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Abstract

We study the problem of infinite-horizon
average-reward reinforcement learning with
linear Markov decision processes (MDPs).
The associated Bellman operator of the prob-
lem not being a contraction makes the al-
gorithm design challenging. Previous ap-
proaches either suffer from computational in-
efficiency or require strong assumptions on
dynamics, such as ergodicity, for achieving a
regret bound of Õ(

√
T ). In this paper, we pro-

pose the first algorithm that achieves Õ(
√
T )

regret with computational complexity poly-
nomial in the problem parameters, without
making strong assumptions on dynamics. Our
approach approximates the average-reward
setting by a discounted MDP with a carefully
chosen discounting factor, and then applies
an optimistic value iteration. We propose an
algorithmic structure that plans for a nonsta-
tionary policy through optimistic value itera-
tion and follows that policy until a specified
information metric in the collected data dou-
bles. Additionally, we introduce a value func-
tion clipping procedure for limiting the span
of the value function for sample efficiency.

1 INTRODUCTION

Reinforcement learning (RL) in the infinite-horizon
average-reward setting aims to learn a policy that max-
imizes the average reward in the long run. This setting
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is relevant for applications where the interaction be-
tween the agent and environment does not terminate
and continues indefinitely, such as in network routing
(Mammeri 2019) or inventory management (Giannoc-
caro et al. 2002). Designing algorithms in this setting
is challenging because the associated Bellman opera-
tor is not a contraction. This complicates the use of
optimistic value iteration-based algorithms, which add
bonus terms to the value function every iteration, a
widely used approach in the finite-horizon episodic (Jin
et al. 2020) and infinite-horizon discounted settings (He
et al. 2021).

The seminal work of (Jaksch et al. 2010) adopts a
model-based approach in the tabular setting that con-
structs a confidence set on the transition model. Their
algorithm runs optimistic value iterations by choosing
an optimistic model from the confidence set at each
iteration. Most work in the tabular setting follows
this approach of constructing confidence sets for the
model (Bartlett et al. 2009; Fruit et al. 2018). Other
work (Wei et al. 2020) that does not use this approach
either has suboptimal regret bound or assumes the
ergodicity assumption.

Adapting the approach of constructing confidence set
on the transition model to function approximation set-
tings, such as linear MDP setting, with arbitrarily
large state space is challenging because sample-efficient
model estimation is elusive in general unless additional
assumptions on the transition model are made. Previ-
ous work on infinite-horizon average-reward RL with
function approximation either imposes ergodicity as-
sumptions (Wei et al. 2021) or uses computationally
inefficient algorithms (Wei et al. 2021; He et al. 2024)
with time complexity exponential in problem parame-
ters to achieve Õ(

√
T ) regret. The following question

remains open:

Does there exist a polynomial-time algo-
rithm for infinite-horizon average-reward lin-
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ear MDPs that achieves Õ(
√
T ) regret without

requiring the ergodicity assumption?

In this paper, we answer the question in the affirmative.
We draw insights from a recent line of work (Wei et al.
2020; Zhang et al. 2023) that employs the technique
of approximating infinite-horizon average-reward RL
by a discounted MDP in the tabular setting. We apply
the discounted setting approximation idea to the linear
MDP setting and design an optimistic value iteration
algorithm that achieves Õ(sp(v∗)

√
d3T ) regret without

making the ergodicity assumption. A key component
of our method is the use of value function clipping,
coupled with a novel value iteration scheme to ensure
efficient learning in this setting.

The rest of the paper is organized as follows. In
Section 2, we formally define infinite-horizon average-
reward setting and discounted setting. In Section 3,
we introduce a simple value iteration based algorithm
for the tabular setting that approximates the average-
reward setting by the discounted setting. In Section 4,
we adapt the algorithm design to the linear MDP set-
ting, and addresses a unique challenge in this setting
by proposing a novel algorithm structure.

1.1 Related Work

A comparison of our work to previous work on infinite-
horizon average-reward linear MDPs is shown in Ta-
ble 1. Entries highlighted in red indicate suboptimality
compared to our algorithm. Our algorithm is the first
to achieve Õ(

√
T ) regret with computation complexity

polynomial in the parameters d, S,A, T without mak-
ing the ergodicity assumption. Note that the uniform
mixing assumption required for MDP-EXP2 (Wei et al.
2021) is a stronger assumption than the ergodicity as-
sumption. Our regret matches that of FOPO (Wei et al.
2021), an algorithm that requires solving a computa-
tionally intractable optimization problem for finding
optimistic value function. A brute-force approach for
solving their optimization problem requires computa-
tions polynomial in T d, which is exponential in d. In
contrast, our algorithm’s complexity is polynomial in
d. However, it depends polynomially on the size of
the state space S, whereas the complexity of FOPO
does not depend on S. This implies our algorithm
is an improvement over FOPO in the regime where
S ≪ T d. We leave the problem of getting rid of the de-
pendence on S for future work. Additional comparisons
in the tabular setting, as well as a broader discussion
of related work, can be found in Appendix E.

Approximation of Average-Reward Setting by
Discounted Setting The technique of approximat-
ing the average-reward setting to the discounted setting

is used by Jin et al. (2021), Wang et al. (2022), Zurek
et al. (2023), and Wang et al. (2023) to solve the sam-
ple complexity problem of producing a nearly optimal
policy given access to a simulator in the tabular setting.
Wei et al. (2020) use the reduction for the online RL
setting with tabular MDPs. They propose a Q-learning
based algorithm, but has Õ(T 2/3) regret. Zhang et al.
(2023) also use the reduction for the online RL setting
with tabular MDPs. Their algorithm is also Q-learning
based, but they improve the regret to Õ(

√
T ) by intro-

ducing a novel method for estimating the span.

Infinite-Horizon Average-Reward Setting with
Linear Mixture MDPs The linear mixture MDP
setting is closely related to the linear MDP setting in
that the Bellman operator admits a compact represen-
tation. However, linear mixture MDP parameterizes
the probability transition model such that the transi-
tion probability is linear in the low-dimensional feature
representation of state-action-state triplets. Such a
structure allows a sample efficient estimation of the
model, enabling the design of an optimism-based al-
gorithm using a confidence set on the model, much
like the model-based approach for the tabular setting.
Wu et al. (2022) and Ayoub et al. (2020) design an
optimism-based algorithm using a confidence set under
the assumption that MDP is communicating. Chae
et al. (2024) use the method of reducing the average-
reward setting to the discounted setting, and achieve a
nearly minimax optimal regret bound under a weaker
assumption on the MDP.

2 PRELIMINARIES

Notations Let ∥x∥A =
√
xTAx for x ∈ Rd and a

psd matrix A ∈ Rd×d. Let a ∨ b = max{a, b} and
a ∧ b = min{a, b}. Let ∆(X ) be the set of probability
measures on X . Let [n] = {1, . . . , n} and [m : n] =
{m,m + 1, . . . , n}. Let sp(v) = maxs,s′ |v(s) − v(s′)|.
Let [Pv](s, a) = Es′∼P (·|s,a)[v(s

′)].

2.1 Infinite-Horizon Average-Reward MDPs

We consider a Markov decision process (MDP) (Put-
erman 2014), M = (S,A, P, r) where S is the state
space, A is the action space, P : S × A → ∆(S) is
the probability transition kernel, r : S × A → [0, 1]
is the reward function. We assume S is a measurable
space with possibly infinite number of elements and
A is a finite set. We assume the reward is determinis-
tic and the reward function r is known to the learner.
The probability transition kernel P is unknown to the
learner.

The interaction protocol between the learner and the
MDP is as follows. The learner interacts with the MDP
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Table 1: Comparison of algorithms for infinite-horizon average-reward linear MDP

Algorithm Regret Õ(·) Assumption Computation poly(·)

FOPO (Wei et al. 2021) sp(v∗)
√
d3T Bellman optimality equation T d, A, d

OLSVI.FH (Wei et al. 2021)
√

sp(v∗)(dT )
3
4 Bellman optimality equation T,A, d

LOOP (He et al. 2024)
√

sp(v∗)3d3T Bellman optimality equation T d, A, d

MDP-EXP2 (Wei et al. 2021) d
√

t3mixT Uniform mixing T,A, d

γ-LSCVI-UCB (Ours) sp(v∗)
√
d3T Bellman optimality equation T, S,A, d

Lower Bound (Wu et al. 2022) Ω(d
√

sp(v∗)T )

for T steps, starting from an arbitrary state s1 ∈ S
chosen by the environment. At each step t = 1, . . . , T ,
the learner chooses an action at ∈ A and observes the
reward r(st, at) and the next state st+1. The next state
st+1 is drawn by the environment from P (·|st, at).

Consider a stationary policy π : S → ∆(A) where
π(a|s) specifies the probability of choosing action a at
state s. The performance measure of our interest for
the policy π is the long-term average reward starting
from an initial state s defined as

Jπ(s) := lim inf
T→∞

1

T
Eπ

[
T∑

t=1

r(st, at)|s1 = s

]

where Eπ[·] is the expectation with respect to the prob-
ability distribution on the trajectory (s1, a1, s2, a2, . . . )
induced by the interaction between P and π. The
performance of the learner is measured by the regret
against the best stationary policy π∗ that maximizes
Jπ(s1). Writing J∗(s1) := Jπ∗

(s1), the regret is

RT :=

T∑
t=1

(J∗(s1)− r(st, at)).

As discussed by Bartlett et al. (2009), without an ad-
ditional assumption on the structure of the MDP, if
the agent enters a bad state from which reaching the
optimally rewarding states is impossible, the agent may
suffer a linear regret. To avoid this pathological case,
we follow Wei et al. (2021) and make the following
structural assumption on the MDP.

Assumption A (Bellman optimality equation). There
exist J∗ ∈ R and functions v∗ : S → R and q∗ : S ×
A → R such that for all (s, a) ∈ S ×A, we have

J∗ + q∗(s, a) = r(s, a) + [Pv∗](s, a)

v∗(s) = max
a∈A

q∗(s, a).

As discussed by Wei et al. (2021), the Bellman opti-
mality equation assumption is a weaker assumption
than the weakly communicating assumption, which in
turn is weaker than ergodicity. Weakly communicating

assumption is another widely used assumption for the
infinite-horizon average-reward setting that requires
each pair of states in the set to be reachable from each
other under some policy. Ergodicity assumption re-
quires the Markov chain induced by any policy to be
ergodic, i.e., irreducible and aperiodic. Uniform mixing
assumption required for MDP-EXP2 proposed by Wei
et al. (2021) is a stronger assumption than ergodic-
ity that additionally assumes that the mixing time is
uniformly bounded over all policies.

As shown by Wei et al. (2021), under Assumption A,
the policy π∗ that deterministically selects an action
from argmaxa q

∗(s, a) at each state s ∈ S is an optimal
policy. Moreover, π∗ always gives an optimal aver-
age reward Jπ∗

(s1) = J∗ for all initial states s1 ∈ S.
Since the optimal average reward is independent of
the initial state, we can simply write the regret as
RT =

∑T
t=1(J

∗−r(st, at)). Functions v∗(s) and q∗(s, a)
are the relative advantage of starting with s and (s, a)
respectively. We can expect a problem with large sp(v∗)
to be more difficult since starting with a bad state can
be more disadvantageous. As is common in the litera-
ture (Bartlett et al. 2009; Wei et al. 2020), we assume
sp(v∗) is known to the learner.

Remark 1. Instead of assuming exact knowledge of
sp(v∗), we can assume that the learner knows an upper
bound H. In this case, using H as an input to our
algorithm instead of sp(v∗), the regret bound of our
algorithm will scale with H rather than sp(v∗). Such
a knowledge of an upper bound is a commonly made
assumption (Bartlett et al. 2009). In practice, if one
has a general sense of the diameter of the MDP, which
is the expected number of steps needed to transition
between any two states in the worst case, the diameter
can serve as an upper bound H, since the diameter
is guaranteed to be an upper bound of sp(v∗) when
reward is bounded by 1. Relaxing the assumption of
the knowledge of sp(v∗) or its upper bound is only
achieved recently in the tabular setting (Boone et al.
2024). Extending this relaxation to the linear MDP
setting remains an open question for future work.
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Algorithm 1: γ-UCB-CVI for Tabular Setting
Input: Discounting factor γ ∈ [0, 1), span H, bonus factor β.
Initialize: Q1(s, a), V1(s)← 1

1−γ ; N0(s, a, s
′)← 0, N0(s, a)← 1, for all (s, a, s′) ∈ S ×A× S.

1 Receive initial state s1.
2 for time step t = 1, . . . , T do
3 Take action at = argmaxa Qt(st, a). Receive reward r(st, at). Receive next state st+1.
4 Nt(st, at, st+1)← Nt−1(st, at, st+1) + 1
5 Nt(st, at)← Nt−1(st, at) + 1.
6 (Other entries of Nt remain the same as Nt−1.)
7 P̂t(s

′|s, a)← Nt(s, a, s
′)/Nt(s, a), ∀(s, a) ∈ S ×A.

8 Qt+1(s, a)← (r(s, a) + γ[P̂tVt](s, a) + β/
√

Nt(s, a)) ∧Qt(s, a), ∀(s, a) ∈ S ×A
9 Ṽt+1(s)← (maxa Qt+1(s, a)) ∧ Vt(s), ∀s ∈ S.

10 Vt+1(s)← Ṽt+1(s) ∧ (mins′ Ṽt+1(s
′) +H), ∀s ∈ S.

2.2 Infinite-Horizon Discounted Setting

The key idea of this paper, inspired by Zhang et al.
(2023), is to approximate the infinite-horizon average-
reward setting by the infinite-horizon discounted set-
ting with a discount factor γ ∈ [0, 1) tuned carefully.
Introducing the discounting factor allows for a compu-
tationally efficient algorithm design that exploits the
contraction property of the Bellman operator for the
infinite-horizon discounted setting. When γ is close
to 1, we expect the optimal policy for the discounted
setting to be nearly optimal for the average-reward
setting, given the classical result (Puterman 2014) that
says the average reward of a stationary policy is equal
to the limit of the discounted cumulative reward as
γ goes to 1. Before stating a lemma that relates the
infinite-horizon average-reward setting and the infinite-
horizon discounted setting, we define the value function
under the discounted setting. For a policy π, define

V π(s) = Eπ

[ ∞∑
t=1

γt−1r(st, at)|s1 = s

]

Qπ(s, a) = Eπ

[ ∞∑
t=1

γt−1r(st, at)|s1 = s, a1 = a

]
.

We suppress the dependency of the value functions on
the discounting factor γ. We write the optimal value
functions under the discounted setting as

V ∗(s) = max
π

V π(s), Q∗(s, a) = max
π

Qπ(s, a).

The following lemma relates the infinite-horizon
average-reward setting and the discounted setting.
Lemma 1 (Lemma 2 in Wei et al. (2020)). For any
γ ∈ [0, 1), the optimal value function V ∗ for the infinite-
horizon discounted setting with discounting factor γ
satisfies

(i) sp(V ∗) ≤ 2sp(v∗) and

(ii) |(1− γ)V ∗(s)− J∗| ≤ (1− γ)sp(v∗) for all s ∈ S.

The lemma above suggests that the difference between
the optimal average reward J∗ and the optimal dis-
counted cumulative reward normalized by the factor
(1−γ) is small as long as γ is close to 1. Hence, we can
expect the policy optimal under the discounted setting
will be nearly optimal for the average-reward setting,
provided γ is sufficiently close to 1.

3 WARMUP: TABULAR SETTING

In this section, we introduce an algorithm designed for
the tabular setting, where the state space S and action
space A are both finite, and no specific structure is
assumed for the reward function or the transition prob-
abilities. The structure of the algorithm, along with
the accompanying analysis, will lay the groundwork for
extending these results to the linear MDP setting.

3.1 Algorithm

Our algorithm, called discounted upper confidence
bound clipped value iteration (γ-UCB-CVI), adapts
UCBVI (Azar et al. 2017), which was originally de-
signed for the finite-horizon episodic setting, to the
infinite-horizon discounted setting. At each time
step, the algorithm performs an approximate Bell-
man backup with an added bonus term β

√
1/Nt(s, a)

(Line 8) where Nt(s, a) is the number of times the state-
action pair (s, a) is visited. The bonus term is designed
to guarantee optimism, ensuring that Qt ≥ Q∗ for all
t = 1, . . . , T . A key modification from UCBVI is the
clipping step (Line 10), which bounds span of the value
function estimate Vt by H, where the target span H
is an input to the algorithm. Without clipping, the
span of the value function Vt can be as large as 1

1−γ ,
while with clipping, the span can only be as large as
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H. As we will see in the analysis, this clipping step is
crucial to achieving a sharp dependence on 1

1−γ in the
regret bound, which enables the Õ(

√
T ) regret through

tuning γ. Running the algorithm with the discounting
factor set to γ = 1− 1/

√
T and the target span set to

H = 2 · sp(v∗) guarantees the following regret bound.
Theorem 2. Under Assumption A, there exists a con-
stant c > 0 such that, for any fixed δ ∈ (0, 1), if
Algorithm 1 is run with γ = 1−

√
1/T , H = 2 · sp(v∗),

and β = cH
√
S log(SAT/δ), then with probability at

least 1− δ, the total regret is bounded by

RT ≤ O
(
sp(v∗)

√
S2AT log(SAT/δ)

)
.

In the theorem above, the constant c in the definition
of β is determined in Lemma 3 in the next subsection.
Our regret bound matches the best previously known
regret bound for computationally efficient algorithm
in this setting. See Appendix E for a full comparison
with previous work on infinite-horizon average-reward
tabular MDPs. We believe we can improve our bound
by a factor of

√
S with a refined analysis using Bernstein

inequality, following the idea of the refined analysis for
UCBVI provided by Azar et al. (2017). We leave the
improvement to future work.

3.2 Analysis

In this section, we outline the proof of Theorem 2. We
defer the complete proof to Appendix A. The key to
the proof is the following concentration inequality.
Lemma 3. Under the setting of Theorem 2, there
exists a constant c such that for any fixed δ ∈ (0, 1), we
have with probability at least 1− δ that

|[(P̂t−P )Vt](s, a)| ≤ c ·sp(v∗)
√

S log(SAT/δ)/Nt(s, a)

for all (s, a, t) ∈ S ×A× [T ].

Without clipping, the span of Vt would be 1
1−γ instead

of 2·sp(v∗), making the bound of [(P̂t−P )Vt](s, a) scale
with 1

1−γ instead of sp(v∗). Replacing the 1
1−γ factor

by sp(v∗) by clipping is crucial to achieving Õ(
√
T )

regret when tuning γ.

In Theorem 2, the bonus factor parameter β is chosen
according to the concentration bound in the lemma
above, ensuring that the concentration bound for [(P̂t−
P )Vt](s, a) is β/

√
Nt(s, a), which is the bonus term

used by the algorithm. With this result, we can now
establish the following optimism result.
Lemma 4 (Optimism). Under the setting of Theo-
rem 2, we have with probability at least 1− δ that

Vt(s) ≥ V ∗(s), Qt(s, a) ≥ Q∗(s, a)

for all (s, a, t) ∈ S ×A× [T ].

The proof uses a standard induction argument (e.g.
Lemma 18 in Azar et al. (2017)) to show Ṽt(s) ≥ V ∗(s).
To establish that the clipped value function Vt, no larger
than Ṽt by design, still satisfies Vt(s) ≥ V ∗(s), we use
sp(V ∗) ≤ 2 · sp(v∗) (Lemma 1), which guarantees the
clipping operation does not reduce Vt below V ∗.

Now, we show the regret bound under the high prob-
ability events in the previous two lemmas (Lemma 3,
Lemma 4) hold. By the value iteration step (Line 8)
of Algorithm 1 and the concentration inequality in
Lemma 3, we have for all t = 2, . . . , T that

r(st, at)

≥ Qt(st, at)− γ[P̂t−1Vt−1](st, at)− β/
√
Nt−1(st, at)

≥ Vt(st)− γ[PVt−1](st, at)− 2β/
√
Nt−1(st, at)

where the second inequality follows by Vt(st) ≤
Ṽt(st) ≤ maxa Qt(st, a) = Qt(st, at). Hence, the re-
gret can be bounded by

RT =

T∑
t=1

(J∗ − r(st, at))

≤
T∑

t=2

(J∗ − Vt(st) + γ[PVt−1](st, at)

+ 2β/
√
Nt−1(st, at)) +O(1),

where the first inequality uses the fact that J∗ ≤ 1,
which can be decomposed into

=

T∑
t=2

(J∗ − (1− γ)Vt(st))︸ ︷︷ ︸
(a)

+ γ

T∑
t=2

(Vt−1(st+1)− Vt(st))︸ ︷︷ ︸
(b)

+ γ

T∑
t=2

(PVt−1(st, at)− Vt−1(st+1))︸ ︷︷ ︸
(c)

+ 2β

T∑
t=2

1/
√
Nt−1(st, at)︸ ︷︷ ︸
(d)

+ O(1).

We bound the terms (a), (b), (c), (d) separately.

Bounding Term (a) Using the optimism result
(Lemma 4) that says Vt(s) ≥ V ∗(s) for all s ∈ S and
Lemma 1 that bounds |J∗− (1−γ)V ∗(s)| for all s ∈ S,
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we get

T∑
t=2

(J∗ − (1− γ)Vt(st)) ≤
T∑

t=2

(J∗ − (1− γ)V ∗(st))

≤ T (1− γ)sp(v∗).

Bounding Term (b) Note that for any s ∈ S, the
sequence {Vt(s)}Tt=1 is monotonically decreasing due
to Line 9-10 in Algorithm 1. Moreover, since Vt(s) ∈
[0, 1

1−γ ] for all t = 1, . . . , T , the total decrease in Vt(s)

from t = 1 to T is bounded above by 1
1−γ . Hence,

T∑
t=2

(Vt−1(st+1)− Vt(st))

≤
T∑

t=2

(Vt−1(st+1)− Vt+1(st+1)) +O
(

1

1− γ

)

≤
∑
s∈S

T∑
t=2

(Vt−1(s)− Vt+1(s)) +O
(

1

1− γ

)
≤ O

(
S

1− γ

)
.

The bound above is polynomial in S, the size of the
state space, which is undesirable in the linear MDP
setting where S can be arbitrarily large. The main
challenge of this paper, as we will see in the next
section, is sidestepping this issue for linear MDPs.

Bounding Term (c) Term (c) is the sum of a mar-
tingale difference sequence where each term is bounded
by sp(v∗). Hence, by the Azuma-Hoeffding inequality,
with probability at least 1− δ, term (c) is bounded by
sp(v∗)

√
2T log(1/δ). Without clipping, each term of

the martingale difference sequence can only be bounded
by 1

1−γ , leading to a bound of Õ( 1
1−γ

√
T ), which is too

loose for achieving a regret bound of Õ(
√
T ).

Bounding Term (d) We can bound the sum of the
bonus terms (d) using a standard argument (Azar et al.
(2017), Lemma 10 in Appendix A) by O(β

√
SAT ) =

O(sp(v∗)
√

S2AT log(SAT/δ)).

Combining the above, and rescaling δ, it follows that
with probability at least 1− δ, we have

RT ≤ O
(
T (1− γ)sp(v∗) +

S

1− γ
+ sp(v∗)

√
T log(1/δ)

+ sp(v∗)
√
S2AT log(SAT/δ)

)
.

Choosing γ = 1− 1/
√
T , we get

RT ≤ O
(
sp(v∗)

√
S2AT log(SAT/δ)

)
,

which completes the proof of Theorem 2.

4 LINEAR MDP SETTING

In this section, we apply the key ideas developed from
the previous section to the linear MDP setting, which
we formally define below. The tabular setting studied
in the previous section has regret bound that scales
polynomially with the size of the state space S. This
is because, in the tabular setting, there is no structure
in the state space that can be exploited to general-
ize to unseen states during learning. Therefore, when
learning in a large state space with S ≫ T , additional
structural assumption are necessary. The linear MDP
setting (Jin et al. 2020) is a widely used setting in the
RL theory literature that allows for generalization to
unseen states by introducing structure in the MDP
through a low-dimensional state-action feature map-
ping. The additional assumption made in the linear
MDP setting is as follows.

Assumption B (Linear MDP (Jin et al. 2020)). We
assume that the transition and the reward functions
can be expressed as a linear function of a known d-
dimensional feature map φ : S ×A → Rd such that for
any (s, a) ∈ S ×A, we have

r(s, a) = ⟨φ(s, a),θ⟩, P (s′|s, a) = ⟨φ(s, a),µ(s′)⟩

where µ(·) = (µ1(·), . . . , µd(·)) is a vector of d unknown
measures on S and θ ∈ Rd is a known parameter for
the reward function.

As is commonly done in the literature on linear
MDPs (Jin et al. 2020), we further assume, without
loss of generality (see Wei et al. (2021) for justification),
the following boundedness conditions:

∥φ(s, a)∥2 ≤ 1 for all (s, a) ∈ S ×A,

∥θ∥2 ≤
√
d, ∥µ(S)∥2 ≤

√
d.

(1)

As discussed by Jin et al. (2020), although the tran-
sition model P is linear in the d-dimensional feature
mapping φ, P still has infinite degrees of freedom
as the measure µ is unknown, making the estima-
tion of the model P difficult. For sample efficient
learning, we leverage the fact that [Pv](s, a) is lin-
ear in φ(s, a) for any function v : S → R so that
[Pv](s, a) = ⟨φ(s, a),w∗

v⟩ for some w∗
v , since

[Pv](s, a) :=

∫
s′∈S

v(s′)P (ds′|s, a)

=

∫
s′∈S

v(s′)⟨φ(s, a),µ(ds′)⟩

= ⟨φ(s, a),
∫
s′∈S

v(s′)µ(ds′)⟩.
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Algorithm 2: γ-LSCVI-UCB for linear MDP setting with minimum oracle
Input: Discounting factor γ ∈ (0, 1), regularization λ > 0, span H, bonus factor β.
Initialize: t← 1, k ← 1, tk ← 1, Λ1 ← λI, Λ̄0 ← λI, Q1

t (·, ·)← 1
1−γ for t ∈ [T ].

1 Receive state s1.
2 for time step t = 1, . . . , T do
3 Take action at = argmaxa Q

k
t (st, a). Receive reward r(st, at). Receive next state st+1.

4 Λ̄t ← Λ̄t−1 +φ(st, at)φ(st, at)
T .

5 if 2 det(Λk) < det(Λ̄t) then
6 k ← k + 1, tk ← t+ 1, Λk ← Λ̄t.

// Run value iteration to plan for remaining T − tk + 1 time steps in the new episode.
7 Ṽ k

T+1(·)← 1
1−γ , V k

T+1(·)← 1
1−γ .

8 for u = T, T − 1, . . . , tk do
9 wk

u+1 ← Λ−1
k

∑tk−1
τ=1 φ(sτ , aτ )(V

k
u+1(sτ+1)−mins′ Ṽ

k
u+1(s

′))).

10 Qk
u(·, ·)←

(
r(·, ·) + γ(⟨φ(·, ·),wk

u+1⟩+mins′ Ṽ
k
u+1(s

′) + β∥φ(·, ·)∥Λ−1
k
)
)
∧ 1

1−γ .

11 Ṽ k
u (·)← maxa Q

k
u(·, a).

12 V k
u (·)← Ṽ k

u (·) ∧ (mins′ Ṽ
k
u (s′) +H).

Challenges Naively adapting the algorithm design
and analysis for the tabular setting to the linear MDP
setting would result in a regret bound that is polyno-
mial in S, the size of the state space, when bounding∑T

t=1(Vt−1(st+1)− Vt(st)). Also, algorithmically mak-
ing the state value function monotonically decrease in
t by taking minimum with the previous estimate every
iteration, as is done in the tabular setting for the tele-
scoping sum argument, would lead to an exponential
covering number for the function class of the value
function, in either T or S (He et al. 2023). A major
challenge in algorithm design and analysis is sidestep-
ping these issues. We now present our algorithm for
the linear MDP setting, which addresses these issues.

4.1 Algorithm

Our algorithm, called discounted least-squares clipped
value iteration with upper confidence bound (γ-LSCVI-
UCB), adapts LSVI-UCB (Jin et al. 2020) developed
for the episodic setting to the discounted setting. We
highlight key differences from LSVI-UCB below.

Clipping the Value Function We clip the value
function estimates, as is done in the tabular setting
in the previous section, to restrict the span (Line 12),
which saves a factor of 1/(1− γ) in the regret bound.

Restricting the Range of Value Target When
regressing V k

u (s′) on φ(s, a) we subtract the value tar-
get by mins′ Ṽ

k
u (s

′) and use V k
u (·) − mins′ Ṽ

k
u (s

′) as
the value target instead of V k

u (·) (Line 9). This adjust-
ment of the value target guarantees a bound on ∥wk

u∥2
that scales with the target span H instead of 1/(1− γ),

which is necessary for achieving Õ(
√
T ) regret. To com-

pensate for the adjustment, we add back mins′ Ṽ
k
u (s

′)
when estimating the value target using the regression
coefficient wk

u : ⟨φ(·, ·),wk
u⟩+mins′ Ṽ

k
u (s′) (Line 10).

In our previous algorithm γ-UCB-CVI, designed for
the tabular setting, the value iteration step alternates
with the decision making step. At each time step t, a
greedy action is selected based on the most recently
constructed action value function Qt. This structure
is common in value iteration based algorithms and
Q-learning algorithms for both infinite-horizon average-
reward tabular MDPs (Zhang et al. 2023) and infinite-
horizon discounted tabular MDPs (Liu et al. 2020;
He et al. 2021). With the coupling of value itera-
tion and decision making steps, bounding the term∑

t Vt−1(st+1)− Vt(st) required enforcing Vt to be de-
creasing in t algorithmically since Vt is one Bellman
operation ahead of Vt−1.

However, as discussed previously, in the linear MDP
setting, forcing Vt to be monotonically decreasing by
taking the minimum with previous value functions
would cause the log covering number of the function
class for the value function to scale with T , making
regret bound vacuous. To sidestep this issue, we use
a novel algorithm structure that decouples the value
iteration step and the decision making step.

Planning until the End of Horizon Before tak-
ing any action at time t, we generate a sequence of
action value functions QT , QT−1, . . . , Qt by running
T − t value iterations (Line 7-12). Then, at each de-
cision time step t, take a greedy action with respect
to Qt. This algorithm structure is reminiscent of the
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value iteration based algorithms for the finite-horizon
episodic setting (Azar et al. 2017; Jin et al. 2020),
where Bellman operations are performed to generate
action value functions at each time step in an episode of
fixed length, then greedy actions with respect to those
action value functions are taken for the entire episode.
With the new algorithm structure, Qt−1 is now one
Bellman operation ahead of Qt, and the quantity of
interest becomes

∑T
t=1 Vt+1(st+1)− Vt(st), which can

be bounded by telescoping sum.

Restarting when Information Doubles If we gen-
erate all T action value functions to be used at the
initial time step by running approximate value itera-
tion, and follow them for decision-making for T steps,
we cannot make use of the trajectory data collected. To
address this, and still use the scheme of pregenerating
action value functions, we restart the process of running
value iterations for T steps every time a certain infor-
mation measure of the collected data doubles. This
allows us to incorporate the newly collected trajectory
data into subsequent decision-making. We adopt the
rarely-switching covariance matrix trick (Wang et al.
2021), which triggers a restart when the determinant
of the empirical covariance matrix doubles (Line 5).

Our algorithm has the following guarantee.
Theorem 5. Under Assumptions A and B, running
Algorithm 2 with inputs γ = 1 −

√
log(T )/T , λ =

1, H = 2 · sp(v∗) and β = 2cβ · sp(v∗)d
√
log(dT/δ)

guarantees with probability at least 1− δ,

RT ≤ O(sp(v∗)
√

d3T log(dT/δ)).

The constant cβ is an absolute constant defined in
Lemma 6. We expect careful analysis of the variance
of the value estimate (He et al. 2023) may improve our
regret by a factor of

√
d. We leave this improvement

to future work.

4.2 Computational Complexity

Our algorithm runs in episodes and since a new episode
starts only when the determinant of the covariance
matrix Λ̄t doubles, there can be at most O(d log2 T )
episodes (see Lemma 21). In each episode, we run at
most T value iterations. In each iteration step u, the
algorithm computes mins′ Ṽ

k
u (s

′) which requires eval-
uating Ṽ k

u (s
′) at all s′ ∈ S, which requires O(d2SA)

computations. Also, the algorithm computes wk
u+1,

which requires O(d2 + Td) operations. All other op-
erations runs in O(d2 + A) per value iteration. In
total, the algorithm runs in O((log2 T )d3SAT 2). See
Appendix C for detailed analysis.

The FOPO algorithm by Wei et al. (2021) that matches
our regret bound under the same set of assumptions,

has a time complexity of O(T d log2 T ). Although our
time complexity is an improvement over previous work
in the sense that the time complexity is polynomial
in problem parameters, it has linear dependency on S.
The dependency on S arises from taking the minimum
of value functions for clipping. We conjecture that
this dependency can be eliminated by using an esti-
mate of the minimum rather than computing the global
minimum of value functions. For example, replacing
mins′ V

k
u (s′) with mins′ V

∗(s′) for clipping leads to the
same regret bound (see Appendix B.3). A promising ap-
proach is to use mins′∈{s1,...,st} Ṽ

k
u (s

′), minimum over
states visited so far, instead of the global minimum.
However, as discussed in Appendix B.4, naively chang-
ing the clipping operation fails. We leave eliminating
the dependency on S in the time complexity to future
work.

4.3 Analysis

In this section, we outline the proof of the regret
bound presented in Theorem 5. We first show that
the value iteration step in Line 10 with the bonus term
β∥ϕ(·, ·)∥Λ−1

k
with appropriately chosen β ensures the

value function estimates Vt and Qt to be optimistic
estimates of V ∗ and Q∗, respectively. The argument is
based on the following concentration inequality for the
regression coefficients. See Appendix B.1 for a proof.

Lemma 6 (Concentration of regression coefficients).
With probability at least 1− δ, there exists an absolute
constant cβ such that for β = cβ ·Hd

√
log(dT/δ), we

have
|⟨ϕ,wk

u −wk
u
∗⟩| ≤ β∥ϕ∥Λ−1

k

for all episode indices k and for all vectors ϕ ∈ Rd

where wk
u
∗ :=

∫
(V k

u (s) − mins′ V
k
u (s

′))dµ(s) is a pa-
rameter that satisfies ⟨φ(s, a),wk

u
∗⟩ = [PV k

u ](s, a) −
mins′ V

k
u (s′).

With the concentration inequality, we can show the
following optimism result. See Appendix B.2 for an
induction-based proof.

Lemma 7 (Optimism). Under the linear MDP set-
ting, running Algorithm 2 with input H = 2 · sp(v∗)
guarantees with probability at least 1 − δ that for all
episodes k = 1, 2, . . . , u = tk, . . . , T + 1 and for all
(s, a) ∈ S ×A, we have

V k
u (s) ≥ V ∗(s), Qk

u(s, a) ≥ Q∗(s, a).

Now, we show the regret bound under the event that
the high probability events in the previous two lemmas
(Lemma 6, Lemma 7) hold. Let t be a time step in
episode k such that both t and t+ 1 are in episode k.
By the definition of Qk

u(·, ·) (Line 10), we have for all
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t = tk, . . . , T + 1 and (s, a) ∈ S ×A that

r(s, a) ≥ Qk
t (s, a)− γ(⟨φ(s, a),wk

t+1⟩+min
s′

V k
t+1(s

′)

− β∥φ(s, a)∥Λ−1
k
)

≥ Qk
t (s, a)− γ[PV k

t+1](s, a)− 4β∥φ(s, a)∥Λ̄−1
t

where the second inequality uses the concentration
bound for the regression coefficients in Lemma 6. It
also uses ∥x∥Λ−1

k
≤ 2∥x∥Λ−1

t
(Lemma 20). Hence, we

can bound the regret in episode k by

Rk =

tk+1−1∑
t=tk

(J∗ − r(st, at))

≤
tk+1−1∑
t=tk

(J∗ −Qk
t (st, at) + γ[PV k

t+1](st, at)

+ 4β∥φ(st, at)∥Λ̄−1
t
),

which can be decomposed into

=

tk+1−1∑
t=tk

(J∗ − (1− γ)V k
t+1(st+1))︸ ︷︷ ︸

(a)

+ γ

tk+1−1∑
t=tk

(V k
t+1(st+1)−Qk

t (st, at))︸ ︷︷ ︸
(b)

+ γ

tk+1−1∑
t=tk

[PV k
t+1](st, at)− V k

t+1(st+1))︸ ︷︷ ︸
(c)

+ 4β

tk+1−1∑
t=tk

∥φ(st, at)∥Λ̄−1
t︸ ︷︷ ︸

(d)

where the first inequality uses the bound for r(st, at).
With the same argument as in the tabular case, the
term (a) summed over all episodes can be bounded
by T (1 − γ)sp(v∗) using the optimism V k

u (st+1) ≥
V ∗(st+1), and Lemma 1 that bounds |J∗−(1−γ)V ∗(s)|
for all s ∈ S. Term (d), summed over all episodes, can
be bounded by O(β

√
dT log T ) using Cauchy-Schwartz

and Lemma 19. Term (c), summed over all episodes, is
a sum of a martingale difference sequence, which can
be bounded by O(sp(v∗)

√
T log(1/δ)) since sp(V k

u ) ≤
2 · sp(v∗) by the clipping step in Line 12.

Bounding Term (b) To bound term (b) note that

V k
t+1(st+1) ≤ Ṽ k

t+1(st+1)

= max
a

Qk
t+1(st+1, a)

= Qk
t+1(st+1, at+1)

as long as the time step t+ 1 is in episode k, since the
algorithm chooses at+1 that maximizes Qk

t+1(st+1, ·).
Hence,

tk+1−1∑
t=tk

(V k
t+1(st+1)−Qk

t (st, at))

≤ 1

1− γ
+

tk+1−2∑
t=tk

(Qk
t+1(st+1, at+1)−Qk

t (st, at))

≤ O
(

1

1− γ

)
where the second inequality uses telescoping sum and
the fact that Qk

t ≤ 1
1−γ . Since the episode is advanced

when the determinant of the covariance matrix doubles,
it can be shown that the number of episodes is bounded
by O(d log(T )) (Lemma 21). Combining all the bounds,
and using β = O(sp(v∗)d

√
log(dT/δ), we get

RT ≤ O
(
T (1− γ)sp(v∗) +

d

1− γ
log(T )

+ sp(v∗)
√
T log(1/δ) + sp(v∗)

√
d3T log(dT/δ)

)
.

Setting γ = 1−
√
(log T )/T , we get

RT ≤ O
(
sp(v∗)

√
d3T log(dT/δ)

)
,

which concludes the proof of Theorem 5.

5 CONCLUSION

In this paper, we propose an algorithm with time com-
plexity polynomial in the problem parameters that
achieves Õ(

√
T ) regret for infinite-horizon average-

reward linear MDPs without making a strong ergodicity
assumption on the dynamics. Our algorithm approx-
imates the average-reward setting by the discounted
setting with a carefully tuned discounting factor. A key
technique that allows for order optimal regret bound is
bounding the span of the value function in each value
iteration step via clipping. Additionally, we precom-
pute a sequence of action value functions by running
value iterations, then use them in reverse order for
taking actions. Eliminating the dependence on the
size of the state space in time complexity remains an
open problem. Another promising direction for future
work would be to extend these methods to the general
function approximation setting.
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A TABULAR SETTING

Central to the analysis of the concentration bound for the approximate Bellman backup is the following
concentration bound for scalar-valued self-normalized processes.

Lemma 8 (Concentration of Scalar-Valued Self-Normalized Processes (Abbasi-Yadkori et al. 2012)). Let {εt}∞t=1 be
a real-valued stochastic process with corresponding filtration {Ft}∞t=0. Let εt|Ft−1 be zero-mean and σ-subgaussian.
Let {Zt}∞t=0 be an R-valued stochastic process where Zt ∈ Ft−1. Assume W > 0 is deterministic. Then for any
δ > 0, with probability at least 1− δ, we have for all t ≥ 0 that

(
∑t

s=1 Zsεs)
2

W +
∑t

s=1 Z
2
s

≤ 2σ2 log


√

W +
∑t

s=1 Z
2
s

δ
√
W

 .

A.1 Proof of Lemma 3

To show a bound for |(P̂t−P )Vt(s, a)| uniformly on t ∈ [T ], we use a covering argument on the function class that
captures Vt. Note that the value functions Vt defined in the algorithm always lie in the following function class.

Vtabular = {v ∈ RS : v(s) ∈ [0, 1
1−γ ] for all s ∈ S}.

We first bound the error for a fixed value function in Vtabular. Afterward, we will use a covering argument to get
a uniform bound over Vtabular.

Lemma 9. Fix any V ∈ Vtabular. There exists some constant C such that for any δ ∈ (0, 1), with probability at
least 1− δ, we have:

|[(P̂t − P )V ](s, a)| ≤ Csp(v∗)

√
log(SAT/δ)

Nt(s, a)

for all (s, a) ∈ S ×A and t = 1, . . . , T .

Proof. Fix any (s, a) ∈ S ×A. By definition, we have:

[(P̂t − P )V ](s, a) =
1

Nt(s, a)

t∑
τ=1

I{sτ = s, aτ = a}[V (sτ+1)− [PV ](s, a)].

Let εt = V (st+1)− [PV ](st, at), Zt = I{st = s, at = a}, and W = 1. Since the range of εt is bounded by 2 · sp(v∗),
it is sp(v∗)-subgaussian. By Lemma 8, we know for some constant C, with probability at least 1 − δ, for all
t = 1, . . . , T , we have

|[(P̂t − P )V ](s, a)| =
|
∑t

s=1 Zsεs|
1 +

∑t
s=1 Z

2
s

≤ C · sp(v∗)

√
log(

√
Nt(s, a)/δ)

Nt(s, a)

≤ C · sp(v∗)

√
log(T/δ)

Nt(s, a)
.

Applying a union bound for all (s, a) ∈ S ×A gives us the desired inequality.

We use Nϵ to denote the ϵ-covering number of Vtabular with respect to the distance dist(V, V ′) = ∥V − V ′∥∞.
Using a grid of size ϵ, since functions in Vtabular has the range [0, 1

1−γ ], it can be seen that logNϵ ≤ S log 1
ϵ(1−γ) .

Now, we prove a uniform concentration bound using a covering argument on Vtabular.
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Proof of Lemma 3. Note that Vt ∈ Vtabular for all t. Consider an ϵ-cover of Vtabular. For any Vt ∈ Vtabular, there
exists Ṽt in the ϵ-cover such that sups |Vt(s)− Ṽt(s)| ≤ ϵ. Thus, we have

|[(P̂t − P )Vt](s, a)| ≤ |[(P̂t − P )Ṽt](s, a)|+ |[(P̂t − P )(Vt − Ṽt)](s, a)| ≤ |[(P̂t − P )Ṽ ](s, a)|+ 2ϵ.

We then apply Lemma 9 and a union bound to obtain:

|[(P̂t − P )Vt](s, a)| ≤ C · sp(v∗)

√
log(SATNϵ/δ)

Nt(s, a)
+ 2ϵ

≤ C · sp(v∗)

√
log(SAT/δ) + S log(1/(ϵ(1− γ)))

Nt(s, a)
+ 2ϵ.

Picking ϵ = 1√
T

concludes the proof.

A.2 Proof of Lemma 4

Proof of Lemma 4. We prove by induction on t ≥ 1. The base case t = 1 is trivial since Algorithm 1 initializes
V1(·) = 1

1−γ , Q1(·, ·) = 1
1−γ . Now, suppose V1, . . . , Vt ≥ V ∗ and Q1, . . . , Qt ≥ Q∗.

We first show that Qt+1(s, a) ≥ Q∗(s, a). By the Bellman optimality equation for the discounted setting, we have
for all (s, a) ∈ S ×A that

Q∗(s, a) = r(s, a) + γ[PV ∗](s, a).

Fix any pair (s, a) ∈ S ×A. By the definition of Qt+1 in Line 8 of Algorithm 1, we have

Qt+1(s, a) = (r(s, a) + γ[P̂tVt](s, a) + β/
√

Nt(s, a)) ∧Qt(s, a)

≥ (r(s, a) + γ[PVt](s, a)) ∧Qt(s, a)

≥ (r(s, a) + γ[PV ∗](s, a)) ∧Q∗(s, a)

= Q∗(s, a)

where the first inequality is by the concentration inequality in Lemma 3 and our choice of β in Theorem 2, and
the second inequality is by the induction hypotheses Vt ≥ V ∗ and Qt ≥ Q∗. The last equality is by the Bellman
optimality equation.

Now, we show Vt+1(s) ≥ V ∗(s). By the definition of Ṽt+1 in Line 9 of Algorithm 1, we have

Ṽt+1(s) = (max
a

Qt+1(s, a)) ∧ Vt(s)

≥ (max
a

Q∗(s, a)) ∧ V ∗(s)

= V ∗(s)

where the inequality is by the optimism of Qt+1 we just proved, and the induction hypothesis Vt ≥ V ∗.

Finally, by the definition of Vt+1 in Line 10 of Algorithm 1, we have

Vt+1(s) = Ṽt+1(s) ∧ (min
s′

Ṽt+1(s
′) + sp(v∗)) ≥ Ṽt+1(s) ≥ V ∗(s),

which completes the proof by induction.

A.3 Omitted Proofs

Lemma 10 (Sum of Bonus Terms). Consider running Algorithm 1. The sum of the bonus terms can be bounded
by

T∑
t=1

√
1/Nt−1(st, at) ≤ 2

√
SAT .
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Proof. Recall that Nt(s, a) = 1+
∑t

s=1 I{st = s, at = a}. For convenience, write nt(s, a) =
∑t

s=1 I{st = s, at = a}
such that Nt(s, a) = 1 + nt(s, a). Then,

T∑
t=1

√
1/Nt−1(st, at) ≤

∑
s∈S

∑
a∈A

nT (s,a)∑
n=1

√
1/n

≤ 2
∑
s∈S

∑
a∈A

√
nT (s, a)

≤ 2
√
SAT

where the second inequality uses the identity
∑N

n=1 1/
√
n ≤ 2

√
N , and the last inequality is by Cauchy-Schwarz

and the fact that
∑

s

∑
a nT (s, a) = T .

B LINEAR MDP SETTING

Central to the analysis of the concentration bound for the approximate Bellman backup is the following
concentration bound for scalar-valued self-normalized processes.

Lemma 11 (Concentration of vector-valued self-normalized processes (Abbasi-Yadkori et al. 2011)). Let {εt}∞t=1 be
a real-valued stochastic process with corresponding filtration {Ft}∞t=0. Let εt|Ft−1 be zero-mean and σ-subgaussian.
Let {ϕt}∞t=0 be an Rd-valued stochastic process where ϕt ∈ Ft−1. Assume Λ0 is a d× d positive definite matrix,
and let Λt = Λ0 +

∑t
s=1 ϕsϕ

T
s . Then for any δ > 0, with probability at least 1− δ, we have for all t ≥ 0 that

∥∥∥∥∥
t∑

s=1

ϕsεs

∥∥∥∥∥
2

Λ−1
t

≤ 2σ2 log

(
det(Λt)

1/2det(Λ0)
−1/2

δ

)
.

B.1 Concentration Bound for Regression Coefficients

Lemma 12. Let V : S → [0, B] be a bounded function. Then, there exists a parameter w∗
V ∈ Rd such that

PV (s, a) = ⟨φ(s, a),wV ⟩ for all (s, a) ∈ S ×A and

∥w∗
V ∥2 ≤ B

√
d.

Proof. By Assumption B, we have

[PV ](s, a) =

∫
S
V (s′)P (ds′|s, a) =

∫
S
V (s′)⟨φ(s, a),µ(ds′)⟩ = ⟨φ(s, a),

∫
S
V (s′)dµ(s′)⟩.

Hence, w∗
V =

∫
S V (s′)dµ(s′) satisfies [PV ](s, a) = ⟨φ(s, a),wV ⟩ for all (s, a) ∈ S ×A. Also, such wV satisfies

∥wV ∥2 =

∥∥∥∥∫
S
V (s′)dµ(s′)

∥∥∥∥
2

≤ B

∥∥∥∥∫
S
dµ(s′)

∥∥∥∥
2

≤ B
√
d

where the first inequality holds since µ is a vector of positive measures and V (s′) ≥ 0. The last inequality is by
the boundedness assumption (1) on µ(S).

Lemma 13. Let w be a ridge regression coefficient obtained by regressing y ∈ [0, B] on x ∈ Rd using the dataset
{(xi, yi)}ni=1 so that w = Λ−1

∑n
i=1 xiyi where Λ =

∑n
i=1 xx

T + λI. Then,

∥w∥2 ≤ B
√

dn/λ.
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Proof. For any unit vector u ∈ Rd with ∥u∥2 = 1, we have

|uTw| =

∣∣∣∣∣uTΛ−1
n∑

i=1

xiyi

∣∣∣∣∣
≤ B

n∑
i=1

|uTΛ−1xi|

≤ B

n∑
i=1

√
uTΛ−1u

√
xT
i Λ

−1xi

≤ B√
λ

n∑
i=1

√
xT
i Λ

−1xi

≤ B√
λ

√
n

√√√√ n∑
i=1

xT
i Λ

−1xi

≤ B
√
dn/λ

where the second inequality and the fourth inequality are by Cauchy-Schwartz, the third inequality is by Λ ⪰ λI,
and the last inequality is by Lemma 18.

The desired result follows from the fact that ∥w∥2 = maxu:∥u∥2=1 |uTw|.

The following self-normalized process bound is an adaptation of Lemma D.4 in Jin et al. (2020). Their proof
defines the bound B to be a value that satisfies ∥V ∥∞ ≤ B. Upon observing their proof, it is easy to see that we
can strengthen their result to require only sp(V ) ≤ B. The following lemma is the strengthened version.

Lemma 14 (Adaptation of Lemma D.4 in Jin et al. (2020)). Let {xt}∞t=1 be a stochastic process on state space
S with corresponding filtration {Ft}∞t=0. Let {ϕt}∞t=0 be a Rd-valued stochastic process where ϕt ∈ Ft−1, and
∥ϕt∥2 ≤ 1. Let Λn = λI +

∑n
t=1 ϕtϕ

T
t . Then for any δ > 0 and any given function class V, with probability at

least 1− δ, for all n ≥ 0, and any V ∈ V satisfying sp(V ) ≤ H, we have∥∥∥∥∥
n∑

t=1

ϕt(V (xt)− E[V (xt)|Ft−1])

∥∥∥∥∥
2

Λ−1
n

≤ 4H2

[
d

2
log

(
n+ λ

λ

)
+ log

Nε

δ

]
+

8n2ε2

λ

where Nε is the ε-covering number of V with respect to the distance dist(V, V ′) = supx |V (x)− V ′(x)|.
Lemma 15 (Adaptation of Lemma D.6 in Jin et al. (2020)). Let Vlinear be a class of functions mapping from S
to R with the following parametric form

V (·) = (max
a

wTφ(·, a) + v + β
√
φ(·, a)TΛ−1φ(·, a)) ∧M (2)

where the parameters (w, β, v,Λ,M) satisfy ∥w∥ ≤ L, β ∈ [0, B], v ∈ [0, D], M ≥ 0 and the minimum eigenvalue
satisfies λmin(Λ) ≥ λ. Assume ∥φ(s, a)∥ ≤ 1 for all (s, a) pairs, and let Nε be the ε-covering number of V with
respect to the distance dist(V, V ′) = supx |V (x)− V ′(x)|. Then

logNε ≤ d log(1 + 8L/ε) + log(1 + 4D/ε) + d2 log[1 + 8d1/2B2/(λε2)].

For the next lemma, we define value functions V
(t)
u to be the functions obtained by the following value iteration

(analogous to Line 7-12 in Algorithm 2):

With this definition, we show a high-probability bound on ∥
∑t

τ=1 φ(sτ , aτ )[V
(t)
u (sτ+1) − PV

(t)
u (sτ , aτ )]∥Λ̄−1

t

uniformly on u ∈ [T ] and t ∈ [T ]. Since the tuple (tk−1, V k
u ,Λk) encountered in Algorithm 2 is the same as the pair

(t, V
(t)
u , Λ̄t) for some t ∈ [T ], the uniform bound implies bound on ∥

∑tk−1
τ=1 φ(sτ , aτ )[V

k
u (sτ+1)−PV k

u (sτ , aτ )]∥Λ−1
k

for all episode k.
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V
(t)
T+1(·)←

1
1−γ , V (t)

T+1(·)←
1

1−γ .
for u = T, T − 1, . . . , 1 do

w
(t)
u+1 ← Λ̄−1

t

∑t
τ=1 φ(sτ , aτ )(V

(t)
u+1(sτ+1)−mins′ Ṽ

(t)
u+1(s

′)).

Q̃
(t)
u (·, ·)←

(
r(·, ·) + γ(⟨φ(·, ·),w(t)

u+1⟩+mins′ Ṽ
(t)
u+1(s

′) + β∥φ(·, ·)∥Λ̄−1
t
)
)
∧ 1

1−γ .

Ṽ
(t)
u (·)← maxa Q̃

(t)
u (·, a).

V
(t)
u (·)← Ṽ

(t)
u (·) ∧ (mins′ Ṽ

(t)
u (s′) +H).

Lemma 16 (Adaptation of Lemma B.3 in Jin et al. (2020)). Under the linear MDP setting in Theorem 5
for the γ-LSCVI-UCB algorithm with clipping oracle (Algorithm 2), let cβ be the constant in the definition of
β = cβHd

√
log(dT/δ). There exists an absolute constant C that is independent of cβ such that for any fixed

δ ∈ (0, 1), the event E defined by

∀u ∈ [T ], t ∈ [T ] :∥∥∥∥∥
t∑

τ=1

φ(sτ , aτ )[V
(t)
u (sτ+1)− [PV (t)

u ](sτ , aτ )]

∥∥∥∥∥
Λ̄−1

t

≤ C ·Hd
√

log((cβ + 1)dT/δ)

satisfies P (E) ≥ 1− δ.

Proof. For all t = 1, . . . , T , by Lemma 13, we have ∥wt∥2 ≤ H
√

dt/λ. Hence, by combining Lemma 15 and
Lemma 14, for any ε > 0 and any fixed pair (u, t) ∈ [T ]× [T ], we have with probability at least 1− δ/T 2 that∥∥∥∥ t∑

τ=1

φ(sτ , aτ )[V
(t)
u (sτ+1)− [PV (t)

u ](sτ , aτ )]

∥∥∥∥2
Λ̄−1

t

≤ 4H2

[
2

d
log

(
t+ λ

λ

)
+ d log

(
1 +

4H
√
dt

ε
√
λ

)
+ d2 log

(
1 +

8d1/2β2

ε2λ

)
+ log

(
T 2

δ

)]
+

8t2ε2

λ

where we use the fact that τt ≤ t. Using a union bound over (u, t) ∈ [T ]× [T ] and choosing ε = Hd/t and λ = 1,
there exists an absolute constant C > 0 independent of cβ such that, with probability at least 1− δ,

∥∥∥∥ t∑
τ=1

φ(sτ , aτ )[V
(t)
u (sτ+1)− [PV (t)

u ](sτ , aτ )]

∥∥∥∥2
Λ̄−1

t

≤ C2 · d2H2 log((cβ + 1)dT/δ),

which concludes the proof.

Proof of Lemma 6. We prove under the event E defined in Lemma 16. For convenience, we introduce the notation
V̄ k
u (s) = V k

u (s)−mins′ V
k
u (s′). With this notation, we can write

wk
u = Λ−1

k

tk−1∑
τ=1

φ(sτ , aτ )V̄
k
u (sτ+1).

We can decompose ⟨ϕ,wk
u⟩ as

⟨ϕ,wk
u⟩ = ⟨ϕ,Λ−1

k

tk−1∑
τ=1

φ(sτ , aτ )[PV̄ k
u ](sτ , aτ )⟩︸ ︷︷ ︸

(a)

+ ⟨ϕ,Λ−1
k

tk−1∑
τ=1

φ(sτ , aτ )(V̄
k
u (sτ+1)− PV̄ k

u (sτ , aτ ))︸ ︷︷ ︸
(b)

.

Since wk
u
∗ =

∫
V̄ k
u (s)dµ(s) and V̄ k

u (s) ∈ [0, H] for all s ∈ S, it follows by Lemma 12 that ∥wk
u
∗∥2 ≤ H

√
d. Hence,
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the first term (a) in the display above can be bounded as

⟨ϕ,Λ−1
k

tk−1∑
τ=1

φ(sτ , aτ )[PV̄ k
u ](sτ , aτ )⟩ = ⟨ϕ,Λ−1

k

tk−1∑
τ=1

φ(sτ , aτ )φ(sτ , aτ )
Twk

u
∗⟩

= ⟨ϕ,wk
u
∗⟩ − λ⟨ϕ,Λ−1

k wk
u
∗⟩

≤ ⟨ϕ,wk
u
∗⟩+ λ∥ϕ∥Λ−1

k
∥wk

u
∗∥Λ−1

k

≤ ⟨ϕ,wk
u
∗⟩+H

√
λd∥ϕ∥Λ−1

k

where the first inequality is by Cauchy-Schwartz and the second inequality is by Lemma 12. Under the event E
defined in Lemma 16, the second term (b) can be bounded by

⟨ϕ,Λ−1
k

tk−1∑
τ=1

φ(sτ , aτ )(V̄
k
u (sτ+1)− [PV̄ k

u ](sτ , aτ ))

≤ ∥ϕ∥Λ−1
k

∥∥∥∥ tk−1∑
τ=1

φ(sτ , aτ )(V
k
u (sτ+1)− [PV k

u ](sτ , aτ ))

∥∥∥∥
Λ−1

k

≤ C ·Hd
√

log((cβ + 1)dT/δ) · ∥ϕ∥Λ−1
k
.

Combining the two bounds and rearranging, we get

⟨ϕ,wk
u −wk

u
∗⟩ ≤ C ·Hd

√
(log(cβ + 1)dT/δ) · ∥ϕ∥Λ−1

k

for some absolute constant C independent of cβ . Lower bound of ⟨ϕ,wk
u−wk

u
∗⟩ can be shown similarly, establishing

|⟨ϕ,wk
u −wk

u
∗⟩| ≤ C ·Hd

√
log((cβ + 1)dT/δ) · ∥ϕ∥Λ−1

k
.

It remains to show that there exists a choice of absolute constant cβ such that

C
√
log(cβ + 1) + log(dT/δ) ≤ cβ

√
log(dT/δ).

Noting that log(dT/δ) ≥ log 2, this can be done by choosing an absolute constant cβ that satisfies
C
√
log 2 + log(cβ + 1) ≤ cβ

√
log 2.

B.2 Optimism

Proof of Lemma 7. We prove under the event E defined in Lemma 16. Fix any episode index k > 1. We prove by
induction on u = T + 1, T, . . . , 1. The base case u = T + 1 is trivial since V k

T+1(s) =
1

1−γ ≥ V ∗(s) for all s ∈ S
and Qk

T+1(s, a) =
1

1−γ ≥ Q∗(s, a) for all (s, a) ∈ S ×A.

Now, suppose the optimism results V k
u+1(s) ≥ V ∗(s) and Qk

u+1(s, a) ≥ Q∗(s, a) for all (s, a) ∈ S × A hold for
some u ∈ [T ]. For convenience, we use the notation V̄ k

u (s) = V k
u (s) − mins′ V

k
u (s

′). Using the concentration
bounds of regression coefficients wk

u provided in Lemma 6, which holds under the event E , we can lower bound
Qk

u(s, a) as follows.

Qk
u(s, a) =

(
r(s, a) + γ(⟨φ(s, a),wk

u+1⟩+min
s′

V k
u+1(s

′) + β∥φ(s, a)∥Λ−1
k

)
∧ 1

1− γ

≥
(
r(s, a) + γ(⟨φ(s, a),wk

u+1
∗⟩+min

s′
V k
u+1(s

′))
)
∧ 1

1− γ

= (r(s, a) + γPV k
u+1(s, a)) ∧

1

1− γ

≥ (r(s, a) + γPV ∗(s, a)) ∧ 1

1− γ

= Q∗(s, a)
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where wk
u+1

∗ is a parameter that satisfies ⟨φ(s, a),wk
u+1

∗⟩ = [PV̄ k
u+1](s, a). The second inequality is by the

induction hypothesis V k
u+1 ≥ V ∗ and the last equality is by the Bellman optimality equation for the discounted

setting and the fact that Q∗ ≤ 1
1−γ .

We established Qk
u(s, a) ≥ Q∗(s, a) for all (s, a) ∈ S × A. It remains to show that V k

u (s) ≥ V ∗(s) for all s ∈ S.
Recall that the algorithm defines Ṽ k

u (·) = maxa Q
k
u(·, a). Hence, for all s ∈ S, we have

Ṽ k
u (s)− V ∗(s) = max

a
Qk

u(s, a)− V ∗(s)

≥ Qk
u(s, a

∗
s)−Q∗(s, a∗s)

≥ 0

where we use the notation a∗s = argmaxa Q
∗(s, a) so that V ∗(s) = Q∗(s, a∗s), establishing Ṽ k

u (s) ≥ V ∗(s) for all
s ∈ S. Hence, for all s ∈ S, we have

V k
u (s) = Ṽ k

u (s) ∧ (min
s′

Ṽ k
u (s′) + 2 · sp(v∗))

≥ V ∗(s) ∧ (min
s′

V ∗(s′) + 2 · sp(v∗))

= V ∗(s)

where the last equality is due to sp(V ∗) ≤ 2 · sp(v∗) by Lemma 1. By induction, the proof for the optimism
results V k

u (s) ≥ V ∗(s) and Qk
u(s, a) ≥ Q∗(s, a) for u = T + 1, T, . . . , 1 is complete.

B.3 Access to mins′ V
∗(s′)

In this section, we demonstrate that using mins′ V
∗(s′) for clipping instead of mins′ V

k
u (s′) at the clipping step in

Algorithm 2 achieves the same regret bound.

Since the only part of the proof affected by the modified clipping is the optimism proof, we provide the proof for
the optimism lemma only.
Lemma 17 (Optimism). Under the linear MDP setting, consider running a modified version of Algorithm 2 that
uses mins′ V

∗(s′) for clipping instead of mins′ V
k
u (s′) at the uth value iteration step in episode k. Using the same

input H = 2 · sp(v∗) for the modified algorithm guarantees with probability at least 1− δ that for all u = 1, . . . , T
and for all (s, a) ∈ S ×A,

V k
u (s) ≥ V ∗(s), Qk

u(s, a) ≥ Q∗(s, a).

Proof. We prove under the event E defined in Lemma 16. Fix any episode index k > 1. We prove by induction
on u = T + 1, T, . . . , 1. The base case u = T + 1 is trivial since V k

T+1(s) = 1
1−γ ≥ V ∗(s) for all s ∈ S and

Qk
T+1(s, a) =

1
1−γ ≥ Q∗(s, a) for all (s, a) ∈ S ×A.

Now, suppose the optimism results V k
u+1(s) ≥ V ∗(s) and Qk

u+1(s, a) ≥ Q∗(s, a) for all (s, a) ∈ S × A hold for
some u ∈ [T ]. For convenience, we use the notation V̄ k

u (s) = V k
u (s) − mins′ V

∗(s′). Using the concentration
bounds of regression coefficients wk

u+1 provided in Lemma 6, which holds under the event E , we can lower bound
Qk

u(s, a) as follows.

Qk
u(s, a) =

(
r(s, a) + γ(⟨φ(s, a),wk

u+1⟩+min
s′

V ∗(s′) + β∥φ(s, a)∥Λ−1
k

)
∧ 1

1− γ

≥
(
r(s, a) + γ(⟨φ(s, a),wk

u+1
∗⟩+min

s′
V ∗(s′))

)
∧ 1

1− γ

= (r(s, a) + γ[PV k
u+1](s, a)) ∧

1

1− γ

≥ (r(s, a) + γ[PV ∗](s, a)) ∧ 1

1− γ

= Q∗(s, a)

where wk
u+1

∗ is a parameter that satisfies ⟨φ(s, a),wk
u+1

∗⟩ = [PV̄ k
u+1](s, a). The second inequality is by the

induction hypothesis V k
u+1 ≥ V ∗ and the last equality is by the Bellman optimality equation for the discounted

setting and the fact that Q∗ ≤ 1
1−γ .
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We established Qk
u(s, a) ≥ Q∗(s, a) for all (s, a) ∈ S × A. It remains to show that V k

u (s) ≥ V ∗(s) for all s ∈ S.
Recall that the algorithm defines Ṽ k

u (·) = maxa Q̃
k
u(·, a). Hence, for all s ∈ S, we have

Ṽ k
u (s)− V ∗(s) = max

a
Qk

u(s, a)− V ∗(s)

≥ Qk
u(s, a

∗
s)−Q∗(s, a∗s)

≥ 0

where we use the notation a∗s = argmaxa Q
∗(s, a) so that V ∗(s) = Q∗(s, a∗s), establishing Ṽ k

u (s) ≥ V ∗(s) for all
s ∈ S. Hence, for all s ∈ S, we have

V k
u (s) = Ṽ k

u (s) ∧ (min
s′

V ∗(s′) + 2 · sp(v∗))

≥ V ∗(s) ∧ (min
s′

V ∗(s′) + 2 · sp(v∗))

= V ∗(s)

where the last equality is due to sp(V ∗) ≤ 2 · sp(v∗) by Lemma 1. By induction, the proof for the optimism
results V k

u (s) ≥ V ∗(s) and Qk
u(s, a) ≥ Q∗(s, a) for u = T + 1, T, . . . , 1 is complete.

B.4 Difficulty of Bounding Regret with Computationally Efficient Clipping

For computational efficiency, consider using mins′∈{s1,...,stk} Ṽ
k
u (s

′) for clipping instead of mins′∈S Ṽ k
u (s

′) when
running value iteration in the beginning of episode k for generating value functions for episode k. Note that in
the beginning of episode k, we only have only seen states s1, . . . , stk . A natural clipping operation for enforcing
the span to be bounded by H is

V k
u (·) = (Ṽ k

u (·) ∧ ( min
s′∈{s1,...,stk}

Ṽ k
u (s′) +H)) ∨ min

s′∈{s1,...,stk}
Ṽ k
u (s′),

which is equivalent to clipping the value Ṽ k
u (·) to the interval [mins′∈{s1,...,stk} Ṽ

k
u (s

′),mins′∈{s1,...,stk} Ṽ
k
u (s

′) +

H]. One difficulty in the analysis that arises from this change in clipping is when bounding the term∑tk+1−1
t=tk

(V k
t+1(st+1) − Qk

t (st, at)). To illustrate the difficulty, recall one of the steps in the proof presented
in this paper:

V k
t+1(st+1) ≤ Ṽ k

t+1(st+1)

= max
a

Qk
t+1(st+1, a)

= Qk
t+1(st+1, at+1).

The inequality V k
t+1(st+1) ≤ Ṽ k

t+1(st+1) may no longer hold when using the new computationally efficient version
of the minimum. Instead, we get a bound that looks like

V k
t+1(st+1) = (Ṽ k

t+1(st+1) ∧ ( min
s′∈{s1,...,stk}

Ṽ k
t+1(s

′) +H)) ∨ min
s′∈{s1,...,stk}

Ṽ k
t+1(s

′)

≤ Ṽ k
t+1(st+1) + ( min

s′∈{s1,...,stk}
Ṽ k
t+1(s

′)− Ṽ k
t+1(st+1))+

where (·)+ = max{0, ·}. It is unclear how to bound the sum of (mins′∈{s1,...,stk} Ṽ
k
t+1(s

′) − Ṽ k
t+1(st+1))+ over

t = 1, . . . , T . We conjecture that additional algorithmic technique is required to proceed with the bound.

C COMPUTATIONAL COMPLEXITY

C.1 γ-LSCVI-UCB (Algorithm 2)

Our algorithm γ-LSCVI-UCB runs in episodes and the number of episodes is bounded by O(d log T ). In each
episode, value iteration is run for at most T iterations. In each iteration u in episode k, one evaluation of
mins′ Ṽ

k
u (s

′), tk evaluations of V k
u (·) of V k

u (·) and a multiplication of d × d matrix (Λ−1
k ) and a d-dimensional

vector is required.
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Algorithm 3: FOPO

Input: δ ∈ (0, 1), λ = 1, β = 20(2 + sp(v∗))d
√

log(T/δ)
Initialize: Λ1 = λI

1 Receive initial state s1.
2 for time step t = 1, . . . , T do
3 Solve the following optimization problem to get wt:

max
wt,bt∈Rd,Jt∈R

Jt

subject to wt = Λ−1
t

t−1∑
τ=1

(φ(sτ , aτ )(r(sτ , aτ )− Jt +max
a
⟨φ(sτ+1, a), wt⟩) + bt)

∥bt∥Λt
≤ β

∥wt∥ ≤ (2 + sp(v∗))
√
d

One evaluation of mins′ Ṽ
k
u (s′) involves S evaluations of Ṽ k

u (·). One evaluation of Ṽ k
u (·) involves A evaluations of

Qk
u(·, ·). One evaluation of Qk

u(·, ·) requires O(d2) operations. In total, one evaluation of mins′ Ṽ
k
u (s

′) requires
O(d2SA) operations.

Now, computing wk
u requires evaluating V k

u+1(·) for at most T states, which requires O(d2AT ) operations; adding
at most T d-dimensional vectors, which requires Td operations; and multiplying by d× d matrix, which requires
d2 operations.

In total, computing wk
u requires O(d2A(S + T )) operations. Hence, running at most T value iterations in each

episode requires O(d2A(S + T )T ) operations, and since there are at most O(d log T ) episodes, total operations
for the algorithm is Õ(d3A(S + T )T ), which is polynomial in d, S,A, T .

C.2 FOPO (Wei et al. 2021)

In this section, we provide time complexity analysis of the FOPO algorithm (Wei et al. 2021). The algorithm is
shown in Algorithm 3.

The bottleneck of the algorithm is solving the optimization problem. The algorithm needs to solve the optimization
problem O(d log T ) times since the number of episodes is O(d log T ). Since there is no efficient way of solving the
fixed point optimization problem to the best of our knowledge, we provide an analysis of the time complexity of a
brute force approach for approximately solving the problem. The brute force approach does a grid search on the
optimization variables wt, bt, and Jt.

Consider the following grids:

Gw(∆) = {∆ · (k1, . . . , kd) : ±k1, . . . ,±kd ∈ [⌊(2 + sp(v∗))/∆⌋]}

Gb(∆) = {∆ · (k1, . . . , kd) : ±k1, . . . ,±kd ∈ [⌊Tβ/(
√
d∆)⌋]}

GJ(∆) = {∆k : k ∈ [⌊1/∆⌋}.

The grids are designed such that the constraints ∥w∥2 ≤ (2+ sp(v∗))
√
d, ∥b∥Λt ≤ β are satisfied for all w ∈ Gw(∆)

and b ∈ Gb(∆) and J ∈ [0, 1] for all J ∈ GJ (∆). Also, Gw(∆), Gb(∆) and GJ (∆) are ∆-covering with respect to
∥ · ∥∞ of Bd((2 + sp(v∗))

√
d), Bd(Tβ) and [0, 1] respectively, where Bd(r) is a d-dimensional ball of radius r.

Denote by ∆t(w, b, J) the difference between the left hand side and the right hand side of the fixed point equation
at time step t, i.e.,

∆t(w, b, J) = w − Λ−1
t

t−1∑
τ=1

(φ(sτ , aτ )(r(sτ , aτ )− J +max
a
⟨φ(sτ+1, a), w⟩) + b).

Let w∗
t , b

∗
t , J

∗
t be the solution to the fixed point problem, which may not lie in the grids. Then, ∆t(w

∗
t , b

∗
t , J

∗
t ) = 0.
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Let w̃∗
t ∈ Gw(∆), b̃∗t ∈ Gb(∆) and J̃∗ ∈ GJ(∆) be the grid points closest to w∗

t , b
∗
t , J

∗
t , respectively. Then,

∥∆t(w̃
∗
t , b̃

∗
t , J̃

∗)∥2
= ∥∆t(w̃

∗
t , b̃

∗
t , J̃

∗)−∆t(w
∗
t , b

∗
t , J

∗
t )∥2

= ∥w̃∗
t − w∗

t − Λ−1
t

t−1∑
τ=1

(φ(sτ , aτ )(J
∗
t − J̃∗

t +max
a
⟨φ(sτ+1, a), w̃

∗
t ⟩ −max

a
⟨φ(sτ+1, a), w

∗
t ⟩) + b̃∗t − b∗t )∥2

≤ ∥w̃∗
t − w∗

t ∥2 +
t−1∑
τ=1

|J∗
t − J̃∗

t |∥Λ−1
t ∥2∥φ(sτ , aτ )∥2 +

t−1∑
τ=1

max
a
|⟨φ(sτ+1, a), w̃

∗
t − w∗

t ⟩|∥Λ−1
t ∥2∥φ(sτ , aτ )∥2

+

t−1∑
τ=1

∥b̃∗t − b∗t ∥2∥Λ−1
t ∥2

≤ ∆
√
d+ T∆+ T∆

√
d+ T∆

√
d

≤ O(T
√
d∆).

Hence, the solution w̃t, b̃t, J̃t obtained by the grid search satisfies

∥∆t(w̃t, b̃t, J̃t)∥2 ≤ ∥∆t(w̃
∗
t , b̃

∗
t , J̃

∗
t )∥2 ≤ O(T

√
d∆).

Inspecting the proof in Appendix C.1 in Wei et al. (2021), it can be seen that the additional regret incurred by
approximating the solution of the fixed point problem is

T∑
t=1

⟨φ(st, at),∆t(w̃t, b̃t, J̃t)⟩ ≤ T 2
√
d∆.

Choosing the grid size ∆ to be O(1/
√
T 3) guarantees the additional regret does not affect the order

of the total regret. Since the grid search requires O(((1 + sp(v∗))/∆)d × (Tβ/(
√
d∆))d × (1/∆)) =

Õ((T (1 + sp(v∗))2
√
d)d(1/∆)2d+1) evaluations of the fixed point equation, the grid search method requires

Õ(T 4d+3/2(1 + sp(v∗))2ddd/2) evaluations, and each evaluation requires O(d2 + T ) operations. In total, FOPO
can be run using the brute force grid search method with time complexity Õ(T 4d+5/2(1 + sp(v∗))2ddd/2+3), which
is exponential in d.

C.3 LOOP (He et al. 2024)

The LOOP algorithm (He et al. 2024) solves the following optimization problem every episode:

max
wt∈Bd(R),Jt∈[0,1]

Jt

subject to
t−1∑
τ=1

(⟨φ(sτ , aτ ),wt⟩ − r(sτ , aτ )−max
a
⟨φ(sτ+1, a),wt⟩+ Jt)

2

min
w′∈Bd(R),J′∈[0,1]

t−1∑
τ=1

(⟨φ(sτ , aτ ),wt⟩ − r(sτ , aτ )−max
a
⟨φ(sτ+1, a),w

′⟩+ J ′)2 ≤ β

where R = 1
2 sp(v∗)

√
d and β = Õ(sp(v∗)d). To the best of our knowledge, there is no computationally efficient

way of solving this problem. Solving the problem by grid search involves looping over poly(T d) grid points for wt

and Jt. Also, checking the constraint for each grid point requires poly(T, d,A) operations. Hence, the total time
complexity of the algorithm is poly(T d, d, A).

D OTHER TECHNICAL LEMMAS

Lemma 18 (Lemma D.1 in Jin et al. (2020)). Let Λt =
∑t

i=1 ϕiϕ
T
i + λI where ϕi ∈ Rd and λ > 0. Then,

t∑
i=1

ϕT
i Λ

−1
t ϕi ≤ d.
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Lemma 19 (Lemma 11 in Abbasi-Yadkori et al. (2011)). Let {ϕt}t≥1 be a bounded sequence in Rd with ∥ϕt∥2 ≤ 1

for all t ≥ 1. Let Λ0 = I and Λt =
∑t

i=1 ϕiϕ
T
i + I for t ≥ 1. Then,

t∑
i=1

ϕT
i Λ

−1
i−1ϕi ≤ 2 log det(Λt) ≤ 2d log(1 + t).

Lemma 20 (Lemma 12 in Abbasi-Yadkori et al. (2011)). Suppose A,B ∈ Rd×d are two positive definite matrices
satisfying A ⪰ B. Then, for any x ∈ Rd, we have

∥x∥A ≤ ∥x∥B

√
det(A)

det(B)
.

Lemma 21 (Bound on number of episodes). The number of episodes K in Algorithm 2 is bounded by

K ≤ d log2

(
1 +

T

λd

)
.

Proof. Let {Λk}Kk=1 and {Λ̄t}Tt=0 be as defined in Algorithm 2. Note that

tr(Λ̄T ) = tr(λId) +
T∑

t=1

tr(φ(st, at)φ(st, at)T ) = λd+

T∑
t=1

∥φ(st, at)∥22 ≤ λd+ T.

By the AM–GM inequality, we have

det(Λ̄T ) ≤
(

tr(Λ̄T )

d

)d

≤
(
λd+ T

d

)d

.

Since we update Λk only when det(Λ̄t) doubles, det(Λ̄T ) ≥ det(ΛK) ≥ det(Λ1) · 2K = λd · 2K . Thus, we obtain

K ≤ d log2

(
1 +

T

λd

)
as desired.

E ADDITIONAL RELATED WORK

Infinite-Horizon Average-Reward Setting with Tabular MDP We focus on works on infinite-horizon
average-reward setting with tabular MDP that assume either the MDP is weakly communicating or the MDP
has a bounded diameter. For other works and comparisons, see Table 2. Seminal work by Auer et al. (2008) on
infinite-horizon average-reward setting in tabular MDPs laid the foundation for the problem. Their model-based
algorithm called UCRL2 constructs a confidence set on the transition model and run an extended value iteration
that involves choosing the optimistic model in the confidence set each iteration. They achieve a regret bound of
O(DS

√
AT ) where D is the diameter of the true MDP. Bartlett et al. (2009) improve the regret bound of UCRL2

by restricting the confidence set of the model to only include models such that the span of the induced optimal
value function is bounded. Their algorithm, called REGAL, achieves a regret bound that scales with the span
of the optimal value function sp(v∗) instead of the diameter of the MDP. However, REGAL is computationally
inefficient. Fruit et al. (2018) propose a model-based algorithm called SCAL, which is a computationally efficient
version of REGAL. Zhang et al. (2019) propose a model-based algorithm called EBF that achieves the minimax
optimal regret of O(

√
sp(v∗)SAT ) by maintaining a tighter model confidence set by making use of the estimate for

the optimal bias function. However, their algorithm is computationally inefficient. There is another line of work
on model-free algorithms for this setting. Wei et al. (2020) introduce a model-free Q-learning-based algorithm
called Optimistic Q-learning. Their algorithm is a reduction to the discounted setting. Although model-free,
their algorithm has a suboptimal regret of O(T 2/3). Recently, Zhang et al. (2023) introduce a Q-learning-based
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Table 2: Comparison of algorithms for infinite-horizon average-reward RL in tabular setting

Algorithm Regret Õ(·) Assumption Computation

UCRL2 (Auer et al. 2008) DS
√
AT Bounded diameter Efficient

REGAL (Bartlett et al. 2009) sp(v∗)
√
SAT Weakly communicating Inefficient

PSRL (Ouyang et al. 2017) sp(v∗)S
√
AT Weakly communicating Efficient

OSP (Ortner 2020)
√
tmixSAT Ergodic Inefficient

SCAL (Fruit et al. 2018) sp(v∗)S
√
AT Weakly communicating Efficient

UCRL2B (Fruit et al. 2020) S
√
DAT Bounded diameter Efficient

EBF (Zhang et al. 2019)
√

sp(v∗)SAT Weakly communicating Inefficient
γ-UCB-CVI (Ours) sp(v∗)S

√
AT Bellman optimality equation Efficient

Optimistic Q-learning (Wei et al. 2020) sp(v∗)(SA)
1
3T

2
3 Weakly communicating Efficient

MDP-OOMD (Wei et al. 2020)
√
t3mixηAT Ergodic Efficient

UCB-AVG (Zhang et al. 2023) sp(v∗)S5A2
√
T Weakly communicating Efficient

Lower bound (Auer et al. 2008) Ω(
√
DSAT )

algorithm called UCB-AVG that achieves regret bound of O(
√
T ). Their algorithm, which is also a reduction to

the discounted setting, is the first model-free to achieve the order optimal regret bound. Their main idea is to use
the optimal bias function estimate to increase statistical efficiency. Agrawal et al. (2024) introduces a model-free
Q-learning-based algorithm and provides a unified view of episodic setting and infinite-horizon average-reward
setting. However, their algorithm requires additional assumption of the existence of a state with bounded hitting
time.

Infinite-Horizon Average-Reward Setting with General Function Approximation He et al. (2024)
study infinite-horizon average reward with general function approximation. They propose an algorithm called
LOOP which is a modified version of the fitted Q-iteration with optimistic planning and lazy policy updates.
Although their algorithm when adapted to the linear MDP set up achieves O(

√
sp(v∗)3d3T ), which is comparable

to our work, their algorithm is computationally inefficient.

Infinite-Horizon Average-Reward Setting with Linear MDPs There is another work by Ghosh et al.
(2023) on the infinite-horizon average-reward setting with linear MDPs. They study a more general constrained
MDP setting where the goal is to maximize average reward while minimizing the average cost. They achieve
Õ(sp(v∗)

√
d3T ) regret, same as our work, but they make an additional assumption that the optimal policy is in a

smooth softmax policy class. Also, their algorithm requires solving an intractable optimization problem.

Reduction of Average-Reward to Finite-Horizon Episodic Setting There are works that reduce the
average-reward setting to the finite-horizon episodic setting. However, in general, this reduction can only give
regret bound of O(T 2/3). Chen et al. (2022) study the constrained tabular MDP setting and propose an algorithm
that uses the finite-horizon reduction. Their algorithm gives regret bound of O(T 2/3). Wei et al. (2021) study
the linear MDP setting and propose a finite-horizon reduction that uses the LSVI-UCB (Jin et al. 2020). Their
reduction gives regret bound of O(T 2/3).

Online RL in Infinite-Horizon Discounted Setting The literature on online RL in the infinite-horizon
discounted setting is sparse because there is no natural notion of regret in this setting without additional
assumption on the structure of the MDP. The seminal paper by Liu et al. (2020) introduce a notion of regret in
the discounted setting and propose a Q-learning-based algorithm for the tabular setting and provides a regret
bound. He et al. (2021) propose a model-based algorithm that adapts UCBVI (Azar et al. 2017) to the discounted
setting and achieve a nearly minimax optimal regret bound. Ji et al. (2024) propose a model-free algorithm with
nearly minimax optimal regret bound.
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