
k=2

ck(∆)sk

k! ≤ 2
3

c2(∆)
max{16α2c2(∆),1}

Proof. See supplementary material.

The core lemma below leads to the proof of Thm. 3.4.

Lemma 5.2. Let α, θ be as in Thm. 3.4. We have:

1
4

‖θ−θ?‖2F?
max{16α2‖θ−θ?‖2F? ,1}

≤ L(θ)− L(θ?) (6)

Furthermore, if ‖θ − θ?‖F? ≤ 1
16α2 ,

1
4‖θ − θ

?‖2F? ≤ L(θ)− L(θ?) ≤ 2
3‖θ − θ

?‖2F?

Proof. See supplementary material.

We are now ready to prove Theorem 3.4.

Proof of Theorem 3.4. If ‖θ − θ?‖2F? ≤ 1
16α2 , then the

previous lemma implies the claim. Let us therefore
assume L(θ) − L(θ?) ≤ 1

65α2 . If ‖θ − θ?‖2F? ≤ 1
16α2 ,

then we are done by the previous argument. So let
‖θ − θ?‖2F? > 1

16α2 . Hence, max{16α2m2(∆), 1} =
16α2m2(∆). Using (6), we have that 1

64α2 ≤ L(θ) −
L(θ?), which is a contradiction.

5.0.2 Proof of Theorem 4.2

Let L̂(θ) = Ê[− logP (y|θ)], T = E[t] and T̂ = Ê[t].

Lemma 5.3. Suppose ‖T − T̂‖∞ ≤ λ/2. Let θ̂ be a
solution to (2). Then, ∀θ ∈ Θ:

L(θ̂)− L(θ) ≤ λ
2 ‖θ̂ − θ‖1 + λ‖θ‖1 − λ‖θ̂‖1 ≤ 3λ

2 ‖θ‖1 (7)

Further, suppose that θ only has support on S, then:

L(θ̂)− L(θ) ≤ 3λ
2 ‖θ̂S − θ‖1 (8)

Proof. Since θ̂ solves (2), we have:

−〈θ̂, T̂ 〉+logZ(θ̂)+λ‖θ̂‖1 ≤ −〈θ, T̂ 〉+logZ(θ)+λ‖θ‖1

Hence,

− 〈θ̂, T 〉+ logZ(θ̂) + λ‖θ̂‖1
≤ 〈θ̂ − θ, T̂ − T 〉 − 〈θ, T 〉+ logZ(θ) + λ‖θ‖1

The condition on λ gives the 1st inequality in (7):

L(θ̂)− L(θ) ≤ ‖θ̂ − θ‖1‖T̂ − T‖∞ + λ‖θ‖1 − λ‖θ̂‖1
≤ λ

2 ‖θ̂ − θ‖1 + λ‖θ‖1 − λ‖θ̂‖1

The 2nd inequality in (7) is by triangle inequality. For
the final claim, using sparsity of θ, we have:

λ
2 ‖θ̂ − θ‖1 + λ‖θ‖1 − λ‖θ̂‖1

= λ
2 ‖θ̂S − θ‖1 + λ

2 ‖θ̂SC‖1 + λ
(
‖θ‖1 − ‖θ̂S‖1

)
− λ‖θ̂SC‖1

≤ λ
2 ‖θ̂S − θ‖1 + λ‖θ̂SC‖1 + λ‖θ̂S − θ‖1 − λ‖θ̂SC‖1

= 3λ
2 ‖θ̂S − θ‖1 .

Lemma 5.4. Suppose that (3) holds. Let θ̂ be a
solution the optimization problem in (2). For any
θ ∈ Θ, which only has support on S and such that
L(θ̂) ≥ L(θ), then:

‖θ̂SC‖1 ≤ 3‖θ̂S − θ‖1 (9)

‖θ̂ − θ‖1 ≤ 4‖θ̂S − θ‖1 (10)

Proof. By assumption on θ and (7),

0 ≤ L(θ̂)− L(θ) ≤ λ
2 ‖θ̂ − θ‖1 + λ‖θ‖1 − λ‖θ̂‖1

Dividing by λ and adding 1
2‖θ̂ − θ‖1 to both sides,

1
2‖θ̂ − θ‖1 ≤ ‖θ̂ − θ‖1 + ‖θ‖1 − ‖θ̂‖1

For i /∈ S, |θ̂i − θi|+ |θi| − |θ̂i| = 0. Hence,

1
2‖θ̂ − θ‖1 ≤ ‖θ̂S − θ‖1 + ‖θ‖1 − ‖θ̂S‖1 ≤ 2‖θ̂S − θ‖1

This proves (10). From this, 1
2‖θ̂S − θ‖1 + 1

2‖θ̂SC‖1 =
1
2‖θ̂ − θ‖1 ≤ 2‖θ̂S − θ‖1 which proves (9), after rear-
ranging.

Proof of Theorem 4.2. First, by (3) and (7) we see
that L(θ̂) − L(θ?) ≤ 1

65α?2 . Hence using Thm. 3.4
we see that

1
4‖θ̂ − θ

?‖2F? ≤ L(θ̂)− L(θ?)

On the other hand observe that:

‖θ̂S − θ?‖1 ≤
√
s‖θ̂S − θ?‖2 ≤

√
s

κ?min
‖θ̂ − θ?‖F? (11)

where the last step uses the RE condition, Assump-
tion 4.1 (note that θ̂ satisfies the RE precondition, so
θ̂ − θ? ∈ V). Now using the above with (8) we have
that 1

4‖θ̂ − θ
?‖2F? ≤ L(θ̂) − L(θ?) ≤ 3λ

√
s

2κ?min
‖θ̂ − θ?‖F? .

Hence,
‖θ̂ − θ?‖F? ≤ 6λ

√
s

κ?min
(12)

and so 1
4‖θ̂ − θ

?‖2F? ≤ L(θ̂) − L(θ?) ≤ 9λ2s
κ?min

2 , which
proves the first claim. Now plugging (12) into (11),
we get ‖θ̂S − θ?‖1 ≤ 6λs

κ?min
2 . Hence by (10), ‖θ̂ − θ?‖1

is bounded by 24λs
κ?min

2 .
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5.0.3 Analytic Standardized Moment for
GLM and Sparsity

In the GLM example in Section 3.2.3, we showed that
if the sufficient statistics are bounded by B and if
F? has minimum eigenvalue λmin, then we can choose
α = B/λmin. However, when θ? is sparse we see that
in both Thms. 4.2 and 4.5, we only care about α?, the
analytic standardized moment/cumulant of the set V,
specified in (1). Given this, it is clear from the exposi-
tion in the GLM example in Section 3.2.3 that α? can
be bounded by B/κ?min, since all elements of the set V
satisfy Assumption 4.1.

5.0.4 Proof of Theorem 4.5

Lemma 5.5. (Sparsity or Restricted Set) If τ = 18λ
κ?min

2 ,
then the size of the support of any θ ∈ Θτ is at most
2s

Proof. First notice that on the set S thresholding
could potentially leave all the s coordinates. On the
other hand notice that if we threshold using τ , then the
number of coordinates that remain unclipped in the set
SC is bounded by ‖θ̂SC‖1/τ . Hence |{i : |θ̂i| > τ}| ≤
s+‖θ̂SC‖1/τ . By (9), (12) and the RE assumption, we
have ‖θ̂SC‖1 ≤ 3‖θ̂S − θ?‖1 ≤ 3

√
s‖θ̂S − θ?‖2 ≤ 18λs

κ?min
2 .

Using this we see that |{i : |θ̂i| > τ}| ≤ s + 18λs
κ?min

2τ
.

Plug in the value of τ to finish.

Lemma 5.6. (Bias) Choose τ = 18λ/κ?min
2. Then,

L(θ̂τS)− L(θ?) ≤ 540κ?max
2sλ2

κ?min
4 ,

where θ̂τ is defined as θ̂τi = θ̂i1(θ̂i>τ).

Proof. Note that

‖θ̂τS − θ?‖2F? ≤ κ?max
2‖θ̂τS − θ?‖22

≤ 2κ?max
2
(
‖θ̂τS − θ̂S‖22 + ‖θ̂S − θ?‖22

)
≤ 2κ?max

2
(
sτ2 + ‖θ̂S − θ?‖22

)
≤ 2κ?max

2
(
sτ2 + 36sλ2

κ?min
4

)
where the last step is obtained by applying Thm. 4.2.
Substituting for τ ,

‖θ̂τS − θ?‖2F? ≤
720κ?max

2sλ2

κ?min
4 . (13)

Now the condition on λ in (5) implies that Thm. 3.4
is applicable, which completes the proof.

Proof of Theorem 4.5. The first claim of the theo-
rem follows from Lemma 5.5. We prove the second

claim of the theorem by considering two cases. First,
when L(θ̃) ≤ L(θ̂τS). In this case, by Lemma 5.6,
L(θ̃) − L(θ?) ≤ 540κ?max

2sλ2/κ?min
4 Also by (5), ap-

plying Thm. 3.4, 1
4‖θ̃ − θ?‖2F? ≤ L(θ̃) − L(θ?) ≤

540κ?max
2sλ2/κ?min

4 which gives us the second claim of
the theorem. In the second case, when L(θ̃) > L(θ̂τS),
by applying Lemma 5.3 with θ = θ̂τS , we see that

L(θ̃)− L(θ̂τS) ≤ 3λ
2 ‖θ̂

τ
S‖1 ≤ 3λ

2 ‖θ
? − θ̂τS‖1 + 3λ

2 ‖θ
?‖1

≤ 3λ
√
s

2 ‖θ
? − θ̂τS‖2 + 3λ

2 ‖θ
?‖1

≤ 3λ
√
s

2κ?min
‖θ? − θ̂τS‖F? + 3λ

2 ‖θ
?‖1

≤ 18
√

5λ2sκ?max
κ?min

3 + 3λ
2 ‖θ

?‖1

where the last step is using (13). Hence we see that

L(θ̃)− L(θ?) ≤ L(θ̃)− L(θ̂τS) + L(θ̂τS)− L(θ?)

≤ 581κ?max
2sλ2

κ?min
4 + 3λ

2 ‖θ
?‖1

Thus, by condition (5) on λ, the pre-condition of the
Thm. 3.4 is satisfied and hence,

1
4‖θ̃ − θ

?‖2F? ≤ L(θ̃)− L(θ?) (14)

≤ L(θ̃)− L(θ̂τS) + L(θ̂τS)− L(θ?)

≤ L(θ̃)− L(θ̂τS) + 540κ?max
2sλ2

κ?min
4

≤ 6λ
√
s

κ?min
‖θ̃ − θ̂τS‖F? + 540κ?max

2sλ2

κ?min
4 (15)

≤ 6λ
√
s

κ?min
‖θ̃ − θ?‖F? + 6λ

√
s

κ?min
‖θ? − θ̂τS‖F? + 540κ?max

2sλ2

κ?min
4

≤ 6λ
√
s

κ?min
‖θ̃ − θ?‖F? + 161κ?maxsλ

2

κ?min
2 + 540κ?max

2sλ2

κ?min
4 . (16)

Here (15) is obtained by applying Lemmas 5.3 and 5.4
with Θ = Θτ and then using Assumption 4.1, and (16)
is due to (13). Simplifying we conclude that

1
4‖θ̃ − θ

?‖2F? ≤ L(θ̃)− L(θ?)

≤ 6λ
√
s

κ?min
‖θ̃ − θ?‖F? + 701κ?max

2sλ2

κ?min
4 (17)

From this, it can be shown that ‖θ̃− θ?‖F? ≤ 24λ
√
s

κ?min
+

75κ?maxλ
√
s

κ?min
2 . Using this in (17)

L(θ̃)− L(θ?) ≤ 144λ2s
κ?min

2 + 450κ?maxλ
2s

κ?min
3 + 701κ?max

2sλ2

κ?min
4

Simplifying gives 2nd claim of the theorem for the 2nd
case.
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SUPPLEMENTARY MATERIAL

Proof of Lemma 5.1. We only prove the lower bound
for the analytic moment case (other cases are similar).
We have,∣∣∣∣∣

∞∑
k=3

1
k!mk(∆)sk

∣∣∣∣∣ ≤ 1
2

∞∑
k=3

αk−2m2(∆)
k
2 sk

= s2m2(∆)
2

∞∑
k=1

(sα
√
m2(∆))k

For our choice of s, we have
∑∞
k=1(sα

√
m2(∆))k ≤∑∞

k=1

(
1
4

)k = 1
3 . Hence,

∞∑
k=2

mk(∆)sk

k! ≥ s2m2(∆)
2

(
1−

∞∑
k=1

(sα
√
m2(∆))k

)
≥ s2m2(∆)

3 = 1
3

m2(∆)
max{16α2m2(∆),1}

Proof of Lemma 5.2. As s ∈ [0, 1], by convexity, we
have L(θ)−L(θ?) ≥ L(θ? + s∆)−L(θ?). We consider
the analytic moment case (cumulant case is easier).
By Lemma 3.5,

L(θ)− L(θ?) ≥ log(1 + m2(∆)
3 max{16α2m2(∆),1} )

By Jensen’s inequality, we know that the 4th standard-
ized moment (kurtosis) is greater than 1, so α2 ≥ 1

12

(since 4!
2 α

2 ≥ 1). Thus, m2(∆)
3 max{16α2m2(∆),1} ≤

1
48α2 ≤

1/4 since the sum is only larger if we choose any ar-
gument in the max. Now for 0 ≤ x ≤ 1/4, we have
log(1 + x) ≥ 1 + 3

4x. Hence,

log(1 + m2(∆)
3 max{16α2m2(∆),1} ) ≥

m2(∆)
4 max{16α2m2(∆),1}

which proves (6). For the second claim, the precondi-
tion implies that the max in (6) will be achieved at 1,
which directly implies the lower bound. For the upper
bound, we apply Lemma 5.1 with s = 1 (s = 1 under
our precondition), which implies that

∑∞
k=2

mk(∆)
k! is

less than 2
3m2(∆). The claim follows using Lemma 3.5,

with s = 1, and the fact that log(1 + x) ≤ x.


