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Abstract

The use of M-estimators in generalized linear regression models in high dimen-
sional settings requires risk minimization with hard L0 constraints. Of the known
methods, the class of projected gradient descent (also known as iterative hard
thresholding (IHT)) methods is known to offer the fastest and most scalable solu-
tions. However, the current state-of-the-art is only able to analyze these methods
in extremely restrictive settings which do not hold in high dimensional statisti-
cal models. In this work we bridge this gap by providing the first analysis for
IHT-style methods in the high dimensional statistical setting. Our bounds are tight
and match known minimax lower bounds. Our results rely on a general analysis
framework that enables us to analyze several popular hard thresholding style al-
gorithms (such as HTP, CoSaMP, SP) in the high dimensional regression setting.
Finally, we extend our analysis to the problem of low-rank matrix recovery.

1 Introduction

Modern statistical estimation is routinely faced with real world problems where the number of pa-
rameters p handily outnumbers the number of observations n. In general, consistent estimation of
parameters is not possible in such a situation. Consequently, a rich line of work has focused on
models that satisfy special structural assumptions such as sparsity or low-rank structure. Under
these assumptions, several works (for example, see [1, 2, 3, 4, 5]) have established that consistent
estimation is information theoretically possible in the “n� p” regime as well.

The question of efficient estimation, however, is faced with feasibility issues since consistent esti-
mation routines often end-up solving NP-hard problems. Examples include sparse regression which
requires loss minimization with sparsity constraints and low-rank regression which requires dealing
with rank constraints which are not efficiently solvable in general [6].

Interestingly, recent works have demonstrated that these hardness results can be avoided by assuming
certain natural conditions over the loss function being minimized such as restricted strong convexity
(RSC) and restricted strong smoothness (RSS). The estimation routines proposed in these works
typically make use of convex relaxations [5] or greedy methods [7, 8, 9] which do not suffer from
infeasibility issues.

Despite this, certain limitations have precluded widespread use of these techniques. Convex
relaxation-based methods typically suffer from slow rates as they solve non-smooth optimization
problems apart from being hard to analyze in terms of global guarantees. Greedy methods, on the
other hand, are slow in situations with non-negligible sparsity or relatively high rank, owing to their
incremental approach of adding/removing individual support elements.

Instead, the methods of choice for practical applications are actually projected gradient (PGD) meth-
ods, also referred to as iterative hard thresholding (IHT) methods. These methods directly project
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the gradient descent update onto the underlying (non-convex) feasible set. This projection can be
performed efficiently for several interesting structures such as sparsity and low rank. However, tra-
ditional PGD analyses for convex problems viz. [10] do not apply to these techniques due to the
non-convex structure of the problem.

An exception to this is the recent work [11] that demonstrates that PGD with non-convex regulariza-
tion can offer consistent estimates for certain high-dimensional problems. However, the work in [11]
is only able to analyze penalties such as SCAD, MCP and capped L1. Moreover, their framework
cannot handle commonly used penalties such as L0 or low-rank constraints.

Insufficiency of RIP based Guarantees for M-estimation. As noted above, PGD/IHT-style meth-
ods have been very popular in literature for sparse recovery and several algorithms including Iterative
Hard Thresholding (IHT) [12] or GraDeS [13], Hard Thresholding Pursuit (HTP) [14], CoSaMP
[15], Subspace Pursuit (SP) [16], and OMPR(`) [17] have been proposed. However, the analysis
of these algorithms has traditionally been restricted to settings that satisfy the Restricted Isometry
property (RIP) or incoherence property. As the discussion below demonstrates, this renders these
analyses inaccessible to high-dimensional statistical estimation problems.

All existing results analyzing these methods require the condition number of the loss function, re-
stricted to sparse vectors, to be smaller than a universal constant. The best known such constant is
due to the work of [17] that requires a bound on the RIP constant δ2k ≤ 0.5 (or equivalently a bound
1+δ2k
1−δ2k ≤ 3 on the condition number). In contrast, real-life high dimensional statistical settings,
wherein pairs of variables can be arbitrarily correlated, routinely require estimation methods to per-
form under arbitrarily large condition numbers. In particular if two variates have a covariance matrix

like
[

1 1− ε
1− ε 1

]
, then the restricted condition number (on a support set of size just 2) of the sam-

ple matrix cannot be brought down below 1/ε even with infinitely many samples. In particular when
ε < 1/6, none of the existing results for hard thresholding methods offer any guarantees. Moreover,
most of these analyses consider only the least squares objective. Although recent attempts have
been made to extend this to general differentiable objectives [18, 19], the results continue to require
that the restricted condition number be less than a universal constant and remain unsatisfactory in a
statistical setting.

Overview of Results. Our main contribution in this work is an analysis of PGD/IHT-style methods
in statistical settings. Our bounds are tight, achieve known minmax lower bounds [20], and hold
for arbitrary differentiable, possibly even non-convex functions. Our results hold even when the
underlying condition number is arbitrarily large and only require the function to satisfy RSC/RSS
conditions. In particular, this reveals that these iterative methods are indeed applicable to statistical
settings, a result that escaped all previous works.

Our first result shows that the PGD/IHT methods achieve global convergence if used with a relaxed
projection step. More formally, if the optimal parameter is s∗-sparse and the problem satisfies
RSC and RSS constraints α and L respectively (see Section 2), then PGD methods offer global
convergence so long as they employ projection to an s-sparse set where s ≥ 4(L/α)2s∗. This
gives convergence rates that are identical to those of convex relaxation and greedy methods for the
Gaussian sparse linear model. We then move to a family of efficient “fully corrective” methods and
show as before, that for arbitrary functions satisfying the RSC/RSS properties, these methods offer
global convergence.

Next, we show that these results allow PGD-style methods to offer global convergence in a variety
of statistical estimation problems such as sparse linear regression and low rank matrix regression.
Our results effortlessly extend to the noisy setting as a corollary and give bounds similar to those of
[21] that relies on solving an L1 regularized problem.

Our proofs are able to exploit that even though hard-thresholding is not the prox-operator for any
convex prox function, it still provides strong contraction when projection is performed onto sets of
sparsity s � s∗. This crucial observation allows us to provide the first unified analysis for hard
thresholding based gradient descent algorithms. Our empirical results confirm our predictions with
respect to the recovery properties of IHT-style algorithms on badly-conditioned sparse recovery
problems, as well as demonstrate that these methods can be orders of magnitudes faster than their
L1 and greedy counterparts.
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Organization. Section 2 sets the notation and the problem statement. Section 3 introduces the
PGD/IHT algorithm that we study and proves that the method guarantees recovery assuming the
RSC/RSS property. We also generalize our guarantees to the problem of low-rank matrix regression.
Section 4 then provides crisp sample complexity bounds and statistical guarantees for the PGD/IHT
estimators. Section 5 extends our analysis to a broad family of compressive sensing algorithms that
include the so-called fully-corrective hard thresholding methods and provide similar results for them
as well. We present some empirical results in Section 6 and conclude in Section 7.

2 Problem Setup and Notations

High-dimensional Sparse Estimation. Given data points X = [X1, . . . , Xn]T , where Xi ∈ Rp,
and the target Y = [Y1, . . . , Yn]T , where Yi ∈ R, the goal is to compute an s∗-sparse θ∗ s.t.,

θ∗ = arg min
θ,‖θ‖0≤s∗

f(θ). (1)

Typically, f can be thought of as an empirical risk function i.e. f(θ) = 1
n

∑
i `(〈Xi,θ〉, Yi) for some

loss function ` (see examples in Section 4). However, for our analysis of PGD and other algorithms,
we need not assume any other property of f other than differentiability and the following two RSC
and RSS properties.
Definition 1 (RSC Property). A differentiable function f : Rp → R is said to satisfy restricted
strong convexity (RSC) at sparsity level s = s1 + s2 with strong convexity constraint αs if the
following holds for all θ1,θ2 s.t. ‖θ1‖0 ≤ s1 and ‖θ2‖0 ≤ s2:

f(θ1)− f(θ2) ≥ 〈θ1 − θ2,∇θf(θ2)〉+
αs
2
‖θ1 − θ2‖22.

Definition 2 (RSS Property). A differentiable function f : Rp → R is said to satisfy restricted
strong smoothness (RSS) at sparsity level s = s1 + s2 with strong convexity constraint Ls if the
following holds for all θ1,θ2 s.t. ‖θ1‖0 ≤ s1 and ‖θ2‖0 ≤ s2:

f(θ1)− f(θ2) ≤ 〈θ1 − θ2,∇θf(θ2)〉+
Ls
2
‖θ1 − θ2‖22.

Low-rank Matrix Regression. Low-rank matrix regression is similar to sparse estimation as pre-
sented above except that each data point is now a matrix i.e. Xi ∈ Rp1×p2 , the goal being to estimate
a low-rank matrix W ∈ Rp1×p2 that minimizes the empirical loss function on the given data.

W ∗ = arg min
W,rank(W )≤r

f(W ). (2)

For this problem the RSC and RSS properties for f are defined similarly as in Definition 1, 2 except
that the L0 norm is replaced by the rank function.

3 Iterative Hard-thresholding Method

In this section we study the popular projected gradient descent (a.k.a iterative hard thresholding)
method for the case of the feasible set being the set of sparse vectors (see Algorithm 1 for pseu-
docode). The projection operator Ps(z), can be implemented efficiently in this case by projecting
z onto the set of s-sparse vectors by selecting the s largest elements (in magnitude) of z. The stan-
dard projection property implies that ‖Ps(z) − z‖22 ≤ ‖θ′ − z‖22 for all ‖θ′‖0 ≤ s. However, it
turns out that we can prove a significantly stronger property of hard thresholding for the case when
‖θ′‖0 ≤ s∗ and s∗ � s. This property is key to analysing IHT and is formalized below.
Lemma 1. For any index set I , any z ∈ RI , let θ = Ps(z). Then for any θ∗ ∈ RI such that
‖θ∗‖0 ≤ s∗, we have

‖θ − z‖22 ≤
|I| − s
|I| − s∗

‖θ∗ − z‖22.

See Appendix A for a detailed proof.

Our analysis combines the above observation with the RSC/RSS properties of f to provide geometric
convergence rates for the IHT procedure below.
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Algorithm 1 Iterative Hard-thresholding
1: Input: Function f with gradient oracle, sparsity level s, step-size η
2: θ1 = 0, t = 1
3: while not converged do
4: θt+1 = Ps(θ

t − η∇θf(θt)), t = t+ 1
5: end while
6: Output: θt

Theorem 1. Let f have RSC and RSS parameters given by L2s+s∗(f) = L and α2s+s∗(f) = α

respectively. Let Algorithm 1 be invoked with f , s ≥ 32
(
L
α

)2
s∗ and η = 2

3L . Also let θ∗ =

arg minθ,‖θ‖0≤s∗ f(θ). Then, the τ -th iterate of Algorithm 1, for τ = O(Lα · log( f(θ0)
ε )) satisfies:

f(θτ )− f(θ∗) ≤ ε.

Proof. (Sketch) Let St = supp(θt), S∗ = supp(θ∗), St+1 = supp(θt+1) and It = S∗∪St∪St+1.
Using the RSS property and the fact that supp(θt) ⊆ It and supp(θt+1) ⊆ It, we have:

f(θt+1)− f(θt) ≤ 〈θt+1 − θt, gt〉+
L

2
‖θt+1 − θt‖22,

=
L

2
‖θt+1

It − θ
t
It +

2

3L
· gtIt‖22 −

1

2L
‖gtIt‖22,

ζ1
≤ L

2
· |I

t| − s
|It| − s∗

· ‖θ∗It − θtIt +
1

L
· gtIt‖22 −

1

2L
(‖gtIt\(St∪S∗)‖

2
2 + ‖gtSt∪S∗‖22),

(3)

where ζ1 follows from an application of Lemma 1 with I = It and the Pythagoras theorem. The
above equation has three critical terms. The first term can be bounded using the RSS condition.
Using f(θt)− f(θ∗) ≤ 〈gtSt∪S∗ ,θ

t − θ∗〉 − α
2 ‖θ

t − θ∗‖22 ≤ 1
2α‖g

t
St∪S∗‖22 bounds the third term

in (3). The second term is more interesting as in general elements of gt
S∗

can be arbitrarily small.
However, elements of gtIt\(St∪S∗) should be at least as large as gtS∗\St+1 as they are selected by
hard-thresholding. Combining this insight with bounds for gtS∗\St+1 and with (3), we obtain the
theorem. See Appendix A for a detailed proof.

3.1 Low-rank Matrix Regression

We now generalize our previous analysis to a projected gradient descent (PGD) method for low-rank
matrix regression. Formally, we study the following problem:

min
W

f(W ), s.t., rank(W ) ≤ s. (4)

The hard-thresholding projection step for low-rank matrices can be solved using SVD i.e.
PMs(W ) = UsΣsV

T
s ,

where W = UΣV T is the singular value decomposition of W . Us, Vs are the top-s singular vectors
(left and right, respectively) of W and Σs is the diagonal matrix of the top-s singular values of W .
To proceed, we first note a property of the above projection similar to Lemma 1.
Lemma 2. Let W ∈ Rp1×p2 be a rank-|It| matrix and let p1 ≥ p2. Then for any rank-s∗ matrix
W ∗ ∈ Rp1×p2 we have

‖PMs(W )−W‖2F ≤
|It| − s
|It| − s∗

‖W ∗ −W‖2F . (5)

Proof. Let W = UΣV T be the singular value decomposition of W . Now, ‖PMs(W ) −W‖2F =∑|It|
i=s+1 σ

2
i = ‖Ps(diag(Σ)) − diag(Σ)‖22, where σ1 ≥ · · · ≥ σ|It| ≥ 0 are the singular values of

W . Using Lemma 1, we get:

‖PMs(W )−W‖2F ≤
|It| − s
|It| − s∗

‖Σ∗ − diag(Σ)‖22 ≤
|It| − s
|It| − s∗

‖W ∗ −W‖2F , (6)

where the last step uses the von Neumann’s trace inequality (Tr(A ·B) ≤
∑
i σi(A)σi(B)).
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The following result for low-rank matrix regression immediately follows from Lemma 4.
Theorem 2. Let f have RSC and RSS parameters given by L2s+s∗(f) = L and α2s+s∗(f) = α.
Replace the projection operator Ps in Algorithm 1 with its matrix counterpart PMs as defined in (5).
Suppose we invoke it with f, s ≥ 32

(
L
α

)2
s∗, η = 2

3L . Also let W ∗ = arg minW,rank(W )≤s∗ f(W ).

Then the τ -th iterate of Algorithm 1, for τ = O(Lα · log( f(W 0)
ε ) satisfies:

f(W τ )− f(W ∗) ≤ ε.

Proof. A proof progression similar to that of Theorem 1 suffices. The only changes that need to be
made are: firstly Lemma 2 has to be invoked in place of Lemma 1. Secondly, in place of consid-
ering vectors restricted to a subset of coordinates viz. θS , gtI , we would need to consider matrices
restricted to subspaces i.e. WS = USU

T
SW where US is a set of singular vectors spanning the

range-space of S.

4 High Dimensional Statistical Estimation

This section elaborates on how the results of the previous section can be used to give guarantees for
IHT-style techniques in a variety of statistical estimation problems. We will first present a generic
convergence result and then specialize it to various settings. Suppose we have a sample of data
points Z1:n and a loss function L(θ;Z1:n) that depends on a parameter θ and the sample. Then we
can show the following result. (See Appendix B for a proof.)
Theorem 3. Let θ̄ be any s∗-sparse vector. Suppose L(θ;Z1:n) is differentiable and satis-
fies RSC and RSS at sparsity level s + s∗ with parameters αs+s∗ and Ls+s∗ respectively, for

s ≥ 32
(
L2s+s∗

α2s+s∗

)2

s∗. Let θτ be the τ -th iterate of Algorithm 1 for τ chosen as in Theorem 1
and ε be the function value error incurred by Algorithm 1. Then we have

‖θ̄ − θτ‖2 ≤
2
√
s+ s∗‖∇L(θ̄;Z1:n)‖∞

αs+s∗
+

√
2ε

αs+s∗
.

Note that the result does not require the loss function to be convex. This fact will be crucially used
later. We now apply the above result to several statistical estimation scenarios.

Sparse Linear Regression. Here Zi = (Xi, Yi) ∈ Rp × R and Yi = 〈θ̄, Xi〉 + ξi where
ξi ∼ N (0, σ2) is label noise. The empirical loss is the usual least squares loss i.e. L(θ;Z1:n) =
1
n‖Y − Xθ‖22. Suppose X1:n are drawn i.i.d. from a sub-Gaussian distribution with covariance
Σ with Σjj ≤ 1 for all j. Then [22, Lemma 6] immediately implies that RSC and RSS at
sparsity level k hold, with probability at least 1 − e−c0n, with αk = 1

2σmin(Σ) − c1
k log p
n and

Lk = 2σmax(Σ) + c1
k log p
n (c0, c1 are universal constants). So we can set k = 2s + s∗ and if

n > 4c1k log p/σmin(Σ) then we have αk ≥ 1
4σmin(Σ) and Lk ≤ 2.25σmax(Σ) which means that

Lk/9αk ≤ κ(Σ) := σmax(Σ)/σmin(Σ). Thus it is enough to choose s = 2592κ(Σ)2s∗ and ap-

ply Theorem 3. Note that ‖∇L(θ̄;Z1:n)‖∞ = ‖XT ξ/n‖∞ ≤ 2σ
√

log p
n with probability at least

1−c2p−c3 (c2, c3 are universal constants). Putting everything together, we have the following bound
with high probability:

‖θ̄ − θτ‖2 ≤ 145
κ(Σ)

σmin(Σ)
σ

√
s∗ log p

n
+ 2

√
ε

σmin(Σ)
,

where ε is the function value error incurred by Algorithm 1.

Noisy and Missing Data. We now look at cases with feature noise as well. More specifically,
assume that we only have access to X̃i’s that are corrupted versions ofXi’s. Two models of noise are
popular in literature [21]: a) (additive noise) X̃i = Xi+Wi whereWi ∼ N (0,ΣW ), and b) (missing
data) X̃ is an R∪{?}-valued matrix obtained by independently, with probability ν ∈ [0, 1), replacing
each entry in X with ?. For the case of additive noise (missing data can be handled similarly),
Zi = (X̃i, Yi) and L(θ;Z1:n) = 1

2θ
T Γ̂θ − γ̂Tθ where Γ̂ = X̃T X̃/n − ΣW and γ̂ = X̃TY/n are
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Algorithm 2 Two-stage Hard-thresholding
1: Input: function f with gradient oracle, sparsity level s, sparsity expansion level `
2: θ1 = 0, t = 1
3: while not converged do
4: gt = ∇θf(θt), St = supp(θt)
5: Zt = St ∪ (largest ` elements of |gt

St
|)

6: βt = arg minβ,supp(β)⊆Zt f(β) // fully corrective step
7: θ̃t = Ps(β

t)
8: θt+1 = arg minθ,supp(θ)⊆supp(θ̃t) f(θ), t = t+ 1 // fully corrective step
9: end while

10: Output: θt

unbiased estimators of Σ and ΣT θ̄ respectively. [21, Appendix A, Lemma 1] implies that RSC, RSS
at sparsity level k hold, with failure probability exponentially small in n, with αk = 1

2σmin(Σ) −
kτ(p)/n and Lk = 1.5σmax(Σ) + kτ(p)/n for τ(p) = c0σmin(Σ) max(

(‖Σ‖2op+‖ΣW ‖2op)2

σ2
min(Σ)

, 1) log p.
Thus for k = 2s + s∗ and n ≥ 4kτ(p)/σmin(Σ) we have Lk/αk ≤ 7κ(Σ). Note that L(·;Z1:n)
is non-convex but we can still apply Theorem 3 with s = 1568κ(Σ)2s∗ because RSC, RSS hold.
Using the high probability upper bound (see [21, Appendix A, Lemma 2]) ‖∇L(θ̄;Z1:n)‖∞ ≤
c1σ̃‖θ̄‖2

√
log p/n gives us the following

‖θ̄ − θτ‖2 ≤ c2
κ(Σ)

σmin(Σ)
σ̃‖θ̄‖2

√
s∗ log p

n
+ 2

√
ε

σmin(Σ)

where σ̃ =
√
‖ΣW ‖2op + ‖Σ‖2op(‖ΣW ‖op + σ) and ε is the function value error in Algorithm 1.

5 Fully-corrective Methods

In this section, we study a variety of “fully-corrective” methods. These methods keep the optimiza-
tion objective fully minimized over the support of the current iterate. To this end, we first prove a
fundamental theorem for fully-corrective methods that formalizes the intuition that for such meth-
ods, a large function value should imply a large gradient at any sparse θ as well. This result is similar
to Lemma 1 of [17] but holds under RSC/RSS conditions (rather than the RIP condition as in [17]),
as well as for the general loss functions. See Appendix C for a detailed proof.
Lemma 3. Consider a function f with RSC parameter given by L2s+s∗(f) = L and RSS parameter
given by α2s+s∗(f) = α. Let θ∗ = arg minθ,‖θ‖0≤s∗ f(θ) with S∗ = supp(θ∗). Let St ⊆ [p] be
any subset of co-ordinates s.t. |St| ≤ s. Let θt = arg minθ,supp(θ)⊆St f(θ). Then, we have:

2α(f(θt)− f(θ∗)) ≤ ‖gtSt∪S∗‖22 − α2‖θtSt\S∗‖
2
2

Two-stage Methods. We will, for now, concentrate on a family of two-stage fully corrective meth-
ods that contains popular compressive sensing algorithms like CoSaMP and Subspace Pursuit (see
Algorithm 2 for pseudocode). These algorithms have thus far been analyzed only under RIP con-
ditions for the least squares objective. Using our analysis framework developed in the previous
sections, we present a generic RSC/RSS-based analysis for general two-stage methods for arbitrary
loss functions. Our analysis shall use the following key observation that the the hard thresholding
step in two stage methods does not increase the objective function a lot.

We defer the analysis of partial hard thresholding methods to a later version of the paper. This family
includes the OMPR(`) method [17], which is known to provide the best known RIP guarantees in
the compressive sensing setting. Using our proof techniques, we can show that this method offers
geometric convergence rates in the statistical setting as well.

Lemma 4. Let Zt ⊆ [n] and |Zt| ≤ q. Let βt = arg minβ,supp(β)⊆Zt
f(β) and θ̂t = Pq(β

t).
Then, the following holds:

f(θ̂t)− f(βt) ≤ L

α
· `

s+ `− s∗
· (f(βt)− f(θ∗)).
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Figure 1: A comparison of hard thresholding techniques (HTP) and projected gradient methods
(GraDeS) with L1 and greedy methods (FoBa) on sparse noisy linear regression tasks. 1(a) gives
the number of undiscovered elements from supp(θ∗) as label noise levels are increased. 1(b) shows
the variation in running times with increasing dimensionality p. 1(c) gives the variation in running
times (in logscale) when the true sparsity level s∗ is increased keeping p fixed. HTP and GraDeS are
clearly much more scalable than L1 and FoBa. 1(d) shows the recovery properties of different IHT
methods under large condition number (κ = 50) setting as the size of projected set is increased.

Proof. Let vt = ∇θf(βt). Then, using the RSS property we get:

f(θ̂t)− f(βt) ≤ 〈θ̂t − βt,vt〉+
L

2
‖θ̂t − βt‖22

ζ1
=
L

2
‖θ̂t − βt‖22

ζ2
≤ L

2

|`|
|s+ `− s∗|

‖w − βt‖22,

(7)

where w is any vector such that wZt
= 0 and ‖w‖0 ≤ s∗. ζ1 follows by observing vtZt

= 0 and by
noting that supp(θ̂t) ⊆ Zt. ζ2 follows by Lemma 1 and the fact that ‖w‖0 ≤ s∗. Now, using the
RSC property and the fact that∇θf(βt) = 0, we have:

α

2
‖w − βt‖22 ≤ f(βt)− f(w) ≤ f(βt)− f(θ∗). (8)

The result now follows by combining (7) and (8).

Theorem 4. Let f have RSC and RSS parameters given by α2s+s∗(f) = α and L2s+`(f) =

L resp. Call Algorithm 2 with f , ` ≥ s∗ and s ≥ 4L
2

α2 ` + s∗ − ` ≥ 4L
2

α2 s
∗. Also let θ∗ =

arg minθ,‖θ‖0≤s∗ f(θ). Then, the τ -th iterate of Algorithm 2, for τ = O(Lα · log( f(θ0)
ε ) satisfies:

f(θτ )− f(θ∗) ≤ ε.

See Appendix C for a detailed proof.

6 Experiments

We conducted simulations on high dimensional sparse linear regression problems to verify our pre-
dictions. Our experiments demonstrate that hard thresholding and projected gradient techniques can
not only offer recovery in stochastic setting, but offer much more scalable routines for the same.

Data: Our problem setting is identical to the one described in the previous section. We fixed a
parameter vector θ̄ by choosing s∗ random coordinates and setting them randomly to ±1 values.
Data samples were generated as Zi = (Xi, Yi) where Xi ∼ N (0, Ip) and Yi = 〈θ̄, Xi〉+ ξi where
ξi ∼ N (0, σ2). We studied the effect of varying dimensionality p, sparsity s∗, sample size n and
label noise level σ on the recovery properties of the various algorithms as well as their run times.
We chose baseline values of p = 20000, s∗ = 100, σ = 0.1, n = fo · s∗ log p where fo is the
oversampling factor with default value fo = 2. Keeping all other quantities fixed, we varied one of
the quantities and generated independent data samples for the experiments.

Algorithms: We studied a variety of hard-thresholding style algorithms including HTP [14],
GraDeS [13] (or IHT [12]), CoSaMP [15], OMPR [17] and SP [16]. We compared them with a
standard implementation of the L1 projected scaled sub-gradient technique [23] for the lasso prob-
lem and a greedy method FoBa [24] for the same.
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Evaluation Metrics: For the baseline noise level σ = 0.1, we found that all the algorithms were
able to recover the support set within an error of 2%. Consequently, our focus shifted to running
times for these experiments. In the experiments where noise levels were varied, we recorded, for
each method, the number of undiscovered support set elements.

Results: Figure1 describes the results of our experiments in graphical form. For sake of clarity
we included only HTP, GraDeS, L1 and FoBa results in these graphs. Graphs for the other algo-
rithms CoSaMP, SP and OMPR can be seen in the supplementary material. The graphs indicate that
whereas hard thresholding techniques are equally effective as L1 and greedy techniques for recov-
ery in noisy settings, as indicated by Figure1(a), the former can be much more efficient and scalable
than the latter. For instance, as Figure1(b), for the base level of p = 20000, HTP was 150× faster
than the L1 method. For higher values of p, the runtime gap widened to more than 350×. We also
note that in both these cases, HTP actually offered exact support recovery whereas L1 was unable to
recover 2 and 4 support elements respectively.

Although FoBa was faster than L1 on Figure1(b) experiments, it was still slower than HTP by 50×
and 90× for p = 20000 and 25000 respectively. Moreover, due to its greedy and incremental
nature, FoBa was found to suffer badly in settings with larger true sparsity levels. As Figure 1(c)
indicates, for even moderate sparsity levels of s∗ = 300 and 500, FoBa is 60 − 75× slower than
HTP. As mentioned before, the reason for this slowdown is the greedy approach followed by FoBa:
whereas HTP took less than 5 iterations to converge for these two problems, FoBa spend 300 and
500 iterations respectively. GraDeS was found to offer much lesser run times in comparison being
slower than HTP by 30− 40× for larger values of p and 2− 5× slower for larger values of s∗.

Experiments on badly conditioned problems. We also ran experiments to verify the performance
of IHT algorithms in high condition number setting. Values of p, s∗ and σ were kept at baseline
levels. After selecting the optimal parameter vector θ̄, we selected s∗/2 random coordinates from
its support and s∗/2 random coordinates outside its support and constructed a covariance matrix
with heavy correlations between these chosen coordinates. The condition number of the resulting
matrix was close to 50. Samples were drawn from this distribution and the recovery properties of
the different IHT-style algorithms was observed as the projected sparsity levels s were increased.
Our results (see Figure 1(d)) corroborate our theoretical observation that these algorithms show
a remarkable improvement in recovery properties for ill-conditioned problems with an enlarged
projection size.

7 Discussion and Conclusions

In our work we studied iterative hard thresholding algorithms and showed that these techniques
can offer global convergence guarantees for arbitrary, possibly non-convex, differentiable objective
functions, which nevertheless satisfy Restricted Strong Convexity/Smoothness (RSC/RSM) condi-
tions. Our results apply to a large family of algorithms that includes existing algorithms such as
IHT, GraDeS, CoSaMP, SP and OMPR. Previously the analyses of these algorithms required strin-
gent RIP conditions that did not allow the (restricted) condition number to be larger than universal
constants specific to these algorithms.

Our basic insight was to relax this stringent requirement by running these iterative algorithms with
an enlarged support size. We showed that guarantees for high-dimensional M-estimation follow
seamlessly from our results by invoking results on RSC/RSM conditions that have already been
established in the literature for a variety of statistical settings. Our theoretical results put hard
thresholding methods on par with those based on convex relaxation or greedy algorithms. Our
experimental results demonstrate that hard thresholding methods outperform convex relaxation and
greedy methods in terms of running time, sometime by orders of magnitude, all the while offering
competitive or better recovery properties.

Our results apply to sparsity and low rank structure, arguably two of the most commonly used
structures in high dimensional statistical learning problems. In future work, it would be interesting
to generalize our algorithms and their analyses to more general structures. A unified analysis for
general structures will probably create interesting connections with existing unified frameworks
such as those based on decomposability [5] and atomic norms [25].
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A Proofs for Section 3

Proof of Lemma 1. Without loss of generality, assume that we have reordered coordinates such that
|z1| ≥ |z2| ≥ . . . ≥ |zI |. Since the projection operator Ps(·) operates by selecting the largest
elements by magnitude, we have θ1 = z1, . . . ,θs = zs and θs+1 = θs+2 = . . . = θ|I| = 0.

Also define θz = Ps∗(z). By the above argument, we have θz1 = z1, . . . ,θ
z
s∗ = zs∗ and θzs∗+1 =

θzs∗+2 = . . . = θz|I| = 0. Now we have

‖θz − z‖
|I| − s∗

− ‖θ − z‖
|I| − s

=
1

|I| − s∗
s∑

i=s∗+1

z2
i +

(
1

|I| − s∗
− 1

|I| − s

) |I|∑
i=s+1

z2
i

≥ s− s∗

|I| − s∗
z2
s +

s∗ − s
(|I| − s∗)(|I| − s)

(|I| − s)z2
s+1 ≥ 0, (9)

since the coordinates of z are arranged in decreasing order of magnitude. Combining the above with
the observation that, due to the projection property ‖θ∗ − z‖ ≥ ‖θz − z‖, proves the result.

Proof of Theorem 1. Recall that θt+1 = Ps(θ
t − η′

L g
t) where η′ = 2

3 < 1. Let St = supp(θt),
S∗ = supp(θ∗), and St+1 = supp(θt+1). Also, let It = S∗ ∪ St ∪ St+1.

Now, using the RSS property and the fact that supp(θt) ⊆ It and supp(θt+1) ⊆ It, we have:

f(θt+1)− f(θt) ≤ 〈θt+1 − θt, gt〉+
L

2
‖θt+1 − θt‖22,

=
L

2
‖θt+1

It − θ
t
It +

η′

L
· gtIt‖22 −

(η′)2

2L
‖gtIt‖22 + (1− η′)〈θt+1 − θt, gt〉. (10)

As supp(θt) = St, supp(θt+1) = St+1 and St\St+1, St+1 are disjoint, we have:

〈θt+1 − θt, gt〉 = −〈θtSt\St+1 , gtSt\St+1〉+ 〈θt+1
St+1 − θtSt+1 , gtSt+1〉,

ζ1
= −〈θtSt\St+1 , gtSt\St+1〉 −

η′

L
‖gtSt+1‖22,

ζ2
≤ η′

2L
‖gtSt+1\St‖22 −

η′

2L
‖gtSt\St+1‖22 −

η′

L
‖gtSt+1‖22,

ζ3
= − η′

2L
‖gtSt+1\St‖22 −

η′

2L
‖gtSt\St+1‖22 −

η′

L
‖gtSt∩St+1‖22

≤ − η′

2L
‖gtSt∪St+1‖22, (11)

where the equality ζ1 follows from the gradient step, i.e., θt+1
St+1 = θtSt+1 − η′

L g
t
St+1 . The inequality

ζ2 follows using the fact that θt+1 is obtained using hard thresholding and the fact that |St\St+1| =
|St+1\St|, as follows:

‖θtSt\St+1 −
η′

L
gtSt\St+1‖22 ≤ ‖θt+1

St+1\St‖22 =
(η′)2

L2
‖gtSt+1\St‖22. (12)

The equality ζ3 follows from ‖gtSt+1‖22 = ‖gtSt+1\St‖22 + ‖gtSt∩St+1‖22.

Hence, using (10) and (11), we have:

f(θt+1)− f(θt) ≤ L

2
‖θt+1

It − θ
t
It +

η′

L
· gtIt‖22 −

(η′)2

2L
‖gtIt‖22 −

η′(1− η′)
2L

‖gtSt∪St+1‖22,

=
L

2
‖θt+1

It − θ
t
It +

η′

L
· gtIt‖22 −

(η′)2

2L
‖gtIt\(St∪S∗)‖

2
2 −

(η′)2

2L
‖gtSt∪S∗‖22

− η′(1− η′)
2L

‖gtSt∪St+1‖22. (13)

Next, let us try to upper bound the first two terms on the right hand side above. Since It\(St∪S∗) =

St+1\(St ∪ S∗) ⊆ St+1, we have θt+1
It\(St∪S∗) = θtIt\(St∪S∗) −

η′

L g
t
It\(St∪S∗). However, as
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θtIt\St = 0, we actually have θt+1
It\(St∪S∗) = −η

′

L g
t
It\(St∪S∗). Now let us choose a setR ⊆ St\St+1

such that |R| = |St+1\(St∪S∗)|. Such a choice is possible since |St+1\(St∪S∗)| = |St\St+1|−
|(St+1 ∩ S∗)\St| (which itself is a consequence of the fact that |St+1| = |St|). Moreover, since
θt+1 is obtained by hard-thresholding

(
θt − η′

L g
t
)

, for any choice of R made above, we have:

(η′)2

L2
‖gtIt\(St∪S∗)‖

2
2 = ‖θt+1

It\(St∪S∗)‖
2
2 ≥ ‖θtR −

η′

L
gtR‖22. (14)

Using above equation, and the fact that θt+1
R = 0 (since R ⊆ St+1), we have:

L

2
‖θt+1

It − θ
t
It +

η′

L
· gtIt‖22 −

(η′)2

2L
‖gtIt\(St∪S∗)‖

2
2

≤ L

2
‖θt+1

It − θ
t
It +

η′

L
· gtIt‖22 −

L

2
‖θt+1

R − θtR +
η′

L
gtR‖22

=
L

2
‖θt+1

It\R − θ
t
It\R +

η′

L
· gtIt\R‖

2
2. (15)

We can bound the size of It\R as |It\R| ≤ |St+1| + |(St\St+1)\R| + |S∗| ≤ s + |(St+1 ∩
S∗)\St|+ s∗ ≤ s+ 2s∗. Also, since St+1 ⊆ (It\R), we have θt+1

It\R = Ps(θ
t
It\R −

η′

L g
t
It\R).

Using the above observation with (15) and Lemma 1, we get:

L

2
‖θt+1

It − θ
t
It +

η′

L
· gtIt‖22 −

(η′)2

2L
‖gtIt\(St∪S∗)‖

2
2

≤ L

2
· |I

t\R| − s
|It\R| − s∗

‖θ∗It\R − θ
t
It\R +

η′

L
· gtIt\R‖

2
2,

ζ1
≤ L

2
· 2s∗

s+ s∗
‖θ∗It − θtIt +

η′

L
· gtIt‖22,

=
2s∗

s+ s∗
·
(
η′〈θ∗ − θt, gt〉+

L

2
‖θ∗ − θt‖22 +

(η′)2

2L
‖gtIt‖22

)
,

ζ2
≤ 2s∗

s+ s∗
·
(
η′f(θ∗)− η′f(θt) +

L− η′α
2

‖θ∗ − θt‖22 +
(η′)2

2L
‖gtIt‖22

)
, (16)

where the inequality ζ1 follows by |It\R| ≤ s+ 2s∗ as shown earlier and the observation that x−ax−b
is a positive and increasing function on the interval x ≥ a if a ≥ b ≥ 0. Note that since we have
St+1 ⊆ (It\R), we get |It\R| ≥ s. The inequality ζ2 follows by using RSC.

Using (13), (16), and using St+1\(St ∪ S∗) ⊆ (St+1 ∪ St), we get:

f(θt+1)− f(θt) ≤ 2s∗

s+ s∗
·
(
η′f(θ∗)− η′f(θt) +

L− η′α
2

‖θ∗ − θt‖22 +
(η′)2

2L
‖gtIt‖22

)
− (η′)2

2L
‖gtSt∪S∗‖22 −

η′(1− η′)
2L

‖gtSt+1\(St∪S∗)‖
2
2. (17)

We now set η′ = 2/3 as per our earlier choice and set s = 32
(
L
α

)2
s∗, so that we have 2s∗

s+s∗ ≤
α2

16L(L−η′α) . Since L ≥ α, we also have α2

16L(L−η′α) ≤
3
16 . Using these inequalities, we now

rearrange the terms in (17) above.

f(θt+1)− f(θt) ≤ 2s∗

s+ s∗
· η′ ·

(
f(θ∗)− f(θt)

)
+

α2

32L
‖θ∗ − θt‖22 +

1

24L
‖gtIt‖22

− 2

9L
‖gtSt∪S∗‖22 −

1

9L
‖gtSt+1\(St∪S∗)‖

2
2. (18)

Splitting ‖gtIt‖22 = ‖gtSt∪S∗‖22 + ‖gtSt+1\(St∪S∗)‖
2
2 gives us
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f(θt+1)− f(θt) ≤ 2s∗

s+ s∗
· η′ ·

(
f(θ∗)− f(θt)

)
− 1

2L

(
13

36
‖gtSt∪S∗‖22 −

α2

16
‖θ∗ − θt‖22

)
− 1

2L
·
(

4

9
− 1

12

)
‖gtSt+1\(St∪S∗)‖

2
2,

≤ 2s∗

s+ s∗
· η′ ·

(
f(θ∗)− f(θt)

)
− 13

72L

(
‖gtSt∪S∗‖22 −

α2

4
‖θ∗ − θt‖22

)
≤ 2s∗

s+ s∗
· η′ ·

(
f(θ∗)− f(θt)

)
− α

12L

(
f(θt)− f(θ∗)

)
, (19)

where the last inequality above follows using Lemma 5. The result now follows by observing that
2s∗

s+s∗ ≥ 0.

Lemma 5. (
‖gtSt∪S∗‖22 −

α2

4
‖θ∗ − θt‖22

)
≥ α

2
·
(
f(θt)− f(θ∗)

)
.

Proof. Using the RSC property, we have:

f(θt)− f(θ∗) ≤ 〈gt,θt − θ∗〉 − α

2
‖θ∗ − θt‖22

= 〈gtSt∪S∗ ,θ
t
St∪S∗ − θ∗St∪S∗〉 −

α

2
‖θ∗ − θt‖22,

≤ ‖gtSt∪S∗‖2‖θt − θ∗‖2 −
α

2
‖θ∗ − θt‖22. (20)

Now,

‖gtSt∪S∗‖22 −
α2

4
‖θ∗ − θt‖22 =

(
‖gtSt∪S∗‖2 −

α

2
‖θ∗ − θt‖2

)(
‖gtSt∪S∗‖2 +

α

2
‖θ∗ − θt‖2

)
,

≥ (f(θt)− f(θ∗))

‖θt − θ∗‖2
·
(
‖gtSt∪S∗‖2 +

α

2
‖θ∗ − θt‖2

)
≥ α

2
·
(
f(θt)− f(θ∗)

)
, (21)

where the first inequality above follows from (20).

B Proofs for Section 4

Proof of Theorem 3. Let θ∗ be the empirical loss minimizer over the set of s-sparse vectors. Then
invoking Theorem 1 with f = L(·;Z1:n), we get

L(θτ , Z1:n)− ε ≤ L(θ∗, Z1:n) ≤ L(θ̄, Z1:n)

≤ L(θτ ;Z1:n) + 〈∇L(θ̄;Z1:n), (θ̄ − θτ )〉 − αs+s∗

2
‖θ̄ − θτ‖22

where the 2nd inequality is by definition of θ∗ and 3rd is by RSC (since θ∗,θτ are s∗, s sparse).
Duality gives us the upper bound

〈∇L(θ̄;Z1:n), (θ̄ − θτ )〉 ≤ ‖∇L(θ̄;Z1:n)‖∞‖θ̄ − θτ‖1 ≤
√
s+ s∗‖∇L(θ̄;Z1:n)‖∞‖θ̄ − θτ‖2

Combining the last two inequalities and rearranging gives a quadratic inequality in ‖θ̄ − θτ‖2:

αs+s∗

2
‖θ̄ − θτ‖22 −

√
s+ s∗‖∇L(θ̄;Z1:n)‖∞‖θ̄ − θτ‖2 − ε ≤ 0

that immediately yields the result.
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C Proofs for Section 5

Proof of Lemma 3. We will start by proving a more general result of which the claimed result will
be a corollary. More specifically, we shall prove that for any γ ≥ 1

α , we have

2γ(f(θt)−f(θ∗)) ≤ 2γ

(
f(θt)− f(θ∗) +

α

2
·
(

1− 1

αγ

)
‖θt − θ∗‖22

)
≤ γ2‖gtSt∪S∗‖22−‖θtSt\S∗‖

2
2,

Setting γ = 1
α will yield the claimed result. It is easy to see that the following inequality holds

trivially since γ ≥ 1
α

2γ(f(θt)− f(θ∗)) ≤ 2γ

(
f(θt)− f(θ∗) +

α

2
·
(

1− 1

αγ

)
‖θt − θ∗‖22

)
.

For the second inequality, we first use the RSC condition to obtain:

f(θ∗)− f(θt) ≥ 〈θ∗ − θt, gt〉+
α

2
‖θt − θ∗‖22.

Now let MDt = S∗\St be the set of true support elements missing from θt and FAt = St\S∗
be the set of incorrect elements included in the support of θt. Since θt is obtained by a “fully
corrective” process (recall θt = arg minθ,supp(θ)⊆St f(θ)), we have gtSt = 0. Thus 〈θ∗−θt, gt〉 =
〈θ∗MDt

, gtMDt
〉.

Putting this into the above expansion gives

〈θ∗MDt
, gtMDt

〉 ≤ f(θ∗)− f(θt)− α

2
‖θt − θ∗‖22 (22)

We now present some simple inequalities that will help us get our desired bounds. Firstly, we have
‖θ∗MDt

+ γgtMDt
‖22 = ‖θ∗MDt

‖22 + γ2‖gtMDt
‖22 + 2γ〈θ∗MDt

, gtMDt
〉 ≥ 0, (23)

since the first expression is a norm. Next, since MDt ∩ FAt = ∅, we have
‖θ∗ − θt‖22 ≥ ‖θ∗MDt

‖22 + ‖θtFAt
‖22. (24)

Putting equations 22 and 23, we have:

2γ
(
f(θt)− f(θ∗) +

α

2
‖θt − θ∗‖22

)
≤ ‖θ∗MDt

‖22 + γ2‖gtMDt
‖22. (25)

Now, using (24), we get:

2γ

(
f(θt)− f(θ∗) +

α

2

(
1− 1

αγ

)
‖θt − θ∗‖22

)
≤ γ2‖gtMDt

‖22 − ‖θtFAt
‖22

We finish off the proof by noticing that since gtSt = 0, we have ‖gtMDt
‖22 = ‖gtSt∪S∗‖22

Proof of Theorem 4. Let ztSt = θtSt , ztZt\St = − 1
Lg

t
Zt\St , and zt

Zt
= 0.

Then, using the RSS property, we have:

f(zt)− f(θt) ≤ 〈zt − θt, gt〉+
L

2
‖zt − θt‖22,

ζ1
≤ − 1

L
‖gtZt\St‖22 +

L

2
‖ztZt\St‖22,

ζ2
= − 1

2L
· ‖gtZt\St‖22,

ζ3
≤ − 1

2L
· ‖gtS∗\St‖22,

ζ4
≤ −α

L
·
(
f(θt)− f(θ∗)

)
, (26)

where ζ1 follows by observing gtSt = 0, and St ⊆ Zt. ζ2 follows by ztZt\St = − 1
Lg

t
Zt\St . ζ3

follows by ` ≥ s∗, and Zt\St are the ` largest elements of |gtZt\St |.

Now, using Lemma 4 and (26) along with f(θt+1) ≤ f(θ̃t) and f(βt) ≤ f(zt), we have:

f(θt+1)− f(θ∗) ≤
(

1− α

L

)
·
(

1 +
L

α
· `

s+ `− s∗

)
·
(
f(θt)− f(θ∗)

)
. (27)

Theorem now follows by using the above equation with the assumption that s+ `− s∗ ≥ 4L2·`
α2 .
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D Supplementary Experimental Results

Below we present plots that were not included in the main text.
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Figure 2: Counterparts of Figure 1 for OMPR, CoSaMP and L1.
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Figure 3: The effect of increasing sample sizes relative to the base value s∗ · log p on runtime.
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