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Abstract

Planning in MDPs often uses a smaller planning
horizon than specified in the problem to save com-
putational expense at the risk of a loss due to sub-
optimal plans. Jiang et al. [2015b] recently showed
that smaller than specified planning horizons can in
fact be beneficial in cases where the MDP model is
learned from data and therefore not accurate. In this
paper, we consider planning with accurate mod-
els and investigate structural properties of MDPs
that bound the loss incurred by using smaller than
specified planning horizons. We identify a number
of structural parameters some of which depend on
the reward function alone, some on the transition
dynamics alone, and some that depend on the in-
teraction between rewards and transition dynamics.
We provide planning loss bounds in terms of these
structural parameters and, in some cases, also show
tightness of the upper bounds. Empirical results
with randomly generated MDPs are used to validate
qualitative properties of our theoretical bounds for
shallow planning.

1 Introduction
Planning in Markov Decision Processes (MDPs) involves a
lookahead at the consequences of potential action choices us-
ing a computational-model of the transition dynamics and the
reward function components of the MDP. The horizon spec-
ified as part of the planning problem determines how deep
(far into the future) the lookahead has to be. The longer the
planning-horizon the greater the computational effort needed
to compute an optimal policy. To save on this computational
effort, planners often use a smaller than specified planning
horizon; hereafter we refer to this as shallow planning. Of
course, the computation saved by shallow planning comes at
the cost of obtaining a policy that is suboptimal relative to the
optimal policy. Recent work by Jiang et al. [2015b] shows
that when planning with inaccurate models (perhaps learned
from small amounts of data) it can actually be beneficial to
use shallow planning because it avoids overfitting to the noise
in the inaccurate model. In this paper, we focus exclusively
on the setting of planning with accurate models with the goal

of understanding what properties of the MDP help determine
the loss due to shallow planning.

A widely understood but coarse upper bound (see Equa-
tion 2) on the loss due to shallow planning is outlined below;
it is based only on the largest reward in the MDP and does not
exploit any other finer-grained properties of the MDP. In this
paper, we identify a set of structural properties of an MDP
some of which depend on the reward function alone, some
on the transition dynamics alone, and some that depend on
the interaction between rewards and transition dynamics. We
provide planning loss bounds in terms of these structural pa-
rameters and, in some cases, also show tightness of the upper
bounds. Empirical results with randomly generated MDPs
are used to validate qualitative properties of our theoretical
bounds for shallow planning.

2 Planning Setting & Notation
An MDP is specified as a tuple M = 〈S,A, P,R, γeval〉
where S is the state space; A is the action space; P :
S×A×S → [0, 1] is the transition function, andR : S×A→
[0, Rmax] is the reward function. The evaluation discount fac-
tor, γeval ∈ [0, 1), determines the effective planning horizon
of the problem (more on this below). The planning task is to
compute an optimal policy, a mapping from states to actions,
that maximizes value, that is the expected sum of future re-
wards discounted by γeval at every time step. Given a policy
π : S → A, we use V πM,γeval

(s) to denote its value as a func-
tion of the starting state s (with a slight abuse of notation we
will also treat V πM,γeval

as a vector in R|S|). Given an MDP,
there always exists a policy that simultaneously maximizes
the value of all states, and we denote such an optimal policy
as π∗M,γeval

.
Throughout this paper we will use the phrases “discount

factor” and “planning horizon” interchangeably, since the in-
finite sum of rewards discounted by γeval are approximated by
a finite horizon of order O(1/(1− γeval)) in online planning
algorithms such as Monte-carlo Tree Search methods [Kearns
et al., 2002]. In practice, to save computational costs a shal-
low planner would use a discount factor γ < γeval to guide
the planning algorithm in its computation/search of a good
policy. We emphasize that the ultimate goodness of the pol-
icy π found by the shallow planner will still be evaluated in
M using γeval. To facilitate analysis, we ignore details of



specific shallow planning algorithms and instead assume per-
fect planning under γ, i.e., we assume the shallow planning
algorithm outputs π∗M,γ , the policy that is optimal in M for a
discount factor γ. We define the loss due to shallow planning
as the worst (over all states) absolute difference in value of
the optimal policy π∗M,γeval

and π∗M,γ , i.e.,∥∥∥∥V π∗M,γevalM,γeval
− V π

∗
M,γ

M,γeval

∥∥∥∥
∞
. (1)

Finally, because we only consider planning with accurate
models, hereafter we drop explicit dependence on M in all
notation (for value functions and policies) unless otherwise
specified, for they are all automatically with reference to the
true MDP M .

3 Structural Parameters that Bound Loss
Before we turn to our finer-grained parameters that bound
loss due to shallow planning, we note here that there is a
straightforward bound on loss that comes simply from the
largest reward (this has been explicitly given by Petrik &
Scherrer [2009]; we derive it in Section 3.2 for complete-
ness):∥∥∥∥V π∗γevalγeval − V

π∗γ
γeval

∥∥∥∥
∞
≤ γeval − γ

(1− γeval)(1− γ)
Rmax. (2)

This bound ignores the role of transitions in determining
value functions, and indeed any other aspect of reward func-
tions but its largest value, and finally any interaction between
rewards and transitions.

3.1 Value Function Variation Parameter & Loss
We begin with a summary “intermediate” parameter and a
bound on the loss derived from it; later we show how to relate
this summary parameter to several high-level properties of an
MDP that pertain to rewards, transitions, and their interaction.

Definition 1. κγ = max
s,s′∈S

∣∣∣V π∗γγ (s)− V π
∗
γ

γ (s′)
∣∣∣,

For (environment M and) discount factor γ the value-
function-variation parameter, κγ , measures the maximal vari-
ation in optimal value between any two states, or equivalently
how much difference the choice of start state can make on the
value an agent can achieve. Note that the quantities in κγ
depend only on γ and not at all on γeval. Next we use this
parameter to bound the loss defined in Equation 1 as follows.
Theorem 1 (Upper-Bound on Loss from κγ).∥∥∥∥V π∗γevalγeval − V

π∗γ
γeval

∥∥∥∥
∞
≤ γeval − γ

1− γeval
κγ .

Proof. First notice that

γeval
0 = γ0,

γeval
1 = γ1 + (γeval − γ),

γeval
2 = γ2 + γ(γeval − γ) + γeval(γeval − γ),

...

γeval
k = γk + γk−1(γeval − γ) + · · ·+ γeval

k−1(γeval − γ).

On the right-hand side of the equations, each column of the
array forms a geometric series with ratio γ. This means that
for any policy π, as we show below, V πγeval can be written
as a linear transformation of V πγ by re-arranging the reward
obtained at each step: ∀s ∈ S, let es be the unit vector with
the element indexed by s equal to 1, we have

V πγeval(s) = e>s

∞∑
t=1

γeval
t−1[Pπ]t−1Rπ

= e>s

∞∑
t=1

γt−1[Pπ]t−1Rπ

+ (γeval − γ)e>s

∞∑
t=1

γt−1[Pπ]tRπ + · · ·

+ (γeval − γ)γeval
k−1e>s

∞∑
t=1

γt−1[Pπ]t+k−1Rπ + · · ·

= e>s V
π
γ + (γeval − γ)e>s [Pπ]V πγ + · · ·

+ (γeval − γ)γeval
k−1e>s [Pπ]kV πγ + · · · ,

where [Pπ] is a |S| × |S| matrix with the element indexed by
(s, s′) being P (s′|s, a), and Rπ is a |S| × 1 vector with the
s-th element being R(s, π(s)). Then, the value difference:
∀s ∈ S,

V
π∗γeval
γeval (s)− V π

∗
γ

γeval(s)

=
(
e>s V

π∗γeval
γ − e>s V

π∗γ
γ

)
+

(γeval − γ)
(
e>s [Pπ

∗
γeval ]V

π∗γeval
γ − e>s [Pπ

∗
γ ]V

π∗γ
γ

)
+ · · ·+

(γeval − γ)γeval
k−1(e>s [Pπ

∗
γeval ]kV

π∗γeval
γ

− e>s [Pπ
∗
γ ]kV

π∗γ
γ

)
+ · · · (3)

≤
(
e>s V

π∗γ
γ − e>s V

π∗γ
γ

)
+

(γeval − γ)
(
e>s [Pπ

∗
γeval ]V

π∗γ
γ − e>s [Pπ

∗
γ ]V

π∗γ
γ

)
+ · · ·+

(γeval − γ)γeval
k−1(e>s [Pπ

∗
γeval ]kV

π∗γ
γ − e>s [Pπ

∗
γ ]kV

π∗γ
γ

)
+ · · ·

≤ 0 + (γeval − γ)κγ + · · ·+ (γeval − γ)γeval
k−1κγ + · · ·

=
γeval − γ
1− γeval

κγ .

The first inequality above holds by optimality of π∗γ for dis-
count factor γ and the second inequality holds because for any
stochastic vectors p, q, we have |p>V π

∗
γ

γ −q>V
π∗γ
γ | ≤ κγ .

3.2 Bounding Value Function Variation using
other parameters

Here we develop several structural parameters that bound κγ .

Rewards-Only Parameters
The first rewards-only parameter is simply the largest reward.
Proposition 1 below shows how it can be used to bound κγ
(the proof is straightforward and hence omitted) and when
this is applied to Theorem 1 we get the known bound on loss
due to shallow planning in Equation 2.



Proposition 1. κγ ≤ Rmax/(1− γ).
The next rewards-only parameter stems from the observa-

tion that if we were able to obtain Rmax immediate reward in
every state, there would be no need to plan ahead. In general,
we show that the loss of shallow planning can be bounded by
the extent to which this criterion is violated.
Definition 2 (Reward Variation).

∆R = maxs,s′∈S |maxaR(s, a)−maxa′ R(s′, a′)|.
Proposition 2. κγ ≤ ∆R/(1− γ).

Proof. The myopic policy s 7→ argmaxaR(s, a) yields at
least mins maxaR(s, a)/(1 − γ) value from any starting

state, which is a lower bound on V
π∗γ
γ . On the other hand,

any policy and starting state pair cannot have value more than
maxs,aR(s, a)/(1−γ), and the proposition follows by com-
bining the two bounds.

Worst case tightness We show that the planning loss bound
based on ∆R by combining Theorem 1 and Proposition 2 is
tight in the worst case (and so is Theorem 1 itself, as a direct
corollary).
Claim 1. For any ∆R ∈ [0, Rmax], γ ∈ [0, 1 −∆R/Rmax],
γeval ∈ [γ, 1), there exists an MDP M with reward variation
∆R, and the loss incurred by using γ is equal to the bound
given by Theorem 1 and Proposition 2.
Corollary 1. For any κγ ∈ [0, Rmax], γ ∈ [0, 1), γeval ∈
[γ, 1), there exists an MDP with value function variation κγ
and the loss incurred by using γ is equal to the bound given
by Theorem 1.

Proof of Claim 1. Consider the 2-state MDP shown in Fig-
ure 1a: state s2 is absorbing with reward Rmax; state s1 has
two actions, with a1 keeping the agent in state s1 and giving
reward R(s1, a1) = r, and a2 transitioning to s2 with reward
R(s1, a2) = (r − γRmax)/(1 − γ). It is easy to verify that
R(s1, a2) ≤ R(s1, a1), hence ∆R = Rmax − r. The MDP
is designed so that π∗γeval(s1) = a2 and π∗γ(s1) = a1, and so
the loss at state s1 of using γ is (Rmax−r)(γeval−γ)

(1−γ)(1−γeval) , which is

exactly equal to the bound since Rmax−r
1−γ = ∆R/(1 − γ) =

κγ .

Transitions-Only Parameters
By using structure in the transition probabilities we can get
tighter bounds on κγ . The next parameter, ε-mixing time,
is motivated by the fact that if the MDP mixes fast under a
policy π, then the value function of π has small variation over
the state space. When π = π∗γ , the parameter yields a bound
on κγ (explicitly stated in Corollary 2). For ease of technical
presentation we will assume that the Markov Chain induced
by all policies we consider is ergodic (i.e., under any policy,
it is possible to reach any state from any other state).
Definition 3 (ε-mixing time). Define the ε-mixing time for
policy π as

Tπ(ε) = inf
{
T : ∀s ∈ S, t ≥ T,

∥∥e>s [Pπ]t − (ρπ)>
∥∥
1
≤ ε
}

where ρπ is the limiting distribution independent of the start-
ing state.

s2s1
a1

a2

+Rmax

(a) Worst-case MDP for
proving Claim 1

1-c

c

1-c +Rmax

s1

s2 s3
+0

c a1 a2

(b) Worst-case MDP for
proving Claim 2

Figure 1: MDPs constructed to prove Claim 1 and 2. In both
cases, a1 is optimal under γ and a2 is optimal under γeval.
(a) R(s1, a1) = Rmax − ∆R and R(s1, a2) = Rmax −
∆R/(1 − γ). (b) Dotted arrows represent stochastic transi-
tions, and c = 1 − δP /2. R(s1, a1) = 0 and R(s1, a2) =
γδPRmax/2(1− γ).

Proposition 3. For policy π,

maxs,s′∈S
∣∣V πγ (s)− V πγ (s′)

∣∣ ≤ Rmax

1−γ
(
1−γTπ(ε)+εγTπ(ε)

)
.

Corollary 2. κγ ≤ Rmax

(
1− γTπ∗γ (ε) + εγ

Tπ∗γ (ε)
)
/(1− γ).

To prove Proposition 3, we first prove the following lemma,
which is widely used in the MDP approximation literature.

Lemma 1. Given stochastic vectors p, q ∈ R|S|, and a real
vector V with the same dimension,

|p>V − q>V | ≤ ‖p− q‖1 max
s,s′
|V (s)− V (s′)|/2.

Proof. Let c = (maxs V (s) + mins V (s))/2, and 1 be the
|S| × 1 all-1 vector,

|p>V − q>V | = |p>(V − c1)− q>(V − c1)|
≤ ‖p− q‖1‖V − c1‖∞(Hölder’s inequality)

= ‖p− q‖1 max
s,s′
|V (s)− V (s′)|/2.

Proof of Proposition 3. We reduce Proposition 3 to Propo-
sition 5 (presented below): if π has ε-mixing time Tπ(ε)
w.r.t. ρπ , we have for any t ≥ Tπ(ε), s ∈ S,

|e>s [Pπ]tRπ − ηπ
∣∣ =

∣∣e>s [Pπ]tRπ − (ρπ)>Rπ
∣∣

≤
∥∥e>s [Pπ]t − (ρπ)>

∥∥
1
Rmax/2 = εRmax/2.

Therefore Tπ(ε) is also an (εRmax/2)-return mixing time for
π, and applying Proposition 5 the result follows.

The next transition-only parameter is the stochastic diam-
eter TM , the longest expected time to travel from one state
to another. If this parameter is small, V

π∗γ
γ must have a

small variation, otherwise we could improve the value of low-
valued states by a non-stationary policy that travels to a high-
valued state first and executes the optimal policy afterwards.

Definition 4 (Stochastic diameter).
TM = max

s,s′∈S
min
π:S→A

E
{

inf
{
t ∈ N : st = s′

}∣∣∣s0 = s, π
}

.

Proposition 4. κγ ≤ 1−γTM
1−γ Rmax.



Proof. It suffices to show that for any s, s′ ∈ S, V
π∗γ
γ (s′) −

V
π∗γ
γ (s) ≤ 1−γTM

1−γ Rmax. Since π∗γ is optimal under γ, we

can lower bound V
π∗γ
γ (s) by the value obtained by starting

at s and following any policy. In particular, consider a non-
stationary policy that first travels to s′ by executing the policy
that achieves the minimum in the definition of TM , and then
switch to π∗γ . Suppose it takes t steps to get to s′ (t is a ran-
dom variable), then the non-stationary policy gives at least
γtV

π∗γ
γ (s′) value, and

V
π∗γ
γ (s) ≥ E

{
γtV

π∗γ
γ (s′)

}
= E

{
γt
}
V
π∗γ
γ (s′)

≥ γE[t]V π
∗
γ

γ (s′) (f(x) = γx is convex)

≥ γTMV π
∗
γ

γ (s′) ≥ V π
∗
γ

γ (s′)− 1−γTM
1−γ Rmax.

Transitions-and-Rewards Parameters
Thus far, we have provided parameters of rewards alone and
transitions alone. Here we consider a parameter that captures
the interaction between rewards and transitions, the ε-return
mixing time, which measures mixing via the closeness of the
expected reward obtained after a particular time step and that
obtained in the long run.1

Definition 5 (ε-return mixing time).

T vπ (ε) = inf
{
T : ∀t ≥ T,

∥∥[Pπ]tRπ − ηπ1
∥∥
∞ ≤ ε

}
,

where scalar ηπ is the average reward per step of policy π.

Proposition 5.

max
s,s′∈S

∣∣V πγ (s)− V πγ (s′)
∣∣ ≤ Rmax(1− γTvπ (ε)) + 2εγT

v
π (ε)

1− γ
.

Corollary 3. κγ ≤
(
Rmax(1−γT

v
π∗γ

(ε)
)+2εγ

Tvπ∗γ
(ε))

/(1−γ).

Proof of Proposition 5. Let V
π

γ = V πγ −
γT

v
π (ε)

1−γ ηπ1, which is
the value function offset by a state-independent constant. For
any s, s′ ∈ S, V πγ (s) − V πγ (s′) = V

π

γ (s) − V πγ (s′), and V
π

γ
is equal to

∞∑
t=1

γt−1[Pπ]t−1Rπ − γT
v
π (ε)

1− γ
ηπ1

=

Tvπ (ε)∑
t=1

γt−1[Pπ]t−1Rπ +

∞∑
t=Tvπ (ε)+1

γt−1[Pπ]t−1Rπ

− γT
v
π (ε)

1− γ
ηπ1 =

Tvπ (ε)∑
t=1

γt−1[Pπ]t−1Rπ

+

∞∑
t=Tvπ (ε)+1

γt−1
(

[Pπ]t−1Rπ − ηπ1
)
.

1This definition is slightly adapted from Kearns & Singh [2002],
who considered the average reward obtained in first T time steps.

We now have,

V
π

γ (s)− V πγ (s′)

≤
Tvπ (ε)∑
t=1

γt−1(es − es′)>[Pπ]t−1Rπ

+ 2 ·

∥∥∥∥∥∥
∞∑

t=Tvπ (ε)+1

γt−1
(
[Pπ]t−1Rπ − ηπ1

)∥∥∥∥∥∥
∞

≤ 1− γTvπ (ε)

1− γ
Rmax + 2

∞∑
t=Tvπ (ε)+1

γt−1ε

=
Rmax(1− γTvπ (ε)) + 2εγT

v
π (ε)

1− γ
.

4 Action Variation
In the preceding section, we looked at structural parameters
of the MDP that bound the loss due to shallow planning, all
via an intermediate quantity κγ that characterizes the value
function variation. Yet, there are MDPs with large κγ that
still have a small loss. While covering all such cases is out-
side the scope of this paper, we cover one such class of MDPs.
Namely, those MDPs where different actions at the same state
have almost identical distributions over next-states; no deep
planning is needed in these MDPs as they are essentially con-
textual bandits (with Markovian, not i.i.d., contexts). We in-
troduce the notion of Action Variation to capture this idea,
and provide an associated loss bound which subsumes Theo-
rem 1.

Definition 6 (Action Variation).

δP = max
s∈S

max
a,a′∈A

‖P (·|s, a)− P (·|s, a′)‖1 .

Theorem 2.∥∥∥∥V π∗γevalγeval − V
π∗γ
γeval

∥∥∥∥
∞
≤ δP /2 · κγ(γeval − γ)

(1− γeval)(1− γeval(1− δP /2))
.

Theorem 2 is a planning loss bound that depends on both
δP and κγ ; the bound monotonically increases with δP and
reduces to Theorem 1 when δP takes the maximal value 2.

To prove the theorem, we first define the commonality be-
tween two probability distributions, and state a key lemma
w.r.t. this quantity. Note that commonality appears in the mix-
ing time literature for Markov chains in linking the notions of
total variation and coupling [Levin et al., 2009, Section 4.2].

Definition 7. Given two vectors p, q of the same dimension,
define comm(p, q) as the commonality vector of p and q,
whose s-th element is comm(s; p, q) = min{p(s), q(s)}.
Fact 1. When p and q are stochastic vectors,

‖ comm(p, q)‖1 = 1− ‖p− q‖1/2.

Lemma 2. Suppose p and q are stochastic vectors over S,
∀π1, π2 : S → A,

‖ comm(p>Pπ1 , q>Pπ2)‖1 ≥ (1− δP /2)‖ comm(p, q)‖1.



Proof of Lemma 2. Let Pπ(s|·) be a column vector of transi-
tion probabilities from each state to s under policy π, then

comm(s; p>Pπ1 , q>Pπ2) = min{p>Pπ1(s|·), q>Pπ2(s|·)}
≥ min{comm(q, p)>Pπ1(s|·), comm(q, p)>Pπ2(s|·)}
= comm(s; comm(p, q)>Pπ1 , comm(p, q)>Pπ2).

Define z as comm(p, q) normalized so that ‖z‖1 = 1, then

‖ comm(p>Pπ1 , q>Pπ2)‖1
≥ ‖ comm(comm(p, q)>Pπ1 , comm(p, q)>Pπ2)‖1
= ‖ comm(p, q)‖1‖ comm(z>Pπ1 , z>Pπ2)‖1
= ‖ comm(p, q)‖1(1− ‖z>(Pπ1 − Pπ2)‖1/2) (Fact 1)
≥ ‖ comm(p, q)‖1(1− δP /2).

The last step uses the fact that ‖ · ‖1 is a convex function, and
each row of Pπ1 − Pπ2 has `1-norm bounded by δP .

Corollary 4. For any s ∈ S, π1, π2 : S → A, k ∈ N,
‖e>s [Pπ1 ]k − e>s [Pπ2 ]k‖1 ≤ 2− 2(1− δP /2)k.

Proof. Using Fact 1, the LHS is

2− 2 ‖ comm(e>s [Pπ1 ]k, e>s [Pπ2 ]k)‖1
≤ 2− 2(1− δP /2) ‖ comm(e>s [Pπ1 ]k−1, e>s [Pπ2 ]k−1)‖1
≤ · · · ≤ 2− 2(1− δP /2)k.

Proof of Theorem 2. The proof follows from the proof for
Theorem 1 up to Equation 3. The k-th term in the summation
is (ignoring a factor of (γeval − γ)γeval

k−1 for the moment):(
e>s [Pπ

∗
γeval ]kV

π∗γ
γ − e>s [Pπ

∗
γ ]kV

π∗γ
γ

)
≤
∥∥∥e>s [Pπ

∗
γeval ]k − e>s [Pπ

∗
γ ]k
∥∥∥
1
κγ/2 (Lemma 1)

≤
(
2− 2(1− δP /2)k

)
κγ/2. (Corollary 4)

Summing over k = 1, 2, . . ., we have the loss bounded by∑∞
k=1(γeval − γ)γeval

k−1(1− (1− δP /2)k
)
κγ

=
γeval − γ
1− γeval

κγ −
(γeval − γ)(1− δP /2)

1− γeval(1− δP /2)
κγ ,

which is the RHS of the bound after simplification.

Worst case tightness We show that Theorem 2 is tight in the
worst case, as we did for Proposition 2.
Claim 2. For any δP ∈ [0, 2], γ ∈ [0, 1/(1 + δP /2)], γeval ∈
[γ, 1), there exists an MDP M with Action Variation equal to
δP and a planning loss of using γ equal to the bound given in
Theorem 2.

Proof. We construct the following 3-state MDP (see Fig-
ure 1b): s2 and s3 are absorbing with rewards Rmax and 0
respectively; consequently κγ = Rmax/(1−γ). For s1, there
are two actions a1 and a2, with reward and transition rules as
follows: given a real number c ∈ [0, 1] to be set later, we
set R(s1, a1) = 0, R(s1, a2) = γ(1 − c)Rmax/(1 − γ),
and P (s1|s1, a1) = P (s1|s1, a2) = c, P (s2|s1, a1) =
P (s3|s1, a2) = 1 − c. In this MDP, we have δP = 2 − 2c,

so we can manipulate δP by setting c = 1− δP /2; also, both
actions in s1 are equally good under γ but π∗γeval(s1) = a1,
and the loss of choosing a2 is

γeval(1− c)Rmax

(1− γeval)(1− cγeval)
− γ(1− c)Rmax

(1− γ)(1− cγeval)

=
(1− c)(γeval − γ)Rmax

(1− γeval)(1− γevalc)(1− γ)
,

which equals the RHS of the bound as c = 1 − δP /2 and
Rmax

1−γ = κγ .

5 Empirical Illustrations
Our theoretical results translate various structural properties
of an MDP onto a smooth upper-bound on the loss due to
shallow planning. But what does the actual loss look like in
any particular MDP? We know that the loss curve as a func-
tion of γ should be piecewise constant. This is because as we
lower γ from γeval towards zero, there will be discrete points
at which the optimal policy with respect to γ changes, parti-
tioning the discount-factor interval and yielding a piecewise
constant loss curve. This behavior of the loss curve is con-
sistent with Blackwell optimality [Hordijk and Yushkevich,
2002], which asserts that at the extreme end near γ = 1 the
loss curve is constant with value 0. This is seen in the 4 pan-
els of Figure 2 where we plot the loss as a function of γ (see
caption for additional details; we describe how the specific
MDPs were generated below). What is perhaps interesting
is that the loss curves are not always non-decreasing with in-
creasing γ. The loss-curve in the bottom-right panel is clearly
non-monotonic. The graph on the right of Figure 2 shows a
simple MDP where it is easy to see how the loss can be non-
monotonic as a function of γ. Thus, loss-curves as a function
of γ in any specific MDP can be complex and hard to predict
using only high-level structural properties.

A useful way to illustrate the empirical validity of our
monotonic theoretical results is to consider “average” loss
curves by sampling MDPs from some distribution. Intuitively
averaging multiple piecewise constant loss curves from per-
turbed MDPs should yield smooth loss curves (this is a form
of smoothed analysis [Spielman and Teng, 2009]). Specif-
ically, the results presented below will be of the follow-
ing form. We will sample MDPs from multiple different
generative-distributions defined in Section 5.1. Using pro-
cedures defined in Section 5.2, for each random MDP, we
will compute the empirical value of the loss and the structural
properties defined in Section 3.2 and 4. Then to show that the
structural properties matter, we group their values into quan-
tiles and plot an average loss curve for each quantile by aver-
aging the loss curves over the MDPs that fall into that quan-
tile. As we discuss below, we get the qualitative phenomenon
expected from our theoretical results.

5.1 Domains Specification
We consider random MDPs with N states and 2 actions, gen-
erated according to the following schemes.

1. Random topologies: Each state-action pair is randomly
assigned d possible next-states, where d is chosen ac-
cording to one of the following:



fixed(N,d): d is a fixed number.
binom(N,p): d is binomially distributed as B(N, p).

2. Ring topology ring(N,p): the N states form a ring.
Upon taking action 1 at a state, the agent either stays at
the same place or moves to the next state in clockwise or-
der; the same for action 2 except that the agent moves in
a counter-clockwise order. In addition, for each (s, a, s′)
where s is not next to s′, with probability p we add s′ as
a next-state for (s, a).

Once the connectivity-structure of an MDP is determined as
above, we fill the non-zero entries in the transition probabili-
ties and the rewards with numbers drawn independently from
U [0, 1] and normalize the transition probabilities.

5.2 Computing Structural Parameters
We compute the quantities that our theoretical results refer to
for every random MDP that we generate. Below is the list of
quantities and how we compute them in practice:

1. Relative loss:

max
s∈S

(
V
π∗γeval
γeval (s)− V π

∗
γ

γeval(s)
)
/V

π∗γeval
γeval (s).

This is the empirical version of Equation 1, with a nor-
malized magnitude between [0, 1].

2. Reward variation: we use ∆R/maxs,aR(s, a) as the
empirical version of ∆R.

3. ε-mixing time: we compute Tπ(ε) by its definition in
Proposition 3 with ε = 0.01, π = π∗γeval . An imple-
mentation detail is that, we only search 50 steps for
Tπ(ε) instead of checking an infinite number of steps,
which is sufficient for the MDP distributions we con-
sider in this paper. Formally, the empirical version
of Tπ(ε) is inf

{
T ≤ 50 : ∀s ∈ S, T ≤ t ≤

50,
∥∥e>s [Pπ]t − (ρπ)>

∥∥
1
≤ ε
}

.
4. Stochastic diameter: to avoid the difficulty of calculat-

ing the stochastic distance between every pair of (s, s′),
we compute its approximation by solving for the optimal
value of an MDP Ms′ for each s′ instead: Ms′ has the
same transition function as M except that s′ goes to an
additional absorbing state s′′; there is +1 reward when
transitioning into s′′, and 0 everywhere else. Our empir-

ical version of TM is then maxs,s′ logγ V
π∗M

s′ ,γ

Ms′ ,γ
(s) with

γ = 0.9999 (in fact, as γ tends to 1, this is equal to TM
in the limit under mild conditions).

5. ε-return mixing time: same as ε-mixing time (ε = 0.01,
checking for 50 steps).

6. Action Variation: we first compute for each s ∈ S
maxa,a′∈A ‖P (·|s, a)− P (·|s, a′)‖1 in the definition of
δP . Instead of taking max over all s, we take the average
to be our empirical version of δP .

5.3 Results
We present results for each of the following MDP
distributions: fixed(10,3), binom(10,0.3), and
ring(10,0.125). For each of the 5 structural param-
eters we have identified, we divide the 105 MDPs sampled
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Figure 2: Left: relative loss as a function of γ for 4 MDPs
drawn from fixed(10,3). In the lower right graph, loss is
not a monotonic function of γ. While this may be surprising,
it is actually easy to construct a simple MDP where this is true
(see right). Right: a small MDP where planning loss is non-
monotonic in γ when γeval is close to 1; all transitions are de-
terministic and the numbers on the edges represent rewards;
ε is a small number close to 0. The left action is optimal for
γeval close to 1, and is taken when γ = 0; when γ = 2ε,
however, the agent will take the right action. Thus, the agent
incurs 0 loss when γ = 0 and γ = γeval, and a positive loss
when γ = 2ε.

from each distribution into 3 quantiles, and plot the relative
loss averaged over each quantile of MDPs in Figure 3, where
rows correspond to MDP distributions and columns corre-
spond to identified parameters.Throughout the experiments
we use γeval = 0.995 and γ = 0, 0.01, . . . , 0.99.

As seen in Figure 3, although the loss for individual MDPs
are piecewise constant curves and can have complicated
shapes (see Figure 2), when averaged over a distribution over
MDPs we get smooth loss curves monotonically decreasing
with γ. Secondly, for each parameter, the loss curves for dif-
ferent quantiles are separated and exhibit the order predicted
by our theoretical results (except in a few cases where the
separation is not significant): all our bounds are monotoni-
cally increasing with the parameters, and in the results we see
the loss curves corresponding to higher quantiles stay above
those for lower quantiles, which validates our theoretical re-
sults.

6 Related Work
The simple bound obtained by combining Theorem 1 and
Proposition 1 is very similar to that given by Kearns et al.
[2002] where a discrete horizon is used instead of a continu-
ous discount factor, and similar results have been implied in
the convergence of value iteration [Sutton and Barto, 1998].
When planning with an inaccurate model under the problem
specified horizon, the dependence of loss on planning hori-
zon is well understood, especially when the model inaccuracy
is due to statistical estimation errors [Mannor et al., 2007;
Maillard et al., 2014] or approximation errors due to the
use of function approximators [Ravindran and Barto, 2004;
Taylor et al., 2009; Farahmand et al., 2010], or the combina-
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Figure 3: Results on random MDPs. Each figure displays the relative loss as a function of γ, averaged over a particular distri-
bution of MDPs (see distribution names at the right end and their descriptions in Section 5.1) in different quantiles partitioned
according to a particular parameter (see parameter names at the top and their descriptions in Section 5.2). The loss curves are
all well separated with the expected order, except for ε-mixing time and stochastic diameter with fixed(10,3), and action
variation with ring(10,0.125).

tion of the two [Paduraru et al., 2008; Jiang et al., 2015a].

The papers mentioned above do not address the setting
where γ < γeval, and as far as we know, Petrik & Scher-
rer [2009] were the first to examine this setting in the partic-
ular scenario where approximation schemes are deployed in
dynamic programming. More recently, Jiang et al. [2015b]
studied the impact of γ < γeval in another important scenario
where there exists statistical estimation error in the model.
In both these papers, the focus is on how the (negative) im-
pact of model error grows as γ increases; to obtain the best
policy via planning, such an impact has to be traded-off with
the loss incurred by using γ when planning with a perfect
model. Characterizing such a loss using structural properties
of the MDP is exactly the topic of our paper, and we believe
our study complements that of Petrik & Scherrer and Jiang
et al., and provides a more complete picture of planning with
smaller than specified horizons.

The structural parameters identified in this paper are in-
spired by some existing work: the notion of mixing times is
often used in average time reward MDPs, e.g., [Kearns and
Singh, 2002; Brafman and Tennenholtz, 2003], and a term
similar to our definition of stochastic diameter is defined by
Tewari and Bartlett [2008]. As far as we know, the other two
parameters (reward variation and action variation), as well as
the application of all of these parameters to bounding plan-
ning loss of shallow planning, are novel.

7 Conclusions
In this paper we presented multiple structural properties of
MDPs that upper-bound the loss due to shallow planning with
accurate models. Empirical results validated the role of these
properties using a form of smoothed analysis.

Our theoretical results are also relevant to the setting of
planning with inaccurate models learned from data as fol-
lows. As shown in Jiang et al. [2015b] an upper bound on
the loss due to shallow planning with inaccurate models can
be decomposed into two terms, an estimation error term that
captures the loss due to the limited amount of data used to
learn the model, and an approximation error term that cap-
tures the loss due to shallow planning. Our theoretical results
can be viewed as providing structural parameters that affect
the approximation error term.

Finally, our work provides the theoretical foundation
for developing MDP planning algorithms that automatically
choose an appropriate horizon. In fact, direct corollaries of
our theory already offer some guidance on how to make such
a choice: for example, if we have planned with a relatively
small γ, the variation of the resulting value function (which
is κγ) provides a loss bound via Theorem 2. If the loss is af-
fordable, we can choose not to re-plan with a larger γ in order
to save computation. There is more work to be done towards
a practical algorithm, and we leave this possibility for future
exploration.
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