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Abstract

This paper examines the generalization properties of emonvex programming
algorithms when the loss function is Lipschitz and stronghyvex. Our main
result is a sharp bound, that holds with high probabilityttoe excess risk of the
output of an online algorithm in terms of the average regfdiis allows one to
use recent algorithms with logarithmic cumulative regreargntees to achieve
fast convergence rates for the excess risk with high prdibat?s a corollary, we
characterize the convergence rate aGRsos(with high probability), a recently
proposed method for solving the SVM optimization problem.

1 Introduction

Online regret minimizing algorithms provide some of the trmsgcessful algorithms for many ma-
chine learning problems, both in terms of the speed of ogttion and the quality of generalization.
Notable examples include efficient learning algorithmsstouctured prediction [Collins, 2002] (an
algorithm now widely used) and for ranking problems [Crametal., 2006] (providing competitive
results with a fast implementation).

Online convex optimization is a sequential paradigm in What each round, the learner predicts a
vectorw; € S C R"”, nature responds with a convex loss functign,and the learner suffers loss
¢ (wy). In this setting, the goal of the learner is to minimize thgres:

T T
; £y(wy) — min ;Zt(w)

which is the difference between his cumulative loss and timutative loss of the optimal fixed
vector.

Typically, these algorithms are used to train a learningmtigm incrementally, by sequentially
feeding the algorithm a data sequenc®;,Y1),..., (X7, Yr) (generated in an i.i.d. manner). In
essence, the loss function used in the above paradigm at tsvéw; (X;,Y?)), and this leads to a
guaranteed bound on the regret:

T T
Regr = Y £(we: (X;, Y3)) — min Y £(w; (X, 7))
t=1

t=1

However, in the batch setting, we are typically interestefinding a parametex with good gener-
alization ability, i.e. we would like:

R(w) — glel% R(w)

to be small, wher&(w) := E [¢(w; (X,Y))] is therisk.



Intuitively, it seems plausible that low regret on an i.iskquence, should imply good generaliza-
tion performance. In fact, for most of the empirically sugsfell online algorithms, we have a set of
techniques to understand the generalization performdrtbese algorithms on new data via ‘online
to batch’ conversions — the conversions relate the regriteofilgorithm (on past data) to the gen-
eralization performance (on future data). These includgesavhich are tailored to general convex
functions [Cesa-Bianchi et al., 2004] (whose regreD{s/T’)) and mistake bound settings [Cesa-
Bianchi and Gentile, 2008] (where the the regret couldXd¢) under separability assumptions).
In these conversions, we typically chooseto be the average of the,; produced by our online
algorithm.

Recently, there has been a growing body of work providingnenhlgorithms forstrongly convex
loss functions (i.e./; is strongly convex), with regret guarantees that are mefélw 7). Such
algorithms have the potential to be highly applicable sim@ny machine learning optimization
problems are in fact strongly convex — either with stronghywex loss functions (e.g. log loss,
square loss) or, indirectly, via strongly convex regulariz(e.g. L, or K L based regularization).
Note that in the latter case, the loss function itself may tel just convex but a strongly convex reg-
ularizer effectively makes this a strongly convex optinti@a problem; e.g. the SVM optimization
problem uses the hinge loss withy regularization. In fact, for this case, th&®asosalgorithm
of Shalev-Shwartz et al. [2007] — based on the online stsonghvex programming algorithm of
Hazan et al. [2006] — is a state-of-the-art SVM solver. ARajliff et al. [2007] provide a similar
subgradient method for max-margin based structured gredjavhich also has favorable empirical
performance.

The aim of this paper is to examine the generalization pteggeof online convex programming
algorithms when the loss function is strongly convex (whgreng convexity can be defined in a
general sense, with respect to some arbitrary nprn|). Suppose we have an online algorithm
which has some guaranteed cumulative regret bound. Reg. say Reg < In T" with 7" samples).
Then a corollary of our main result shows that with prob&ptlireater than — ¢ In T, we obtain a
parametetv from our online algorithm such that:

\/RegrIn: 1
R(%) — min R(w) < °°F | 0 223

w - T T T

Here, the constants hidden in thenotation are determined by the Lipschitz constant andttoag
convexity parameter of the logs Importantly, note that the correction term is of lower artiean

the regret — if the regret ilm 7' then the additional penalty '@(—”T“T). If one naively uses the
Hoeffding-Azuma methods in Cesa-Bianchi et al. [2004], armaild obtain a significantly worse

penalty ofO(1/v/T).

This result solves an open problem in Shalev-Shwartz e2@07], which was on characterizing the
convergence rate of theeBAasosalgorithm, with high probability. PGASOSis an online strongly
convex programming algorithm for the SVM objective funatie- it repeatedly (and randomly)
subsamples the training set in order to minimize the engdiB&/M objective function. A corollary
to this work essentially shows the convergence rate mf450s (as a randomized optimization
algorithm) is concentrated rather sharply.

Ratliff et al. [2007] also provide an online algorithm (bdsm: Hazan et al. [2006]) for max-margin
based structured prediction. Our results are also diraghficable in providing a sharper concen-
tration result in their setting (In particular, see the egdround in Equation 15, for which our results
can be applied to).

This paper continues the line of research initiated by sdvwesearchers [Littlestone, 1989, Cesa-
Bianchi et al., 2004, Zhang, 2005, Cesa-Bianchi and Ger2@l68] which looks at how to convert
online algorithms into batch algorithms with provable gardees. Cesa-Bianchi and Gentile [2008]
prove faster rates in the case when thenulative losof the online algorithm is small. Here,
we are interested in the case where thenulative regrets small. The work of Zhang [2005] is
closest to ours. Zhang [2005] explicitly goes via the exmbia¢ moment method to derive sharper
concentration results. In particular, for the regressimbfem with squared loss, Zhang [2005] gives
a result similar to ours (see Theorem 8 therein). The pregerk can also be seen as generalizing
his result to the case where we have strong convexity witheedo a general norm. Coupled with



recent advances in low regret algorithms in this settingaveeable to provide a result that holds
more generally.

Our key technical tool is a probabilistic inequality due t@&dman [Freedman, 1975]. This, com-
bined with a variance bound (Lemma 1) that follows from owuasptions about the loss function,
allows us to derive our main result (Theorem 2). We then appdystatistical learning with bounded
loss, and to BGAsSOsin Section 4.

2 Setting

Fix a compact convex subsgtof some space equipped with a nojir|. Let|| - || be the dual norm
defined by||v||. := supy, . jw|<1 V- W. Let Z be a random variable taking values in some space

Z. Our goal is to minimizeF(w) := E[f(w; Z)] overw € S. Here,f : S x Z — [0, B] is some
function satisfying the following assumption.

Assumption LIST. (Llpschitz and STrongly convex assumptidior all z € Z, the function
f2(w) = f(w; z) is convex inw and satisfies:

1. f. has Lipschitz constarit w.r.t. to the nornj|- ||, i.e. Yw € S,V € 9f.(w) (0f. denotes
the subdifferential off.), || A« < L. Note that this assumption impliésv, w’ € S,

|fo(w) = fo(W)| < L|lw — w'||.
2. f.isv-strongly convexv.rt. || - |, i.e.V0 € [0, 1], ¥w,w’ € S,

J-(0w + (1= 0)w') < 0F.(w) + (1 = 0)-(w') = 20(1 = 0) Jw — W'

Denote the minimizer of" by w*, w* := argmin,cgF(w). We consider an online setting in
which independent (but not necessarily identically disiteéd) random variable&y, ..., Zr be-
come available to us in that order. These have the propeaty th

Vi, Yw € S, E[f(w; Z;)] = F(w) .
Now consider an algorithm that starts out with someand at timef, having seer¥;, updates the

parametew; to w;,1. LetE;_; [-] denote conditional expectation w.r&, ..., Z;_;. Note that
w; is measurable w.r.tZy, ..., Z;_, and henc&,;_; [f(w¢; Z;)] = F(wy).
Define the statistics,
T T
Regy = Z f(we; Zy) — min Z f(w; Zy),
t=1 t=1
T T

Diffy := Y (F(wi) — F(w*)) =Y F(w;) = TF(w*) .

t=1 t=1

Define the sequence of random variables
§ o= F(wy) — F(wW") — (f(wi; Z2) — f(W5 Z4)) (1)
SinceE;_1 [f(wy; Z:)] = F(wy) andE;_ [f(w*; Z;)] = F(w*), & is a martingale difference

sequence. This definition needs some explanation as it igrian to look at the right martingale
difference sequence to derive the results we want. Evenrasseimption LIST£ Y-, f(wy; Z,)

and = >, f(w*; Z;) will not be concentrated arounf 3°, F(w;) and F(w*) respectively at a

rate better the(1/v/T) in general. But if we look at theifference we are able to get sharper
concentration.

3 A General Onlineto Batch Conversion

The following simple lemma is crucial for us. It says that andssumption LIST, the variance
of the increment in the regreft(w,; Z;) — f(w*; Z;) is bounded by its (conditional) expectation
F(w,;) — F(w™*). Such a control on the variance is often the main ingredieobiaining sharper
concentration results.



Lemma 1. Suppose assumption LIST holds andJdie the martingale difference sequence defined
in (1). Let

Var;_1& = Ey_1 [ffz]
be the conditional variance @f givenZ;, ..., Z, ;. Then, under assumption LIST, we have,

2
Vart,lft S % (F(Wt) — F(W*)) .

The variance bound given by the above lemma allows us to morenain theorem.
Theorem 2. Under assumption LIST, we have, with probability at least41n(T)0,

%ZF(wt)  p(wt) < Re8r +4\/L2 In(1/6) \/Regr +maX{16VLQ,GB} In(1/5)

- T v T

Further, using Jensen’s inequality; >°, F'(w;) can be replaced by"(w) wherew := £ >, w;.

3.1 Proofs
Proof of Lemma 1 We have,
Vary 1§ < Epy {(f(Wﬁ Zy) = f(w™; Zt))g}
[ Assumption LIST, part 1 <Eey [LP||we — w* 7]
= L?|w, —w|?. )

On the other hand, using part 2 of assumption LIST, we alse favanyw, w’ € S,
. /. /
ﬂWJﬁ+fWuZ>2f<W+W.Z>+V

= _ 112
: 2 ) gl =
Taking expectation this gives, for amy, w’ € S,
/ !
PO o P () 4 Bl - P

Now using this withw = w;, w’ = w*, we get

F + F(w* +wr
(Wt) . (W ) >F (Wt w >+g||wt_w*||2

[ w* minimizesF] > F(w*) + 2w — w*||? .

This implies that

e —w*|* < ; @
Combining (2) and (3) we get,
4172 N
Var;_1& < - (F(wy) — F(w™))
O

The proof of Theorem 2 relies on the following inequality foartingales which is an easy conse-
guence of Freedman’s inequality [Freedman, 1975, Theoréin The proof of this lemma can be
found in the appendix.

Lemma 3. SupposeX;, ..., Xy is a martingale difference sequence wifty| < b. Let
VartXt = Var (Xt | Xl, “ee 7Xt—1) .

LetV = Zthl Var; X; be the sum of conditional variances ®f’s. Further, letc = v/V. Then we
have, forany < 1/eandT > 3,

Prob (ZT: X, > max {20, 3by/In(1 /5)} VIn(1 /5)) < 41n(T)5 .

t=1



Proof of Theorem 2By Lemma 1, we have := \/Z; Var; & < \/% Diff . Note thatl&;| <

2B because our has rangg0, B]. Therefore, Lemma 3 gives us that with probability at least
1 —41n(T)é, we have

T
3¢ < max {20, 68+/In(1 /5)} VIn(1/s) .

By definition ofReg,
T

Diff7 — Regp < > &
t=1
and therefore, with probability, — 41n(7")d, we have

Diff — Regy < max {4, / L; Diffr, 63\/111(1/5)} V/In(1/6) .

Using Lemma 4 below to solve the above quadratic inequalitpiff -, gives

Y Fw) Flwt) < Reg; +4\/L2 In(1/6) \/Regs +max{16L2 GB} In(1/6)

T T T T
O

The following elementary lemma was required to solve a earinequality in the proof of the
above theorem. Its proof can be found in the appendix.

Lemmad4. Suppose,r,d,b, A > 0 and we have
s —r < max{4Vds, 6bA}A .

Then, it follows that
5 <74 4VdrA + max{16d,6b} A% .

4 Applications

4.1 Onlineto Batch Conversion for Learning with Bounded L oss

Suppose X1,Y1),...,(Xr,Yr) are drawn i.i.d. from a distribution. The paitX;,Y;) belong
to X x Y and our algorithm are allowed to make predictions in a sgace ). A loss function
¢:Dx Y — [0,1] measures quality of predictions. Fix a convexSetf some normed space and a
functionh : X x S — D. Let our hypotheses class be — h(z;w) |w € S}.

On inputz, the hypothesis parameterizedwypredictsh(x; w) and incurs losg(h(z; w), y) if the
correct prediction ig. Therisk of w is defined by

R(w) := E[((h(X;w),Y)]
and letw* := arg miny s R(w) denote the (parameter for) the hypothesis with minimum risk
is easy to see that this setting falls under the general framkegiven above by thinking of the pair
(X,Y) asZ and settingf (w; Z) = f(w;(X,Y)) to bel(h(X;w),Y). Note thatF'(w) becomes
the risk R(w). The range off is [0, 1] by our assumption about the loss functiong®e- 1.

Suppose we run an online algorithm on our data that genexaguence of hypotheses, ..., wr
such thatw, is measurable w.r.tX ., Y.,. Define the statistics,

Regy = D L(h(Xp;wi),Y:) — min - £(h(Xp;w),Y7) ,
t;l thl
Diffp := > (R(w;) — R(w*)) = Y _ R(w¢) — TR(W*).

t=1

At the end, we outpuiv := (Zle w;)/T. The following corollary then follows immediately from
Theorem 2. It bounds thexcess risiR(w) — R(w*).



Corollary 5. Suppose assumption LIST is satisfied fow; (z,y)) := ¢(h(z;w),y). Then we
have, with probability at least — 4 1n(T")4,

_ « _ Reg L21n(1/5) \/Reg 16L2 In(1/4)
R(w)—R(w)gTT+4\/ V T T+max{ V ,6} 7

Recently, it has been proved [Kakade and Shalev-Shwar@8]20at if assumption LIST is satisfied
for w — £(h(x; w),y) then there is an online algorithm that generatgs. . . , wp such that
L*(1+InT)

2v '
Plugging it in the corollary above gives the following rdsul

Corollary 6. Suppose assumption LIST is satisfiedffow; (x,y)) := £(h(x; w),y). Then there is
an online algorithm that generateg, , . . ., wr and in the end output& such that, with probability
at leastl — 41n(7')9,

2 n 2 nT 2 n
() - Riw') < & 1 T, 4L \/1 b 16L 76}1 (;/5)7

foranyT > 3.

Regr <

4.2 High Probability Bound for PEGASOS

PEGAsos[Shalev-Shwartz et al., 2007] is a recently proposed methiosgolving the primal SVM
problem. Recall that in the SVM optimization problem we aireeg m example, label pairs
(wi,y;) € R? x {£1}. Assume that|z;| < R for all i where|| - || is the standard., norm.

Let

Plw) = Wl + - Z@ (20, 9:)) (@)

be the SVM objective function. The loss functléqw; (:c, y)) = [1 — y(w - )]+ is the hinge loss.
At time t, PEGAsOsStakes a (random) approximation

f(w; Z;) = *||W||2+* > Uw

(x,y)EZ:

of the SVM objective function to estimate the gradient andaips the current weight vectar, to
wy1. HereZ; is a random subset of the data set of diz&lote thatF'(w) can be written as

Pw) = B [l + ew 2)

whereZ is an exampléx;, y;) drawn uniformly at random from the: data points. It is also easy
to verify that
Vw, E[f(w; Z,)] = F(w) .

It can be shown thaw* := arg min F(w) will satisfy ||w*|| < 1/v/) so we set

S:{weRd : ||w||<\%}.

For anyz that is a subset of the data set, the function
Wi f(w;z) = f||w||2+— > Uw
(z y)€z

is Lipschitz onS with Lipschitz constanf. = v/A + R and is\-strongly convex. Alsof (w:; z) €

[0,3/2+ R/v/\]. So, the RGAsoOssetting falls under our general framework and satisfiesragsu
tion LIST.



Theorem 1 in Shalev-Shwartz et al. [2007] says, foranyg” > 3,

T T
L*InT
D fwisZ) €3 fwiZe) + — (5)

whereL = v\ + R. It was noted in that paper that pluggingiin= w* and taking expectations,
we easily get

T
L?*InT
> F(wy) -
t=1

Here we use Theorem 2 to prove an inequality that holds wih brobability, not just in expecta-
tion.

Corallary 7. Let F' be the SVM obijective function defined4) andwy, ..., wr be the sequence
of weight vectors generated by tF'?EGAsosaIgorithm Further, letw* denote the minimizer of the
SVM objective. Then, with probability— 46 In(T"), we have

d L2 lnT 4L2\/1n / 16L2 6R 1
;F(wt)—TF(w ) < ,9+ﬁ}ln (5> , (6)

foranyT > 3. Therefore, assuming = 1, we have, for small enough, with probability at least
1-9,

Zrves <TF(w*) +

lTF Flw™) = O 1n%
72w~ Fiwt) =0 57 )

Proof. Note that (5) implies thaReg; < LZI%T The corollary then follows immediately from
Theorem 2 by plugging ie = A andB = 3/2 + R/V\. O
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Appendix
Proof of Lemma 3Note that a crude upper bound ®ar, X, is b2. Thus,c < byv/T. We choose a

discretizatior) = a_; < ap < ... < oy such thatv; ;1 = ra; fori > 0 ande; > bW'T. We will
specify the choice ofyy andr shortly. We then have, for any> 0,

Prob <Z X > cmax{ro, ao}\/m)
= i Prob [ 2=¢ Xt > cmax{ro, ao}m)

&aj1 <o <o

> Xt > coyj ln(1/5))

a] 1<V<ozj

(
(
SiProb (th>cajm&v<aj>

a3 In(1/96) )
caj ln(l/é))

_ ox —c*a;In(1/6)
a Z P <2ozj +3 <c ln(1/5)) b)

where the inequalityx) follows from Freedman’s inequality. If we now choosg = bey/In(1/9)
thena; > bey/In(1/0) for all 7 and hence every term in the above summation is bounded by

exp (%&9@) which is less therd if we choosec = 5/3. Setr = 2/¢ = 6/5. We want

aor! > by/T. Sincecy/In(1/6) > 1, choosing = log, (v/T') ensures that. Thus we have

Prob (Z X, > gmax{ga, gb\/ln(l 787}/l /5))

= Prob <Z X; > cmax{ro, ao}\/ln(1/6)>

< (1+1)6 = (logg/s(VT) + 1)d
< (6In(VT) 4+1)6 < 4In(T)5 . (T >3)
[
Proof of Lemma 4.The assumption of the lemma implies that one of the followiimggualities
holds:
s —r < 6bA? s—r < 4VdsA . (7)
In the second case, we have

(V)" = (4VdA)s =7 <0

which means tha{/s should be smaller than the larger root of the above quadfBtis gives us,

s=(V5)? < (2\/8A +V/4dA? + r)2

< 4dA? + 4dA? + 7 4 442 AT + dA2r
[ VT +y < VT + VY < 8dA? 4 7 + 8dA? 4 4VdrA
<r+4VdrA +16dA2 . (8)
Combining (7) and (8) finishes the proof. O



