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Abstract

We study reinforcement learning in infinite-
horizon average-reward settings with linear
MDPs. Previous work addresses this problem by
approximating the average-reward setting by dis-
counted setting and employing a value iteration-
based algorithm that uses clipping to constrain the
span of the value function for improved statisti-
cal efficiency. However, the clipping procedure
requires computing the minimum of the value
function over the entire state space, which is pro-
hibitive since the state space in linear MDP setting
can be large or even infinite. In this paper, we in-
troduce a value iteration method with efficient
clipping operation that only requires computing
the minimum of value functions over the set of
states visited by the algorithm. Our algorithm en-
joys the same regret bound as the previous work
while being computationally efficient, with com-
putational complexity that is independent of the
size of the state space.

1. Introduction
Reinforcement learning (RL) aims to learn optimal actions
for an agent by interacting with the environment. Among
the various RL settings, the infinite-horizon setting is partic-
ularly well-suited for applications where optimizing long-
term performance is the primary objective. Examples in-
clude production system management (Yang et al., 2021;
Gosavi, 2004), inventory management (Gijsbrechts et al.,
2022; Giannoccaro & Pontrandolfo, 2002) and network rout-
ing (Mammeri, 2019), where interactions between the agent
and the environment continue indefinitely, and the natural
goal is to optimize long-term rewards.

In the infinite-horizon framework, there are two widely-used
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definitions of long-term rewards. The first is the infinite-
horizon discounted setting, where the objective is to maxi-
mize the discounted cumulative sum of rewards, with expo-
nentially decaying weight assigned to future rewards. The
second is the infinite-horizon average-reward setting, where
the objective is to maximize the undiscounted long-term
average of rewards, assigning uniform weight to future and
present rewards. Learning in the average-reward setting is
more challenging because its Bellman operator is not a con-
traction, and the widely used value iteration algorithm may
fail when the transition probability model used for value
iteration is not well-behaved. This complicates algorithm
design, especially when the underlying transition probability
model is unknown and must be estimated.

Seminal work by Auer et al. (2008) introduces a value it-
eration based algorithm for the infinite-horizon average-
reward setting in the tabular case, where the state space
and the action space are finite. To address sensitivity of
the value iteration algorithm to the transition probability
model, they maintain a confidence set that captures the true,
well-behaved transition probability model. Their algorithm
employs an extended value iteration approach, which op-
timally selects the transition probability model from the
confidence set at each iteration. This extended value itera-
tion method has since been extensively used in the tabular
setting (Bartlett & Tewari, 2009; Fruit et al., 2018; Zhang
& Ji, 2019). Beyond the tabular case, the method has also
been adapted to the linear mixture MDP setting (Modi et al.,
2020; Ayoub et al., 2020), where the transition probability
model has a low-dimensional structure (Ayoub et al., 2020;
Wu et al., 2022; Chae et al., 2025).

To our knowledge, the extended value iteration method is
limited to tabular and linear mixture MDPs, as it relies on
sample-efficient transition probability estimation, which is
infeasible for settings like linear MDPs with large state
spaces (Jin et al., 2020). In response to these limitations,
researchers have explored alternative approaches for such
settings. For example, Wei et al. (2021) propose a reduction
to the finite-horizon episodic setting by dividing the time
steps into episodes of a fixed length. This approach achieves
a regret bound of Õ(T 3/4), which is suboptimal, where T
denotes the number of time steps. They also introduce a

1



Infinite-Horizon Average-Reward RL

policy-based algorithm that alternates between policy eval-
uation and policy improvement steps to directly optimize
the policy. This approach achieves an order-optimal regret
bound of Õ(

√
T ), but it requires a strong ergodicity assump-

tion on the transition probability model for sample-efficient
policy evaluation. Lastly, they propose another approach
that achieves an order-optimal regret bound by directly solv-
ing the Bellman optimality equation as a fixed point problem,
bypassing the need for value iteration. However, the fixed
point problem is computationally intractable.

Another line of work on infinite-horizon average-reward
RL uses a reduction to the discounted setting to leverage
value iteration-based algorithms. To our knowledge, Wei
et al. (2020) were the first to introduce such a method. They
propose a Q-learning-based algorithm for the tabular setting
that solves the discounted setting problem as a surrogate
for the average-reward problem, achieving a regret bound
of Õ(T 2/3). More recently, Hong et al. (2025) propose a
value iteration based algorithm that clips the value function
to constrain its span for statistical efficiency, achieving an
order-optimal regret bound of Õ(

√
T ). Their algorithm runs

value iteration to generate a sequence of value functions to
plan for the remaining time steps, and takes actions greedy
with respect to the value functions until a certain information
criterion of the collected trajectories doubles. Although the
algorithm runs in polynomial time with respect to problem
parameters, its computational complexity depends on the
size of the state space. The dependency is undesirable in the
linear MDP setting where the state space can be arbitrarily
large. An open question arising from this line of work is:

Does there exist an algorithm for infinite-horizon
average-reward linear MDPs with computational
complexity polynomial in the problem parameters,
yet independent of the size of the state space?

In this paper, we answer the question in the affirmative
by proposing an algorithm based on the following novel
techniques.

Efficient Clipping We develop an efficient value function
clipping strategy that requires the minimum of the value
function to be evaluated only over the set of states visited
by the algorithm, rather than the entire state space.

Deviation-Controlled Value Iteration We introduce a
novel value iteration scheme that controls the deviation
between sequences of value functions generated by value
iterations with different clipping thresholds.

1.1. Related Work

Table 1 compares our work with previous approaches for
infinite-horizon average-reward linear MDPs. FOPO solves

the Bellman optimality equation directly as a fixed-point
problem, which is computationally intractable, with brute-
force solution requiring computational complexity that
scales with T d, where d is the dimension of the feature
representation. OLSVI.FH reduces the problem to the finite-
horizon episodic setting. This approach is computationally
efficient, but has suboptimal regret bound. LOOP general-
izes FOPO to the general function approximation setting,
but inherits the computational complexity that scales with
T d for solving a fixed-point problem. MDP-EXP2 directly
optimizes for the policy by alternating between policy eval-
uation and policy improvement. This approach is com-
putationally efficient and achieves an order-optimal regret
bound, but requires a strong assumption that all policies
induce Markov chains that have uniformly bounded mixing
time. γ-LSCVI-UCB reduces the average-reward problem
to the discounted problem and achieves an order-optimal
regret bound. However, its computational complexity scales
with the size of the state space S. Our work is the first com-
putationally efficient algorithm to achieve Õ(

√
T ) regret

without making strong assumptions.

Approximation by discounted setting The method of
approximating the average-reward setting by the discounted
setting has been used in various settings. It is used in the
problem of finding a nearly optimal policy given access to a
simulator in the tabular setting by Jin & Sidford (2021);
Wang et al. (2022); Zurek & Chen (2023); Wang et al.
(2023). It is also used in the online RL setting with tab-
ular MDPs: Wei et al. (2020) propose a Q-learning based
algorithm, but has Õ(T 2/3) regret. Zhang & Xie (2023) im-
prove the regret to Õ(

√
T ) by making use of an estimate for

the span of optimal bias function. The reduction is also used
in the linear mixture MDP setting by Chae et al. (2025).

Span-constraining methods Learning in the infinite-
horizon average-reward setting requires an assumption that
ensures the agent can recover from a bad state, leading to a
bounded span of the optimal value function. For statistical
efficiency, previous work makes use of this fact by con-
straining the span of the value function estimates. Bartlett
& Tewari (2009) modify the extended value iteration algo-
rithm by Auer et al. (2008) to constrain the confidence set
on the model so that the spans of the models in the set are
bounded. Fruit et al. (2018) propose a computationally effi-
cient version of the algorithm proposed by Bartlett & Tewari
(2009). Zhang & Ji (2019) improve the algorithm proposed
by Bartlett & Tewari (2009) by constructing tighter confi-
dence sets using a method for directly estimating the bias
function. Zhang & Xie (2023) study a Q-learning-based
algorithm that projects the value function to a function class
of span-constrained functions. Hong et al. (2025) and Chae
et al. (2025) propose a value iteration-based algorithm and
clips the value function to constrain its span.
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Table 1. Comparison of algorithms for infinite-horizon average-reward linear MDP

Algorithm Regret Õ(·) Assumption Computation poly(·)

FOPO (Wei et al., 2021) sp(v∗)
√
d3T Bellman optimality equation T d, A, d

OLSVI.FH (Wei et al., 2021)
√

sp(v∗)(dT )
3
4 Bellman optimality equation T,A, d

LOOP (He et al., 2024)
√

sp(v∗)3d3T Bellman optimality equation T d, A, d

MDP-EXP2 (Wei et al., 2021) d
√

t3mixT Uniform Mixing T,A, d

γ-LSCVI-UCB (Hong et al., 2025) sp(v∗)
√
d3T Bellman optimality equation T, S,A, d

γ-DC-LSCVI-UCB (Ours) sp(v∗)
√
d3T Bellman optimality equation T,A, d

Lower Bound (Wu et al., 2022) Ω(d
√

sp(v∗)T )

2. Preliminaries
Notations Let ∥x∥A =

√
xTAx for x ∈ Rd and a posi-

tive semi-definite matrix A ∈ Rd×d. Let a∨b = max{a, b}
and a ∧ b = min{a, b}. Let ∆(X ) be the set of probabil-
ity measures on X . Let [n] = {1, . . . , n} and [m : n] =
{m,m + 1, . . . , n}. Let sp(v) = maxs,s′ |v(s) − v(s′)|.
Let CLIP(x;L,U) = (x ∨ L) ∧ U .

2.1. Infinite-Horizon Average-Reward RL

In this section, we formulate the infinite-horizon average-
reward RL setting. We pose the RL problem as a Markov
decision process (MDP)M = (S,A, P, r) where S is the
state space, A is the action space, P : S × A → ∆(S) is
the probability transition kernel and r : S ×A → R is the
reward function. We assume that rewards are bounded in
[0, 1], a standard and mild assumption that can be enforced
by rescaling. We assume S is a measurable space with
possibly infinite number of elements and A is a finite set.
The deterministic reward function r is known to the learner
while the probability transition kernel P is unknown to the
learner.

The interaction protocol between the learner and the MDP
is as follows. The environment first reveals the starting state
s1 ∈ S to the learner. Then, at each time step t = 1, 2, . . . ,
the learner chooses an action at ∈ A and receives the reward
r(st, at). The environment transitions to the next state st+1

sampled from P (·|st, at).

In the infinite-horizon average-reward setting, the perfor-
mance of a policy is evaluated using the long-term average
reward. Consider a stationary policy π : S → ∆(A) where
π(a|s) denotes the probability of choosing action a in state
s. The average reward of policy π starting from an initial
state s is defined as

Jπ(s) := lim inf
T→∞

1

T
Eπ

[
T∑

t=1

r(st, at)
∣∣∣ s1 = s

]
where the expectation Eπ[·] is taken over the probability
distribution on the trajectory (s1, a1, s2, a2, . . . ) induced by

the interaction between P and π.

The performance of an algorithm interacting with the en-
vironment over T steps is evaluated through its regret rela-
tive to the best stationary policy π∗ that maximizes Jπ(s1).
Writing J∗(s1) := Jπ∗

(s1), the regret after T steps is de-
fined as

RT :=

T∑
t=1

(J∗(s1)− r(st, at)).

The interaction protocol for the infinite-horizon setting, un-
like the interaction protocol for the finite-horizon episodic
setting, the state is never reset. Consequently, if the agent en-
ters a bad state with low future reward and recovering from
the bad state and reaching a good state is impossible, then
the agent becomes trapped in the bad state and suffers regret
linear in the number of remaining time steps. As discussed
by Bartlett & Tewari (2009), an additional assumption on
the structure of the MDP is required to avoid the patholog-
ical case. At the very least, we want the gain J∗(s) to be
constant: J∗(s) = J∗ for all s ∈ S . This implies no matter
what the current state is, following the optimal policy π∗

attains the optimal long-term average reward J∗, precluding
the case of getting trapped in a bad state. We follow Wei
et al. (2021) and make the following structural assumption
on the MDP.

Assumption A (Bellman optimality equation). There exist
J∗ ∈ R and functions v∗ : S → R and q∗ : S × A → R
such that for all (s, a) ∈ S ×A, we have

J∗ + q∗(s, a) = r(s, a) + [Pv∗](s, a)

v∗(s) = max
a∈A

q∗(s, a).

As shown by Wei et al. (2021), a tuple (J∗, q∗, v∗) that satis-
fies the equations in the assumption above has the following
properties. The policy π∗ that deterministically selects an
action from argmaxa q

∗(s, a) at each state s ∈ S is an op-
timal policy. Moreover, such π∗ always gives an optimal
average reward Jπ∗

(s) = J∗ for all initial states s ∈ S.
Since the optimal average reward is independent of the ini-
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tial state, we can simply write the regret as

RT =

T∑
t=1

(J∗ − r(st, at)).

The functions v∗(s) and q∗(s, a) have the interpretation
of the relative advantage of starting with s and (s, a), re-
spectively, and are called bias functions. A pair of func-
tions (v∗, q∗) that satisfies the Bellman optimality equa-
tion is v∗(s) = limN→∞ Eπ∗

[
∑N

t=1 r(st, at)−J∗|s1 = s]

and q∗(s, a) = limN→∞ Eπ∗
[
∑N

t=1 r(st, at) − J∗|s1 =
s, a1 = a].
Remark 2.1. The Bellman optimality equation assump-
tion is weaker than the weakly communicating assumption,
which states that the state space can be partitioned into a
set of transient states, which the agent never revisits once
it leaves, and a set of recurrent states, where the agent can
reach any state from any other under some policy. In turn,
the weakly communicating assumption is weaker than the
ergodic assumption, which requires that for every policy,
the induced Markov chain is irreducible and aperiodic.

The span of the bias, sp(v∗) = maxs,s′∈S v∗(s) − v∗(s′),
quantifies the worst-case difference in value between any
two states. Intuitively, entering a suboptimal state incurs
regret that scales with sp(v∗), suggesting that problems with
large sp(v∗) are more challenging to learn. Following pre-
vious work (Bartlett & Tewari, 2009; Wei et al., 2020), we
assume sp(v∗) is known to the learner. This assumption can
be relaxed by instead assuming access to an upper bound on
sp(v∗), but in this case, the regret of our proposed algorithm
will scale with the upper bound.
Remark 2.2. Whether sample-efficient learning is possible
without knowing the span in advance has been an open
question for a long time, and many existing works rely
on this assumption. A recent result by Boone & Zhang
(2024) shows for the first time that it can be avoided in
the tabular setting. However, extending their technique to
the linear MDP setting remains a significant challenge and
likely require a major breakthrough. We leave this to future
work.

2.2. Infinite-Horizon Discounted Setting

The key algorithm design employed in this paper is to
approximate the infinite-horizon average-reward setting
by the infinite-horizon discounted setting with a discount-
ing factor γ ∈ [0, 1) chosen by the learner. Under the
discounted setting, the performance measure is the dis-
counted sum of rewards

∑∞
t=1 γ

t−1r(st, at). When nor-
malized by a factor (1 − γ), the resulting normalized dis-
counted sum is a weighted average of the reward sequence
r(s1, a1), r(s2, a2), . . . . The decay rate of the weight se-
quence is governed by the discounting factor γ. As γ ap-
proaches 1, the decay becomes slower and the normalized

discounted sum should approach average of the reward se-
quence. To make this intuition precise, we first define value
functions for a policy π under the discounted setting by

V π
γ (s) = Eπ

[ ∞∑
t=1

γt−1r(st, at)|s1 = s

]

Qπ
γ (s, a) = Eπ

[ ∞∑
t=1

γt−1r(st, at)|s1 = s, a1 = a

]
.

We write the optimal value functions under the discounted
setting as

V ∗
γ (s) = max

π
V π(s), Q∗

γ(s, a) = max
π

Qπ
γ (s, a).

Previous informal discussion suggests that the normalized
value function (1−γ)V ∗

γ (s) to be close to the gain under the
average-reward setting J∗. The following lemma makes the
relation between the infinite-horizon average-reward setting
and the discounted setting formal.

Lemma 2.3 (Lemma 2 in Wei et al. (2020)). For any γ ∈
[0, 1), the optimal value function V ∗ for the infinite-horizon
discounted setting with discounting factor γ satisfies

(i) sp(V ∗
γ ) ≤ 2sp(v∗) and

(ii) |(1− γ)V ∗
γ (s)− J∗| ≤ (1− γ)sp(v∗) for all s ∈ S.

The lemma above suggests that the difference between the
optimal average reward J∗ and the optimal discounted cu-
mulative reward normalized by the factor (1− γ) is small
as long as γ is close to 1. Hence, we can expect the policy
optimal under the discounted setting will be nearly optimal
for the average-reward setting, provided γ is sufficiently
close to 1.

2.3. Linear MDPs

The linear MDP setting is a widely-studied setting in RL
theory literature that allows sample efficient learning in
large state space by assuming a low-dimensional feature
representation of the state-action pair. This representation
allows for generalization to unseen states, yielding sample
complexity that is independent of the size of the state space.
The linear MDP model imposes the following structural
assumptions on the MDP:

Assumption B (Linear MDP (Jin et al., 2020)). We assume
that the transition and the reward functions can be expressed
as a linear function of a known d-dimensional feature map
φ : S ×A → Rd such that for any (s, a) ∈ S ×A, we have

r(s, a) = ⟨φ(s, a),θ⟩, P (s′|s, a) = ⟨φ(s, a),µ(s′)⟩

where µ(s′) = (µ1(s
′), . . . , µd(s

′)) for s′ ∈ S is a vector
of d unknown measures on S and θ ∈ Rd is a known
parameter for the reward function.
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we further assume, without loss of generality, the following
boundedness conditions:

∥φ(s, a)∥2 ≤ 1 for all (s, a) ∈ S ×A,

∥θ∥2 ≤
√
d, ∥µ(S)∥2 ≤

√
d.

(1)

Such a boundedness assumption is commonly made, without
loss of generality (Wei et al., 2021), when studying the linear
MDP setting.
Remark 2.4. Wei et al. (2021) show that the boundedness
assumption can be made without loss of generality with
the following reasoning. Given a parameterization θ and φ
for the reward function, we can rescale θ and φ such that
∥φ(·, ·)∥2 ≤ 1. Then, they show there exists an invertible
transformation A : Rd → Rd such that the minimum vol-
ume enclosing ellipsoid (MVEE) of AΦ ∪ (−AΦ) is a unit
ball. A transformed feature mapping φ′(s, a) = Aφ(s, a)
and a transformed parameter θ′ = A−1θ leads to the same
reward function with ∥θ′∥2 ≤ 1, as desired. As discussed
by Wei et al. (2021), this transformation depends only on
the feature mapping φ, not on the parameter θ, and can
thus be applied during the feature design stage As shown in
Theorem 8 of Hazan & Karnin (2016), computing such a
transformation takes time O((

√
SA+ d)S3A3).

As discussed by Jin et al. (2020), although the transition
model P is linear in the d-dimensional feature mapping
φ, P still has |S| degrees of freedom as the measure
µ is unknown, making the estimation of the model P
difficult. For sample efficient learning, we rely on the
fact that [PV ](s, a) is linear in φ(s, a) for any function
V : S → R so that [PV ](s, a) = ⟨φ(s, a),w∗(V )⟩ where
w∗(V ) :=

∫
s′∈S V (s′)µ(ds′). Indeed,

[PV ](s, a) :=
∫
s′∈S V (s′)P (ds′|s, a)

=
∫
s′∈S V (s′)⟨φ(s, a),µ(ds′)⟩

= ⟨φ(s, a),
∫
s′∈S V (s′)µ(ds′)⟩.

Exploiting the linearity, we can estimate w∗(V ) given a
trajectory data (s1, a1, . . . , st−1, at−1, st) via linear regres-
sion as follows:

ŵt(V ) := Λ−1
t

t−1∑
τ=1

V (sτ+1) ·φ(sτ , aτ )

where Λt = λI +
∑t−1

τ=1 φ(st, at)φ(st, at)
⊤. With such a

regression coefficient, we estimate [PV ](s, a) by

[P̂tV ](s, a) := ⟨φ(s, a), ŵt(V − V (s1))⟩+ V (s1).

We estimate [PV ](s, a) by estimating [P (V −V (s1))](s, a)
and then adding back V (s1). This allows bounding the norm
of the regression coefficient ∥ŵt(V −V (s1))∥2 by a bound
that scales with the span of V instead of the magnitude of
V , which is required for getting a sharp regret bound. A
similar technique is used by Hong et al. (2025).

Algorithm 1 γ-LSCVI-UCB (Hong et al., 2025)
Input: Discounting factor γ ∈ [0, 1), regularization con-

stant λ > 0, span H > 0, bonus factor β > 0.
Initialize: k ← 1, tk ← 1, Λ1 ← λI , Q1

t (·, ·) ← 1
1−γ for

t ∈ [T ].
1: Receive state s1.
2: for time step t = 1, . . . , T do
3: Take action at = argmaxa Q

t
t(st, a).

4: Receive reward r(st, at); Receive next state st+1.
5: Λt ← Λt−1 +φ(st, at)φ(st, at)

⊤.
6: if 2 det(Λtk) < det(Λt) then
7: k ← k + 1, tk ← t+ 1.
8: V t+1

T+1(·)←
1

1−γ .
9: for u = T, T − 1, . . . , tk do

10: Qt+1
u (·, ·)←

(
r(·, ·) + γ([P̂tkV

t+1
u+1 ](·, ·)

+β∥φ(·, ·)∥Λ−1
tk

)
)
∧ 1

1−γ .

11: Ṽ t+1
u (·)← maxa Q

t+1
u (·, a).

12: V t+1
u (·)← CLIP(Ṽ t+1

u (·);
mins′∈S Ṽ t+1

u (s′),mins′∈S Ṽ t+1
u (s′) +H).

13: end for
14: else
15: Qt+1

u ← Qt
u, V t+1

u ← V t
u for all u ∈ [t+ 1 : T ].

16: end if
17: end for

2.4. Previous Work

In this section, we review the closely related work of Hong
et al. (2025) to highlight the contributions of our paper.
They propose an algorithm, γ-LSCVI-UCB (Algorithm 1),
which is an optimistic value iteration based algorithm for
infinite-horizon average-reward linear MDPs. At time step
t, a sequence of value functions Qt

T , Q
t
T−1, . . . , Q

t
t is com-

puted by running value iterations (Line 8-13) to plan for
the best action at time t, considering the number of time
steps remaining. In the next time step t + 1, instead of
running value iteration again to incorporate new transi-
tion data observed at time step t, the algorithm reuses the
value function Qt

t+1 generated previously. Value iteration
is only rerun when the determinant of the covariance matrix
Λt = λI +

∑t
τ=1 φ(st, at)φ(st, at)

⊤ doubles (Line 6).

Clipped Value Iteration A key ingredient of the algo-
rithm is the value clipping step, which constrains the span
of the value function estimate to improve statistical effi-
ciency. The optimal value function V ∗

γ under the discounted
setting has a span bounded by 2 · sp(v∗) (Lemma 2.3),
which implies the range V ∗

γ is contained in the interval
[mins∈S V ∗

γ (s),mins∈S V ∗
γ (s) + 2 · sp(v∗)]. Building on

this fact, the algorithm clips the optimistic value function es-
timate Ṽ to the interval [mins∈S Ṽ (s),mins∈S Ṽ (s) +H]
to constrain its span (Line 7). We refer to the lower bound
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of this interval of the clipping operation as clipping thresh-
old. The clipping ensures that the concentration bound for
the estimate [P̂ V ](·, ·) scales with sp(v∗), rather than 1

1−γ ,
which is crucial for obtaining a tight regret bound.

Key Step of Regret Analysis In their regret analysis, one
of the terms in the regret decomposition is

T∑
t=1

V t
t+1(st+1)− Ṽ t+1

t+1 (st+1).

This term can be bounded using the fact that V t+1
t+1 (st+1) ≤

Ṽ t+1
t+1 (st+1), and that V t

t+1(st+1) = V t+1
t+1 (st+1) whenever

the same sequence of value functions is used for the time
steps t and t+ 1. Since the sequence of value functions is
only updated when the covariance matrix Λt doubles, which
can be shown to happen only O(d log T ) times, we can get
a tight regret bound.

Computational Complexity However, their clipping step
(Line 7) requires taking the minimum of the value function
estimate Ṽ (·) over the entire state space S , leading to com-
putational complexity linear in the size of the state space,
which can be prohibitive when the state space is large or
infinite. The main contribution of our paper addresses this
issue by designing an algorithm that only takes the mini-
mum over the states that have been visited by the learner,
removing the dependency of the size of the state space on
the computational complexity. As discussed in the next
section, additional algorithmic trick is required for control-
ling the deviation of sequences of value functions generated
under different clipping thresholds.

3. Algorithm Design and Analysis
In this section, we present our algorithm, discounted
Deviation Controlled Least Squares Clipped Value Iteration
with Upper Confidence Bound (γ-DC-LSCVI-UCB, Algo-
rithm 2), which improves computational complexity of the
previous algorithm. The part of the proposed algorithm that
enables computational efficiency is highlighted in red.

3.1. Computationally Efficient Clipping

The algorithm design is centered around bounding the term

T−1∑
t=1

V t
t+1(st+1)− Ṽ t+1

t+1 (st+1),

where {Ṽ t
u}u∈[t:T ] is the sequence of value functions gen-

erated at time step t, and {V t
u}u∈[t:T ] is the sequence of

clipped value functions generated at time step t. Note that
the clipped value function V t

t+1 in the summation is gener-
ated at time step t, prior to observing the next state st+1.

With unlimited compute power, the γ-LSCVI-UCB algo-
rithm by previous work uses mins∈S Ṽ t

t+1(s) as the clipping
threshold, which allows bounding V t

t+1 evaluated at st+1

by

V t
t+1(st+1)

= CLIP(Ṽ t
t+1(st+1);min

s∈S
Ṽ t
t+1(s),min

s∈S
Ṽ t
t+1(s) +H)

≤ Ṽ t
t+1(st+1)

where the inequality only holds because mins∈S Ṽ t
t+1(s) ≤

Ṽ t
t+1(st+1). The algorithm γ-LSCVI-UCB also reuses

the sequence of value functions most of the time steps,
such that Ṽ t

t+1(st+1) = Ṽ t+1
t+1 (st+1), allowing the bound

V t
t+1(st+1)− Ṽ t+1

t+1 (st+1) ≤ 0.

For computational efficiency, suppose we use mt as the
clipping threshold instead of mins∈S Ṽ t

t+1(s), where mt

is computed using states s1, . . . , st only. Then, the bound
V t
t+1(st+1) ≤ Ṽ t

t+1(st+1) may no longer hold because

V t
t+1(st+1) = CLIP(Ṽ t

t+1(st+1);mt,mt +H) ≥ mt

and we may have mt > Ṽ t
t+1(st+1) since we cannot look

ahead st+1 when choosing the clipping threshold mt. We
can instead get a bound with an error term:

V t
t+1(st+1) = CLIP(Ṽ t

t+1(st+1);mt,mt +H)

≤ Ṽ t
t+1(st+1) + max{mt − Ṽ t

t+1(st+1), 0}.

One key idea of handling the sum of the error terms is to
choose mt+1 = Ṽ t

t+1(st+1) ∧mt (Line 15), leading to

V t
t+1(st+1) ≤ Ṽ t

t+1(st+1) + ∆t

where ∆t = mt−mt+1. Then the sum of the errors ∆t can
then be bounded using a telescoping sum.

The clipping threshold mt+1 = Ṽ t
t+1(st+1) ∧ mt may

change every time step. Hence, after advancing to the
next time step t + 1 and computing the new threshold
mt+1, the algorithm computes Qt+1

t+1 afresh, which involves
generating a sequence of value functions V t+1

T , . . . , V t+1
t+1

by running clipped value iteration with the new thresh-
old mt+1. Therefore, unlike previous work that ensures
Ṽ t
t+1(st+1) = Ṽ t+1

t+1 (st+1) by reusing the sequence of
value functions, we need to control the difference between
Ṽ t
t+1(st+1) and Ṽ t+1

t+1 (st+1) to be able to bound

V t
t+1(st+1) ≤ Ṽ t

t+1(st+1) + ∆t ≈ Ṽ t+1
t+1 (st+1) + ∆t.

The next section discusses the algorithm design for ensuring
Ṽ t
t+1 ≈ Ṽ t+1

t+1 .
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Algorithm 2 γ-DC-LSCVI-UCB
Input: Discounting factor γ ∈ [0, 1), regularization con-

stant λ > 0, span H > 0, bonus factor β > 0.
Initialize: Λ1 ← λI , m−1 ← ∞, m0 ← ∞, m1 ← 1

1−γ ,

Q̃0
u(·, ·)← 1

1−γ , Q̃−1
u (·, ·)← 1

1−γ .
1: Receive state s1.
2: for t = 1, . . . , T do
3: V t

T+1(·)← 1
1−γ .

4: for u = T, T − 1, . . . , t do
5: Q̃t

u(·, ·)←
(
r(·, ·) + γ([P̂tV

t
u+1](·, ·)

+β∥φ(·, ·)∥Λ−1
t
)
)
∧ 1

1−γ .

6: U t
u(·, ·)← Q̃t−1

u (·, ·) ∧ Q̃t−2
u (·, ·).

7: Lt
u(·, ·)← (Q̃t−1

u (·, ·)−mt−1 +mt)

∨(Q̃t−2
u (·, ·)−mt−2 +mt).

8: Qt
u(·, ·)← CLIP(Q̃t

u(·, ·);Lt
u(·, ·), U t

u(·, ·)).
9: Ṽ t

u(·)← maxa Q
t
u(·, a).

10: V t
u(·)← CLIP(Ṽ t

u(·);mt,mt +H).
11: end for
12: Take action at ← argmaxa∈A Qt

t(st, a).
13: Receive reward r(st, at). Receive next state st+1.
14: Λt+1 ← Λt +φ(st, at)φ(st, at)

⊤.
15: mt+1 ← Ṽ t

t+1(st+1) ∧mt.
16: end for

3.2. Deviation-Controlled Value Iteration

Previous discussion suggests we need to bound the differ-
ence between sequences of value functions {Ṽ t

u}u∈[T ] and
{Ṽ t+1

u }u∈[T ] generated by value iterations using different
clipping thresholds mt and mt+1. We would expect that
the difference between sequences of value functions to be
bounded by the difference in clipping thresholds mt−mt+1.
Surprisingly, a naive adaptation of the previous work γ-
LSCVI-UCB, fails to control the difference. To see this,
consider the following clipped value iteration procedure that
generates a sequence of value functions {Ṽ t

u}u at time step
t using the clipping threshold mt.

V t
T+1(·)← 1

1−γ .
for u = T, T − 1, . . . , t do
Qt

u(·, ·)←
(
r(·, ·) + γ([P̂tV

t
u+1](·, ·)

+β∥φ(·, ·)∥Λ−1
t
)
)
∧ 1

1−γ .

Ṽ t
u(·)← maxa Q

t
u(·, a).

V t
u(·)← CLIP(Ṽ t

u(·);mt,mt +H).
end for

We argue that controlling the difference ∥Ṽ t
u+1−Ṽ t+1

u+1∥∞ ≤
∆ for ∆ = mt−mt+1 at value iteration index u+1 does not
necessarily control the difference ∥Ṽ t

u− Ṽ t+1
u ∥∞ at the next

value iteration. To see this, suppose ∥Ṽ t
u+1− Ṽ t+1

u+1∥∞ ≤ ∆.

Then, by value iteration, we have

∥Ṽ t
u−Ṽ t+1

u ∥∞ ≤ ∥Qt
u−Qt+1

u ∥∞ ≈ ∥P̂t(V
t
u+1−V t+1

u+1)∥∞.

It is natural to expect that ∥V t
u+1 − V t+1

u+1∥∞ ≤ ∆ would
imply ∥P̂t(V

t
u+1 − V t+1

u+1)∥∞ ≤ ∆. This is true when
[P̂tV ](s, a) is an expectation of V (·) with respect to an
empirical probability distribution P̂t(·|·, ·), which is the
case for the tabular setting (see Appendix B.1 for more
discussion). However, in the linear MDP setting, and more
generally in general value function approximation setting,
[P̂tV ](s, a) is defined through a regression: [P̂tV ](s, a) =
⟨φ(s, a), ŵt(V

t
u+1−V t+1

u+1)⟩, which can be arbitrarily larger
than ∆ as shown in the next lemma.
Lemma 3.1. There exist ϕ1, . . . ,ϕn ∈ Rd with ∥ϕi∥ ≤ 1
for i = 1, . . . , n, and y1, . . . , yn ∈ R with |yi| ≤ ∆, i =
1, . . . , n for any ∆ > 0, such that

|⟨wn,ϕ⟩| ≥
1

2
∆
√
n

for some ϕ ∈ Rd where wn is the regression coefficient
wn = Λ−1

n

∑n
i=1 yiϕi where Λn =

∑n
i=1 ϕiϕ

⊤
i + λI .

To address this issue, we propose a novel value iteration
procedure that explicitly controls the deviation of a sequence
of value functions from its previous sequences. The key
idea is to clip the value function Q̃t

u so that its values do not
deviate too much from value functions Q̃t−1

u and Q̃t−2
u from

previously generated sequences of value functions (Line 6-
8). With this scheme, we can bound the difference between
Ṽ t
u and Ṽ t+1

u as follows.
Lemma 3.2. When running γ-DC-LSCVI-UCB (Algo-
rithm 2), we have

|Ṽ t+1
u (s)− Ṽ t

u(s)| ≤ mt−1 −mt+1

for all t ∈ [T ], u ∈ [t : T ] and for all s ∈ S.

The lemma above says that the sequence of value functions
{Ṽ t+1

u }u∈[t+1:T ] generated at time step t+ 1 deviates from
the chain of value functions {Ṽ t

u}u∈[t:T ] by at most mt−1−
mt+1. This deviation control enables bounding the term∑T−1

t=1 V t
t+1(st+1)− Ṽ t+1

t+1 (st+1), which we demonstrate in
the next section.

3.3. Regret Analysis

In this section, we outline a regret analysis for our algorithm.
Central to the regret analysis is the following concentration
bound for the estimate P̂tV .
Lemma 3.3. With probability at least 1− δ, there exists an
absolute constant cβ such that for β = cβ ·Hd

√
log(dT/δ),

|[P̂tV
t
u ](s, a)− [PV t

u ](s, a)| ≤ β∥φ(s, a)∥Λ−1
t

for all t ∈ [T ], u ∈ [t : T ] and (s, a) ∈ S ×A.
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A proof for the lemma above first finds a concentration
bound for P̂tV for a fixed value function V : S → R using
a concentration bound for vector-valued self-normalized
processes. Then, an ϵ-net covering argument is used to get a
uniform bound on the function class that captures all value
functions V t

u encountered by the algorithm. For this to work,
we require the function class to have low covering number.
We can show that the log covering number of the function
class that captures functions Q̃t

u can be bounded by Õ(d2),
which amounts to covering the d× d matrices Λt. Since Qt

u

is a function of 5 functions in this function class, the log
covering number of the function class that captures Qt

u is
bounded by Õ(d2). With the concentration inequality, and
the fact that the algorithm uses β∥φ(s, a)∥Λ−1

t
as the bonus

term, we get the following results.

Lemma 3.4 (Optimism). With probability at least 1− δ, for
all t ∈ [T ] and u ∈ [t : T ] and s ∈ S, we have

V t
u(s) ≥ V ∗(s),

as long as the input argument H is chosen such that H ≥
2 · sp(v∗).

Lemma 3.5. With probability at least 1− δ, we have for all
t ∈ [4 : T ] and u ∈ [t : T ] that

Qt
u(s, a) ≤ r(s, a) + γ[PV t

u+1](s, a)

+ 2β∥φ(s, a)∥Λ−1
t

+ 2(mt−3 −mt)

for all (s, a) ∈ S ×A.

Using the lemma above, the regret can be bounded by

RT =
∑T

t=1(J
∗ − r(st, at))

≤
∑T

t=4(J
∗ −Qt

t(st, at) + γ[PV t
t+1](st, at)

+ 2β∥φ(st, at)∥Λ−1
t

+ 2(mt−3 −mt)) +O(1)

which can be decomposed into

=
∑T

t=4(J
∗ − (1− γ)V t

t+1(st+1))︸ ︷︷ ︸
(a)

+
∑T

t=4(V
t
t+1(st+1)− Ṽ t

t (st))︸ ︷︷ ︸
(b)

+ γ
∑T

t=4([PV t
t+1](st, at)− V t

t+1(st+1))︸ ︷︷ ︸
(c)

+ 2β
∑T

t=4 ∥φ(st, at)∥Λ−1
t︸ ︷︷ ︸

(d)

+ O( 1

1− γ
).

where we use Qt
t(st, at) = Ṽ t

t (st) by the choice of at by
the algorithm. Each term can be bounded as follows.

Bounding (a) By the optimism result (Lemma 3.4), we
have V t

u(s) ≥ V ∗(s) for all t ∈ [T ] and u ∈ [t : T ] with
high probability. It follows that

J∗ − (1− γ)V t
t+1(st+1) ≤ J∗ − (1− γ)V ∗(st+1)

≤ (1− γ)sp(v∗)

where the last inequality is by the bound on the error of
approximating the average-reward setting by the discounted
setting provided in Lemma 2.3. Hence, the term (a) can be
bounded by T (1− γ)sp(v∗).

Bounding (b) Using Lemma 3.2 that controls the differ-
ence between Ṽ t+1

u and Ṽ t
u , we have

V t
t+1(st+1) = CLIP(Ṽ t

t+1(st+1);mt,mt +H)

≤ CLIP(Ṽ t
t+1(st+1);mt+1,mt+1 +H) +mt −mt+1

≤ Ṽ t
t+1(st+1) +mt −mt+1

≤ Ṽ t+1
t+1 (st+1) + 2mt−1 − 2mt+1

where the second inequality holds because Ṽ t
t+1(st+1) ≥

mt+1 by Line 15. Hence, term (b) can be bounded by
O( 1

1−γ ) using telescoping sums of Ṽ t+1
t+1 (st+1) − Ṽ t

t (st)

and 2mt−1 − 2mt+1, and the fact that V t
u ≤ 1

1−γ and
mt ≤ 1

1−γ for all t ∈ [T ] and u ∈ [t : T ].

Bounding (c) Since V t
u is Ft-measurable where Ft is

history up to time step t, we have E[V t
t+1(st+1)|Ft] =

[PV t
t+1](st, at), making the summation (c) a summation

of a martingale difference sequence. Since sp(V t
t+1) ≤

H for all t ∈ [T ], the summation can be bounded by
Õ(sp(v∗)

√
T ) using Azuma-Hoeffding inequality.

Bounding (d) The sum of the bonus terms can be bounded
by Õ(β

√
dT ) using a standard analysis from literature on

linear MDP.

Combining the bounds, and choosing H = 2 · sp(v∗) and
β = Õ(sp(v∗)d) specified in Lemma 3.3, we get

RT ≤ Õ(T (1− γ)sp(v∗) + 1
1−γ + sp(v∗)

√
T

+ sp(v∗)
√
d3T ).

Choosing γ = 1−
√
1/T , we get RT ≤ Õ(sp(v∗)

√
d3T ),

leading to our main result (see Appendix C for a more
detailed analysis):
Theorem 3.6. Under Assumptions A and B, running Algo-
rithm 2 with inputs γ = 1−

√
1/T , λ = 1, H = 2 · sp(v∗)

and β = 2cβ · sp(v∗)d
√

log(dT/δ) guarantees with proba-
bility at least 1− δ,

RT ≤ O(sp(v∗)
√
d3T log(dT/δ) log T ).

where cβ is defined in Lemma 3.3.
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The regret bound for our algorithm γ-DC-LSCVI-UCB
matches the regret bound of the previous algorithm γ-
LSCVI-UCB.

Remark 3.7. Both algorithms γ-DC-LSCVI-UCB and γ-
LSCVI-UCB require the knowledge of the time horizon T
to tune the discount factor γ in order to achieve a T -step
regret bound of Õ(

√
T ). This limitation can be addressed

using the standard doubling trick, which allows us to obtain
a regret bound of Õ(

√
T ) for any horizon T . The doubling

trick is a standard technique in online learning to convert an
algorithm with O(

√
T ) regret guarantee for a fixed known

T to an anytime algorithm that does not take T as an input
and guarantee T -step regret of O(

√
T ) for any T . The idea

is to run the algorithm in phases, where each phase lasts
twice as long as the previous one. At the beginning of each
phase, the algorithm is restarted with parameters tuned for
that phase length.

3.4. Computational Complexity

Our algorithm γ-LSCVI-UCB+ runs up to T steps of value
iteration every time step, resulting in O(T 2) value iteration
steps. This can be seen by the nested loop structure of
the algorithm, where the outer loop is indexed by t for
the time step and the inner loop is indexed by u for the
value iteration step. The computational bottleneck of the
algorithm is computing Q̃t

u(s, a) for all a ∈ A and all s ∈
{s1, . . . , st−1}, which involves computing the regression
coefficient ŵt(V

t
u+1). Computing the regression coefficient

takes O(T + d2) operations.

In total, the computational complexity of our algorithm is
O(T 3d2A), which is polynomial in the problem parameters
T, d,A and is independent of the size of the state space.
Although our algorithm enjoys a polynomial-time compu-
tational complexity, it is super linear in T , just as the the
OLSVI.FH algorithm (Wei et al., 2021) and the previous
work γ-LSCVI-UCB (Hong et al., 2025). We leave further
improving the computational complexity to be linear in T
as future work.

4. Conclusion
We propose an algorithm for infinite-horizon average-reward
RL with linear MDPs that achieves a regret bound of
Õ(sp(v∗)

√
d3T ) and is computationally efficient. Our al-

gorithm uses a combination of techniques such as approx-
imation by discounted setting, value function clipping for
constraining its span, and deviation-controlled value iter-
ation. An interesting future directions include improving
the regret bound by a factor of

√
d using variance-aware

regression method, extending the techniques to the general
function approximation setting, and learning a stationary
policy for memory efficiency.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Concentration Inequalities
Lemma A.1 (Concentration of vector-valued self-normalized processes (Abbasi-Yadkori et al., 2011)). Let {εt}∞t=1 be a
real-valued stochastic process with corresponding filtration {Ft}∞t=0. Let εt|Ft−1 be zero-mean and σ-subgaussian. Let
{ϕt}∞t=0 be an Rd-valued stochastic process where ϕt ∈ Ft−1. Assume Λ0 is a d × d positive definite matrix, and let
Λt = Λ0 +

∑t
s=1 ϕsϕ

T
s . Then for any δ > 0, with probability at least 1− δ, we have for all t ≥ 0 that∥∥∥∥∥

t∑
s=1

ϕsεs

∥∥∥∥∥
2

Λ−1
t

≤ 2σ2 log

(
det(Λt)

1/2det(Λ0)
−1/2

δ

)
.

Lemma A.2. Let w be a ridge regression coefficient obtained by regressing y ∈ [0, B] on x ∈ Rd using the dataset
{(xi, yi)}ni=1 so that w = Λ−1

∑n
i=1 xiyi where Λ =

∑n
i=1 xx

T + λI . Then,

∥w∥2 ≤ B
√

dn/λ.

Lemma A.3. Let V : S → [−B,B] be a bounded function. Then, w∗(V ) =
∫
S V (s′)dµ(s′) which satisfies [PV ](s, a) =

⟨φ(s, a),w∗(V )⟩ for all (s, a) ∈ S ×A, satisfies

∥w∗(V )∥2 ≤ B
√
d.

Proof.

∥w∗(V )∥2 =

∥∥∥∥∫
S
V (s′)dµ(s′)

∥∥∥∥
2

≤ B

∥∥∥∥∫
S
dµ(s′)

∥∥∥∥
2

≤ B
√
d

where the first inequality holds since µ is a vector of positive measures and V (s′) ≥ 0. The last inequality is by the
boundedness assumption (1) on µ(S).

Lemma A.4 (Adaptation of Lemma D.4 in Jin et al. (2020)). Let {xt}∞t=1 be a stochastic process on state space S with
corresponding filtration {Ft}∞t=0. Let {ϕt}∞t=0 be a Rd-valued stochastic process where ϕt ∈ Ft−1, and ∥ϕt∥2 ≤ 1. Let
Λn = λI +

∑n
t=1 ϕtϕ

T
t . Then for any δ > 0 and any given function class V , with probability at least 1− δ, for all n ≥ 0,

and any V ∈ V satisfying sp(V ) ≤ H , we have∥∥∥∥∥
n∑

t=1

ϕt(V (xt)− E[V (xt)|Ft−1])

∥∥∥∥∥
2

Λ−1
n

≤ 4H2

[
d

2
log

(
n+ λ

λ

)
+ log

Nε

δ

]
+

8n2ε2

λ

where Nε is the ε-covering number of V with respect to the distance dist(V, V ′) = supx |V (x)− V ′(x)|.
Lemma A.5 (Adaptation of Lemma B.3 in Jin et al. (2020)). Under the linear MDP setting in Theorem 3.6 for the γ-LSCVI-
UCB algorithm with clipping oracle (Algorithm 1), let cβ be the constant in the definition of β = cβHd

√
log(dT/δ). There

exists an absolute constant C that is independent of cβ such that for any fixed δ ∈ (0, 1), the event E defined by

∀u ∈ [T ], t ∈ [T ] :∥∥∥∥∥
t−1∑
τ=1

φ(sτ , aτ )[V
t
u(sτ+1)− [PV t

u ](sτ , aτ )]

∥∥∥∥∥
Λ−1

t

≤ C ·Hd
√

log((cβ + 1)dT/δ)

satisfies P (E) ≥ 1− δ.

Proof. By Lemma A.2, we have ∥wt∥2 ≤ H
√
dt/λ for all t = 1, . . . , T . Hence, by combining Lemma D.3 and Lemma A.4,

for any ε > 0 and any fixed pair (u, t) ∈ [T ]× [T ], we have with probability at least 1− δ/T 2 that∥∥∥∥ t−1∑
τ=1

φ(sτ , aτ )[V
t
u(sτ+1)− [PV t

u ](sτ , aτ )]

∥∥∥∥2
Λ−1

t

≤ 4H2

[
2

d
log

(
t+ λ

λ

)
+ d log

(
1 +

4H
√
dt

ε
√
λ

)
+ d2 log

(
1 +

8d1/2β2

ε2λ

)
+ log

(
T 2

δ

)]
+

8t2ε2

λ
.

11
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Using a union bound over (u, t) ∈ [T ]× [T ] and choosing ε = Hd/t and λ = 1, there exists an absolute constant C > 0
independent of cβ such that, with probability at least 1− δ,∥∥∥∥ t−1∑

τ=1

φ(sτ , aτ )[V
t
u(sτ+1)− [PV t

u ](sτ , aτ )]

∥∥∥∥2
Λ−1

t

≤ C2 · d2H2 log((cβ + 1)dT/δ),

which concludes the proof.

A.1. Proof of Lemma 3.3

Proof of Lemma 3.3. We prove under the event E defined in Lemma A.5. Recall the definition

[P̂tV
t
u ](s, a) = ⟨φ(s, a), ŵt(V

t
u − V t

u(s1))⟩+ V t
u(s1)

where ŵt(V
t
u − V t

u(s1)) = Λ−1
t

∑t−1
τ=1(V

t
u(sτ+1) − V t

u(s1)) · φ(sτ , aτ ). For convenience, we introduce the notation
V̄ k
u (s) = V k

u (s)− V k
u (s1) and wt

u = ŵt(V̄
t
u). With these notations, we have

[P̂tV
t
u ](s, a) = ⟨φ(s, a),wt

u⟩+ V t
u(s1), wt

u = Λ−1
t

t−1∑
τ=1

φ(sτ , aτ )V̄
k
u (sτ+1).

We can decompose ⟨φ(s, a),wt
u⟩ as

⟨φ(s, a),wt
u⟩ = ⟨φ(s, a),Λ−1

t

t−1∑
τ=1

φ(sτ , aτ )[PV̄ t
u ](sτ , aτ )⟩︸ ︷︷ ︸

(a)

+ ⟨φ(s, a),Λ−1
t

t−1∑
τ=1

φ(sτ , aτ )(V̄
t
u(sτ+1)− [PV̄ t

u ](sτ , aτ ))︸ ︷︷ ︸
(b)

.

Since V̄ t
u(s) ∈ [−H,H] for all s ∈ S, it follows by Lemma A.3 that ∥w∗(V̄ t

u)∥2 ≤ H
√
d. Hence, the first term (a) in the

display above can be bounded as

⟨φ(s, a),Λ−1
t

t−1∑
τ=1

φ(sτ , aτ )[PV̄ t
u ](sτ , aτ )⟩ = ⟨φ(s, a),Λ−1

t

t−1∑
τ=1

φ(sτ , aτ )φ(sτ , aτ )
Tw∗(V̄ t

u)⟩

= ⟨φ(s, a),w∗(V̄ t
u)⟩ − λ⟨φ(s, a),Λ−1

t w∗(V̄ t
u)⟩

≤ ⟨φ(s, a),w∗(V̄ t
u)⟩+ λ∥φ(s, a)∥Λ−1

t
∥w∗(V̄ t

u)∥Λ−1
t

≤ ⟨φ(s, a),w∗(V̄ t
u)⟩+H

√
λd∥φ(s, a)∥Λ−1

t

where the first inequality is by Cauchy-Schwartz and the second inequality is by Lemma A.3. Under the event E defined in
Lemma A.5, the second term (b) can be bounded by

⟨φ(s, a),Λ−1
t

t−1∑
τ=1

φ(sτ , aτ )(V̄
t
u(sτ+1)− [PV̄ t

u ](sτ , aτ ))

≤ ∥φ(s, a)∥Λ−1
t

∥∥∥∥ t−1∑
τ=1

φ(sτ , aτ )(V
t
u(sτ+1)− [PV t

u ](sτ , aτ ))

∥∥∥∥
Λ−1

t

≤ C ·Hd
√
log((cβ + 1)dT/δ) · ∥φ(s, a)∥Λ−1

t
.

Combining the two bounds and rearranging, we get

⟨ϕ,wt
u −w∗(V̄ t

u)⟩ ≤ C ·Hd
√
(log(cβ + 1)dT/δ) · ∥ϕ∥Λ−1

t

for some absolute constant C independent of cβ . Lower bound of ⟨ϕ,wt
u −w∗(V̄ t

u)⟩ can be shown similarly, establishing

|⟨ϕ,wt
u −w∗(V̄ t

u)⟩| ≤ C ·Hd
√

log((cβ + 1)dT/δ) · ∥ϕ∥Λ−1
t
.

12
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Hence,

|[P̂tV
t
u ](s, a)− [PV t

u ](s, a)| = |⟨φ(s, a), ŵt(V
t
u − V t

u(s1))⟩+ V t
u(s1)− ⟨φ(s, a),w∗(V t

u)⟩
= |⟨φ(s, a),wt

u −w∗(V̄ t
u)⟩|

≤ C ·Hd
√
log((cβ + 1)dT/δ) · ∥ϕ∥Λ−1

t

where the last equality uses the fact that w∗(V ) =
∫
S V (s′)µ(s′) is linear. It remains to show that there exists a choice of

absolute constant cβ such that

C
√
log(cβ + 1) + log(dT/δ) ≤ cβ

√
log(dT/δ).

Noting that log(dT/δ) ≥ log 2, this can be done by choosing an absolute constant cβ that satisfies C
√
log 2 + log(cβ + 1) ≤

cβ
√
log 2.

Lemma A.6. The clipping operation CLIP(x;L,U) has the following properties:

(i) CLIP(x;L,U) = CLIP(x− c;L− c, U − c) + c.

(ii) CLIP(x;L,U) ≤ CLIP(y;L,U) if x ≤ y.

(iii) CLIP(x;L,U) ≤ x if and only if x ≥ L.

(iv) CLIP(x;L,U) ≥ CLIP(x;L′, U ′) if L ≥ L′ and U ≥ U ′.

Proof. The proofs are straight from the definition.

B. Deviation-Controlled Value Iteration
B.1. Positive Result for Tabular MDPs

In this section, we show that the scheme used in the algorithm γ-LSCVI-UCB+ for controlling the deviation between chains
of value functions with different clipping thresholds is not necessary in the tabular setting.

To reuse the notations developed for the linear setting, we treat the tabular setting with the size of the state space S and
the size of the action space A as the SA-dimensional linear MDP setting where each pair (s, a) ∈ S ×A is mapped to a
one-hot encoded vector φ(s, a) = e(s,a) ∈ RSA where the entry associated to (s, a) is equal to 1 and all other entries 0. We
show that under the tabular setting, Algorithm 3 that removes the step for clipping Qt

u from γ-LSCVI-UCB+ successfully
control the deviation of a chain of value functions from its previous chain. Note that the algorithm uses the doubling-trick
that updates the covariance matrix used for regression only when its determinant doubles. The trick is used to facilitate the
analysis of the difference Qt

u(s, a)−Qt+1
u (s, a) shown in the proof of the lemma below.

We use λ = 0 and treat Λ−1
t as the pseudoinverse of Λ, and set ∥φ(s, a)∥Λ−1

t
= 1

1−γ when ∥φ(s, a)∥Λ−1
t

= 0, that is, when
the direction φ(s, a) is never explored. Then, as shown in the following lemma, the deviation between chains of value
iterations is controlled even without the extra scheme used for the linear MDP setting.

Lemma B.1. When running γ-LSCVI-UCB+ algorithm without deviation control under the tabular setting, for all t ∈ [T ],
u ∈ [t : T ], we have

|Ṽ t+1
u (s)− Ṽ t

u(s)| ≤ mt −mt+1

|V t+1
u (s)− V t

u(s)| ≤ mt −mt+1

for all s ∈ S.

Proof. We introduce the notation Nt(s, a) =
∑t−1

τ=1 I{sτ = s, aτ = a} and Nt(s, a, s
′) =

∑t−1
τ=1 I{sτ =

s, aτ = a, sτ+1 = s′}, which is the visitation counts up to (excluding) time step t of the state-action pair
(s, a) and state-action-state triplet (s, a, s′), respectively. Note that in the tabular setting, we have [P̂tV ](s, a) =

13
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Algorithm 3 γ-LSCVI-UCB+ without Deviation Control
Input: Discounting factor γ ∈ [0, 1), regularization constant λ > 0, span H > 0, bonus factor β > 0.
Initialize: k ← 1, tk ← 1, Λ1 ← λI , m1 ← 1

1−γ .
1: Receive state s1.
2: for t = 1, . . . , T do
3: V t

T+1(·)← 1
1−γ .

4: for u = T, T − 1, . . . , t do
5: Qt

u(·, ·)←
(
r(·, ·) + γ([P̂tkV

t
u+1](·, ·) + β∥φ(·, ·)∥Λ−1

tk

)
)
∧ 1

1−γ .

6: Ṽ t
u(·)← maxa Q

t
u(·, a).

7: V t
u(·)← CLIP(Ṽ t

u(·);mt,mt +H).
8: end for
9: Take action at ← argmaxa∈A Qt

t(st, a). Receive reward r(st, at). Receive next state st+1.
10: Λt+1 ← Λt +φ(st, at)φ(st, at)

⊤.
11: mt+1 ← Ṽ t

t+1(st+1) ∧mt.
12: if 2 det(Λtk) < det(Λt+1) then
13: k ← k + 1, tk ← t+ 1.
14: end if
15: end for

∑
s′:Nt(s,a,s′)>0(Nt(s, a, s

′)/Nt(s, a))V (s′), which is the expectation of V with respect to the empirical transition prob-

ability kernel P̂t: P̂t(s
′|s, a) = Nt(s, a, s

′)/Nt(s, a). Hence, P̂t is linear such that [P̂tV1](s, a) − [P̂tV2](s, a) =

[P̂t(V1 − V2)](s, a), and it satisfies [P̂t∆](s, a) ≤ ∥∆∥∞ for any function ∆ : S → R. We exploit these facts to
prove the lemma.

We show by induction on u = T + 1, . . . , 1. Fix t such that both t and t+ 1 are in the same episode k. For the base case
u = T + 1, we have V t+1

T+1(s) = V t
T+1(s) =

1
1−γ for all s ∈ S , and trivially, we have |V t+1

T+1(s)− V t
T+1(s)| ≤ mt −mt+1.

Now, suppose |V t+1
u+1(s)− V t

u+1(s)| ≤ mt −mt+1 for all s ∈ S for some u ∈ [T ]. Then,

|Qt
u(s, a)−Qt+1

u (s, a)| ≤ γ([P̂tkV
t
u+1](s, a)− [P̂tkV

t+1
u+1 ](s, a)) ≤ mt −mt+1

where the first inequality is by the fact that (· ∧ 1
1−γ ) is a contraction and the second inequality is by the previous discussion

on P̂tk being a expectation with respect to a proper probability kernel in the tabular setting. Since maxa Q(·, a) is a
contraction, it follows that |Ṽ t

u(s)− Ṽ t+1
u (s)| ≤ mt −mt+1. Hence, using the fact that mt ≥ mt+1, we have

V t
u(s)− V t+1

u (s) = CLIP(Ṽ t
u(s);mt,mt +H)− CLIP(Ṽ t+1

u (s);mt+1,mt+1 +H)

≤ CLIP(Ṽ t+1
u (s) +mt −mt+1;mt,mt +H)− CLIP(Ṽ t+1

u (s);mt+1,mt+1 +H)

= CLIP(Ṽ t+1
u (s);mt+1,mt+1 +H) +mt −mt+1 − CLIP(Ṽ t+1

u (s);mt+1,mt+1 +H)

= mt −mt+1

where the second equality uses the property (i) of the clipping operation. Similarly, we have

V t
u(s)− V t+1

u (s) = CLIP(Ṽ t
u(s);mt,mt +H)− CLIP(Ṽ t+1

u (s);mt+1,mt+1 +H)

≥ CLIP(Ṽ t
u(s);mt,mt +H)− CLIP(Ṽ t+1

u (s);mt,mt +H)

≥ CLIP(Ṽ t
u(s);mt,mt +H)− CLIP(Ṽ t

u(s)−mt +mt+1;mt,mt +H)

= CLIP(Ṽ t
u(s);mt,mt +H)− CLIP(Ṽ t

u(s);mt+1,mt+1 +H)−mt +mt+1

≥ −mt +mt+1

where the second equality uses the property (i) of the clipping operation. The two inequalities establish |V t
u(s)−V t+1

u (s)| ≤
mt −mt+1 as desired. By induction, the proof is complete.
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B.2. Negative Result for Linear MDPs

Proof of Lemma 3.1. For convenience, let n = 2m. If n is odd, we can take ϕn = 0 and similar argument holds. Take
ϕ1, . . .ϕm = (η, 1/2, 0, . . . , 0) and ϕm+1, . . . ,ϕ2m = (η,−1/2, 0, . . . , 0) where η > 0 is to be chosen later. Take
y1 = · · · = y2m = ∆ and λ = 1. Then, Λn = diag(η2n, n/4, 0, . . . , 0) + I and

∑n
i=1 yiϕi = (η∆n, 0, . . . , 0). Hence,

wn = ( η∆n
η2n+1 , 0, . . . , 0). It follows that, choosing ϕ = (1, 0, . . . , 0), we get

|⟨wn,ϕ⟩| =
η∆n

η2n+ 1
.

Choosing η = 1/
√
n, we get |⟨wn,ϕ⟩| = 1

2∆
√
n, which completes the proof.

B.3. Deviation-Controlled Value Iteration for Linear MDPs

Lemma B.2. For all t ∈ [T ], u ∈ [t : T ], we have

|Ṽ t+1
u (s)− Ṽ t

u(s)| ≤ mt−1 −mt+1

|V t+1
u (s)− V t

u(s)| ≤ mt−1 −mt+1

for all s ∈ S.

Proof. We first show that Ṽ t+1
u (s)− Ṽ t

u(s) ≥ −mt−1 +mt+1 and V t+1
u (s)− V t

u(s) ≥ −mt−1 +mt+1. By definitions of
Qt+1

u and Qt
u, we have

Qt+1
u (s, a) = CLIP(Q̃t+1

u (s, a);Lt+1
u (s, a), U t+1

u (s, a))

≥ Lt+1
u (s, a)

= (Q̃t
u(s, a)−mt +mt+1) ∨ (Q̃t−1

u (s, a)−mt−1 +mt+1)

≥ Q̃t−1
u (s, a)−mt−1 +mt+1,

and

Qt
u(s, a) = CLIP(Q̃t

u(s, a);L
t
u(s, a), U

t
u(s, a))

≤ U t
u(s, a)

= Q̃t−1
u (s, a) ∧ Q̃t−2

u (s, a)

≤ Q̃t−1
u (s, a).

Chaining the two inequalities, we get Qt+1
u (s, a) ≥ Qt

u(s, a)−mt−1 +mt+1. It follows that

Ṽ t+1
u (s) = max

a
Qt+1

u (s, a)

≥ max
a

Qt
u(s, a)−mt−1 +mt+1

= Ṽ t
u(s)−mt−1 +mt+1,

which shows the first claim. Hence,

V t+1
u (s) = CLIP(Ṽ t+1

u (s);mt+1,mt+1 +H)

≥ CLIP(Ṽ t
u(s)−mt−1 +mt+1;mt+1,mt+1 +H)

= CLIP(Ṽ t
u(s);mt−1,mt−1 +H)−mt−1 +mt+1

≥ CLIP(Ṽ t
u(s);mt,mt +H)−mt−1 +mt+1

= V t
u(s)−mt−1 +mt+1,

where the second equality is by Property (i) of the clipping operation and the second inequality is by Property (iv) of the
clipping operation and the fact that mt−1 ≥ mt. This shows the second claim.
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Now, we show that Ṽ t+1
u (s)− Ṽ t

u(s) ≤ mt−1 −mt+1 and V t+1
u (s)− V t

u(s) ≤ mt−1 −mt+1. By definitions of Qt+1
u and

Qt
u, we have

Qt+1
u (s, a) = CLIP(Q̃t+1

u (s, a);Lt+1
u (s, a), U t+1

u (s, a))

≤ U t+1
u (s, a)

= Q̃t
u(s, a) ∧ Q̃t−1

u (s, a)

≤ Q̃t−1
u (s, a),

and

Qt
u(s, a) = CLIP(Q̃t

u(s, a);L
t
u(s, a), U

t
u(s, a))

≥ Lt
u(s, a)

= (Q̃t−1
u (s, a)−mt +mt+1) ∨ (Q̃t−2

u (s, a)−mt−1 +mt+1)

≥ Q̃t−1
u (s, a)−mt +mt+1

≥ Q̃t−1
u (s, a)−mt−1 +mt+1.

Chaining the two inequalities, we get Qt+1
u (s, a) ≤ Qt

u(s, a) +mt−1 −mt+1, and it follows that

Ṽ t+1
u = max

a
Qt+1

u (s, a)

≤ max
a

Qt
u(s, a) +mt−1 −mt+1

= Ṽ t
u(s) +mt−1 −mt+1,

which shows the first claim. Hence,

V t+1
u (s) = CLIP(Ṽ t+1

u (s);mt+1,mt+1 +H)

≤ CLIP(Ṽ t
u(s) +mt −mt+1;mt+1,mt+1 +H)

≤ CLIP(Ṽ t
u(s) +mt −mt+1;mt,mt +H)

= CLIP(Ṽ t
u(s);mt+1,mt+1 +H) +mt −mt+1

≤ CLIP(Ṽ t
u(s);mt,mt +H) +mt −mt+1

= V t
u(s) +mt −mt+1

≤ V t
u(s) +mt−1 −mt+1.

C. Regret Analysis
We first prove the optimism result that says the value function estimates are optimistic estimates of the true value function.

C.1. Proof of Lemma 3.4

Proof of Lemma 3.4. We prove under the event E defined in Lemma A.5, which holds with probability at least 1− δ. We
prove by induction on t and u.

Suppose V τ
u (s) ≥ V ∗(s), Ṽ τ

u (s) ≥ V ∗(s) and Q̃τ
u(s, a) ≥ Q∗(s, a) hold for all τ = 1, . . . , t − 1 and u ∈ [τ : T ] and

(s, a) ∈ S × A. If we show that V t
u(s) ≥ V ∗(s), Ṽ t

u(s) and Q̃t
u(s, a) ≥ Q∗(s, a) for all u ∈ [t : T ] and (s, a) ∈ S × A,

the proof is complete by induction on t. We show this by induction on u = T + 1, T, . . . , t.

The base case u = T + 1 holds since V t
T+1(s) =

1
1−γ ≥ V ∗(s) for all s ∈ S. Now, suppose V t

u+1(s) ≥ V ∗(s) for all
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s ∈ S for some u ∈ [t+ 1 : T ]. Then,

Q̃t
u(s, a) = (r(s, a) + γ([P̂tV

t
u+1](s, a) + β∥φ(s, a)∥Λ−1

t
) ∧ 1

1− γ

≥ (r(s, a) + γ[PV t
u+1](s, a)) ∧

1

1− γ

≥ (r(s, a) + γ[PV ∗](s, a)) ∧ 1

1− γ

= Q∗(s, a) ∧ 1

1− γ

= Q∗(s, a)

where the first inequality is by the event E , the second inequality by the induction hypothesis. The second equality is by the
Bellman optimality equation. This shows Q̃t

u(s, a) ≥ Q∗(s, a) for all (s, a) ∈ S ×A as desired. Additionally,

Qt
u(s, a) = CLIP(Q̃t

u(s, a);L
t
u(s, a), U

t
u(s, a))

≥ CLIP(Q∗(s, a);Lt
u(s, a), U

t
u(s, a))

≥ Q∗(s, a) ∧ U t
u(s, a)

= Q∗(s, a) ∧ (Q̃t−1
u (s, a) ∧ Q̃t−2

u (s, a))

≥ Q∗(s, a)

where the second inequality is by the clipping property (ii), and the last inequality holds by induction hypothesis. It follows
that

Ṽ t
u(s) = max

a
Qt

u(s, a) ≥ max
a

Q∗(s, a) = V ∗(s).

Note that by induction hypothesis, Ṽ τ
u (s) ≥ V ∗(s) for all τ ∈ [t − 1], u ∈ [τ : T ] and s ∈ S. Hence, mt =

min{Ṽ t−1
t (st), Ṽ

t−2
t−1 (st−1), . . . , Ṽ

1
2 (s2) ≥ min{V ∗(st), V

∗(st−1), . . . , V
∗(s2),

1
1−γ } ≥ mins∈S V ∗(s). It follows that

V t
u(s) = CLIP(Ṽ t

u(s);mt,mt +H)

≥ CLIP(V ∗(s);mt,mt +H)

≥ CLIP(V ∗(s); min
s′∈S

V ∗(s′),min
s′∈S

V ∗(s′) +H)

≥ V ∗(s)

where the last inequality uses the fact that H ≥ 2 · sp(v∗) is chosen such that sp(V ∗) ≤ H . We have shown that if
V t
u+1(s) ≥ V ∗(s) holds for all s ∈ S , then V t

u(s) ≥ V ∗(s), Ṽ t
u(s) and Q̃t

u(s, a) hold for all (s, a) ∈ S ×A. By induction
on u = T, . . . , 1, it follows that V t

u(s) ≥ V ∗(s), Ṽ t
u(s) ≥ V ∗(s) and Q̃t

u(s, a) ≥ Q∗(s, a) hold for all (s, a) ∈ S ×A. The
proof is complete by induction on t.

Now, we show an upper bound of the action value function estimate, which is a direct consequence of the concentration
inequality in Lemma A.5.

C.2. Proof of Lemma 3.5

Proof of Lemma 3.5. We prove under the event E defined in Lemma A.5, which holds with probability at least 1− δ. Fix
any t ∈ [T ] and u ∈ [t : T ]. By event E , we have

Q̃t
u(s, a) =

(
r(s, a) + γ([P̂tV

t
u+1](s, a) + β∥φ(·, ·)∥Λ−1

t

)
∧ 1

1− γ

≤ r(s, a) + γ[PV t
u+1](s, a) + 2β∥φ(s, a)∥Λ−1

t

17
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for all t ∈ [T ]. Hence, by Lemma B.2, we have for t ≥ 4 that

Q̃t−2
u (s, a) ≤ r(s, a) + γ[PV t−2

u+1 ](s, a) + 2β∥φ(s, a)∥Λ−1
t

≤ r(s, a) + γ[P (V t
u+1)](s, a) + 2β∥φ(s, a)∥Λ−1

t
+mt−3 −mt−1 +mt−2 −mt

≤ r(s, a) + γ[PV t
u+1](s, a) + 2β∥φ(s, a)∥Λ−1

t
+ 2(mt−3 −mt).

Therefore, for t ≥ 4, we have

Qt
u(s, a) = CLIP(Q̃t

u(s, a);L
t
u(s, a), U

t
u(s, a))

≤ U t
u(s, a)

= Q̃t−1
u (s, a) ∧ Q̃t−2

u (s, a)

≤ r(s, a) + γ[PV t
u+1](s, a) + 2β∥φ(s, a)∥Λ−1

t
+ 2(mt−3 −mt)

Finally, the following lemma will be used for bounding the sum of the bonus terms.
Lemma C.1 (Lemma 11 in Abbasi-Yadkori et al. (2011)). Let {ϕt}t≥1 be a bounded sequence in Rd with ∥ϕt∥2 ≤ 1 for
all t ≥ 1. Let Λ0 = I and Λt =

∑t
i=1 ϕiϕ

T
i + I for t ≥ 1. Then,

t∑
i=1

ϕT
i Λ

−1
i−1ϕi ≤ 2 log det(Λt) ≤ 2d log(1 + t).

C.3. Proof of Main Theorem

Now, we are ready to prove the main theorem.

Proof of Theorem 3.6. We prove under the event E defined in Lemma A.5, which occurs with probability at least 1− δ. By
Lemma 3.5, we have for t ≥ 4,

Qt
u(s, a) ≤ r(s, a) + γ[PV t

u+1](s, a) + 2β∥φ(s, a)∥Λ−1
t

+ 2(mt−3 −mt).

Plugging in u← t, s← st, a← at, we get

RT =

T∑
t=1

(J∗ − r(st, at))

≤
T∑

t=4

(J∗ −Qt
t(st, at) + γ[PV t

t+1](st, at) + 2β∥φ(st, at)∥Λ−1
t

+ 2(mt−3 −mt)) +O(1)

=

T∑
t=4

(J∗ − (1− γ)V t
t+1(st+1))︸ ︷︷ ︸

(a)

+

T∑
t=4

(V t
t+1(st+1)−Qt

t(st, at))︸ ︷︷ ︸
(b)

+ γ

T∑
t=4

([PV t
t+1](st, at)− V t

t+1(st+1))︸ ︷︷ ︸
(c)

+2β

T∑
t=4

∥φ(st, at)∥Λ−1
t︸ ︷︷ ︸

(d)

+O( 1

1− γ
).

Bounding (a) By the optimism result (Lemma 3.4), we have V t
u(s) ≥ V ∗(s) for all t ∈ [T ] and u ∈ [t : T ] with high

probability. It follows that

J∗ − (1− γ)V t
t+1(st+1) ≤ J∗ − (1− γ)V ∗(st+1)

≤ (1− γ)sp(v∗)

where the last inequality is by the bound on the error of approximating the average-reward setting by the discounted setting
provided in Lemma 2.3. Hence, the term (a) can be bounded by T (1− γ)sp(v∗).
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Bounding (b) Using Lemma 3.2 that controls the difference between Ṽ t+1
u and Ṽ t

u , we have

V t
t+1(st+1) = CLIP(Ṽ t

t+1(st+1);mt,mt +H)

= CLIP(Ṽ t
t+1(st+1)−mt +mt+1;mt+1,mt+1 +H) +mt −mt+1

≤ CLIP(Ṽ t
t+1(st+1);mt+1,mt+1 +H) +mt −mt+1

≤ Ṽ t
t+1(st+1) +mt −mt+1

≤ Ṽ t+1
t+1 (st+1) + 2mt−1 − 2mt+1

where the second inequality holds because Ṽ t
t+1(st+1) ≥ mt+1 by Line 15. Hence, Term (b) can be bounded by O( 1

1−γ )

using telescoping sums of Ṽ t+1
t+1 (st+1)− Ṽ t

t (st) and 2mt−1 − 2mt+1, and the fact that V t
u ≤ 1

1−γ and mt ≤ 1
1−γ for all

t ∈ [T ] and u ∈ [t : T ].

Bounding (c) Since V t
u is Ft-measurable where Ft is history up to time step t, we have E[V t

t+1(st+1)|Ft] =
[PV t

t+1](st, at), making the summation (c) a summation of a martingale difference sequence. Since sp(V t
t+1) ≤ H

for all t ∈ [T ], the summation can be bounded by O(sp(v∗)
√
T log(1/δ)) using Azuma-Hoeffding inequality.

Bounding (d) The sum of the bonus terms can be bounded by

β

T∑
t=1

∥φ(st, at)∥Λ−1
t
≤ β
√
T

(
T∑

t=1

∥φ(st, at)∥2Λ−1
t

)1/2

≤ O(β
√

dT log T )

where the first inequality is by Cauchy-Schwartz and the last inequality is by Lemma C.1.

Combining the four bounds, and choosing H = 2 · sp(v∗) and choosing β = O(sp(v∗)d
√

log(dT/δ)) specified in
Lemma 3.3, we get

RT ≤ O(T (1− γ)sp(v∗) + 1
1−γ + sp(v∗)

√
T log(1/δ) + sp(v∗)

√
d3T log(dT/δ) log T ).

Choosing γ such that 1
1−γ =

√
T , we get

RT ≤ O(sp(v∗)
√
d3T log(dT/δ) log T ).

D. Covering Numbers
In this section, we provide results on covering numbers of function classes used in this paper. We use the notationNϵ(F , ∥·∥)
to denote the ε-covering number of the function class F with respect to the distance measure induced by the norm ∥ · ∥.

We first present a classical result that bounds the covering number of Euclidean ball.

Lemma D.1. For any ε > 0, the d-dimensional Euclidean ball Bd(R) with radius R > 0 has log-covering number upper
bounded by

logNε(Bd(R), ∥ · ∥2) ≤ d log(1 + 2R/ε).

Using this classical result, we bound the covering number of the function class that captures the functions Q̃t
u(·, ·) encountered

by our algorithm.

Lemma D.2 (Adaptation of Lemma D.6 in Jin et al. (2020)). Let Q be a class of functions mapping from S ×A to R with
the following parametric form

Q(·, ·) = (wTφ(·, ·) + v + β
√
φ(·, ·)TΛ−1φ(·, ·)) ∧M (2)
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where the parameters (w, β, v,Λ) satisfy ∥w∥ ≤ L, β ∈ [0, B] and v ∈ [0, D], and Λ is a positive definite matrix with
minimum eigenvalue satisfying λmin(Λ) ≥ λ > 0. The constant M > 0 is fixed. Assume ∥φ(s, a)∥ ≤ 1 for all (s, a) pairs.
Then

logNε(Q, ∥ · ∥∞) ≤ d log(1 + 8L/ε) + log(1 + 8D/ε) + d2 log[1 + 8d1/2B2/(λε2)].

Proof. Introducing A = β2Λ−1, we can reparameterize as

Q(·, ·) = (wTφ(·, ·) + v +
√

φ(·, ·)TAφ(·, ·)) ∧M

where the parameters (w, v,A) satisfy ∥w∥2 ≤ L, ∥A∥ ≤ B2λ−1, v ∈ [0, D]. For any pair of functions Q1, Q2 ∈ Q with
parameterization (w1, v1,A1) and (w2, v2,A2), respectively, using the fact that · ∧M is a contraction, we get

∥Q1 −Q2∥∞ ≤ sup
s,a
|(w⊤

1 φ(s, a) + v1 +
√

φ(s, a)⊤A1φ(s, a))− (w⊤
2 φ(s, a) + v2 +

√
φ(s, a)⊤A2φ(s, a))|

≤ sup
ϕ:∥ϕ∥2≤1

|(w⊤
1 ϕ+ v1 +

√
ϕ⊤A1ϕ)− (w⊤

2 ϕ+ v2 +
√
ϕ⊤A2ϕ)|

≤ sup
ϕ:∥ϕ∥2≤1

|(w1 −w2)
⊤ϕ|+ |v1 − v2|+ sup

ϕ:∥ϕ∥2≤1

√
|ϕ⊤(A1 −A2)ϕ|

= ∥w1 −w2∥2 + |v1 − v2|+
√
∥A1 −A2∥2

≤ ∥w1 −w2∥2 + |v1 − v2|+
√
∥A1 −A2∥F (3)

where the third inequality uses the fact that |
√
x−√y| ≤

√
|x− y| holds for any x, y ≥ 0 and ∥ · ∥F denotes the Frobenius

norm.

Let Cw be an ε/4-cover of {w ∈ Rd : ∥w∥ ≤ L} with respect to the L2-norm, CA an ε2/4-cover of {A ∈ Rd×d : ∥A∥F ≤
d1/2B2λ−1} with respect to the Frobenius norm, and Cv an ε/2-cover of the interval [0, D]. Then, treating the matrix
A ∈ Rd×d as a long vector of dimension d× d, and applying Lemma D.1, we know that we can find such covers with

log |Cw| ≤ d log(1 + 8L/ε), log |CA| ≤ d2 log(1 + 8d1/2B2/(λε2)), log |Cv| ≤ log(1 + 8D/ε).

Hence, the set of functions

CQ = {Q ∈ RS×A : Q(·, ·) = wTφ(·, ·) + v +
√

φ(·, ·)TAφ(·, ·),w ∈ Cw,A ∈ CA, v ∈ Cv}

has cardinality bounded by log |CQ| ≤ d log(1 + 8L/ε) + d2 log(1 + 8d1/2B2/(λε2)) + log(1 + 8D/ε). We can show
that CQ defined above is an ε-cover for Q as follows. Fix any Q ∈ Q parameterized by (w, v,A) and consider Q̃ ∈ Q
parameterized by (w̃, ṽ, Ã) where w̃ ∈ Cw with ∥w − w̃∥2 ≤ ε/4, ṽ ∈ Cv with |v − ṽ| ≤ ε/4 and Ã ∈ CA with
∥A− Ã∥F ≤ ε2/4. Then, by the bound (3), we have ∥Q− Q̃∥∞ ≤ ε as desired. This concludes the proof.

Lemma D.3. Let V be a class of functions mapping from S to R defined as

V = {max
a

Q(·, a) : Q(·, ·) = CLIP(Q1(·, ·);Q2(·, ·) ∨Q3(·, ·), Q4(·, ·) ∧Q5(·, ·), Q1, . . . , Q5 ∈ Q}

where the function class Q is defined in Lemma D.2. Then,

logNϵ(V, ∥ · ∥∞) ≤ 5d log(1 + 8L/ε) + 5 log(1 + 8D/ε) + 5d2 log[1 + 8d1/2B2/(λε2)].

Proof. LetW be a class of functions mapping from S ×A → R of the form

Q(·, ·) = CLIP(Q1(·, ·);Q2(·, ·) ∨Q3(·, ·), Q4(·, ·) ∧Q5(·, ·))

where Q1, . . . , Q5 ∈ Q. Let C0 be an ϵ-cover of the function class Q with size log |C0| ≤ d log(1 + 8L/ε) + log(1 +
4D/ε) + d2 log[1 + 8d1/2B2/(λε2)]. Such a cover exists by Lemma D.2. Let C be defined as

C = {Q ∈ RS×A : Q(·, ·) = CLIP(Q1(·, ·);Q2(·, ·) ∨Q3(·, ·), Q4(·, ·) ∧Q5(·, ·), Q1, . . . , Q5 ∈ C0}.
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Algorithm 4 γ-LSCVI-UCB (flawed initial version in arXiv by Hong et al. (2025))
Input: Discounting factor γ ∈ [0, 1), regularization constant λ > 0, span H > 0, bonus factor β > 0.
Initialize: k ← 1, tk ← 1, Λ1 ← λI , Q1(·, ·), V1(·)← 1

1−γ for t ∈ [T ].
1: Receive state s1.
2: for time step t = 1, . . . , T do
3: Take action at = argmaxa maxτ∈[tk:t] Qτ (st, a); Receive reward r(st, at); Receive next state st+1.
4: Λt ← Λt−1 +φ(st, at)φ(st, at)

⊤.
5: Qt+1(·, ·)←

(
r(·, ·) + γ([P̂tkVt](·, ·) + β∥φ(·, ·)∥Λ−1

tk

)
)
∧ 1

1−γ .

6: Ṽt+1(·)← maxa Qt+1(·, a).
7: Vt+1(·)← CLIP(Ṽt+1(·);mins′∈S Ṽt+1(s

′),mins′∈S Ṽt+1(s
′) +H).

8: if 2 det(Λtk) < det(Λt) then
9: k ← k + 1, tk ← t+ 1.

10: end if
11: end for

Then, we have log |C| ≤ 5 log |C0|, and we can show that C is an ε-cover of W as follows. Consider a function W ∈
W , with W (·, ·) = CLIP(Q1(·, ·);Q2(·, ·) ∨ Q3(·, ·), Q4(·, ·) ∧ Q5(·, ·)) where Q1, . . . , Q5 ∈ Q. Let Q̃i ∈ C0 be the
approximation of Qi for i = 1, . . . , 5 such that ∥Q̃i − Qi∥∞ ≤ ε. Such a Q̃i exists since C0 is an ε-cover of Q. Let
Q̃(·, ·) = CLIP(Q̃1(·, ·); Q̃2(·, ·) ∨ Q̃3(·, ·), Q̃4(·, ·) ∧Q5(·, ·)). Then, Q̃ ∈ C and

Q(·, ·) = CLIP(Q1(·, ·);Q2(·, ·) ∨Q3(·, ·), Q4(·, ·) ∧Q5(·, ·))

≤ CLIP(Q̃1(·, ·) + ε; (Q̃2(·, ·) + ε) ∨ (Q̃3(·, ·) + ε), (Q̃4(·, ·) + ε) ∧ (Q̃5(·, ·) + ε))

= CILP(Q̃1(·, ·); Q̃2(·, ·) ∨ Q̃3(·, ·), Q̃4(·, ·) ∧ Q̃5(·, ·)) + ε

= Q̃(·, ·) + ε.

Similarly, we have

Q(·, ·) = CLIP(Q1(·, ·);Q2(·, ·) ∨Q3(·, ·), Q4(·, ·) ∧Q5(·, ·))

≥ CLIP(Q̃1(·, ·)− ε; (Q̃2(·, ·)− ε) ∨ (Q̃3(·, ·)− ε), (Q̃4(·, ·)− ε) ∧ (Q̃5(·, ·)− ε))

= CILP(Q̃1(·, ·); Q̃2(·, ·) ∨ Q̃3(·, ·), Q̃4(·, ·) ∧ Q̃5(·, ·))− ε

= Q̃(·, ·)− ε,

which shows ∥Q − Q̃∥∞ ≤ ε, and that C is an ε-cover of W . Since maxa is a contraction map, it follows that V =

{maxa Q(·, a) : Q ∈ W} is covered by Ṽ = {maxa Q(·, a) : Q ∈ C}. The proof is complete by observing that
log |Ṽ| ≤ log |C| ≤ 5 log |C0|, and that there exists ε-cover C0 for Q with log |C0| ≤ d log(1 + 8L/ε) + log(1 + 8D/ε) +
d2 log[1 + 8d1/2B2/(λε2)] by Lemma D.2.

E. More Discussion on Previous Work
In this section, we provide a more detailed comparison with prior work. The idea of using value iteration for infinite-horizon
average-reward linear MDPs via approximation from the discounted setting was first introduced by Hong et al. (2025).
However, the initial arXiv version of their work contained a flaw in the analysis. This issue was later corrected in the
published version, which involved significant modifications to the algorithmic structure, resulting in a substantial departure
from the original version. The corrected algorithm is discussed in Section 2.4 of the main paper. For completeness, we
review the original (incorrect) version in this section and explain how Hong et al. (2025) addressed the issue.

The incorrect version is shown in Algorithm 4. Unlike the corrected version (Algorithm 1), which plans for future policies
for the remaining time steps by performing backward value iteration to compute action-value functions Qt for the remaining
time steps, the flawed version updates the action-value function in place, meaning it performs a value iteration and updates
the action-value function directly at each time step, and selects an action based on this updated value function. For a
technical reason, the algorithm runs in episodes, starting a new episode when the covariance Λt doubles (Line 8).
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Although simpler and more memory efficient, the in-place action-value update scheme alone appears insufficient, and the
incorrect version of the paper introduces a max-pooling step (Line 3) that pools Q-functions such that the pooled Q function
Q̄t = maxτ∈[tk:t] is monotonically increasing within the episode k. To motivate this modification, consider what happens if
the action at is directly taken with respect to the value function Qt, without applying max-pooling. Note that by uniform
concentration bound on P̂tV , we have

Qτ+1(s, a) ≤ r(s, a) + γ[PVτ ](s, a) + 2β∥φ(s, a)∥Λ−1
τ

(4)

for all τ ∈ [T ], s ∈ S and a ∈ A. Using the inequality with τ ← t+ 2, s← st, a← at, we can bound the regret as:

RT =

T∑
t=1

(J∗ − r(st, at))

≤
T∑

t=1

(J∗ −Qt+2(st, at) + γ[PVt+1](st, at) + 2β∥φ(st, at)∥Λ−1
t

≤
T∑

t=1

(J∗ − (1− γ)Vt+1(st+1)) +

T∑
t=1

(Qt+1(st+1, at+1)−Qt+2(st, at))

+ γ

T∑
t=1

([PVt+1](st, at)− Vt+1(st+1)) + 2β

T∑
t=1

∥φ(st, at)∥Λ−1
t
.

Here, the in-place nature of value iteration causes a misalignment in the second: the Q-function in the second part of the
term is one iteration ahead of the Q-function in the first part. This mismatch complicates the regret analysis and undermines
the telescoping cancellation typically leveraged in such proofs.

One potential remedy is to enforce monotonicity in the Q-function within an episode by adding a line Qt+1 ← Qt ∨Qt+1

after Line 5. With such a modification, telescoping goes through. However, this approach introduces a complication: as the
Q-function becomes increasingly complex with each update, the covering number of the function class containing all such
Q-functions grows exponentially with T . As a result, the uniform concentration bound for P̂tV becomes vacuous.

To sidestep the covering issue, the initial (incorrect) version of Hong et al. (2025) does not enforce monotonicity in
Qt, maintaining Qt in a function class with a low covering number. Instead, it max-pools the Q-functions as Q̄t =
maxτ∈[tk:t] Qτ (st, a) and selects a greedy action at with respect to the pooled function Q̄t. The idea is to make Q̄t

monotonically increasing in t without running into covering issue. Denoting by τt(s, a) = argmaxt∈[τk:t]
Qτ (s, a) for t in

episode k, and using the inequality (4) with τ ← τt(s, a)− 1, s← st, a← at, and using Qτt(st,at)(st, at) = Q̄t(st, at),
we get

RT ≤
T∑

t=1

(J∗ −Qτt(st,at)(st, at) + γ[PVτt(st,at)−1](st, at) + 2β∥φ(st, at)∥Λ−1
t

=

T∑
t=1

(J∗ − (1− γ)Vτt(st,at)−1(st+1)) +

T∑
t=1

(Vτt(st,at)−1(st+1)− Q̄t(st, at))

+ γ

T∑
t=1

([PVt+1](st, at)− Vt+1(st+1)) + 2β

T∑
t=1

∥φ(st, at)∥Λ−1
t
.

The incorrect version of Hong et al. (2025) bounds the second term as follows (we slightly adapt their argument for clarity).

Vτt(st,at)−1(st+1) ≤ Ṽτt(st,at)−1(st+1)

= max
a

Qτt(st,at)−1(st+1, a)

≤ max
a

max
τ∈[tk:t+1]

Qτ (st+1, a)

= max
a

Q̄t+1(st+1, a)

= Q̄t+1(st+1, at+1),
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which allows for a telescoping sum. However, the second inequality above is wrong. Although τt(st, at) ∈ [tk : t],
τt(st, at)− 1 is not in the interval [tk : t+ 1] when τt(st, at) = tk. Due to this off-by-one error in their analysis, the regret
bound fails.

The corrected version fixes the issue by completely restructuring the algorithm. Specifically, it uses a backward value
iteration scheme, so that the value function Qt+1 used for selecting an action at+1 at time t+1 is one value iteration behind
Qt. With this scheme, the time index in (4) changes to:

Qτ (s, a) ≤ r(s, a) + γ[PVτ+1](s, a) + 2β∥φ(s, a)∥Λ−1
τ
,

and the regret bound for the corrected algorithm becomes∑
t

(J∗ − r(st, at)) ≤
∑
t

(J∗ −Qt(st, at) + γ[PVt+1](st, at) + 2β∥φ(st, at)∥Λ−1
t

≤
∑
t

(J∗ − (1− γ)Vt+1(st+1)) +
∑
t

(Qt+1(st+1, at+1)−Qt(st, at))

+ γ
∑
t

([PVt+1](st, at)− Vt+1(st+1)) + 2β
∑
t

∥φ(st, at)∥Λ−1
t
.

Notice the change in the time index in the second term. Without the need for further modification of the algorithm, the
second term can be bounded using telescoping sum, as is done in Appendix C.3.
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