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Abstract

Recent work has extended the theoretical analysis of boosting algorithms to multi-
class problems and to online settings. However, the multiclass extension is in the
batch setting and the online extensions only consider binary classification. We fill
this gap in the literature by defining, and justifying, a weak learning condition for
online multiclass boosting. This condition leads to an optimal boosting algorithm
that requires the minimal number of weak learners to achieve a certain accuracy.
Additionally, we propose an adaptive algorithm which is near optimal and enjoys
an excellent performance on real data due to its adaptive property.

1 Introduction

Boosting methods are a ensemble learning methods that aggregate several (not necessarily) weak
learners to build a stronger learner. When used to aggregate reasonably strong learners, boosting has
been shown to produce results competitive with other state-of-the-art methods (e.g., Korytkowski
et al. [1], Zhang and Wang [2]). Until recently theoretical development in this area has been focused
on batch binary settings where the learner can observe the entire training set at once, and the labels
are restricted to be binary (cf. Schapire and Freund [3]). In the past few years, progress has been
made to extend the theory and algorithms to more general settings.

Dealing with multiclass classification turned out to be more subtle than initially expected. Mukherjee
and Schapire [4] unify several different proposals made earlier in the literature and provide a general
framework for multiclass boosting. They state their weak learning conditions in terms of cost matrices
that have to satisfy certain restrictions: for example, labeling with the ground truth should have less
cost than labeling with some other labels. A weak learning condition, just like the binary condition,
states that the performance of a learner, now judged using a cost matrix, should be better than a
random guessing baseline. One particular condition they call the edge-over-random condition, proves
to be sufficient for boostability. The edge-over-random condition will also figure prominently in this
paper. They also consider a necessary and sufficient condition for boostability but it turns out to be
computationally intractable to be used in practice.

A recent trend in modern machine learning is to train learners in an online setting where the instances
come sequentially and the learner has to make predictions instantly. Oza [5] initially proposed an
online boosting algorithm that has accuracy comparable with the batch version, but it took several
years to design an algorithm with theoretical justification (Chen et al. [6]). Beygelzimer et al. [7]
achieved a breakthrough by proposing an optimal algorithm in online binary settings and an adaptive
algorithm that works quite well in practice. These theories in online binary boosting have led to
several extensions. For example, Chen et al. [8] combine one vs all method with binary boosting
algorithms to tackle online multiclass problems with bandit feedback, and Hu et al. [9] build a theory
of boosting in regression setting.
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In this paper, we combine the insights and techniques of Mukherjee and Schapire [4] and Beygelzimer
et al. [7] to provide a framework for online multiclass boosting. The cost matrix framework from the
former work is adopted to propose an online weak learning condition that defines how well a learner
can perform over a random guess (Definition 1). We show this condition is naturally derived from its
batch setting counterpart. From this weak learning condition, a boosting algorithm (Algorithm 1) is
proposed which is theoretically optimal in that it requires the minimal number of learners and sample
complexity to attain a specified level of accuracy. We also develop an adaptive algorithm (Algorithm
2) which allows learners to have variable strengths. This algorithm is theoretically less efficient than
the optimal one, but the experimental results show that it is quite comparable and sometimes even
better due to its adaptive property. Both algorithms not only possess theoretical proofs of mistake
bounds, but also demonstrate superior performance over preexisting methods.

2 Preliminaries

We first describe the basic setup for online boosting. While in the batch setting, an additional weak
learner is trained at every iteration, in the online setting, the algorithm starts with a fixed count
of N weak learners and a booster which manages the weak learners. There are k possible labels
[k] := {1, · · · , k} and k is known to the learners. At each iteration t = 1, · · · , T , an adversary picks
a labeled example (xt, yt) ∈ X × [k], where X is some domain, and reveals xt to the booster. Once
the booster observes the unlabeled data xt, it gathers the weak learners’ predictions and makes a final
prediction. Throughout this paper, index i takes values from 1 to N ; t from 1 to T ; and l from 1 to k.

We utilize the cost matrix framework, first proposed by Mukherjee and Schapire [4], to develop
multiclass boosting algorithms. This is a key ingredient in the multiclass extension as it enables
different penalization for each pair of correct label and prediction, and we further develop this
framework to suit the online setting. The booster sequentially computes cost matrices {Cit ∈
Rk×k | i = 1, · · · , N}, sends (xt,Cit) to the ith weak learner WLi, and gets its prediction lit ∈ [k].
Here the cost matrix Cit plays a role of loss function in that WLi tries to minimize the cumulative
cost

∑
t Cit[yt, lit]. As the booster wants each learner to predict the correct label, it wants to set the

diagonal entries of Cit to be minimal among its row. At this stage, the true label yt is not revealed yet,
but the previous weak learners’ predictions can affect the computation of the cost matrix for the next
learner. Given a matrix C, the (i, j)th entry will be denoted by C[i, j], and ith row vector by C[i].

Once all the learners make predictions, the booster makes the final prediction ŷt by majority votes.
The booster can either take simple majority votes or weighted ones. In fact for the adaptive algorithm,
we will allow weighted votes so that the booster can assign more weights on well-performing learners.
The weight for WLi at iteration t will be denoted by αit. After observing the booster’s final decision,
the adversary reveals the true label yt, and the booster suffers 0-1 loss 1(ŷt 6= yt). The booster also
shares the true label to the weak learners so that they can train on this data point.

Two main issues have to be resolved to design a good boosting algorithm. First, we need to design
the booster’s strategy for producing cost matrices. Second, we need to quantify weak learner’s
ability to reduce the cumulative cost

∑T
t=1 Cit[yt, lit]. The first issue will be resolved by introducing

potential functions, which will be thoroughly discussed in Section 3.1. For the second issue, we
introduce our online weak learning condition, a generalization of the weak learning assumption in
Beygelzimer et al. [7], stating that for any adaptively given sequence of cost matrices, weak learners
can produce predictions whose cumulative cost is less than that incurred by random guessing. The
online weak learning condition will be discussed in the following section. For the analysis of the
adaptive algorithm, we use empirical edges instead of the online weak learning condition.

2.1 Online weak learning condition

In this section, we propose an online weak learning condition that states the weak learners are better
than a random guess. We first define a baseline condition that is better than a random guess. Let
∆[k] denote a family of distributions over [k] and ulγ ∈ ∆[k] be a uniform distribution that puts γ
more weight on the label l. For example, u1

γ = ( 1−γ
k + γ, 1−γk , · · · , 1−γk ). For a given sequence of

examples {(xt, yt) | t = 1, · · · , T}, Uγ ∈ RT×k consists of rows uytγ . Then we restrict the booster’s
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choice of cost matrices to

Ceor1 := {C ∈ Rk×k | ∀l, r ∈ [k], C[l, l] = 0,C[l, r] ≥ 0, and ||C[l]||1 = 1}.
Note that diagonal entries are minimal among the row, and Ceor1 also has a normalization constraint.
A broader choice of cost matrices is allowed if one can assign importance weights on observations,
which is possible for various learners. Even if the learner does not take the importance weight as an
input, we can achieve a similar effect by sending to the learner an instance with probability that is
proportional to its weight. Interested readers can refer Beygelzimer et al. [7, Lemma 1]. From now
on, we will assume that our weak learners can take weight wt as an input.

We are ready to present our online weak learning condition. This condition is in fact naturally derived
from the batch setting counterpart that is well studied by Mukherjee and Schapire [4]. The link is
thoroughly discussed in Appendix A. For the scaling issue, we assume the weights wt lie in [0, 1].
Definition 1. (Online multiclass weak learning condition) For parameters γ, δ ∈ (0, 1), and
S > 0, a pair of online learner and an adversary is said to satisfy online weak learning condition
with parameters δ, γ, and S if for any sample length T , any adaptive sequence of labeled examples,
and for any adaptively chosen series of pairs of weight and cost matrix {(wt,Ct) ∈ [0, 1]×Ceor1 | t =
1, · · · , T}, the learner can generate predictions ŷt such that with probability at least 1− δ,

T∑
t=1

wtCt[yt, ŷt] ≤ C • U′γ + S =
1− γ
k
||w||1 + S, (1)

where C ∈ RT×k consists of rows of wtCt[yt] and A • B′ denotes the Frobenius inner product
Tr(AB′). w = (w1, · · · , wT ) and the last equality holds due to the normalized condition on Ceor1 . γ
is called an edge, and S an excess loss.
Remark. Notice that this condition is imposed on a pair of learner and adversary instead of solely
on a learner. This is because no learner can satisfy this condition if the adversary draws samples
in a completely adaptive manner. The probabilistic statement is necessary because many online
algorithms’ predictions are not deterministic. The excess loss requirement is needed since an online
learner cannot produce meaningful predictions before observing a sufficient number of examples.

3 An optimal algorithm

In this section, we describe the booster’s optimal strategy for designing cost matrices. We first
introduce a general theory without specifying the loss, and later investigate the asymptotic behavior
of cumulative loss suffered by our algorithm under the specific 0-1 loss. We adopt the potential
function framework from Mukherjee and Schapire [4] and extend it to the online setting. Potential
functions help both in designing cost matrices and in proving the mistake bound of the algorithm.

3.1 A general online multiclass boost-by-majority (OnlineMBBM) algorithm

We will keep track of the weighted cumulative votes of the first i weak learners for the sample xt by
sit :=

∑i
j=1 α

j
teljt , where αit is the weight of WLi, lit is its prediction and ej is the jth standard basis

vector. For the optimal algorithm, we assume that αit = 1, ∀i, t. In other words, the booster makes
the final decision by simple majority votes. Given a cumulative vote s ∈ Rk, suppose we have a loss
function Lr(s) where r denotes the correct label. We call a loss function proper, if it is a decreasing
function of s[r] and an increasing function of other coordinates (we alert the reader that “proper loss”
has at least one other meaning in the literature). From now on, we will assume that our loss function
is proper. A good example of proper loss is multiclass 0-1 loss:

Lr(s) := 1(max
l 6=r

s[l] ≥ s[r]). (2)

The purpose of the potential function φri (s) is to estimate the booster’s loss when there remain i
learners until the final decision and the current cumulative vote is s. More precisely, we want potential
functions to satisfy the following conditions:

φr0(s) = Lr(s),
φri+1(s) = El∼urγφ

r
i (s + el).

(3)
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Algorithm 1 Online Multiclass Boost-by-Majority (OnlineMBBM)
1: for t = 1, · · · , T do
2: Receive example xt
3: Set s0t = 0 ∈ Rk
4: for i = 1, · · · , N do
5: Set the normalized cost matrix Dit according to (5) and pass it to WLi

6: Get weak predictions lit = WLi(xt) and update sit = si−1t + elit
7: end for
8: Predict ŷt := argmaxl sNt [l] and receive true label yt
9: for i = 1, · · · , N do

10: Set wi[t] =
∑k
l=1[φytN−i(si−1t + el)− φytN−i(si−1t + eyt)]

11: Pass training example with weight (xt, yt,wi[t]) to WLi

12: end for
13: end for

Readers should note that φri (s) also inherits the proper property of the loss function, which can be
shown by induction. The condition (3) can be loosened by replacing both equalities by inequalities
“≥”, but in practice we usually use equalities.

Now we describe the booster’s strategy for designing cost matrices. After observing xt, the booster
sequentially sets a cost matrix Cit for WLi, gets the weak learner’s prediction lit and uses this in the
computation of the next cost matrix Ci+1

t . Ultimately, booster wants to set

Cit[r, l] = φrN−i(si−1t + el). (4)

However, this cost matrix does not satisfy the condition of Ceor1 , and thus should be modified in order
to utilize the weak learning condition. First to make the cost for the true label equal to 0, we subtract
Cit[r, r] from every element of Cit[r]. Since the potential function is proper, our new cost matrix still
has non-negative elements after the subtraction. We then normalize the row so that each row has `1
norm equal to 1. In other words, we get new normalized cost matrix

Dit[r, l] =
φrN−i(si−1t + el)− φrN−i(si−1t + er)

wi[t]
, (5)

where wi[t] :=
∑k
l=1 φ

r
N−i(si−1t + el)−φrN−i(si−1t + er) plays the role of weight. It is still possible

that a row vector Cit[r] is a zero vector so that normalization is impossible. In this case, we just leave
it as a zero vector. Our weak learning condition (1) still works with cost matrices some of whose row
vectors are zeros because however the learner predicts, it incurs no cost.

After defining cost matrices, the rest of the algorithm is straightforward except we have to estimate
||wi||∞ to normalize the weight. This is necessary because the weak learning condition assumes
the weights lying in [0, 1]. We cannot compute the exact value of ||wi||∞ until the last instance is
revealed, which is fine as we need this value only in proving the mistake bound. The estimate wi∗ for
||wi||∞ requires to specify the loss, and we postpone the technical parts to Appendix B.2. Interested
readers may directly refer Lemma 10 before proceeding. Once the learners generate predictions after
observing cost matrices, the final decision is made by simple majority votes. After the true label
is revealed, the booster updates the weight and sends the labeled instance with weight to the weak
learners. The pseudocode for the entire algorithm is depicted in Algorithm 1. The algorithm is named
after Beygelzimer et al. [7, OnlineBBM], which is in fact OnlineMBBM with binary labels.

We present our first main result regarding the mistake bound of general OnlineMBBM. The proof
appears in Appendix B.1 where the main idea is adopted from Beygelzimer et al. [7, Lemma 3].
Theorem 2. (Cumulative loss bound for OnlineMBBM) Suppose weak learners and an adversary
satisfy the online weak learning condition (1) with parameters δ, γ, and S. For any T andN satisfying
δ � 1

N , and any adaptive sequence of labeled examples generated by the adversary, the final loss
suffered by OnlineMBBM satisfies the following inequality with probability 1−Nδ:

T∑
t=1

Lyt(sNt ) ≤ φ1N (0)T + S

N∑
i=1

wi∗. (6)
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Here φ1N (0) plays a role of asymptotic error rate and the second term determines the sample com-
plexity. We will investigate the behavior of those terms under the 0-1 loss in the following section.

3.2 Mistake bound under 0-1 loss and its optimality

From now on, we will specify the loss to be multiclass 0-1 loss defined in (2), which might be the
most relevant measure in multiclass problems. To present a specific mistake bound, two terms in
the RHS of (6) should be bounded. This requires an approximation of potentials, which is technical
and postponed to Appendix B.2. Lemma 9 and 10 provide the bounds for those terms. We also
mention another bound for the weight in the remark after Lemma 10 so that one can use whichever
tighter. Combining the above lemmas with Theorem 2 gives the following corollary. The additional
constraint on γ comes from Lemma 10.

Corollary 3. (0-1 loss bound of OnlineMBBM) Suppose weak learners and an adversary satisfy
the online weak learning condition (1) with parameters δ, γ, and S, where γ < 1

2 . For any T and
N satisfying δ � 1

N and any adaptive sequence of labeled examples generated by the adversary,
OnlineMBBM can generate predictions ŷt that satisfy the following inequality with probability 1−Nδ:

T∑
t=1

1(yt 6= ŷt) ≤ (k − 1)e−
γ2N

2 T + Õ(k5/2
√
NS). (7)

Therefore in order to achieve error rate ε, it suffices to use N = Θ( 1
γ2 ln k

ε ) weak learners, which

gives an excess loss bound of Θ̃(k
5/2

γ S).

Remark. Note that the above excess loss bound gives a sample complexity bound of Θ̃(k
5/2

εγ S). If
we use alternative weight bound to get kNS as an upper bound for the second term in (6), we end up
having Õ(kNS). This will give an excess loss bound of Θ̃( kγ2S).

We now provide lower bounds on the number of learners and sample complexity for arbitrary online
boosting algorithms to evaluate the optimality of OnlineMBBM under 0-1 loss. In particular, we
construct weak learners that satisfy the online weak learning condition (1) and have almost matching
asymptotic error rate and excess loss compared to those of OnlineMBBM as in (7). Indeed we
can prove that the number of learners and sample complexity of OnlineMBBM is optimal up to
logarithmic factors, ignoring the influence of the number of classes k. Our bounds are possibly
suboptimal up to polynomial factors in k, and the problem to fill the gap remains open. The detailed
proof and a discussion of the gap can be found in Appendix B.3. Our lower bound is a multiclass
version of Beygelzimer et al. [7, Theorem 3].

Theorem 4. (Lower bounds for N and T ) For any γ ∈ (0, 14 ), δ, ε ∈ (0, 1), and S ≥ k ln( 1
δ )

γ , there
exists an adversary with a family of learners satisfying the online weak learning condition (1) with
parameters δ, γ, and S, such that to achieve asymptotic error rate ε, an online boosting algorithm
requires at least Ω( 1

k2γ2 ln 1
ε ) learners and a sample complexity of Ω( kεγS).

4 An adaptive algorithm

The online weak learning condition imposes minimal assumptions on the asymptotic accuracy of
learners, and obviously it leads to a solid theory of online boosting. However, it has two main practical
limitations. The first is the difficulty of estimating the edge γ. Given a learner and an adversary, it
is by no means a simple task to find the maximum edge that satisfies (1). The second issue is that
different learners may have different edges. Some learners may in fact be quite strong with significant
edges, while others are just slightly better than a random guess. In this case, OnlineMBBM has to
pick the minimum edge as it assumes common γ for all weak learners. It is obviously inefficient in
that the booster underestimates the strong learners’ accuracy.

Our adaptive algorithm will discard the online weak learning condition to provide a more practical
method. Empirical edges γ1, · · · , γN (see Section 4.2 for the definition) are measured for the weak
learners and are used to bound the number of mistakes made by the boosting algorithm.
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4.1 Choice of loss function

Adaboost, proposed by Freund et al. [10], is arguably the most popular boosting algorithm in practice.
It aims to minimize the exponential loss, and has many variants which use some other surrogate
loss. The main reason of using a surrogate loss is ease of optimization; while 0-1 loss is not even
continuous, most surrogate losses are convex. We adopt the use of a surrogate loss for the same reason,
and throughout this section will discuss our choice of surrogate loss for the adaptive algorithm.

Exponential loss is a very strong candidate in that it provides a closed form for computing potential
functions, which are used to design cost matrices (cf. Mukherjee and Schapire [4, Theorem 13]).
One property of online setting, however, makes it unfavorable. Like OnlineMBBM, each data point
will have a different weight depending on weak learners’ performance, and if the algorithm uses
exponential loss, this weight will be an exponential function of difference in weighted cumulative
votes. With this exponentially varying weights among samples, the algorithm might end up depending
on very small portion of observed samples. This is undesirable because it is easier for the adversary
to manipulate the sample sequence to perturb the learner.

To overcome exponentially varying weights, Beygelzimer et al. [7] use logistic loss in their adaptive
algorithm. Logistic loss is more desirable in that its derivative is bounded and thus weights will be
relatively smooth. For this reason, we will also use multiclass version of logistic loss:

Lr(s) =:
∑
l 6=r

log(1 + exp(s[r]− s[r])). (8)

We still need to compute potential functions from logistic loss in order to calculate cost matrices.
Unfortunately, Mukherjee and Schapire [4] use a unique property of exponential loss to get a closed
form for potential functions, which cannot be adopted to logistic loss. However, the optimal cost
matrix induced from exponential loss has a very close connection with the gradient of the loss (cf.
Mukherjee and Schapire [4, Lemma 22]). From this, we will design our cost matrices as following:

Cit[r, l] :=

{
1

1+exp(si−1
t [r]−si−1

t [l])
, if l 6= r

−
∑
j 6=r

1
1+exp(si−1

t [r]−si−1
t [j])

, if l = r.
(9)

Readers should note that the row vector Cit[r] is simply the gradient of Lr(si−1t ). Also note that this
matrix does not belong to Ceor1 , but it does guarantee that the correct prediction gets the minimal cost.

The choice of logistic loss over exponential loss is somewhat subjective. The undesirable property
of exponential loss does not necessarily mean that we cannot build an adaptive algorithm using this
loss. In fact, we can slightly modify Algorithm 2 to develop algorithms using different surrogates
(exponential loss and square hinge loss). However, their theoretical bounds are inferior to the one with
logistic loss. Interested readers can refer Appendix D, but it assumes understanding of Algorithm 2.

4.2 Adaboost.OLM

Our work is a generalization of Adaboost.OL by Beygelzimer et al. [7], from which the name
Adaboost.OLM comes with M standing for multiclass. We introduce a new concept of an expert.
From N weak learners, we can produce N experts where expert i makes its prediction by weighted
majority votes among the first i learners. Unlike OnlineMBBM, we allow varying weights αit over
the learners. As we are working with logistic loss, we want to minimize

∑
t L

yt(sit) for each i, where
the loss is given in (8). We want to alert the readers to note that even though the algorithm tries to
minimize the cumulative surrogate loss, its performance is still evaluated by 0-1 loss. The surrogate
loss only plays a role of a bridge that makes the algorithm adaptive.

We do not impose the online weak learning condition on weak learners, but instead just measure the
performance of WLi by γi :=

∑
t Cit[yt,l

i
t]∑

t Cit[yt,yt]
. This empirical edge will be used to bound the number of

mistakes made by Adaboost.OLM. By definition of cost matrix, we can check

Cit[yt, yt] ≤ Cit[yt, l] ≤ −Cit[yt, yt], ∀l ∈ [k],

from which we can prove −1 ≤ γi ≤ 1, ∀i. If the online weak learning condition is met with edge γ,
then one can show that γi ≥ γ with high probability when the sample size is sufficiently large.
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Algorithm 2 Adaboost.OLM
1: Initialize: ∀i, vi1 = 1, αi1 = 0
2: for t = 1, · · · , T do
3: Receive example xt
4: Set s0t = 0 ∈ Rk
5: for i = 1, · · · , N do
6: Compute Cit according to (9) and pass it to WLi

7: Set lit = WLi(xt) and sit = si−1t + αitelit
8: Set ŷit = argmaxl sit[l], the prediction of expert i
9: end for

10: Randomly draw it with P(it = i) ∝ vit
11: Predict ŷt = ŷitt and receive the true label yt
12: for i = 1, · · · , N do
13: Set αit+1 = Π(αit − ηtf it

′
(αit)) using (10) and ηt = 2

√
2

(k−1)
√
t

14: Set wi[t] = −Cit[yt,yt]
k−1 and pass (xt, yt,wi[t]) to WLi

15: Set vit+1 = vit · exp(−1(yt 6= ŷit))
16: end for
17: end for

Unlike the optimal algorithm, we cannot show the last expert that utilizes all the learners has the
best accuracy. However, we can show at least one expert has a good predicting power. Therefore
we will use classical Hedge algorithm (Littlestone and Warmuth [11] and Freund and Schapire [12])
to randomly choose an expert at each iteration with adaptive probability weight depending on each
expert’s prediction history.

Finally we need to address how to set the weight αit for each weak learner. As our algorithm tries to
minimize the cumulative logistic loss, we want to set αit to minimize

∑
t L

yt(si−1t + αitelit). This
is again a classical topic in online learning, and we will use online gradient descent, proposed
by Zinkevich [13]. By letting, f it (α) := Lyt(si−1t + αelit), we need an online algorithm ensuring∑
t f

i
t (α

i
t) ≤ minα∈F

∑
t f

i
t (α) +Ri(T ) where F is a feasible set to be specified later, and Ri(T )

is a regret that is sublinear in T . To apply Zinkevich [13, Theorem 1], we need f it to be convex
and F to be compact. The first assumption is met by our choice of logistic loss, and for the second
assumption, we will set F = [−2, 2]. There is no harm to restrict the choice of αit by F because we
can always scale the weights without affecting the result of weighted majority votes.

By taking derivatives, we get

f it
′
(α) =

{
1

1+exp(si−1
t [yt]−si−1

t [lit]−α)
, if lit 6= yt

−
∑
j 6=yt

1
1+exp(si−1

t [j]+α−si−1
t [yt])

, if lit = yt.
(10)

This provides |f it
′
(α)| ≤ k − 1. Now let Π(·) represent a projection onto F : Π(·) :=

max{−2,min{2, ·}}. By setting αit+1 = Π(αit − ηtf
i
t
′
(αit)) where ηt = 2

√
2

(k−1)
√
t
, we get

Ri(T ) ≤ 4
√

2(k − 1)
√
T . Readers should note that any learning rate of the form ηt = c√

t
would

work, but our choice is optimized to ensure the minimal regret.

The pseudocode for Adaboost.OLM is presented in Algorithm 2. In fact, if we put k = 2, Ad-
aboost.OLM has the same structure with Adaboost.OL. As in OnlineMBBM, the booster also needs
to pass the weight along with labeled instance. According to (9), it can be inferred that the weight is
proportional to −Cit[yt, yt].

4.3 Mistake bound and comparison to the optimal algorithm

Now we present our second main result that provides a mistake bound of Adaboost.OLM. The main
structure of the proof is adopted from Beygelzimer et al. [7, Theorem 4] but in a generalized cost
matrix framework. The proof appears in Appendix C.
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Theorem 5. (Mistake bound of Adaboost.OLM) For any T and N , with probability 1 − δ, the
number of mistakes made by Adaboost.OLM satisfies the following inequality:

T∑
t=1

1(yt 6= ŷt) ≤
8(k − 1)∑N
i=1 γ

2
i

T + Õ(
kN2∑N
i=1 γ

2
i

),

where Õ notation suppresses dependence on log 1
δ .

Remark. Note that this theorem naturally implies Beygelzimer et al. [7, Theorem 4]. The difference
in coefficients is due to different scaling of γi. In fact, their γi ranges from [− 1

2 ,
1
2 ].

Now that we have established a mistake bound, it is worthwhile to compare the bound with the
optimal boosting algorithm. Suppose the weak learners satisfy the weak learning condition (1)
with edge γ. For simplicity, we will ignore the excess loss S. As we have γi =

∑
t Cit[yt,l

i
t]∑

t Cit[yt,yt]
≥ γ

with high probability, the mistake bound becomes 8(k−1)
γ2N T + Õ(kNγ2 ). In order to achieve error

rate ε, Adaboost.OLM requires N ≥ 8(k−1)
εγ2 learners and T = Ω̃( k2

ε2γ4 ) sample size. Note that

OnlineMBBM requires N = Ω( 1
γ2 ln k

ε ) and T = min{Ω̃(k
5/2

εγ ), Ω̃( k
εγ2 )}. Adaboost.OLM is

obviously suboptimal, but due to its adaptive feature, its performance on real data is quite comparable
to that by OnlineMBBM.

5 Experiments

We compare the new algorithms to existing ones for online boosting on several UCI data sets, each
with k classes1. Table 1 contains some highlights, with additional results and experimental details in
the Appendix E. Here we show both the average accuracy on the final 20% of each data set, as well as
the average run time for each algorithm. Best decision tree gives the performance of the best of 100
online decision trees fit using the VFDT algorithm in Domingos and Hulten [14], which were used as
the weak learners in all other algorithms, and Online Boosting is an algorithm taken from Oza [5].
Both provide a baseline for comparison with the new Adaboost.OLM and OnlineMBBM algorithms.
Best MBBM takes the best result from running the OnlineMBBM with five different values of the
edge parameter γ.

Despite being theoretically weaker, Adaboost.OLM often demonstrates similar accuracy and some-
times outperforms Best MBBM, which exemplifies the power of adaptivity in practice. This power
comes from the ability to use diverse learners efficiently, instead of being limited by the strength of
the weakest learner. OnlineMBBM suffers from high computational cost, as well as the difficulty of
choosing the correct value of γ, which in general is unknown, but when the correct value of γ is used
it peforms very well. Finally in all cases Adaboost.OLM and OnlineMBBM algorithms outperform
both the best tree and the preexisting Online Boosting algorithm, while also enjoying theoretical
accuracy bounds.

Table 1: Comparison of algorithm accuracy on final 20% of data set and run time in seconds. Best
accuracy on a data set reported in bold.

Data sets k Best decision tree Online Boosting Adaboost.OLM Best MBBM

Balance 3 0.768 8 0.772 19 0.754 20 0.821 42
Mice 8 0.608 105 0.399 263 0.561 416 0.695 2173
Cars 4 0.924 39 0.914 27 0.930 59 0.914 56
Mushroom 2 0.999 241 1.000 169 1.000 355 1.000 325
Nursery 4 0.953 526 0.941 302 0.966 735 0.969 1510
ISOLET 26 0.515 470 0.149 1497 0.521 2422 0.635 64707
Movement 5 0.915 1960 0.870 3437 0.962 5072 0.988 18676

1Codes are available at https://github.com/yhjung88/OnlineBoostingWithVFDT
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Appendix A Link between batch and online weak learning conditions

Let us begin the section by introducing the weak learning condition in the batch setting. Mukherjee
and Schapire [4] have identified necessary and sufficient condition for boostability. We will focus
on a sufficient condition due to reasons of computational tractability. In the batch setting, the entire
training set is revealed. Let D := {(xt, yt) | t = 1, · · · , T} be the training set and define a family of
cost matrices:

Ceor := {C ∈ RT×k | ∀t, C[t, yt] = min
l∈[k]

C[t, l]}.

The superscript “eor” stands for “edge-over-random.” We warn the readers not to confuse Ceor
with Ceor1 . They both impose similar row constraints, but the matrices in these sets have different
dimensions: T × k and k× k respectively. Ceor1 also has additional an normalization constraint. Note
that Ceor provides one cost vector for an instance whereas Ceor1 provides a matrix. This is necessary
because if an adversary passes only a vector to an online learner, then the learner can simply make
the prediction which minimizes the cost. Furthermore, in the online boosting setting, the booster does
not know the true label when it computes a cost matrix.

The authors prove that if a weak learning spaceH satisfies the condition described in Definition 6,
then it is boostable, which means there exists a convex linear combination of hypotheses inH that
perfectly classifies D.
Definition 6. (Batch setting weak learning condition, Mukherjee and Schapire [4]) Suppose D
is fixed and Ceor is defined as above. A weak learning space H is said to satisfy weak learning
condition (Ceor,Uγ) if ∀C ∈ Ceor, one can find a weak hypothesis h ∈ H such that

T∑
t=1

C[t, h(xt)] ≤ C • U′γ . (11)

Now we present how our online weak learning condition (Definition 1) is naturally derived from the
batch setting counterpart (Definition 6). We extend the arguments of Beygelzimer et al. [7]. The
batch setting condition (11) can be interpreted as making the following two implicit assumptions:

1. (Richness condition) For any C ∈ Ceor, there is some hypothesis h ∈ H such that
T∑
t=1

C[t, h(xt)] ≤ C • U′γ .

2. (Agnostic learnability) For any C ∈ Ceor and ε ∈ (0, 1), there is an algorithm which can
compute a nearly optimal hypothesis h ∈ H, i.e.

T∑
t=1

C[t, h(xt)] ≤ inf
h′∈H

T∑
t=1

C[t, h′(xt)] + εT.

For the online setting, we will keep the richness assumption with C being the matrix consisting
of rows of wtCt[yt], and the data being drawn by a fixed adversary. That is to say, it is the online
richness condition that imposes a restriction on adversary because the condition cannot be met by
anyH with fully adaptive adversary. For example, suppose an adversary draws samples uniformly at
random from the set {(x, 1), · · · , (x, k)} for some fixed x ∈ X . There does not exist weak learning
space H that satisfies the online richness condition with this adversary. The agnostic learnability
assumption is also replaced by online agnostic learnability assumption. We present online versions of
the above two assumptions:

1′. (Online richness condition) For any sample length T , any sequence of labeled examples
{(xt, yt) | t = 1, · · · , T} generated by a fixed adversary, and any series of pairs of weight
and cost matrix {(wt,Ct) ∈ [0, 1]× Ceor1 | t = 1, · · · , T}, there is some hypothesis h ∈ H
such that

T∑
t=1

wtCt[yt, h(xt)] ≤ C • U′γ , (12)

where C ∈ RT×k consists of rows of wtCt[yt].
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2′. (Online agnostic learnability) For any sample length T , δ ∈ (0, 1), and for any adaptively
chosen series of pairs of weight and cost matrix {(wt,Ct) ∈ [0, 1]× Ceor1 | t = 1, · · · , T},
there is an online algorithm which can generate predictions ŷt such that with probability
1− δ,

T∑
t=1

wtCt[yt, ŷt] ≤ inf
h∈H

T∑
t=1

wtCt[yt, h(xt)] +Rδ(T ), (13)

where Rδ : N→ R is a sublinear regret.

Daniely et al. [15] extensively investigates agnostic learnability in online multiclass problems by
introducing the following generalized Littlestone dimension (Littlestone [16]) of a hypothesis family
H. Consider a binary rooted tree RT whose internal nodes are labeled by elements from X and
whose edges are labeled by elements from [k] such that two edges from a same parent have different
labels. The tree RT is shattered byH if, for every path from root to leaf which traverses the nodes
x1, · · · , xk, there is a hypothesis h ∈ H such that h(xi) corresponds to the label of the edge from xi
to xi+1. The Littlestone dimension ofH is the maximal depth of complete binary tree that is shattered
by H (or∞ if one can build a arbitrarily deep shattered tree). The authors prove that an optimal
online algorithm has a sublinear regret under the expected (w.r.t. the randomness of the algorithm)
0-1 loss if Littlestone dimension ofH is finite.

Similarly we prove in Lemma 7 that the condition (13) is satisfied if H has a finite Littlestone
dimension. We need to slightly modify their result in two ways. One is to replace expectation by
probabilistic argument, and the other is to replace 0-1 loss by our cost matrix framework. Both
questions can be resolved by replacing an auxiliary lemma used by Daniely et al. [15] without
changing the main structure.

Lemma 7. Suppose a weak learning spaceH has a finite Littlestone dimension d and an adversary
chooses examples in fully adaptive manner. For any sample length T and for any adaptively chosen
series of pairs of weight and cost matrix {(wt,Ct) ∈ [0, 1]× Ceor1 | t = 1, · · · , T}, with probability
1− δ, the online agnostic learnability condition (13) is satisfied with following sublinear regret

Rδ(T ) =
√

(Td lnTk)/2 +
√

(T ln 1/δ)/2.

Proof. We first introduce an online algorithm with experts. Suppose we have a fixed pool of experts
of size N . We keep our cost matrix framework. Each expert f i would suffer cumulative cost
CiT :=

∑T
t=1 wtCt[yt, f

i(xt)]. At each iteration, an online algorithm chooses to follow one expert
and incurs a cost wtCt[yt, ŷt], and its goal is to perform as well as the best expert. That is to say, the
algorithm wants to keep its cumulative cost

∑T
t=1 wtCt[yt, ŷt] not too much larger than mini∈[N ] C

i
T .

This learning framework is called weighted majority algorithm and is thoroughly investigated by
several researchers (e.g., Littlestone and Warmuth [11] and Vovk [17]). We will specifically use
Algorithm 3 (LEA), which is shown to achieve a sublinear regret

√
(T lnN)/2 +

√
(T ln 1/δ)/2

with probability 1− δ (cf. Cesa-Bianchi and Lugosi [18, Corollary 4.2]). The authors require the loss
to be bounded, which is also satisfied in our cost matrix framework. Readers might raise a question
that our loss function changes for each iteration, but the proof still works as long as it is bounded.
Interested readers might refer Hazan et al. [19, Section 1.3.3].

To apply this result in our case, we need to construct a finite set of experts whose best performance
is as good as that of hypotheses in H. In fact, in the proof of Daniely et al. [15, Theorem 25], the
authors construct a set E of size N ≤ (Tk)d such that for every hypothesis h ∈ H, there is an expert
f ∈ E which coincides with h subject to the given examples x1, · · · , xT .

Applying the LEA result on E shows that with probability 1 − δ, the regret is bounded above by√
(Td lnTk)/2 +

√
(T ln 1/δ)/2, which concludes the proof.

One remark is that the proof of Lemma 7 only uses the boundedness condition of Ceor1 .

Now we are ready to demonstrate that our online weak learning condition is indeed naturally derived
from the batch setting counterpart. The following Theorem shows that two conditions (12) and (13)
directly imply the online weak learning condition (1). In other words, if the weak learning space
H accompanied by an adversary is rich enough to contain a hypothesis that slightly outperforms a
random guess and has a reasonably small dimension, then we can find an excess loss S that satisfies
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Algorithm 3 Learning with Expert Advice (LEA)
1: Input T: time horizon, N: number of experts
2: Set η =

√
(8 lnN)/T

3: Set Ci0 = 0 for all i
4: for t = 1, · · · , T do
5: Receive example xt
6: Receive expert advices (f1t , · · · , fNt ) ∈ [k]N

7: Predict ŷt = f it with probability proportional to exp(−ηCit−1)
8: Receive true label yt
9: Update Cit = Cit−1 + wtCt[yt, f it ] for all i

10: end for

(1). This is a generalization of Beygelzimer et al. [7, Lemma 2]. Note that we impose an additional
assumption that wt ≥ m > 0 , ∀t. In case the learner encounters zero weight, it can simply ignore
the instance, and the above assumption is not too artificial.

Theorem 8. (Link between batch and online weak learning conditions) Suppose a pair of weak
learning space H and an adversary satisfies online richness assumption (12) with edge 2γ and
online agnostic learnability assumption (13) with mistake probability δ and sublinear regret Rδ(·).
Additionally we assume there exists a positive constant m that satisfies wt ≥ m , ∀t. Then the online
learning algorithm satisfies the online weak learning condition (1), with mistake probability δ, edge
γ, and excess loss S = maxT (Rδ(T )− γmT

k ).

Proof. Fix δ ∈ (0, 1) and a series of pairs of weight and cost matrix {(wt,Ct) ∈ [0, 1]× Ceor1 | t =
1, · · · , T}, and let C ∈ RT×k consist of rows of wtCt[yt]. First note that by sublinearity of Rδ(·), S
is finite. According to (13), the online learning algorithm can generate predictions ŷt such that, with
probability 1− δ,

T∑
t=1

wtCt[yt, ŷt] ≤ C • U′2γ +Rδ(T ).

Thus it suffices to show that

C • U′2γ +Rδ(T ) ≤ C • U′γ + S. (14)

Since the correct label gets zero cost and the row C[r] has `1 norm wt, we have

C • U′γ =
1− γ
k
||C||1 =

1− γ
k

T∑
t=1

wt.

By plugging this in (14), we get

C • U′2γ − C • U′γ +Rδ(T ) = −γ
k

T∑
t=1

wt +Rδ(T ) ≤ −γ
k
mT +Rδ(T ) ≤ S.

The first inequality holds because wt ≥ m, and the second inequality holds by definition of S, which
completes the proof.

Lemma 7 and Theorem 8 suggest an implicit relation between δ and S in (1). If we want proba-
bilistically stronger weak learning condition, Rδ(T ) in Lemma 7 gets bigger, which results in larger
S = maxT (Rδ(T )− γT

k ).
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Appendix B Detailed discussion of OnlineMBBM

B.1 Proof of Theorem 2

Proof. For ease of notation, we will assume the edge is equal to γ and the true label is r unless
otherwise specified. That is to say, u stands for urγ and φi for φri . By rewriting (3),

φN−i+1(si−1t ) = El∼uφN−i(si−1t + el)

= Cit[r] • u

= Cit[r] • (u− elit) + φN−i(sit),

where Cit is defined in (4). The last equation holds due to the relation sit = si−1t + elit . Also note that
||u||1 = ||er||1 = 1, and thus subtracting common numbers from each component of Cit[r] does not
affect the dot product term. Therefore, by introducing normalized cost matrix Dit as in (5) and wi[t]
as in Algorithm 1, we may write

φytN−i+1(si−1t ) = wi[t]Dit[yt] • (uytγ − elit) + φytN−i(sit)

= wi[t]Dit[yt] • uytγ − wi[t]Dit[yt, l
i
t] + φytN−i(sit)

= wi[t]
1− γ
k
− wi[t]Dit[yt, l

i
t] + φytN−i(sit).

(15)

The last equality holds because Dit is normalized and Dit[yt, yt] = 0. If Dit[yt] is a zero vector, then
by definition wi[t] = 0, and the equality still holds. Then by summing (15) over t, we get

T∑
t=1

φytN−i+1(si−1t ) =
1− γ
k
||wi||1 −

T∑
t=1

wi[t]Dit[yt, l
i
t] +

T∑
t=1

φytN−i(sit).

By online weak learning condition, we have with probability 1− δ, (recall that wi∗ estimates ||wi||∞)

T∑
t=1

wi[t]
wi∗

Dit[yt, l
i
t] ≤

1− γ
k

||wi||1
wi∗

+ S.

From this, we can argue that

T∑
t=1

φytN−i+1(si−1t ) + Swi∗ ≥
T∑
t=1

φytN−i(sit).

Since the above inequality holds for any i, summing over i gives

T∑
t=1

φytN (0) + S

N∑
i=1

wi∗ ≥
T∑
t=1

φyt0 (sNt ),

which holds with probability 1−Nδ by union bound. By symmetry, φytN (0) = φ1N (0) regardless of
the true label yt, and by definition of potential function (3), φyt0 (sNt ) = Lyt(sNt ), which completes
the proof.

B.2 Bounding the terms in general bound under 0-1 loss

Even though OnlineMBBM has a promising theoretical justification, it would be infeasible if the
computation of potential functions takes too long or if the behavior of asymptotic error rate φ1N (0)
is too complicated to be approximated. Fortunately for the 0-1 loss, we can get a computationally
tractable algorithm with vanishing error rate. The use of potential functions in binary boosting setup
is thoroughly discussed by Schapire [20]. In binary setting under 0-1 loss, potential function has a
closed form which dramatically reduces the computational complexity. Unfortunately, the multiclass
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version does not have a closed form, but Mukherjee and Schapire [4] introduce a heuristic to compute
it in reasonable time:

φri (s) = 1−
∑

(x1,··· ,xk)∈A

(
i

x1, · · · , xk

) k∏
l=1

uxll , (16)

where A := {(x1, · · ·xk) ∈ Zk | x1 + · · ·xk = i, ∀l : xl ≥ 0, xl + s[l] < xr + s[r]}, and
urγ = (u1, · · · , uk). By using dynamic programming, the RHS of (16) can be computed in polynomial
time in i, k, and ||s||1. In our setting where the number of learners is fixed to be N , the computation
can be done in polynomial time in k and N because ||s||1 is bounded by N . To the best of our
knowledge, there is no way to compute the potential function in polynomial time if we start from
necessary and sufficient weak learning condition (the algorithm given by Mukherjee and Schapire
[4] takes exponential time in the number of learners), and this is the main reason that we use the
sufficient condition. Recall from (6) that φ1N (0) plays a role of asymptotic error rate and the second
term determines the sample complexity. The following two lemmas provide bounds for both terms.

By applying the Hoeffding’s inequality, we can prove in Lemma 9 that φ1N (0) vanishes exponentially
fast as N grows. That is to say, to get a satisfactory accuracy, we do not need too many learners. We
also note that we can decide N before the learning process begins, which is logically plausible.

Lemma 9. Under the same setting as in Theorem 2 but with the particular choice of 0-1 loss, we
may bound φ1N (0) as follows:

φ1N (0) ≤ (k − 1) exp(−γ
2N

2
). (17)

Proof. We reinterpret φ1N (0) in (16). Imagine that we draw numbers N times from [k] where the
probability that a number i is drawn is u1

γ [i]. That is to say, 1 has highest probability of 1−γ
k + γ, and

other numbers have equal probability of 1−γ
k . Then φ1N (0) can be interpreted as a probability that

the number that is drawn for the most time out of N draws is not 1. Let Ai denote the event that the
number i gets more votes than the number 1. Then we have by union bound,

φ1N (0) = P(A2 ∪ · · · ∪Ak)

≤
k∑
l=2

P(Ai)

= (k − 1)P(A2)

(18)

The last equality holds by symmetry. To compute P(A2), imagine that we draw 1 with probability
1−γ
k + γ, −1 with probability 1−γ

k , and 0 otherwise. P(A2) is equal to the probability that after
independent N draws, the summation of N i.i.d. random numbers is non-positive. Thus by the
Hoeffding’s inequality, we get

P(A2) ≤ exp(−γ
2N

2
) (19)

Combining (18) and (19) completes the proof.

Now we have fixedN based on the desired asymptotic accuracy. Since 0-1 loss is bounded in [0, 1], so
are potential functions. Then by definition of weights (cf. Algorithm 1), ||wi||∞ is trivially bounded
above by k, which means we can use wi∗ = k ∀i. Thus the second term of (6) is bounded above by
kNS, which is valid. However, Lemma 10 allows a tighter bound.

Lemma 10. Under the same setting as in Theorem 2 but with the particular choice of 0-1 loss and
an additional constraint of γ < 1

2 , we may bound ||wi||∞ by

||wi||∞ ≤
ck5/2√
N − i

, (20)

where c is a universal constant that can be determined before the algorithm begins.
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Proof. We will start by providing a bound on φrm(s + el) − φrm(s + er). First note that it is non-
negative as potential functions are proper. Again by using random draw framework as in the proof of
Lemma 9 (now r has the largest probability to be drawn), this value corresponds to the probability
that after m draws, the number r wins the majority votes if the count starts from s + er but loses if
the count starts from s + el. Let X1, · · · , Xk denote the number of draws of each number out of m
draws and define the events Al := {(Xr + s[r])− (Xl + s[l]) ∈ {0, 1}}. Then it can be checked that

φrm(s + el)− φrm(s + er)
= P(∃l′ s.t. Xl′ + s[l′] + el[l′] ≥ Xr + s[r])− P(∃l′ s.t. Xl′ + s[l′] ≥ Xr + s[r] + 1)

≤ P(∃l′ s.t. Xl′ + s[l′] + el[l′] ≥ Xr + s[r] and ∀l′, Xr + s[r] ≥ Xl′ + s[l′])
≤ P(∃l′ s.t. Xl′ + s[l′] + el[l′] ≥ Xr + s[r] ≥ Xl′ + s[l′])

= P(
⋃
l 6=r

Al) ≤
∑
l 6=r

P(Al).

(21)

The first inequality holds by P(A)− P(B) ≤ P(A−B). Individual probabilities can be written as

P(Al) = P(Xr −Xl = s[l]− s[r]) + P(Xr −Xl = s[l]− s[r] + 1)

≤ 2 max
n

P(Xr −Xl = n). (22)

We can prove by applying the Berry-Esseen theorem that the last probability is O( 1√
m

). Let
Y1, · · · , Ym be a sequence of i.i.d. random variables such that Yj ∈ {−1, 0, 1} and

P(Yj = 1) =
1− γ
k

+ γ,

P(Yj = −1) =
1− γ
k

.

Note that EYj = γ and V ar(Yj) = 2(1−γ)
k + γ(1 − γ) =: σ2. It can be easily checked that

Y :=
∑m
j=1 Yj has same distribution with Xr −Xl. Now we approximate Y by a Gaussian random

variable W ∼ N(mγ,mσ2). Let FW and FY denote CDF of W and Y , respectively, and let f
denote the density of W . First note that

|P(Y = n)−
∫ n

n−1
f(w)dw| = |(FY (n)− FY (n− 1))− (FW (n)− FW (n− 1))|

≤ |FY (n)− FW (n)|+ |FY (n− 1)− FW (n− 1)|.

We can apply the Berry-Esseen theorem to the last CDF differences, which provides

|P(Y = n)−
∫ n

n−1
f(w)dw| ≤ 2Cρ

σ3
√
m
, (23)

where C is the universal constant that appears in Berry-Esseen and ρ := E|Yj − γ|3. As Yj is a
bounded random variable, we have

ρ = E|Yj − γ|3 ≤ (1 + γ)E|Yj − γ|2 = (1 + γ)σ2 ≤ 2σ2.

Plugging this in (23) gives

|P(Y = n)−
∫ n

n−1
f(w)dw| ≤ 4C

σ
√
m

By simple algebra, we can deduce

P(Y = n) ≤
∫ n

n−1
f(w)dw +

4C

σ
√
m

≤ sup
w∈R

f(w) +
4C

σ
√
m

=
1√

2πmσ
+

4C

σ
√
m
.

(24)
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Using the fact that γ < 1
2 , we can show

σ2 =
2(1− γ)

k
+ γ(1− γ) ≥ 1

k

Plugging this in (24) gives

P(Y = n) ≤ 1

σ
√
m

(
1√
2π

+ 4C) ≤ C ′
√
k

m
, (25)

where C ′ = 1√
2π

+ 4C. By combining (21), (22), (25), and the fact that Y and Xr −Xl have same
distribution, we prove

φrm(s + el)− φrm(s + er) ≤ 2C ′k

√
k

m
. (26)

The proof is complete by observing that wi[t] =
∑k
l=1[φytN−i(si−1t + el)− φytN−i(si−1t + eyt)].

Remark. By summing (20) over i, we can bound the second term of (6) byO(k5/2
√
N)S. Comparing

this to the aforementioned bound kNS, Lemma 10 reduces the dependency on N , but as a tradeoff
the dependency on k is increased. The optimal bound for this term remains open, but in the case that
the number of classes k is fixed to be moderate, Lemma 10 provides a better bound.

Corollary 3 is a simple consequence of plugging Lemma 9 and 10 to Theorem 2.

B.3 Proof of lower bounds and discussion of gap

We begin by proving Theorem 4.

Proof. At time t, an adversary draws a label yt uniformly at random from [k], and the weak learners
independently make predictions with respect to the probability distribution pt ∈ ∆[k]. This can be
achieved if the adversary draws xt ∈ RN where xt[1], · · · , xt[N ]|yt’s are conditionally independent
with conditional distribution of pt and WLi predicts xt[i]. The booster can only make a final decision
by weighted majority votes of N weak learners. We will manipulate pt in such a way that weak
learners satisfy (1), but the booster’s performance is close to that of Online MBBM.

First we note that since Ct[yt, ŷt] used in (1) is bounded in [0, 1], the Azuma-Hoeffding inequality
implies that if a weak learner makes prediction ŷt according to the probability distribution pt at time
t, then with probability 1− δ, we have

T∑
t=1

wtCt[yt, ŷt] ≤
T∑
t=1

wtCt[yt] • pt +

√
2||w||22 ln(

1

δ
)

≤
T∑
t=1

wtCt[yt] • pt +
γ||w||22
k

+
k ln( 1

δ )

2γ

≤
T∑
t=1

wtCt[yt] • pt +
γ||w||1
k

+
k ln( 1

δ )

2γ
,

(27)

where the second inequality holds by arithmetic mean and geometric mean relation and the last
inequality holds due to wt ∈ [0, 1].

We start from providing a lower bound on the number of weak learners. Let pt = uyt2γ for all t. This
can be done by the constraint γ < 1

4 . Then the last line of (27) becomes

T∑
t=1

wtCt[yt] • uyt2γ +
γ||w||1
k

+
k ln( 1

δ )

2γ
=

1− 2γ

k
||w||1 +

γ||w||1
k

+
k ln( 1

δ )

2γ
≤ 1− γ

k
||w||1 + S,

where the first equality follows by the fact that Ct[yt, yt] = 0 and ||Ct[yt]||1 = 1. Thus the weak
learners indeed satisfy the online weak learning condition with edge γ and excess loss S. Now
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suppose a booster imposes weights on weak learners by αi. WLOG, we may assume the weights
are normalized such that

∑N
i=1 α

i = 1. Adopting the argument of Schapire and Freund [3, Section
13.2.6], we prove that the optimal choice of weights is ( 1

N , · · · ,
1
N ). Fix t, and let li denote the

prediction made by WLi. By noting that P(yt = y) = 1
k , which is constant, we can deduce

P(yt = y|l1, · · · , lN ) =
P(l1, · · · , lN |yt = y)P(yt = y)

P(l1, · · · , lN )

∝ P(l1, · · · , lN |yt = y)

=

N∏
i=1

p1(l
i=y)q1(l

i 6=y),

where f ∝ g means f(y)/g(y) does not depend on y, p = uyt2γ [yt] = 1−2γ
k + 2γ, and q = uyt2γ [l] =

1−2γ
k . By taking log, we get

logP(yt = y|l1, · · · , lN ) = C + log p

N∑
i=1

1(li = y) + log q

N∑
i=1

1(li 6= y)

= C +N log q + log
p

q

N∑
i=1

1(li = y).

Therefore, the optimal decision after observing l1, · · · , lN is to choose y that maximizes
∑N
i=1 1(li =

y), or equivalently, to take simple majority votes.

To compute a lower bound for the error rate, we again introduce random draw framework as in the
proof of Lemma 9. WLOG, we may assume that the true label is 1. Let Ai denote the event that the
number i beats 1 in the majority votes. Then we have

P(booster makes error) ≥ P(A2). (28)

Now we need a lower bound for P(A2). To do so, let {Yi} be the series of i.i.d. random variables
such that Yi ∈ {−1, 0, 1} and

P(Yj = 1) =
1− 2γ

k
+ 2γ =: p1,

P(Yj = −1) =
1− 2γ

k
=: p−1.

Then P(A2) = P(Y < 0) where Y :=
∑N
i=1 Yi.

Now let M be the number of j such that Yj 6= 0. By conditioning on M , we can write

P(Y < 0|M = m) = P(B ≤ m

2
),

where B ∼ binom(m, p1
p1+p−1

). By Slud’s inequality [21, Theorem 2.1], we have

P(B ≤ m

2
) ≥ P(Z ≥

√
m

p− 1
2√

p(1− p)
),

where Z follows a standard normal distribution and p = p1
p1+p−1

. Now using tail bound on normal
distribution, we get

P(B ≤ m

2
) ≥ Ω(exp(−m(p− 1/2)2

p(1− p)
))

= Ω(exp(−m(p1 − p−1)2

4p1p−1
))

= Ω(exp(− mγ2

p1p−1
))

≥ Ω(exp(−4mk2γ2))

≥ Ω(exp(−4Nk2γ2)).

(29)
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Figure 1: Plot of φ1N (0) computed with distribution u1
γ versus the number of labels k. N is fixed to

be 20, and the edge γ is set to be 0.01 (left) and 0.1 (right). The graph is not monotonic for larger
edge. This hinders the approximation of potential functions with respect to k.

We intentionally drop 1
2 from the power, which makes the bound smaller. The second inequality

holds because p1p−1 ≥ (1−2γ)2
k2 ≥ 1

4k2 . Integrating w.r.t. m gives

P(booster makes error) ≥ P(Y < 0) ≥ Ω(exp(−4Nk2γ2)).

By setting this value equal to ε, we have N ≥ Ω( 1
k2γ2 ln 1

ε ), which proves the first part of the
theorem.

Now we turn our attention to the optimality of sample complexity. Let T0 := kS
4γ and define pt = uyt0

for t ≤ T0 and pt = uyt2γ for t > T0. Then for T ≤ T0, (27) implies

T∑
t=1

wtCt[yt, ŷt] ≤
1 + γ

k
||w||1 +

k ln( 1
δ )

2γ
≤ 1− γ

k
||w||1 + S, (30)

where the last inequality holds because ||w||1 ≤ T0 = kS
4γ . For T > T0, again (27) implies

T∑
t=1

wtCt[yt, ŷt] ≤
1

k

T0∑
t=1

wt +
1− 2γ

k

T∑
t=T0+1

wt +
γ||w||1
k

+
k ln( 1

δ )

2γ

≤ 2γ

k
T0 +

1− γ
k
||w||1 +

k ln( 1
δ )

2γ

≤ 1− γ
k
||w||1 + S.

(31)

(30) and (31) prove that the weak learners indeed satisfy (1). Now note that combining weak learners
does not provide meaningful information for t ≤ T0, and thus any online boosting algorithm has
errors at least Ω(T0). Therefore to get the desired asymptotic error rate, the number of observations
T should be at least Ω(T0

ε ) = Ω( kεγS), which proves the second part of the theorem.

Even though the gap for the number of weak learners between Corollary 3 and Theorem 4 is merely
polynomial in k, readers might think it is counter-intuitive thatN is increasing in k in the upper bound
while decreasing in the lower bound. This phenomenon occurs due to the difficulty in approximating
potential functions. Recall that Lemma 9 and Theorem 4 utilize upper and lower bound of φ1N (0).

At first glance, considering that φ1N (0) implies the error rate of majority votes out of N independent
random draws with distribution u1

γ , the potential function seems to be increasing in k as the task gets
harder with bigger set of options. This is the case of left panel of Figure 1. However, as it is shown
in the right panel, it can also start decreasing in k when γ is larger. This can happen because the
probability that a wrong label is drawn vanishes as k grows while the probability that the correct
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label is drawn remains bigger than γ. In this regard, even though the number of wrong labels gets
larger, the error rate actually decreases as u1

γ [1] dominates other probabilities.

After acknowledging that φ1N (0) might not be a monotonic function of k, the linear upper bound (17)
turns out to be quite naive, and this is the main reason for the conflicting dependence on k in upper
bound and lower bound for N . As the relation among k, N , and γ in φ1N (0) is quite intricate, the
issue of deriving better approximation of potential functions remains open.

Appendix C Proof of Theorem 5

We first introduce a lemma that will be used in the proof.

Lemma 11. Suppose A,B ≥ 0, B −A = γ ∈ [−1, 1], and A+B ≤ 1. Then we have

min
α∈[−2,2]

A(eα − 1) +B(e−α − 1) ≤ −γ
2

2
.

Proof. We divide into three cases with respect to the range of BA .

First suppose e−4 ≤ B
A ≤ e

4. In this case, the minimum is attained at α = 1
2 log B

A , and the minimum
becomes

−(A+B) + 2
√
AB = −(

√
A−
√
B)2

= −(
A−B√
A+
√
B

)2

= − γ2

(
√
A+
√
B)2

≤ − γ2

2(A+B)
≤ −γ

2

2
.

Now suppose B
A > e4 > 51. From B −A = γ, we have γ > 50A ≥ 0. Choosing α = log 6, we get

the minimum is bounded above by

5A− 5

6
B =

25

6
A− 5

6
γ

<
25

6

γ

50
− 5

6
γ

= −3

4
γ < −γ

2

2
.

The last inequality hold due to γ ≤ 1.

Finally suppose A
B > e4 > 51. From B −A = γ, we have −γ > 50B ≥ 0. Choosing α = − log 6,

we get the minimum is bounded above by

−5

6
A+ 5B =

25

6
B +

5

6
γ

< −25

6

γ

50
+

5

6
γ

=
3

4
γ < −γ

2

2
.

The last inequality hold due to γ ≥ −1. This completes the proof.

Now we provide a proof of Theorem 5.

Proof. Let Mi denote the number of mistakes made by expert i: Mi =
∑
t 1(yt 6= ŷit). We also let

M0 = T for the ease of presentation. As Adaboost.OLM is using the Hedge algorithm among N
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experts, the Azuma-Hoeffding inequality and a standard analysis (cf. Cesa-Bianchi and Lugosi [18,
Corollary 2.3]) provide with probability 1− δ,∑

t

1(yt 6= ŷt) ≤ 2 min
i
Mi + 2 logN + Õ(

√
T ), (32)

where Õ notation suppresses dependence on log 1
δ .

Now suppose the expert i− 1 makes a mistake at iteration t. That is to say, in a conservative way,
si−1t [yt] ≤ si−1t [l] for some l 6= yt. This implies that among k − 1 terms in the summation of
−Cit[yt, yt] in (9), at least one term is not less than 1

2 . Thus we can say −Cit[yt, yt] ≥ 1
2 if the expert

i− 1 makes a mistake at xt. This leads to the inequality:

−
∑
t

Cit[yt, yt] ≥
Mi−1

2
. (33)

Note that by definition of M0 and C1
t , the above inequality holds for i = 1 as well. For ease of

notation, let us write wi := −
∑
t Cit[yt, yt].

Now let ∆i denote the difference of the cumulative logistic loss between two consecutive experts:

∆i =
∑
t

Lyt(sit)− Lyt(si−1t ) =
∑
t

Lyt(si−1t + αitelit)− L
yt(si−1t ).

Then Online Gradient Descent algorithm provides

∆i ≤ min
α∈[−2,2]

∑
t

[Lyt(si−1t + αelit)− L
yt(si−1t )] + 4

√
2(k − 1)

√
T . (34)

By simple algebra, we can check

log(1 + es+α)− log(1 + es) = log(1 +
eα − 1

1 + e−s
) ≤ 1

1 + e−s
(eα − 1).

From this, we can deduce that

Lyt(si−1t + αelit)− L
yt(si−1t ) ≤

{
Cit[yt, lit](eα − 1) , if lit 6= yt
Cit[yt, lit](−e−α + 1) , if lit = yt

.

Summing over t, we have∑
t

Lyt(si−1t + αelit)− L
yt(si−1t ) ≤ wi(A(eα − 1) +B(e−α − 1)),

where
A =

∑
lt 6=yt

Ct[yt, lt]/wi, B = −
∑
lt=yt

Ct[yt, lt]/wi.

Note that A and B are non-negative and B −A = γi ∈ [−1, 1], A+B ≤ 1. Lemma 11 provides

min
α∈[−2,2]

∑
t

[Lyt(si−1t + αelit)− L
yt(si−1t )] ≤ −γi

2

2
wi. (35)

Combining (33), (34), and (35), we have

∆i ≤ −
γi

2

4
Mi−1 + 4

√
2(k − 1)

√
T .

Summing over i, we get by telescoping rule∑
t

Lyt(sNt )−
∑
t

Lyt(0) ≤ −1

4

∑
i

γ2iMi−1 + 4
√

2(k − 1)N
√
T

≤ −1

4

∑
i

γ2i min
i
Mi + 4

√
2(k − 1)N

√
T .
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Note that Lyt(0) = (k − 1) log 2 and Lyt(sNt ) ≥ 0. Therefore we have

min
i
Mi ≤

4(k − 1) log 2∑
i γ

2
i

T +
16
√

2(k − 1)N∑
i γ

2
i

√
T .

Plugging this in (32), we get with probability 1− δ,∑
t

1(yt 6= ŷt) ≤
8(k − 1) log 2∑

i γ
2
i

T + Õ(
kN
√
T∑

i γ
2
i

+ logN)

≤ 8(k − 1)∑
i γ

2
i

T + Õ(
kN2∑
i γ

2
i

),

where the last inequality holds from AM-GM inequality: cN
√
T ≤ c2N2+T

2 .

Appendix D Adaptive algorithms with different surrogate losses

In this section, we present similar adaptive boosting algorithms with Adaboost.OLM but with two
different surrogate losses: exponential loss and square hinge loss. We keep the main structure, but the
unique properties of each loss result in little difference in details.

D.1 Exponential loss

As discussed in Section 4.1, exponential loss is useful in batch setting because it provides a closed
form for the potential function. We will use following multiclass version of exponential loss:

Lr(s) :=
∑
l 6=r

exp(s[l]− s[r]). (36)

From this, we can compute the cost matrix and f it
′ for the online gradient descent as below:

Cit[r, l] =

{
exp(si−1t [l]− si−1t [r]) , if l 6= r

−
∑
j 6=r exp(si−1t [j]− si−1t [r]) , if l = r

(37)

f it
′
(α) =

{
exp(si−1t [lit] + α− si−1t [yt]) , if lit 6= yt
−
∑
j 6=yt exp(si−1t [j]− α− si−1t [yt]) , if lit = yt.

(38)

With this gradient, if we set the learning rate ηit = 2
√
2

(k−1)
√
t
e−i, a standard analysis provides

Ri(T ) ≤ 4
√

2(k− 1)ei
√
T . Note that with exponential loss, we have different learning rate for each

weak learner. We keep the algorithm same as Algorithm 2, but with different cost matrix and learning
rate. Now we state the theorem for the mistake bound.

Theorem 12. (Mistake bound with exponential loss) For any T and N , the number of mistakes
made by Algorithm 2 with above cost matrix and learning rate satisfies the following inequality with
high probability: ∑

t

1(yt 6= ŷt) ≤
4k∑
i γ

2
i

T + Õ(
ke2N∑
i γ

2
i

).

Proof. The proof is almost identical to that of Theorem 5, and we only state the different steps. With
cost matrix defined in (37), we can show

−
∑
t

Cit[yt, yt] ≥Mi−1.
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Furthermore, we have following identity (which was inequality in the original proof):

Lyt(si−1t + αelit)− L
yt(si−1t ) =

{
Cit[yt, lit](eα − 1) , if lit 6= yt
Cit[yt, lit](−e−α + 1) , if lit = yt

.

This leads to

∆i ≤ −
γi

2

2
Mi−1 + 4

√
2(k − 1)ei

√
T .

Summing over i, we get∑
i γ

2
i

2
min
i
Mi ≤ (k − 1)T + 4

√
2(k − 1)e

eN − 1

e− 1

√
T

≤ (k − 1)T + 9keN
√
T .

Plugging this in (32), we get with high probability,∑
t

1(yt 6= ŷt) ≤
4(k − 1)∑

i γ
2
i

T + Õ(
keN
√
T∑

i γ
2
i

+ logN)

≤ 4k∑
i γ

2
i

T + Õ(
ke2N∑
i γ

2
i

),

which completes the proof. We also used AM-GM inequality for the last step.

Comparing to Theorem 5, we get a better coefficient for the first term, which is asymptotic error rate,
but the exponential function in the second term makes the bound significantly loose. The exponential
term comes from the larger variability of f it associated with exponential loss. It should also be noted
that the empirical edge γi is measured with different cost matrices, and thus direct comparison is not
fair. In fact, as discussed in Section 4.1, γi is closer to 0 with exponential loss than with logistic loss
due to larger variation in weights, which is another huge advantage of logistic loss.

D.2 Square hinge loss

Another popular surrogate loss is square hinge loss. We begin the section by introducing multiclass
version of it:

Lr(s) :=
1

2

∑
l 6=r

(s[l]− s[r] + 1)2+, (39)

where f+ := max{0, f}. From this, we can compute the cost matrix and f it
′ for the online gradient

descent as below:

Cit[r, l] =

{
(si−1t [l]− si−1t [r] + 1)+ , if l 6= r

−
∑
j 6=r(si−1t [j]− si−1t [r] + 1)+ , if l = r

(40)

f it
′
(α) =

{
(si−1t [lit] + α− si−1t [yt] + 1)+ , if lit 6= yt
−
∑
j 6=yt(si−1t [j]− α− si−1t [yt] + 1)+ , if lit = yt.

(41)

With square hinge loss, we do not use Lemma 11 in the proof of mistake bound, and thus the
feasible set F can be narrower. In fact, we will set F = [−c, c], where the parameter c will be
optimized later. With this F , we have |f it

′
(α)| ≤ (k − 1) + ci ≤ (k − 1) + cN , and the standard

analysis of online gradient descent algorithm with learning rate ηt =
√
2c

((k−1)+cN)
√
t

provides that

Ri(T ) ≤ 2
√

2(k − 1 + cN)
√
T . Now we are ready to prove the mistake bound.

Theorem 13. (Mistake bound with square hinge loss) For any T and N , with the choice of
c = 1√

N
, the number of mistakes made by Algorithm 2 with above cost matrix and learning rate

satisfies the following inequality with high probability:∑
t

1(yt 6= ŷt) ≤
2k
√
N∑

i |γi|
T + Õ(

(k2 +N)N
√
N∑

i |γi|
).
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Proof. With cost matrix defined in (40), we can show

−
∑
t

Cit[yt, yt] ≥Mi−1.

We can also check that
1

2
[(s+ α)2+ − s2+] ≤ s+α+

α2

2
,

by splitting the cases with the sign of each term. Using this, we can deduce that

Lyt(si−1t + αelit)− L
yt(si−1t ) ≤ Cit[yt, l

i
t]α+

(k − 1)α2

2
.

Summing over t gives∑
t

Lyt(si−1t + αelit)− L
yt(si−1t ) ≤

∑
t

Cit[yt, yt]γiα+
(k − 1)α2

2
T.

The RHS is a quadratic in α, and the minimizer is α∗ = −
∑
t Cit[yt,yt]γi
(k−1)T . Since the magnitude of

Cit[yt, yt] grows as a function of c, there is no guarantee that this minimizer lies in the feasible set
F = [−c, c]. Instead, we will bound the minimum by plugging in α = ±c:

min
α∈[−c,c]

∑
t

Lyt(si−1t + αelit)− L
yt(si−1t ) ≤ (k − 1)c2

2
T + c|γi|

∑
t

Cit[yt, yt]

≤ (k − 1)c2

2
T − c|γi|Mi−1.

From this, we get

∆i ≤ −c|γi|Mi−1 +
(k − 1)c2

2
T + 2

√
2(k − 1 + cN)

√
T .

Summing over i, we get

c
∑
i

|γi|min
i
Mi ≤

k − 1

2
T +

(k − 1)c2N

2
T + 2

√
2(k − 1 + cN)N

√
T .

By rearranging terms, we conclude

min
i
Mi ≤

(k − 1)

2
∑
i |γi|

(
1

c
+ cN)T +

2
√

2(k − 1 + cN)N∑
i |γi|

√
T .

It is the first term from the RHS that provides an optimal choice of c = 1√
N

, and this value gives

min
i
Mi ≤

(k − 1)
√
N∑

i |γi|
T +

2
√

2(k − 1 +
√
N)N∑

i |γi|
√
T .

Plugging this in (32), we get with high probability,∑
t

1(yt 6= ŷt) ≤
2(k − 1)

√
N∑

i |γi|
T + Õ(

(k +
√
N)N∑

i |γi|
√
T + logN)

≤ 2k
√
N∑

i |γi|
T + Õ(

(k2 +N)N
√
N∑

i |γi|
),

which completes the proof. We also used AM-GM inequality for the last step.

By Cauchy-Schwartz inequality, we have N
∑
i γ

2
i ≥ (

∑
i |γi|)2. From this, we can deduce

(
√
N∑
i |γi|

)2 ≥ 1∑
i γ

2
i

. If LHS is greater than 1, then the bound in Theorem 13 is meaningless.
Otherwise, we have √

N∑
i |γi|

≥ (

√
N∑
i |γi|

)2 ≥ 1∑
i γ

2
i

,

which validates that the bound with logistic loss is tighter. Furthermore, square hinge loss also
produces more variable weights over instances, which results in worse empirical edges.
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Appendix E Detailed description of experiment

Testing was performed on a variety of data sets described in Table 2. All are from the UCI data
repository (Blake and Merz [22], Higuera C [23], Ugulino et al. [24]) with a few adjustments made to
deal with missing data and high dimensionality. These changes are noted in the table below. Many of
the data sets are the same as used in the Oza [5], with the addition of a few sets with larger numbers
of data points and predictors. We report the average performance on both the entire data set and on
the final 20% of the data set. The two accuracy measures help understand both the “burn in period”,
or how quickly the algorithm improves as observations are recorded, and the “accuracy plateau”, or
how well the algorithm can perform given sufficient data. Different applications may emphasize each
of these two algorithmic characteristics, so we choose to provide both to the reader. We also report
average run times. All computations were carried out on a Nehalem architecture 10-core 2.27 GHz
Intel Xeon E7-4860 processors with 25 GB RAM per core. For all but the last two data sets, results
are averaged over 27 reordering of the data. Due to computational constraints, Movement was run
just nine times and ISOLET just once.

Table 2: Data set details

Data sets Number of data points Number of predictors Number of classes

Balance 625 4 3
Mice 1080 82? 8
Cars 1728 6 4
Mushroom 8124 22 2
Nursery 12960 8 4
ISOLET 7797 50?? 26
Movement 165631??? 12??? 5

? Missing data was replaced with 0.
?? The original 617 predictors were projected onto their first 50 principal components,
which contained 80% of the variation.
??? User information was removed, leaving only sensor position predictors. Single data
point with missing value removed.

In all the experiments we used Very Fast Decision Trees (VFDT) from Domingos and Hulten [14]
as weak learners. VFDT has several tuning parameters which relate to the frequency with which
the tree splits. In all methods we assigned these randomly for each tree. Specifically for our
implementation the tuning parameter grace_period was chosen randomly between 5 and 20 and the
tuning parameters split_confidence and hoeffding_tie_threshold randomly between 0.01
and 0.9. It is likely that this procedure would produce trees which do not perform well on specific
data sets. In practice for the Adaboost.OLM it is possible to restart poorly performing trees using
parameters similar to better performing trees in an automated and online (although ad hoc) fashion
using the αit, and this tends to produce superior performance (as well as allow adaptivity to changes
in the data distribution). However for these experiments, we did not take advantage of this to better
examine the benefits of just the cost matrix framework.

Several algorithms were tested using the above specifications, but with slightly different conditions.
The first three are directly comparable since they all use the same weak learners and do not require
knowledge of the edge of the weak learners. DT is the best result from running 100 VFDT inde-
pendently. The best was chosen after seeing the performance on the entire data set and final 20%
respectively. However the time reported was the average time for running all 100 VFDT. This was
done to better see the additional cost of running the boosting framework on top of the training of the
raw weak learners. OLB is an implementation of the Online Boosting algorithm in Oza [5, Figure 2]
with 100 VFDT. AdaOLM stands for Adaboost.OLM, again with 100 VFDT.

The next five algorithms (MB) tested were all variants of the OnlineMBBM but with different edge γ
values. In practice this value is never known ahead of time, but we want to explore how different
edges affect the performance of the algorithm. For the ease of computation, instead of exactly finding
the value of (16), we estimated the potential functions by Monte Carlo (MC) simulations.
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Table 3: Comparison of algorithms on final 20% of data set

100 multiclass trees 100k binary trees

Data sets DT OLB AdaOLM MB .3 MB .1 MB .05 MB .01 MB .001 OvA AdaOVA

Balance 0.768 0.772 0.754 0.788 0.821 0.819 0.805 0.752 0.786 0.795
Mice 0.608 0.399 0.561 0.572 0.695 0.663 0.502 0.467 0.742 0.667
Cars 0.924 0.914 0.930 0.914 0.885 0.870 0.836 0.830 0.946 0.919
Mushroom 0.999 1.000 1.000 0.997 1.000 1.000 0.999 0.998 1.000 1.000
Nursery 0.953 0.941 0.966 0.965 0.969 0.964 0.948 0.940 0.974 0.965

ISOLET 0.515 0.149 0.521 0.453 0.626 0.635 0.226 0.165 0.579 0.570
Movement 0.915 0.870 0.962 0.975 0.987 0.988 0.984 0.981 0.947 0.970

Table 4: Comparison of algorithms on full data set

100 multiclass trees 100k binary trees

Data sets DT OLB AdaOLM MB .3 MB .1 MB .05 MB .01 MB .001 OvA AdaOVA

Balance 0.734 0.747 0.698 0.751 0.769 0.759 0.736 0.677 0.724 0.730
Mice 0.499 0.315 0.454 0.457 0.507 0.449 0.356 0.343 0.586 0.530
Cars 0.848 0.839 0.865 0.842 0.829 0.814 0.767 0.762 0.881 0.853
Mushroom 0.996 0.997 0.995 0.991 0.995 0.994 0.993 0.992 0.996 0.995
Nursery 0.921 0.909 0.928 0.932 0.936 0.932 0.918 0.912 0.939 0.932

ISOLET 0.395 0.104 0.456 0.333 0.486 0.461 0.152 0.111 0.507 0.472
Movement 0.898 0.864 0.942 0.954 0.972 0.973 0.959 0.957 0.927 0.952

Table 5: Comparison of algorithms total run time in seconds

100 multiclass trees 100k binary trees

Data sets DT OLB AdaOLM MB .3 MB .1 MB .05 MB .01 MB .001 OvA AdaOVA

Balance 8 19 20 26 42 47 50 51 66 43
Mice 105 263 416 783 2173 3539 3579 3310 3092 3013
Cars 39 27 59 56 105 146 165 152 195 143
Mushroom 241 169 355 318 325 326 324 321 718 519
Nursery 526 302 735 840 1510 2028 2181 1984 2995 1732

ISOLET 470 1497 2422 18732 38907 64707 62492 50700 37300 33328
Movement 1960 3437 5072 13018 17608 18676 16739 16023 30080 21389

The final two algorithms are slightly different implementations of the One VS All (OvA) ensemble
method. In this framework multiple binary classifiers are used to solve a multiclass problem by
viewing different classes as the positive class, and all others as the negative class. They then predict
whether a data point is their positive class or not, and the results are used together to make a final
classification. Both use VFDT as their weak learners, but with 100× k binary trees. The first method
(OvA) uses k versions of Adaboost.OL, each viewing one of the classes as the positive class. Recall
that Adaboost.OLM in the binary setting is just Adaboost.OL by Beygelzimer et al. [7]. The second
(AdaOVA) produces 100 weak multiclass classifiers by grouping a k binary classifiers, one for each
class, and then uses Adaboost.OLM to get the final learner, treating the 100 single tree OvA’s as its
weak learners. In the table below we have partitioned the methods in terms of the number of weak
learners since, while they all tackle the same problem, algorithms within each partition are more
directly comparable since they use the same weak learners.

E.1 Analysis

It is worth beginning by noting the strength of the VFDT without any boosting framework. While the
results above are for the best performing tree in hindsight, which is not a valid strategy in practice, in
many applications it would be possible to collect some data beforehand activating the system, and
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use that to pick tuning parameters. It is also worth noting that many of the weaknesses of the above
methods, such as their poor scaling with the number of predictors, are also inherited from the VFDT.
Nonetheless in almost all cases Adaboost.OLM algorithm outperforms both the best tree and the
preexisting Online Boosting algorithm (and is often comparable to the OnlineMBBM algorithms), as
well as provide theoretical guarantees. In particular these performance gains seem to be greater on
the final 20% of the data and in data sets with larger number of data points n, leading us to believe
that Adaboost.OLM has a longer burn in period, but higher accuracy plateau. This performance does
come at additional computational cost, but this cost is relatively mild, especially compared to the
costs of OnlineMBBM and the OvA methods.

The OnlineMBBM methods use additional assumptions about the power of their weak learners, and
are able to leverage that additional information to produce more accurate, with one of these algorithms
often achieving the highest accuracy on each data set. However they can be sensitive to the choice
of γ, with the worst choice of γ often underperforming both pure trees and Adaboost.OLM, and
with no single γ value always producing the best result. These methods are also much slower than
Adaboost.OLM, likely due to computational burden in estimating the potential functions.

Finally our two OvA algorithms tend to perform very well, often beating the other adaptive methods.
However this performance is likely due to the use of many times more weak learners than the other
adaptive methods used, which results in high computational cost. Again we see that as n increases
the implementation of OvA using our cost matrix framework performs better compared to the vanilla
implementation, reinforcing our belief that the cost matrix framework requires more data to come
online but has a higher accuracy plateau.
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