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Abstract

Contextual bandits have become popular as they offer a middle ground between
very simple approaches based on multi-armed bandits and very complex approaches
using the full power of reinforcement learning. They have demonstrated success in
web applications and have a rich body of associated theoretical guarantees. Linear
models are well understood theoretically and preferred by practitioners because
they are not only easily interpretable but also simple to implement and debug.
Furthermore, if the linear model is true, we get very strong performance guarantees.
Unfortunately, in emerging applications in mobile health, the time-invariant linear
model assumption is untenable. We provide an extension of the linear model for
contextual bandits that has two parts: baseline reward and treatment effect. We
allow the former to be complex but keep the latter simple. We argue that this
model is plausible for mobile health applications. At the same time, it leads to
algorithms with strong performance guarantees as in the linear model setting, while
still allowing for complex nonlinear baseline modeling. Our theory is supported by
experiments on data gathered in a recently concluded mobile health study.

1 Introduction

In the theory of sequential decision-making, contextual bandit problems (Tewari & Murphy, 2017)
occupy a middle ground between multi-armed bandit problems (Bubeck & Cesa-Bianchi, 2012) and
full-blown reinforcement learning (usually modeled using Markov decision processes along with
discounted or average reward optimality criteria (Sutton & Barto, 1998; Puterman, 2005)). Unlike
bandit algorithms, which cannot use any side-information or context, contextual bandit algorithms
can learn to map the context into appropriate actions. However, contextual bandits do not consider
the impact of actions on the evolution of future contexts. Nevertheless, in many practical domains
where the impact of the learner’s action on future contexts is limited, contextual bandit algorithms
have shown great promise. Examples include web advertising (Abe & Nakamura, 1999) and news
article selection on web portals (Li et al., 2010).

An influential thread within the contextual bandit literature models the expected reward for any
action in a given context using a linear mapping from a d-dimensional context vector to a real-valued
reward. Algorithms using this assumption include LinUCB and Thompson Sampling, for both of
which regret bounds have been derived. These analyses often allow the context sequence to be chosen
adversarially, but require the linear model, which links rewards to contexts, to be time-invariant.
There has been little effort to extend these algorithms and analyses when the data follow an unknown
nonlinear or time-varying model.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.



In this paper, we consider a particular type of non-stationarity and non-linearity that is motivated
by problems arising in mobile health (mHealth). Mobile health is a fast developing field that uses
mobile and wearable devices for health care delivery. These devices provide us with a real-time
stream of dynamically evolving contextual information about the user (location, calendar, weather,
physical activity, internet activity, etc.). Contextual bandit algorithms can learn to map this contextual
information to a set of available intervention options (e.g., whether or not to send a medication
reminder). However, human behavior is hard to model using stationary, linear models. We make a
fundamental assumption in this paper that is quite plausible in the mHealth setting. In these settings,
there is almost always a “do nothing” action usually called action 0. The expected reward for this
action is the baseline reward and it can change in a very non-stationary, non-linear fashion. However,
the treatment effect of a non-zero action, i.e., the incremental change over the baseline reward due to
the action, can often be plausibly modeled using standard stationary, linear models.

We show, both theoretically and empirically, that the performance of an appropriately designed
action-centered contextual bandit algorithm is agnostic to the high model complexity of the baseline
reward. Instead, we get the same level of performance as expected in a stationary, linear model setting.
Note that it might be tempting to make the entire model non-linear and non-stationary. However, the
sample complexity of learning very general non-stationary, non-linear models is likely to be so high
that they will not be useful in mHealth where data is often noisy, missing, or collected only over a
few hundred decision points.

We connect our algorithm design and theoretical analysis to the real world of mHealth by using data
from a pilot study of HeartSteps, an Android-based walking intervention. HeartSteps encourages
walking by sending individuals contextually-tailored suggestions to be active. Such suggestions can
be sent up to five times a day–in the morning, at lunchtime, mid-afternoon, at the end of the workday,
and in the evening–and each suggestion is tailored to the user’s current context: location, time of day,
day of the week, and weather. HeartSteps contains two types of suggestions: suggestions to go for a
walk, and suggestions to simply move around in order to disrupt prolonged sitting. While the initial
pilot study of HeartSteps micro-randomized the delivery of activity suggestions (Klasnja et al., 2015;
Liao et al., 2015), delivery of activity suggestions is an excellent candidate for the use of contextual
bandits, as the effect of delivering (vs. not) a suggestion at any given time is likely to be strongly
influenced by the user’s current context, including location, time of day, and weather.

This paper’s main contributions can be summarized as follows. We introduce a variant of the standard
linear contextual bandit model that allows the baseline reward model to be quite complex while
keeping the treatment effect model simple. We then introduce the idea of using action centering in
contextual bandits as a way to decouple the estimation of the above two parts of the model. We show
that action centering is effective in dealing with time-varying and non-linear behavior in our model,
leading to regret bounds that scale as nicely as previous bounds for linear contextual bandits. Finally,
we use data gathered in the recently conducted HeartSteps study to validate our model and theory.

1.1 Related Work

Contextual bandits have been the focus of considerable interest in recent years. Chu et al. (2011) and
Agrawal & Goyal (2013) have examined UCB and Thompson sampling methods respectively for
linear contextual bandits. Works such as Seldin et al. (2011), Dudik et al. (2011) considered contextual
bandits with fixed policy classes. Methods for reducing the regret under complex reward functions
include the nonparametric approach of May et al. (2012), the “contextual zooming" approach of
Slivkins (2014), the kernel-based method of Valko et al. (2013), and the sparse method of Bastani
& Bayati (2015). Each of these approaches has regret that scales with the complexity of the overall
reward model including the baseline, and requires the reward function to remain constant over time.

2 Model and Problem Setting

Consider a contextual bandit with a baseline (zero) action and N non-baseline arms (actions or
treatments). At each time t = 1, 2, . . . , a context vector s̄t ∈ Rd′ is observed, an action at ∈
{0, . . . , N} is chosen, and a reward rt(at) is observed. The bandit learns a mapping from a state
vector st,at depending on s̄t and at to the expected reward rt(st,at). The state vector st,at ∈ Rd is
a function of at and s̄t. This form is used to achieve maximum generality, as it allows for infinite
possible actions so long as the reward can be modeled using a d-dimensional st,a. In the most
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unstructured case with N actions, we can simply encode the reward with a d = Nd′ dimensional
sTt,at = [I(at = 1)s̄Tt , . . . , I(at = N)s̄Tt ] where I(·) is the indicator function.

For maximum generality, we assume the context vectors are chosen by an adversary on the basis of
the historyHt−1 of arms aτ played, states s̄τ , and rewards rτ (s̄τ , aτ ) received up to time t− 1, i.e.,

Ht−1 = {aτ , s̄t, rτ (s̄τ , aτ ), i = 1, . . . , N, τ = 1, . . . , t− 1}.

Consider the model E[rt(s̄t, at)|s̄t, at] = f̄t(s̄t, at), where f̄t can be decomposed into a fixed
component dependent on action and a time-varying component that does not depend on action:

E[rt(s̄t, at)|s̄t, at] = f̄t(s̄t, at) = f(st,at)I(at > 0) + gt(s̄t),

where f̄t(s̄t, 0) = gt(s̄t) due to the indicator function I(at > 0). Note that the optimal action
depends in no way on gt, which merely confounds the observation of regret. We hypothesize that
the regret bounds for such a contextual bandit asymptotically depend only on the complexity of f ,
not of gt. We emphasize that we do not require any assumptions about or bounds on the complexity
or smoothness of gt, allowing gt to be arbitrarily nonlinear and to change abruptly in time. These
conditions create a partially agnostic setting where we have a simple model for the interaction but the
baseline cannot be modeled with a simple linear function. In what follows, for simplicity of notation
we drop s̄t from the argument for rt, writing rt(at) with the dependence on s̄t understood.

In this paper, we consider the linear model for the reward difference at time t:

rt(at)− rt(0) = f(st,at)I(at > 0) + nt = sTt,atθI(at > 0) + nt (1)

where nt is zero-mean sub-Gaussian noise with variance σ2 and θ ∈ Rd is a vector of coefficients.
The goal of the contextual bandit is to estimate θ at every time t and use the estimate to decide which
actions to take under a series of observed contexts. As is common in the literature, we assume that
both the baseline and interaction rewards are bounded by a constant for all t.

The task of the action-centered contextual bandit is to choose the probabilities π(a, t) of playing each
arm at at time t so as to maximize expected differential reward

E[rt(at)− rt(0)|Ht−1, st,a] =
∑N

a=0
π(a, t)E[rt(a)− rt(0)|Ht−1, st,a] (2)

=
∑N

a=0
π(a, t)sTt,aθI(a > 0).

This task is closely related to obtaining a good estimate of the reward function coefficients θ.

2.1 Probability-constrained optimal policy

In the mHealth setting, a contextual bandit must choose at each time point whether to deliver to the
user a behavior-change intervention, and if so, what type of intervention to deliver. Whether or not an
intervention, such as an activity suggestion or a medication reminder, is sent is a critical aspect of the
user experience. If a bandit sends too few interventions to a user, it risks the user’s disengaging with
the system, and if it sends too many, it risks the user’s becoming overwhelmed or desensitized to the
system’s prompts. Furthermore, standard contextual bandits will eventually converge to a policy that
maps most states to a near-100% chance of sending or not sending an intervention. Such regularity
could not only worsen the user’s experience, but ignores the fact that users have changing routines
and cannot be perfectly modeled. We are thus motivated to introduce a constraint on the size of the
probabilities of delivering an intervention. We constrain 0 < πmin ≤ 1− P(at = 0|s̄t) ≤ πmax < 1,
where P(at = 0|s̄t) is the conditional bandit-chosen probability of delivering an intervention at time
t. The constants πmin and πmax are not learned by the algorithm, but chosen using domain science,
and might vary for different components of the same mHealth system. We constrain P(at = 0|s̄t), not
each P(at = i|s̄t), as which intervention is delivered is less critical to the user experience than being
prompted with an intervention in the first place. User habituation can be mitigated by implementing
the nonzero actions (a = 1, . . . , N ) to correspond to several types or categories of messages, with
the exact message sent being randomized from a set of differently worded messages.

Conceptually, we can view the bandit as pulling two arms at each time t: the probability of sending
a message (constrained to lie in [πmin, πmax]) and which message to send if one is sent. While
these probability constraints are motivated by domain science, these constraints also enable our
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proposed action-centering algorithm to effectively orthogonalize the baseline and interaction term
rewards, achieving sublinear regret in complex scenarios that often occur in mobile health and other
applications and for which existing approaches have large regret.

Under this probability constraint, we can now derive the optimal policy with which to compare the
bandit. The policy that maximizes the expected reward (2) will play the optimal action

a∗t = arg max
i∈{0,...,N}

sTt,iθI(i > 0),

with the highest allowed probability. The remainder of the probability is assigned as follows. If
the optimal action is nonzero, the optimal policy will then play the zero action with the remaining
probability (which is the minimum allowed probability of playing the zero action). If the optimal
action is zero, the optimal policy will play the nonzero action with the highest expected reward

ā∗t = arg max
i∈{1,...,N}

sTt,iθ

with the remaining probability, i.e. πmin. To summarize, under the constraint 1 − π∗t (0, t) ∈
[πmin, πmax], the expected reward maximizing policy plays arm at with probability π∗(a, t), where

If a∗t 6= 0 : π∗(a∗t , t) = πmax, π∗(0, t) = 1− πmax, π∗(a, t) = 0 ∀a 6= 0, a∗t (3)
If a∗t = 0 : π∗(0, t) = 1− πmin, π∗(ā∗t , t) = πmin, π∗(a, t) = 0 ∀a 6= 0, ā∗t .

3 Action-centered contextual bandit

Since the observed reward always contains the sum of the baseline reward and the differential reward
we are estimating, and the baseline reward is arbitrarily complex, the main challenge is to isolate the
differential reward at each time step. We do this via an action-centering trick, which randomizes the
action at each time step, allowing us to construct an estimator whose expectation is proportional to
the differential reward rt(āt)− rt(0), where āt is the nonzero action chosen by the bandit at time t
to be randomized against the zero action. For simplicity of notation, we set the probability of the
bandit taking nonzero action P(at > 0) to be equal to 1− π(0, t) = πt.

3.1 Centering the actions - an unbiased rt(āt)− rt(0) estimate

To determine a policy, the bandit must learn the coefficients θ of the model for the differential reward
rt(āt)− rt(0) = sTt,ātθ as a function of āt. If the bandit had access at each time t to the differential
reward rt(āt)− rt(0), we could estimate θ using a penalized least-squares approach by minimizing

arg min
θ

∑T

t=1
(rt(āt)− rt(0)− θT st,āt)2 + λ‖θ‖22

over θ, where rt(a) is the reward under action a at time t (Agrawal & Goyal, 2013). This corresponds
to the Bayesian estimator when the reward is Gaussian. Although we have only access to rt(at),
not rt(āt)− rt(0), observe that given āt, the bandit randomizes to at = āt with probability πt and
at = 0 otherwise. Thus

E[(I(at > 0)− πt)rt(at)|Ht−1, āt, s̄t] = πt(1− πt)rt(ā)− (1− πt)πtrt(0) (4)
= πt(1− πt)(rt(āt)− rt(0)).

Thus (I(at > 0) − πt)rt(at), which only uses the observed rt(at), is proportional to an unbiased
estimator of rt(āt)− rt(0). Recalling that āt, at are both known since they are chosen by the bandit
at time t, we create the estimate of the differential reward between āt and action 0 at time t as

r̂t(āt) = (I(at > 0)− πt)rt(at).
The corresponding penalized weighted least-squares estimator for θ using r̂t(āt) is the minimizer of∑T

t=1
πt(1− πt)(r̂t(āt)/(πt(1− πt))− θT st,āt)2 + ‖θ‖22 (5)

=
∑T

t=1

(r̂t(āt))
2

πt(1− πt)
− 2r̂t(āt)θ

T st,āt + πt(1− πt)(θT st,āt)2 + ‖θ‖22

= c− 2θT b̂+ θTBθ + ‖θ‖22,

4



where for simplicity of presentation we have used unit penalization ‖θ‖22, and

b̂ =
∑T

t=1
(I(at > 0)− πt)st,ātrt(at), B = I +

∑T

t=1
πt(1− πt)st,ātsTt,āt .

The weighted least-squares weights are πt(1 − πt), since var
[

r̂t(āt)
πt(1−πt)

∣∣∣Ht−1, āt, s̄t

]
=

var[r̂t(āt)t|Ht−1,āt,s̄t]
(πt(1−πt))2 and the standard deviation of r̂t(āt) = (I(at > 0) − πt)rt(at) given

Ht−1, āt, s̄t is of order gt(s̄t) = O(1). The minimizer of (5) is θ̂ = B−1b̂.

3.2 Action-Centered Thompson Sampling

As the Thompson sampling approach generates probabilities of taking an action, rather than selecting
an action, Thompson sampling is particularly suited to our regression approach. We follow the basic
framework of the contextual Thompson sampling approach presented by Agrawal & Goyal (2013),
extending and modifying it to incorporate our action-centered estimator and probability constraints.

The critical step in Thompson sampling is randomizing the model coefficients according to the
prior N (θ̂, v2B−1) for θ at time t. A θ′ ∼ N (θ̂, v2B−1) is generated, and the action at chosen
to maximize sTt,aθ

′. The probability that this procedure selects any action a is determined by the
distribution of θ′; however, it may select action 0 with a probability not in the required range
[1 − πmax, 1 − πmin]. We thus introduce a two-step hierarchical procedure. After generating the
random θ′, we instead choose the nonzero āt maximizing the expected reward

āt = arg max
a∈{1,...,N}

sTt,aθ
′.

Then we randomly determine whether to take the nonzero action, choosing at = āt with probability

Algorithm 1 Action-Centered Thompson Sampling

1: Set B = I , θ̂ = 0, b̂ = 0, choose [πmin, πmax].
2: for t = 1, 2, . . . do
3: Observe current context s̄t and form st,a for each a ∈ {1, . . . , N}.
4: Randomly generate θ′ ∼ N (θ̂, v2B−1).
5: Let

āt = arg max
a∈{1,...,N}

sTt,aθ
′.

6: Compute probability πt of taking a nonzero action according to (6).
7: Play action at = āt with probability πt, else play at = 0.
8: Observe reward rt(at) and update θ̂

B = B + πt(1− πt)st,ātsTt,āt , b̂ = b̂+ st,āt(I(at > 0)− πt)rt(at), θ̂ = B−1b̂.

9: end for

πt = P(at > 0) = max(πmin,min(πmax,P(sTt,āθ̃ > 0))), (6)

and at = 0 otherwise, where θ̃ ∼ N (θ̂, v2B−1). P(sTt,āθ̃ > 0) is the probability that the expected
relative reward sTt,āθ̃ of action āt is higher than zero for θ̃ ∼ N (θ̂, v2B−1). This probability is easily
computed using the normal CDF. Finally the bandit updates b̂, B and computes an updated θ̂ = B−1b̂.
Our action-centered Thompson sampling algorithm is summarized in Algorithm 1.

4 Regret analysis

Classically, the regret of a bandit is defined as the difference between the reward achieved by taking
the optimal actions a∗t , and the expected reward received by playing the arm at chosen by the bandit

regretclassical(t) = sTt,a∗t θ − s
T
t,atθ, (7)
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where the expectation is taken conditionally on at, sTt,at ,Ht−1. For simplicity, let π∗t = 1− π∗t (0, t)
be the probability that the optimal policy takes a nonzero action, and recall that πt = 1− πt(0, t) is
the probability the bandit takes a nonzero action. The probability constraint implies that the optimal
policy (3) plays the optimal arm with a probability bounded away from 0 and 1, hence definition (7)
is no longer meaningful. We can instead create a regret that is the difference in expected rewards
conditioned on āt, πt, sTt,at ,Ht−1, but not on the randomized action at:

regret(t) = π∗t s
T
t,ā∗t

θ − πtsTt,ātθ (8)

where we have recalled that given āt, the bandit plays action at = āt with probability πt and plays
the at = 0 with differential reward 0 otherwise. The action-centered contextual bandit attempts to
minimize the cumulative regretR(T ) =

∑T
t=1 regret(t) over horizon T .

4.1 Regret bound for Action-Centered Thompson Sampling

In the following theorem we show that with high probability, the probability-constrained Thompson
sampler has low regret relative to the optimal probability-constrained policy.
Theorem 1. Consider the action-centered contextual bandit problem, where f̄t is potentially time
varying, and s̄t at time t givenHt−1 is chosen by an adversary. Under this regime, the total regret at
time T for the action-centered Thompson sampling contextual bandit (Algorithm 1) satisfies

R(T ) ≤ C
(
d2

ε

√
T 1+ε(log(Td) log

1

δ
)

)
with probability at least 1− 3δ/2, for any 0 < ε < 1, 0 < δ < 1. The constant C is in the proof.

Observe that this regret bound does not depend on the number of actions N , is sublinear in T , and
scales only with the complexity d of the interaction term, not the complexity of the baseline reward g.
Furthermore, ε = 1/ log(T ) can be chosen giving a regret of order O(d2

√
T ).

This bound is of the same order as the baseline Thompson sampling contextual bandit in the adversarial
setting when the baseline is identically zero (Agrawal & Goyal, 2013). When the baseline can be
modeled with d′ features where d′ > d, our method achieves O(d2

√
T ) regret whereas the standard

Thompson sampling approach has O((d+ d′)2
√
T ) regret. Furthermore, when the baseline reward is

time-varying, the worst case regret of the standard Thompson sampling approach is O(T ), while the
regret of our method remains O(d2

√
T ).

4.2 Proof of Theorem 1 - Decomposition of the regret

We will first bound the regret (8) at time t.

regret(t) = π∗t s
T
t,ā∗t

θ − πtsTt,ātθ = (π∗t − πt)(sTt,ātθ) + π∗t (sTt,ā∗t θ − s
T
t,ātθ) (9)

≤ (π∗t − πt)(sTt,ātθ) + (sTt,ā∗t θ − s
T
t,ātθ), (10)

where the inequality holds since (sTt,ā∗t θ − s
T
t,ātθ) ≥ 0 and 0 < π∗t < 1 by definition. Then

R(T ) =
∑T

t=1
regret(t) ≤

∑T

t=1
(π∗t − πt)(sTt,ātθ)︸ ︷︷ ︸

I

+
∑T

t=1
(sTt,ā∗t θ − s

T
t,ātθ)︸ ︷︷ ︸

II

Observe that we have decomposed the regret into a term I that depends on the choice of the
randomization πt between the zero and nonzero action, and a term II that depends only on the
choice of the potential nonzero action āt prior to the randomization. We bound I using concentration
inequalities, and bound II using arguments paralleling those for standard Thompson sampling.
Lemma 1. Suppose that the conditions of Theorem 1 apply. Then with probability at least 1 − δ

2 ,
I ≤ C

√
d3T log(Td) log(1/δ) for some constant C given in the proof.

Lemma 2. Suppose that the conditions of Theorem 1 apply. Then term II can be bounded as

II =

T∑
t=1

(sTt,ā∗t θ − s
T
t,ātθ) ≤ C

′
(
d2

ε

√
T 1+ε log

1

δ
log(Td)

)
where the inequality holds with probability at least 1− δ.

6



The proofs are contained in Sections D and E in the supplement respectively. In the derivation,
the “pseudo-actions” āt that Algorithm 1 chooses prior to the πt baseline-nonzero randomization
correspond to the actions in the standard contextual bandit setting. Note that I involves only āt, not
ā∗t , hence it is not surprising that the bound is smaller than that for II . Combining Lemmas 1 and 2
via the union bound gives Theorem 1.

5 Results

5.1 Simulated data

We first conduct experiments with simulated data, using N = 2 possible nonzero actions. In each
experiment, we choose a true reward generative model rt(s, a) inspired by data from the HeartSteps
study (for details see Section A.1 in the supplement), and generate two length T sequences of state
vectors st,a ∈ RNK and s̄t ∈ RL, where the s̄t are iid Gaussian and st,a is formed by stacking
columns I(a = i)[1; s̄t] for i = 1, . . . , N . We consider both nonlinear and nonstationary baselines,
while keeping the treatment effect models the same. The bandit under evaluation iterates through the
T time points, at each choosing an action and receiving a reward generated according to the chosen
model. We set πmin = 0.2, πmax = 0.8.

At each time step, the reward under the optimal policy is calculated and compared to the reward
received by the bandit to form the regret regret(t). We can then plot the cumulative regret

cumulative regret(t) =
∑t

τ=1
regret(τ).

In the first experiment, the baseline reward is nonlinear. Specifically, we generate rewards using
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(b) Median with 1st and 3rd quartiles (dashed)

Figure 1: Nonlinear baseline reward g, in scenario with 2 nonzero actions and reward function based
on collected HeartSteps data. Cumulative regret shown for proposed Action-Centered approach,
compared to baseline contextual bandit, median computed over 100 random trials.

rt(st,at , s̄t, at) = θT st,at + 2I(|[s̄t]1| < 0.8) +nt where nt = N (0, 1) and θ ∈ R8 is a fixed vector
listed in supplement section A.1. This simulates the quite likely scenario that for a given individual
the baseline reward is higher for small absolute deviations from the mean of the first context feature,
i.e. rewards are higher when the feature at the decision point is “near average”, with reward decreasing
for abnormally high or low values. We run the benchmark Thompson sampling algorithm (Agrawal
& Goyal, 2013) and our proposed action-centered Thompson sampling algorithm, computing the
cumulative regrets and taking the median over 500 random trials. The results are shown in Figure 1,
demonstrating linear growth of the benchmark Thompson sampling algorithm and significantly lower,
sublinear regret for our proposed method.

We then consider a scenario with the baseline reward gt(·) function changing in time. We generate
rewards as rt(st,at , s̄t, at) = θT st,at + ηTt s̄t + nt where nt = N (0, 1), θ is a fixed vector as above,
and ηt ∈ R7, s̄t are generated as smoothly varying Gaussian processes (supplement Section A.1). The
cumulative regret is shown in Figure 2, again demonstrating linear regret for the baseline approach
and significantly lower sublinear regret for our proposed action-centering algorithm as expected.
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Figure 2: Nonstationary baseline reward g, in scenario with 2 nonzero actions and reward function
based on collected HeartSteps data. Cumulative regret shown for proposed Action-Centered approach,
compared to baseline contextual bandit, median computed over 100 random trials.

5.2 HeartSteps study data

The HeartSteps study collected the sensor and weather-based features shown in Figure 3 at 5 decision
points per day for each study participant. If the participant was available at a decision point, a
message was sent with constant probability 0.6. The sent message could be one of several activity
or anti-sedentary messages chosen by the system. The reward for that message was defined to be
log(0.5 + x) where x is the step count of the participant in the 30 minutes following the suggestion.
As noted in the introduction, the baseline reward, i.e. the step count of a subject when no message is
sent, does not only depend on the state in a complex way but is likely dependent on a large number of
unobserved variables. Because of these unobserved variables, the mapping from the observed state to
the reward is believed to be strongly time-varying. Both these characteristics (complex, time-varying
baseline reward function) suggest the use of the action-centering approach.

We run our contextual bandit on the HeartSteps data, considering the binary action of whether or not
to send a message at a given decision point based on the features listed in Figure 3 in the supplement.
Each user is considered independently, for maximum personalization and independence of results.
As above we set πmin = 0.2, πmax = 0.8.

We perform offline evaluation of the bandit using the method of Li et al. (2011). Li et al. (2011)
uses the sequence of states, actions, and rewards in the data to form an near-unbiased estimate of
the average expected reward achieved by each algorithm, averaging over all users. We used a total
of 33797 time points to create the reward estimates. The resulting estimates for the improvement
in average reward over the baseline randomization, averaged over 100 random seeds of the bandit
algorithm, are shown in Figure 4 of the supplement with the proposed action-centering approach
achieving the highest reward. Since the reward is logarithmic in the number of steps, the results imply
that the benchmark Thompson sampling approach achieves an average 1.6% increase in step counts
over the non-adaptive baseline, while our proposed method achieves an increase of 3.9%.

6 Conclusion

Motivated by emerging challenges in adaptive decision making in mobile health, in this paper we
proposed the action-centered Thompson sampling contextual bandit, exploiting the randomness of
the Thompson sampler and an action-centering approach to orthogonalize out the baseline reward.
We proved that our approach enjoys low regret bounds that scale only with the complexity of the
interaction term, allowing the baseline reward to be arbitrarily complex and time-varying.
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A HeartSteps feature list

Figure 3 shows the features available to the bandit in the HeartSteps study dataset, and Figure 4
shows the estimated average regret results with errorbars.

Feature Description Purpose Interaction Baseline Model
Number of messages sent Total number of messages sent

to user in prior week
Modeling habituation to inter-
vention

Y Y

Location indicator 1 1 if not at home or work, 0 o.w. Location relevant to availabil-
ity to walk

Y Y

Location indicator 2 1 if at work, 0 o.w. Y Y
Step count variability Historical standard deviation

of step counts in 60 minute
window surrounding decision
point, taken over prior 7 days

Responsiveness in different
times of day

Y Y

Steps in prior 30 minutes Step count in 30 minutes prior
to decision point

Measure of recent activity Y

Square root of steps yesterday Square root of the total step
count yesterday

Recent commitment/ engage-
ment

Y

Outdoor Temperature Degrees Celsius Cold weather potentially less
appealing

Y

Figure 3: List of features available to the bandit in the HeartSteps experiment. The features available
to model the action interaction (effect of sending an anti-sedentary message) and to model the baseline
(reward under no action) are denoted via a “Y” in the corresponding column.

Figure 4: Unbiased estimates of the average reward received by the benchmark Thompson sampling
contextual bandit and the proposed action-centered Thompson sampling contextual bandit, relative
to the reward received under the pre-specified HeartSteps randomization policy. Also shown are
one standard deviation error bars for the computed estimates. The superior performance of the
action-centering approach is indicative of its robustness to the high complexity of the baseline subject
behavior.

A.1 Simulation model

Figure 5 shows the coefficients θ used in the main text simulations. The coefficients shown in the
figure associated with the first action are obtained via a linear regression analysis of the binary action
(sending or not sending a message) HeartSteps intervention data, and the coefficients for the second
action are a simple modification of those.

For the time varying simulation, Gaussian processes were used to generate the reward coefficient
sequence ηt and the state sequence s̄t. We used Gaussian processes since if ηt is IID, then the baseline
reward becomes an IID random variable, making the baseline reward not time varying.
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Feature Action 1 coef. Action 2 coef.
Number of messages sent .116 .116
Location indicator 1 -.275 .275
Location indicator 2 -.233 -.233
Step count variability .0425 .0425

Figure 5: Effect coefficients, based on HeartSteps data, used for simulation reward model.

We used the Gaussian process
ηt =

√
1− ρ2ηt−1 + ρnt

where η0 = 17, nt ∼ N (0, I7), and ρ = 0.1. The state sequence s̄t was generated in the same
manner.

B Definitions

In order to proceed with the proof of Theorem 1, we make the following definitions.

Definition 1. Define a filtration Ft−1 = {Ht−1, s̄t} as the union of the history and current context.

Definition 2. Let
zt,a =

√
sTt,aB(t)−1st,a,

for all a = 1, . . . , N .

Definition 3. Define `(T ) = R
√
d log(T 3) log(1/δ) + 1, v = R

√
24
ε d log(1/δ), and g(T ) =√

4d log(Td)v + `(T ).

We divide the arms ā > 0 into saturated and unsaturated actions.

Definition 4 (Saturated vs. unsaturated actions). Any arm ā > 0 for which g(T )zt,ā < `(T )zt,ā∗t is
called a saturated arm. If an arm is not saturated, it is called unsaturated. Let C(t) ⊆ {1, . . . , N} be
the subset of saturated arms at time t.

Observe that the optimal arm ā∗ is unsaturated by definition.

We can now state the required concentration events and present bounds on the probability they occur.

B.1 Concentration events

Definition 5. Let Eµ(t) be the event that for all ā = 1, . . . , N

|sTt,āθ̂t − sTt,āθ| ≤ `(T )zt,ā.

Similarly, let Eθ(t) be the event that for all ā = 1, . . . , N

|sTt,āθ′t − sTt,āθ̂t| ≤
√

4d log(Td)vzt,ā

and Eθ0(t) be the corresponding event that for all ā = 1, . . . , N

|sTt,āθ̃t − sTt,āθ̂t| ≤
√

4d log(Td)vzt,ā

We can bound the probabilities of the events Eθ(t), Eθ(t)0, and Eµ(t) in the following lemmas.
Observe that by definition P(Eθ(t)|Ft−1) = P(Eθ(t)0|Ft−1).

Lemma 3 (Agrawal & Goyal (2013)). For all t, and possible filtrations Ft−1, P(Eθ(t)|Ft−1) ≥
1− 1

T 2 .

For Eµ(t) we have

Lemma 4. For all t, 0 < δ < 1, P(Eµ(t)) ≥ 1− δ
T 2 .

The proof is given in Section G.
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B.2 Supermartingales

Definition 6 (Supermartingale). A sequence of random variables (Yt; t ≥ 0) is called a supermartin-
gale corresponding to a filtration Ft if, for all t, Yt is Ft-measurable, and

E[Yt − Yt−1|Ft−1] ≤ 0

for all t ≥ 1.

Lemma 5 (Azuma-Hoeffding inequality). If for all t = 1, . . . , T a supermartingale (Yt; t ≥ 0)
corresponding to filtration Ft satisfies |Yt − Yt−1| ≤ ct for some constants ct, then for any a ≥ 0

P(YT − Y0 ≥ 0) ≤ e
− a2

2
∑T
t=1 c

2
t .

C Preliminary results

C.1 Lemma 7: Probability of choosing a saturated action āt ∈ C(t)

Lemma 6 (Agrawal & Goyal (2013) Lemma 2). For any filtration Ft−1 such that Eµ(t) is true,

P(sTt,ā∗t θ
′ > sTt,ā∗t θ + `(T )zt,ā∗t |Ft−1) ≥ 1

4e
√
πT ε

.

We can now prove the following.

Lemma 7. For any filtration Ft−1 such that Eµ(t) is true,

P(āt ∈ C(t)|Ft−1) ≤ 1

p
P(āt /∈ C(t)|Ft−1) +

1

pT 2
,

where p = 1
4e
√
πT ε

.

Proof. Recall that āt is the action with the largest value of sTt,iθ
′. Hence, if sTt,ā∗t θ

′ is larger than
sTt,iθ

′ for all i ∈ C(t), then āt is one of the unsaturated actions. Hence

P(āt /∈ C(t)|Ft−1) ≥ P(sTt,ā∗t θ
′ > sTt,iθ

′,∀i ∈ C(t)|Ft−1. (11)

We know that by definition all saturated arms i ∈ C(t) have g(T )zt,j < `(T )zt,ā∗t . Given an Ft−1

such that Eµ(t) holds, we have that either Eθ(t) is false or for all i ∈ C(t)

sTt,iθ
′ ≤ sTt,iθ + g(T )zt,i ≤ sTt,ā∗t θ + `(T )zt,ā∗t

implying

P(sTt,ā∗t θ
′ > sTt,iθ

′,∀j ∈ C(t)|Ft−1)

≥ P(sTt,ā∗t θ
′ > sTt,ā∗t θ + `(T )zt,ā∗t |Ft−1)− P(Eθ(t)|Ft−1)

≥ p− 1

T 2
.

where we have used the definitions of Eµ(t), Eθ(t), and the last inequality follows from Lemma 6
and Lemma 4. Substituting into (11) gives

P(āt /∈ C(t)|Ft−1) +
1

T 2
≥ p,

and
P(āt ∈ C(t)|Ft−1)

P(āt /∈ C(t)|Ft−1) + 1
T 2

≤ 1

p
.
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C.2 Lemma 9 - Bound on
∑
t zt,āt

Lemma 8. For zt,a =
√
sTt,aB(t)−1st,a, we have that

T∑
t=1

zt,āt ≤
5

Cπ

√
dT log T ,

where Cπ =
√

min(πmin(1− πmax), πmax(1− πmin) is a contant.

Proof. We apply the following lemma from Auer et al. (2002) and Chu et al. (2011).

Lemma 9. Let At = I +
∑T
t=1 xtx

T
t , where xt ∈ Rd is a sequence of vectors. Then, defining

σt =
√
xTt A

−1
t xt, we have

T∑
t=1

σt ≤ 5
√
dT log T .

To apply this to
∑
t zt,āt , let xt =

√
πt(1− πt)st,āt . Then At = I +

∑T
t=1(πt(1−πt))st,ātsTt,āt =

Bt, and we have

σt =

√
xTt A

−1
t xt =

√
πt(1− πt)

√
sTt,ātBtst,āt =

√
πt(1− πt)zt,āt .

Applying Lemma 9 we thus have

T∑
t=1

zt,āt ≤ max
t

(
1√

πt(1− πt)

)
T∑
t=1

σt ≤
5

Cπ

√
dT log T ,

where Cπ =
√

min(πmin(1− πmax), πmax(1− πmin) is a constant.

D Proof of Lemma 1 - term I

Proof. We know that by definition of the optimal policy, (π∗t − πt)sTt,ātθ ≥ 0. Hence under event
Eµ(t),

(π∗t − πt)sTt,ātθ ≤ P
(
sign(sTt,ātθ

′) 6= sign(sTt,ātθ)
)
|sTt,ātθ|

≤ min
[
|sTt,ātθ|,P(sign(sTt,ātθ

′) 6= sign(sTt,ātθ))
]

≤ (`(T ) +
√

4d log(Td)v)zt,āt + 1− P(Eθ0(t)).

Substituting in the definitions of `(T ), v and the bound in Lemma 3 on P(Eθ0(t)), we have

(π∗t − πt)sTt,ātθ ≤

(
R
√
d log(T 3) log(1/δ) + 1 +

√
4d log(Td)R

√
24

ε
d log(1/δ)

)
zt,āt +

1

T 2

≤ C
√
d2

ε
log(1/δ)zt,āt +

1

T 2
.

Summing over t and recalling that by Lemma 9
∑T
t=1 zt,āt ≤

5
Cπ

√
dT log T , we have that under

event Eµ(t)

I =

T∑
t=1

(π∗t − πt)sTt,ātθ

≤ C

Cπ

√
d3T log(Td) log(1/δ).

Since the probability that Eµ(t) holds is at least 1− δ
T 2 by Lemma 4, the lemma results.
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E Proof of Lemma 2: Bound on term II

Before commencing the proof, we first state the following result from Abbasi-Yadkori et al. (2011).
Lemma 10 (Abbasi-Yadkori et al. (2011)). Let (F ′t; t ≥ 0) be a filtration, (mt; t ≥ 1) be an Rd-
valued stochastic process such thatmt is (F ′t−1)- measurable, (ηt; t ≥ 1) be a real-valued martingale
difference process such that ηt is (F ′t)-measurable. For t ≥ 0, define ξt =

∑t
τ=1mτητ and

Mt = Id +
∑t
τ=1mτm

T
τ , where Id is the d-dimensional identity matrix. Assume ηt is conditionally

R-sub-Gaussian.

Then, for any δ′ > 0, t ≥ 0, with probability at least 1− δ′,

‖ξt‖M−1
t
≤ R

√
d log

(
t+ 1

δ′

)
,

where ‖ξt‖M−1
t

=
√
ξTt M

−1
t ξt.

We now prove Lemma 2.

Proof. Defining regret′(t) = (sTt,ā∗t θ − s
T
t,ātθ)I(Eµ(t)), we have the following lemma, which we

prove in Section F.

Lemma 11. Let, for p = 1
4e
√
πT ε

,

Xt = regret′(t)− g(T )

p
I(a(t) /∈ C(t))zt,ā∗t (12)

Yt =

t∑
w=1

Xw. (13)

Then (Yt; t = 0, . . . , T ) is a super-martingale process with respect to filtration Ft.

Given our results in Section G.1 and our concentration bounds, the proof is closely related to Agrawal
& Goyal (2013) and is listed in Section F.

Using the definition of Xt, we have that |Yt−Yt−1| ≤ |Xt| ≤ 1 + g(T )
p + 2g(T )2

`(T ) + 2g(T )
pT 2 ≤ 8

p
g(T )2

`(T ) .
This allows us to apply the Azuma-Hoeffding inequality listed in Section B.2, giving that
T∑
t=1

regret′(t) ≤
T∑
t=1

(
g(T )

p
I(āt /∈ C(t))zt,ā∗t

)
+

2g(T )

pT
+

2g(T )2

`(T )

T∑
t=1

zt,āt +
8

p

g(T )2

`(T )

√
2T log

2

δ

≤
T∑
t=1

(
g(T )2

`(T )

1

p
I(āt /∈ C(t))zt,āt

)
+

2g(T )

pT
+

2g(T )2

`(T )

T∑
t=1

zt,āt +
8

p

g(T )2

`(T )

√
2T log

2

δ

≤ g(T )2

`(T )

3

p

T∑
t=1

zt,āt +
2g(T )

pT
+

8

p

g(T )2

`(T )

√
2T log

2

δ
.

with probability at least 1− δ/2, where we recall that if āt /∈ C(t), then g(T )zt,āt ≥ `(T )zt,ā∗t .

Substituting in the bound
∑T
t=1 zt,āt ≤

5
Cπ

√
dT log T from Lemma 9 and the definitions of

g(T ), p, `(T ), we obtain that
T∑
t=1

regret′(t) ≤ C ′

Cπ

(
d2

ε

√
T 1+ε log

1

δ
log(Td)

)
with probability at least 1− δ

2 , where C ′ is a constant. Recall that by Lemma 4, Eµ(t) holds for all t
with probability at least 1− δ/2, and that regret′(t) = (sTt,ā∗t θ − s

T
t,ātθ) whenever Eµ(t) holds. By

the union bound we then have that

II =

T∑
t=1

(sTt,ā∗t θ − s
T
t,ātθ) ≤

C ′

Cπ

(
d2

ε

√
T 1+ε log

1

δ
log(Td)

)
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with probability at least 1− δ. The lemma results.

F Proof of Lemma 11

Proof. To prove that Yt is a super-martingale by the definition above, we need to prove that for all
1 ≤ t ≤ T and any Ft−1, E[Yt − Yt−1|Ft−1] ≤ 0.

We first consider filtrations Ft−1 for which Eµ(t) holds. By the definition of āt, sTt,ātθ
′ ≥ sTt,a∗∗t θ

′.
Under Eθ(t) and Eµ(t) we then must have that for all i = 1, . . . , N

sTt,iθ ≥ sTt,iθ′ − g(T )zt,i

≥ sTt,a∗∗t θ
′ − g(T )zt,i

≥ sTt,a∗∗t θ − g(T )zt,ā∗t − g(T )zt,i.

Hence sTt,ā∗t θ − s
T
t,ātθ ≤ g(T )(zt,āt + zt,ā∗t ).

For Ft−1 such that Eµ(t) holds, we then can write

E[regret′(t)|Ft−1] = E[(sTt,ā∗t θ − s
T
t,ātθ)|Ft−1]

≥ E[g(T )(zt,āt + zt,ā∗t )|Ft−1] + P(Eθ(t))

= g(T )zt,ā∗t P(āt ∈ C(t)|Ft−1) + g(T )E
[
(
g(T )

`(T )
zt,ātI(āt /∈ C(t))|Ft−1

]
+ g(T )E[zt,āt |Ft−1] +

1

T 2
.

where we have used the facts that regret′(t) ≤ 1, the definition of unsaturated arms, and Lemma 4.
Applying Lemma 7 and noting that since min eig(B(t)) ≤ 1, zt,i ≤ ‖st,i‖2 ≤ 1, we can show that

E[regret′(t)|Ft−1] ≤ g(T )

p
P(āt /∈ C(t)|Ft−1)zt,ā∗t +

2g(T )

pT 2
. (14)

By definition, regret′(t) = (sTt,ā∗t θ−s
T
t,ātθ)I(Eµ(t)) is zero and the above inequality holds whenever

Eµ(t) is not true. Since we have considered both cases, the lemma is proved.

G Proof of Lemma 4

Proof. We can apply Lemma 10 with mt =
√
πt(1− πt)st,āt ,

ηt =
r̂t(āt)√
πt(1− πt)

−
√
πt(1− πt)sTt,ātθ,

and with the filtration F ′t = (s̄τ+1,mτ+1, ητ : τ ≤ t) effectively containing all the available
information up to the current time. F ′t−1 is measurable by definition, and in Section G.1 we show

Lemma 12. Suppose that nt is R sub-Gaussian. Then ηt is a F ′t-measurable, R′-sub-Gaussian,
martingale difference process where R′ = R+2√

πmin(1−πmax)
+
√
πmax(1− πmin).

We then have

Mt = Id +

t∑
τ=1

mτm
T
τ = Id +

t∑
τ=1

πτ (1− πτ )sτ,āτ s
T
τ,āτ ,

ξt =

t∑
τ=1

mτητ =

t∑
τ=1

sτ,āτ
(
r̂t(āt)− πt(1− πt)sTt,ātθ

)
.
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Observe that these are the two primary components of the contextual bandit, specifically, Bt = Mt−1

and bt − E[bt] = ξt. Hence, θ̂t − θ = M−1
t−1(ξt−1 − θ). Letting ‖y‖A =

√
yTAy for any vector y

and matrix A ∈ Rd×d, for all ā > 0 we have that since Mt is positive definite,

|sTā,tθ̂ − sTā,tθ| = |sTā,tM−1
t−1(ξt−1 − θ)|

≤ ‖sā,t‖M−1
t−1
‖ξt−1 − θ‖M−1

t−1

= ‖sā,t‖B−1
t
‖ξt−1 − θ‖B−1

t
.

Applying Lemma 10, we have that for any δ′ > 0, t ≥ 1,

‖ξt−1‖M−1
t−1
≤ R′

√
d log

t

δ′
.

Then ‖ξt−1 − θ‖M−1
t−1
≤ R′

√
d log t

δ′ + ‖θ‖M−1
t−1
≤ R′

√
d log T

δ′ + 1. Setting δ′ = δ/T 2 implies

that with probability 1− δ/T 2, for all ā,

|sTā,tθ̂ − sTā,tθ| ≤ ‖sā,t‖B−1
t

(
R′
√
d log(T 3) log

1

δ
+ 1

)
= `(T )zt,ā.

G.1 Proof of Lemma 12: Martingale analysis of ηt

Proof. Recall

|ηt| =

∣∣∣∣∣ r̂t(āt)√
πt(1− πt)

−
√
πt(1− πt)sTt,ātθ

∣∣∣∣∣
=

∣∣∣∣∣ (I(at > 0)− πt)rt(at)√
πt(1− πt)

−
√
πt(1− πt)sTt,ātθ

∣∣∣∣∣
=

∣∣∣∣∣ (I(at > 0)− πt)(sTt,atθI(at > 0) + nt + f̄t(s̄t))√
πt(1− πt)

−
√
πt(1− πt)sTt,ātθ

∣∣∣∣∣
≤
√
πt(1− πt) +

∣∣∣∣∣ 2 + nt√
πt(1− πt)

∣∣∣∣∣ .
since the rewards are all bounded by one and the πmin ≤ πt ≤ πmax are bounded. We have assumed
that nt is R sub-Gaussian. Since a bounded random variable |X| < b is b sub-Gaussian and the
sum of independent b1 and b2 sub-Gaussian random variables is b1 + b2 sub-Gaussian, we have that
ηt is R′ = R+2√

πmax(1−πmin)
+
√
πmin(1− πmax) conditionally sub-Gaussian. Since πmin, πmax are

bounded away from 0 and 1 by constants, R′ is a constant.

Additionally, for all āt

E[ηt|Ht−1, āt, s̄t] =
E[r̂t(āt)|Ht−1, āt, s̄t]√

πt(1− πt)
−
√
πt(1− πt)sTt,ātθ

=
E[(I(at > 0)− πt)rt(at)|Ht−1, āt, s̄t]√

πt(1− πt)
−
√
πt(1− πt)sTt,ātθ

=
πt(1− πt)sTt,ātθ√

πt(1− πt)
−
√
πt(1− πt)sTt,ātθ

= 0,

where the third equality follows from (4). Thus E[ηt|Ht−1, s̄t] = 0 and ηt is a martingale difference
process.
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