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Abstract

Molecular geometry prediction of flexible molecules, or conformer search, is a long-
standing challenge in computational chemistry. This task is of great importance for
predicting structure-activity relationships for a wide variety of substances ranging
from biomolecules to ubiquitous materials. Substantial computational resources
are invested in Monte Carlo and Molecular Dynamics methods to generate diverse
and representative conformer sets for medium to large molecules, which are yet
intractable to chemoinformatic conformer search methods. We present TorsionNet,
an efficient sequential conformer search technique based on reinforcement learning
under the rigid rotor approximation. The model is trained via curriculum learning,
whose theoretical benefit is explored in detail, to maximize a novel metric grounded
in thermodynamics called the Gibbs Score. Our experimental results show that
TorsionNet outperforms the highest scoring chemoinformatics method by 4x on
large branched alkanes, and by several orders of magnitude on the previously
unexplored biopolymer lignin, with applications in renewable energy. TorsionNet
also outperforms the far more exhaustive but computationally intensive Self-Guided
Molecular Dynamics sampling method.

1 Introduction
Accurate prediction of likely 3D geometries of flexible molecules is a long standing goal of com-
putational chemistry, with broad implications for drug design, biopolymer research, and QSAR
analysis. However, this is a very difficult problem due to the exponential growth of possible stable
physical structures, or conformers, as a function of the size of a molecule. Levinthal’s infamous
paradox notes that a medium sized protein polypeptide chain exposes around 10143 possible torsion
angle combinations, indicating brute force to be an intractable search method for all but the smallest
molecules [21]. While the conformational space of a molecule’s rotatable bonds is continuous with an
infinite number of possible conformations, there are a finite number of stable, low energy conformers
that lie in a local minimum on the energy surface [26]. Research in pharmaceuticals and bio-polymer
material design can be accelerated by developing efficient methods for low energy conformer search
of large molecules.

Take the example of lignin, a class of chemically complex branched biopolymer that has great potential
as a renewable biofuel [32, 56]. The challenge in taking advantage of lignin is its structural complexity
that makes it hard to selectively break down into useful chemical components [45]. Effective strategies
to make use of lignin require deep understanding of its chemical reaction pathways, which in turn
require accurate sampling of conformational behavior [4, 24]. Molecular dynamics (MD) simulations
(though expensive) is the usual method for sampling complex molecules such as lignin [37, 54].
Understanding lignin processing on a molecular level using MD appears essential for improving their
degradation efficiencies in mechano-chemical experimental processes [19].
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Conformer generation and rigid rotor model. The goal of conformer generation is to build a
representative set of conformers to "cover" the likely conformational space of a molecule, and
sample its energy landscape well [8]. To that end, many methods have been employed [8, 15] to
generate diverse sets of low energy conformers. Three notable cheminformatics methods are RDKit’s
Experimental-Torsion Distance Geometry with Basic Knowledge (ETKDG) [33], OpenBabel’s
Confab systematic search algorithm [30], and CORINA [39]. ETKDG and Confab are open source
whereas CORINA is commercial. The latter focuses on generating a single low-energy conformer.
ETKDG generates a distance bounds matrix to specify minimum and maximum distances each
atomic pair in a molecule can take, and stochastically samples conformations that fit these bounds.
On the other hand, Confab is a systematic search process, utilizing the rigid rotor approximation
of fixing constant bond angles and bond lengths. With bond angles and lengths frozen, the only
degrees of freedom for molecular geometry are the torsion angles of rotatable bonds, which Confab
discretizes into buckets and then sequentially cycles through all combinations. It has been previously
demonstrated that the exhaustive Confab search performs similarly to RDKit for molecules with
small rotatable bond number (rbn), but noticeably better for large, flexible (rbn > 10) molecules [8]
if the compute time is available. Systematic search is intractable at very high rbn (> 50) due to the
combinatorial explosion of torsion angle combinations, whereas distance geometry fails entirely.

Differences from protein folding. Protein folding is a well-studied subproblem of conformer
generation, where there is most often only one target conformer of a single, linear chain of amino
acids. Protein folding is aided by vast biological datasets including structural homologies and genetic
multiple sequence alignments (MSAs). In addition, the structural motifs for most finite sequences of
amino acids are well known, greatly simplifying the folding problem. The few papers [2, 7, 16, 18]
that apply machine learning methods to protein folding or conformer generation without any structural
motifs predict only one target. In contrast, the general conformer generation problem is a far broader
challenge where the goal is to generate a set of representative conformers. Additionally, there is
insufficient database coverage for other complex polymers that are structurally different from proteins
since they are not as immensely studied [15]. For these reasons, deep learning techniques such as
Alphafold [41] developed for de novo protein generation do not have the same goal as we do.

Main Contributions. First, we argue that posing conformer search as a reinforcement learning
problem has several benefits over alternative formulations including generative models. Second,
we present TorsionNet, a conformer search technique based on Reinforcement Learning (RL). We
make careful design choices in the use of MPNNs [12] with LSTMs [17] to generate independent
torsion sampling distributions for all torsions at every timestep. Further, we construct a nonstationary
reward function to model the task as a dynamic search process that conditions over histories. Third,
we employ curriculum learning, a learning strategy that trains a model on simpler tasks and then
gradually increases the task difficulty. In conformer search, we have a natural indication of task
difficulty, namely the number of rotatable bonds, and size of the molecule. Fourth, we demonstrate
that TorsionNet outperforms chemoinformatic methods in an environment of small and medium sized
alkanes by up to 4x, and outclasses them by at least four orders of magnitude on a large lignin polymer.
TorsionNet also performs around twice as well as the far more compute intensive Self-Guided MD
(SGMD) on the lignin environment. We also demonstrate that TorsionNet has learned to detect
important conformational regions. Curriculum learning is increasingly used in RL but we have little
theoretical understanding for why it works [27]. Our final contribution is showing, via simple simple
theoretical arguments, why curriculum learning might be able to reduce the sample complexity of
simple exploration strategies in RL under suitable assumptions about task relatedness.

Related work. Recently there has been significant work using deep learning models for de novo drug
target generation [53], property prediction [12], and conformer search [11, 23]. Some supervised
approaches [23] require a target dataset of empirically measured molecule shapes, utilizing scarce
data generated by expensive X-ray crystallography. Simm and Hernández-Lobato [43] utilize dense
structural data of a limited class of small molecules generated from a computationally expensive
MD simulation. To our knowledge, no previous works exist that attempt to find conformer sets of
medium to large sized molecules. You et al. [53] and Wang et al. [48] utilize reinforcement learning
on graph neural networks, but neither utilize recurrent units for memory nor action distributions
constructed from subsets of node embeddings. Curriculum learning has been proposed as a way to
handle non-convex optimization problems arising in deep learning [3, 34, 49]. There is empirical
work showing that the RL training process benefits from a curriculum by starting with non-sparse
reward signals, which mitigates the difficulties of exploration [1, 10, 28].
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Figure 1: Conformer oi is the state defined by the molecule’s torsion angles for each rotatable bond.
TorsionNet receives conformer oi along with memory informed by previous conformers and outputs
a set of new torsion angles ai. The MMFF force field Fm then relaxes all atoms to local energy
minimum oi+1 and computes Gibbs(oi+1) = r̄(a), the stationary reward.

2 Conformer Generation as a Reinforcement Learning Problem
We pose conformer search as an RL problem, which introduces several benefits over the generative
models that individually place atoms in 3D space, or produce distance constraints. First and foremost,
the latter models do not solve the problem of finding a representative set of diverse, accessible
conformers since all conformations are generated in parallel without regard for repeats. Moreover,
they require access to expensive empirical crystallographic or simulated MD data. Learning from
physics alone is a long-standing goal in structure prediction challenges to reduce the need for
expensive empirical data. To this end, we utilize a classical molecular force field approximation
called MMFF [13] that can cheaply calculate the potential energy of conformational states and run
gradient descent-based energy minimizations. Conformations that have undergone relaxation become
conformers that lie stably at the bottom of a local potential well. RL-based conformer search is able to
learn the conformational potential energy surface via the process depicted in Figure 1. RL is naturally
adapted to the paradigm of sequential generation with the only training data being scalar energy
evaluations as reward. Deep generative models [43] show reasonable performance for constructing
geometries of molecules very similar to the training distribution, but their exploration ability is
fundamentally limited by the ability to access expensive training sets.

We model the conformer generation problem as a contextual MDP [14, 25] with a non-stationary
reward function, all possible molecular graph structures as the context space X , the trajectory of
searched conformers as the state space S , the torsional space of a given molecule as the action space
A and horizon K. This method can be seen as a deep augmentation of the Confab systematic search
algorithm; instead of sequentially cycling through torsion combinations, we sample intelligently.
As our goal is to find a set of good conformations, we use a non-stationary reward function, which
encourages the agent to search for conformations that have not been seen during its history. Notably,
our model learns from energy function and inter-conformer distance evaluations alone. We use a
Message Passing Neural Network [12] as a feature extractor for the input graph structure to handle
the exponentially large context space. We solve this large state and action space problem with the
Proximal Policy Optimization (PPO) algorithm [36]. Finally, to improve the generalization ability of
our training method, we apply a curriculum learning strategy [3], in which we train our model within
a family of molecules in an imposed order. Next, we formally describe the problem setup.

2.1 Environment

Context space. Our context is the molecular graph structure, which is processed by a customized
graph neural network, called TorsionNet. TorsionNet aggregates the structural information of a
molecule efficiently for our RL problem. We will discuss TorsionNet in detail in the next subsection.

Conformer space and state space. The conformer space of a given molecule with n independent
torsions, or freely rotatable bonds, is defined by the torsional space O = [0, 2π]n. Since we optimize
a non-stationary reward function, the agent requires knowledge of the entire sequence of searched
conformers in order to avoid duplication. We compress the partially observed environment into an
MDP by considering every sequence of searched conformers to be a unique state. This gives rise to
the formalism S ⊂ O∗ and st = (o1, o2, . . . , ot) ∈ Ot.
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Action space. Our action space A ⊂ O is the torsional space. Generating a conformer at each
timestep can be modelled as simultaneously outputting torsion angles for each rotatable bond. We
discretize the action space by breaking down each torsion angle [0, 2π] into discrete angle buckets,
i.e. {kπ/3}6k=1. Each torsion angle is sampled independently of all the other torsions.

Transition dynamics. At each timestep, our model generates unminimized conformation ai ∈ A.
Conformation ai then undergoes a first order optimization, using a molecular force field. We state
that the minimizer Fm is a mapping A 7→ O, which accepts input of output conformer ai and
generates new minimized conformer for the next model step, as in Fm(ai) = oi+1. Distinct generated
conformations may minimize to the same or similar conformer.

Gibbs Score. To measure performance, we introduce a novel metric called the Gibbs Score, which
has not directly been utilized in the conformer generation literature to date. Conformers of a molecule
exist in nature as an interconverting equilibrium, with relative frequencies determined by a Gibbs
distribution over energies. Therefore, the Gibbs score intends to measure the quality of a set of
conformers with respect to a given force field function rather than distance to empirically measured
conformations. It is designed as a representativeness measure of a finite conformation output set to
the Gibbs partition function. For any o ∈ O, we define Gibbs measure as

Gibbs(o) = exp [−(E(o)− E0)/kτ ] /Z0,

where E(o) is the corresponding energy of the conformation o, k the Boltzmann constant, τ the
thermodynamic temperature, and Z0 and E0 are normalizing scores and energies, respectively, for
molecule x gathered from a classical generation method as needed. The exponential function in the
definition above can generate numerically unreliable rewards if the normalization factors Z0 and E0

are selected without consideration of the overall energy level. But they do not need to be set to their
ground truth values for our method to be successful.

The Gibbs measure relates the energy of a conformer to its thermal accessibility at a specific
temperature. The Gibbs score of a set O is the sum of Gibbs measures for each unique conformer:
Gibbs(O) =

∑
o∈O Gibbs(o). With the Gibbs score, the total quality of the conformer set is

evaluated, while guaranteeing a level of inter-conformer diversity with a distance measure that is
described in the next paragraph. It can thereby be used to directly compare the quality of different
output sets. Large values of this metric correspond to good coverage of the low-energy regions of
the conformational space of a molecule. To our knowledge, this metric is the first one to attempt to
examine both conformational diversity and quality at once.

Horizons and rewards. We train the model using a fixed episodic length K, which is chosen on a
per environment basis based on number of torsions of the target molecule(s). We design the reward
function to encourage a search for conformers with low energy and low similarity to minimized
conformations seen during the current trajectory. We first describe the stationary reward function,
which is the Gibbs measure after MMFF optimization:

r̄(a) = Gibbs(Fm(a)), for the proposed torsion angles a ∈ A.

To prune overly similar conformers, we create a nonstationary reward. For a threshold m, distance
metric d : O ×O 7→ R, and s ∈ S the current sequence of conformers, we define:

r(s, a) =

{
0 if exists i, s.t. d(s[i],F(a)) ≤ m,
r̄(a) otherwise

2.2 TorsionNet

The TorsionNet model consists of a graph network for node embeddings, a memory unit, and fully
connected action layers. TorsionNet takes as input a global memory state and the graph of the current
molecule state post-minimization, with which it outputs actions for each individual torsion.

Node Embeddings. To extract node embeddings, we utilize a Graph Neural Network variant, namely
the edge-network MPNN of Fey and Lenssen [9], Gilmer et al. [12]. Node embedding generates
an M -dimensional embedding vector {xi}Ni=1 for each of the N nodes of a molecule graph by the
following iteration:

xt+1
i = Θxti +

∑
j∈N (i)

h
(
xtj , ei,j

)
,
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where x1
i is the initial embedding that encodes location and atom type information, N (i) represents

the set of all nodes connected to node i, ei,j ∈ RD represents the edge features between node i and j,
Θ ∈ RM×M is a Gated Recurrent Unit (GRU) and h ∈ RM × RD → RM is a trained neural net,
modelled by a Multiple Layer Perception (MLP).

Pooling & Memory Unit. After all message passing steps, we have output node embeddings xi
for each atom in a molecule. The set-to-set graph pooling operator [12, 47] takes an input all the
embeddings and creates a graph representation y. We use yt to denote the graph representation at
time step t. Up to time t, we have a sequence of representations {y1, . . . ,yt}. An LSTM is then
applied to incorporate histories and generate the global representation, which we denote as gt.

Torsion Action Outputs. As previously noted, the action space A ⊂ O is the torsional space, with
each torsion angle chosen independently. The model receives a list of valid torsions Tj for the
given molecule for j = 1, . . . n. A torsion is defined by an ordinal succession of four connected
atoms as such Ti = {b1, b2, b3, b4} with each bi representing an atom. Flexible ring torsions are
defined differently, but are outside of the scope of this paper. For each torsion angle Ti, we use
a trained neural network mf , which takes input of the four embeddings and the representation gt
to generate a distribution over 6 buckets: fTi

= mf (xb1 ,xb2 ,xb3 ,xb4 , gt). And finally, torsion
angles are sampled independently and are concatenated to produce the final output action at time t:
at = (aT0 , aT1 , ...aTn), for aTi ∼ fTi .

Proximal Policy Optimization (PPO). We train our model with PPO, a policy gradient method
with proximal trust regions adapted from TRPO (Trust Region Policy Optimization) [35]. PPO has
been shown to have theoretical guarantee and good empirical performance in a variety of problems
[22, 36, 55]. We combine PPO with an entropy-based exploration strategy, which maximizes the
cumulative rewards by executing π:

∑H
t=1 E [rt + αH(π(· | st))] .

Doubling Curricula. Empirically, we find that training directly on a large molecule is sampling
inefficient and hard to generalize. We utilize a doubling curriculum strategy to aid generalization and
sample efficiency. Let XJ = {x1, . . . xJ} be the set of J target molecules from some molecule class.
Let X 1:n

J be the first n elements in the set.

Our doubling curriculum trains on set Xt = X 1:2t−1

J , by randomly sampling a molecule x from Xt as
the context on round t. The end of a round is marked by the achievement of desired performance.
The design of doubling curriculum is to balance learning and forgetting as we always have a 1/2
probability to sample molecules in the earlier rounds (see Algorithm 1 in the appendix).

3 Evaluation
In this section, we outline our experimental setup and results1. Further details such as the contents of
the graph data structure, hyperparameters, and MD experimental setup are presented in Appendix C.
To demonstrate the effectiveness of sequential conformer search, we compare performance first to the
state-of-the-art conformer generation algorithm RDKit on a family of small molecules, and secondly
to molecular dynamics methods on the large-scale biopolymer lignin. All test molecules are shown in
Appendix C, along with normalizing constants.

3.1 Environment Setup

All conformer search environments are set up using the OpenAI Gym framework [5] and use
RDKit for the detection and rotation of independent torsion angles. We use a modular deep RL
framework [42] for training. For these experiments, we utilize the classical force field MMFF94,
both for energy function evaluation and minimization. The minimization process uses an L-BFGS
optimizer, as implemented by RDKit. Z0 and E0 are required for per molecule reward normalization,
and are collected by benchmarking on one run of a classical conformer generation method. For the
non-stationary reward function described in Section 2.1, we use the distance metric known as the
Torsion Fingerprint Deviation [38] to compare newly generated conformers to previously seen ones.
To benchmark on nonsequential generation methods, we sort output conformers by increasing energy
and apply the Gibbs score function.

1Our code is available at https://github.com/tarungog/torsionnet_paper_version.
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Table 1: Method comparison of both score and speed on two branched alkane benchmark molecules.
All methods sample exactly 200 conformers. Standard errors produced over 10 runs.

Method 11 torsion alkane 22 torsion alkane

Gibbs Score Wall Time (s) Gibbs Score Wall Time (s)

RDKit 1.14 ± 0.16 11.41 ± 0.11 1.22 ± 0.43 68.72 ± 0.08

Confab 0.10 ± 0.01 10.25 ± 0.02 ≤ 10−4 26.04 ± 0.12
TorsionNet 2.38 ± 0.25 15.69 ± 0.03 4.48 ± 1.86 35.23 ± 0.06

3.2 Branched Alkane Environment

We created a script to randomly generate molecular graphs of branched alkanes via a simple iterative
process of adding carbon atoms to a molecular graph. 1057 alkanes containing rbn = 10 are chosen
for the train set. The curriculum order is given by increasing number of atoms |b|. The validation
environment consists of a single 10 torsion alkane unseen at train time. All molecules use sampling
horizon K = 200. The input data structure of a branched alkane consists of only one type of atom
embedded in 3D space, single bonds, and a list of torsions, lending this environment simplicity and
clarity for proof of concept. Hydrogen atoms are included in the energy modelling but left implicit
in the graph passed to the model. We collect a normalizing Z0 and E0 for each molecule using the
ETKDG algorithm, with E0 being the smallest conformer energy encountered, and Z0 being the
Gibbs score of the output set with τ = 504K. Starting conformers for alkane environments are
sampled from RDKit, and the distance threshold m is set to 0.05 TFD.

Results. Table 1 shows very good performance on two separate randomly chosen test molecules,
which are 11 and 22 torsion branched alkane examples. Not only does TorsionNet outperform RDKit
by 108% in the small molecule regime, but also it generalizes to molecules well outside the training
distribution and beats RDKit by 267% on the 22-torsion alkane. TorsionNet’s runtime is comparable
to Confab’s on both trials.

3.3 Lignin Environment

We adapted a method to generate instances of the biopolymer family of lignins [31]. Lignin polymers
were generated with the simplest consisting of two monomer unit [2-lignin] and the most complex
corresponding to eight units [8-lignin]. With each additional monomer, the number of possible
structural formulas grows exponentially. The training set consists only of 12 lignin polymers up to 7
units large, ordered by number of monomers for the curriculum. The validation and test molecules are
each unique 8-lignins. The Gibbs score reward for the lignin environment features high variance across
several orders of magnitude, even at very high temperatures (τ = 2000K), which is not ideal for deep
RL. To stabilize training, we utilize the log Gibbs Score as reward, which is simply the natural log of
the underlying reward function as such: rlog(st, at) = log(

∑t
τ=1 r(sτ , aτ ))− log(

∑t−1
τ=1 r(sτ , aτ )).

This reward function is a numerically stable, monotonically increasing function of the Gibbs score.
Initial conformers for lignin environments are sampled from OpenBabel, and the distance threshold
m is set to 0.15 TFD.

3.4 Performance on Lignin Conformer Generation

We compare the lignin conformers generated from TorsionNet with those generated from MD. The
test lignin molecule has 56 torsion angles and is comprised of 8 bonded monomeric units. RDKit’s
ETKDG method failed to produce conformers for this test molecule. Since exploration in conventional
MD can be slowed down and hindered by high energy barriers between configurations, enhanced
sampling methods such as SGMD [6, 51] that speed up these slow conformational changes are used
instead. SGMD is used as a more exhaustive benchmark for TorsionNet performance. Structures
from the 50 ns MD simulation were selected at regular intervals and energetically minimized with
MMFF94. These conformers were further pruned in terms of pairwise TFD and relative energy
cutoffs to eliminate redundant and high-energy conformers.

TorsionNet outperforms SGMD in terms of conformer impact toward Gibbs Score (Table 2). Conven-
tional MD is left out from the results, as it only produced 5 conformers that are within pruning cutoffs,
mainly due to low diversity according to TFD. This means that exploration was indeed hampered by
high energy barriers preventing the trajectory from traversing low energy regions of conformational
space. SGMD showed better ability to overcome energy barriers and was able to produce a high
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Table 2: Summary of conformer generation on lignin molecule with eight monomers
using TorsionNet and molecular dynamics. Standard errors over 10 runs.
Method No. of sampled conformers CPU Time (h) Gibbs Score

Enhanced MD (SGMD)1 10000 277.59 1.00
Confab 1000 0.24 ± 0.01 ≤ 10−4

TorsionNet2 1000 0.35 ± 0.01 2.19 ± 1.01
1 Enhanced MD run only once due to computational expense.
2 All methods are run on CPU at test time to achieve fair comparisons.

Figure 2: (best viewed in color) Torsion angle correlation matrix from SGMD (left) and TorsionNet
(right) using lignin’s heavy atom torsion angles. Absolute contributions larger than 0.01 are shown.
Periodicity of torsion angles is accounted for using the maximal gap shift approach [44].

number of conformers. Although TorsionNet sampled 10x fewer conformers than SGMD, it produces
a Gibbs score on average 119% higher, which demonstrates that TorsionNet sampled low-energy
unique conformers far more frequently than SGMD. In terms of number of calls to the MMFF energy
function, TorsionNet runs 700,000 train time evaluations on non-test lignins and 1000 at test time to
achieve the score presented in the paper. To compare, SGMD takes 25 million CHARMM evaluations
at 2 fs steps on test lignin. TorsionNet is therefore highly efficient at conformer sampling and captured
around twice as much Gibbs score as SGMD at a thousandth of the compute time.

Figure 2 shows the correlated motion of lignin’s torsion angles in SGMD and TorsionNet and gives
insight toward the preferred motion of the molecule. The highest contributions in SGMD are mostly
localized and found along the diagonal, middle, lower right sections of the matrix. These sections
correspond to strong relationships of proximate torsion angles, which SGMD identifies as the main
regions that induce systematic conformational changes in the lignin molecule. With TorsionNet, we
can see high correlations in similar sections, especially the middle and lower right parts of the matrix.
This means that TorsionNet preferred to manipulate torsions in regions that SGMD also deemed to be
conformationally significant. This result demonstrates that TorsionNet and SGMD behave similarly
when it comes to detecting important torsion relationships in novel test molecules.

4 On the Benefit of Curriculum Learning
Previous work [3, 49] explains the benefits of curriculum learning in terms of non-convex optimization,
while many RL papers point out that curriculum learning eases the difficulties of exploration [10, 28].
Here we show that a good curriculum allows simple exploration strategies to achieve near-optimal
sample complexity under a task relatedness assumption involving a joint policy class over all tasks.

Joint function class. We are given a finite set of episodic and deterministic MDPs T =
{M1, . . . ,MT }. Suppose each Mt has a unique optimal policy π∗t . Let π denote a joint policy
and we use π∗ if all the policies are the optimal policies. For any set v ⊆ [T ] of subscripts, let
πv = (πv1 , . . . ,πv|v|).

We assume that π∗ is from a joint policy space Π. The relatedness of the MDPs is characterized by
some structure on the joint policy space. Our learning process is similar to the well-known process of
eliminating hypotheses from a hypothesis class as in version space algorithms. For any set v ∈ [T ],
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once we decide that Mv1 , . . . ,Mv|v| have policies πv , the eliminated hypothesis space is denoted by
Π(πv) = {π′ ∈ Π : π′ = πv}. Finally, for any joint space Π′, we use the subscript t to denote the
t-th marginal space of Π′, i.e. Π′t := {πt : ∃π ∈ Π′,πt = πt}.
Curriculum learning. We define a curriculum τ to be a permutation of [T ]. A CL process can be
seen as searching a sequence of spaces: {Πτ1 ,Πτ2(π̂τ:2), . . . ,ΠτT (π̂τ:T )}, where τ:t for t > 1 is the
first t− 1 elements of the sequence τ and π̂ is a sequence of estimated policies. To be specific, on
round t = 1, our CL algorithm learns MDP Mτt by randomly sampling policies from marginal space
Πτ1 until all the policies in the space are evaluated and the best policy in the space is found, which is
denoted by π̂τ1 . On rounds t > 1, space Πτt(π̂τ:t) is randomly sampled and the best policy is π̂τt .

Theorem 1. With probability at least 1− δ, the above procedure guarantees that π∗τt ∈ Πτt(π̂τ:t)

for all t > 1 and it takes O(
∑T
t=1Kτt |Πτt(π

∗
τ:t)| log2(T |Πτt(π

∗
τ:t)|/δ)) steps to end.

The proof of Theorem 1 is in Appendix A. In some cases (e.g. combination lock problem [20]), we can
show that

∑T
t=1Kτt |Πτt(π

∗
τ:t)|matches the lower bound of sample complexity of any algorithm. We

further verify the benefits of curriculum learning strategy in two concrete case studies, combination
lock problem (discussed in Appendix B) and our conformer generation problem.

4.1 Conformer generation

Problem setup. We simplify the conformer generation problem by finding the best conformers
(instead of a set) of T molecules, where it becomes a set of bandit problems, as our stationary reward
function and transition dynamic only depend on actions. We consider a family of molecules, called
T-Branched Alkanes (see Appendix C) satisfying that the t-th molecule has t independent torsion
angles and is a subgraph of molecule t+ 1 for all t ∈ [1, T ].

Joint policy space. The policy space Πt is essentially the action space Πt = At0, where A0 =
{kπ/3}6k=1. Let a∗t be the optimal action of bandit t. We make Assumption 2 for the conditional
marginal policy spaces of general molecule families.

Assumption 2. For any t ∈ [T ], a∗t ∈ Πt(a
∗
t−1) := {a ∈ Πt : dH(a1:t−1, a

∗
t−1) ≤ φ(t)}, where

dH(a1
t , a

2
t ) :=

∑t
i=1 1(a1

ti 6= a2
ti) for a1

t , a
2
t ∈ At is the Hamming distance. Note that in our

T-Branched Alkanes, φ(t) ≈ 0.

Sample complexity. Applying Theorem 1, each marginal space is Πt(a
∗
t−1) and the total sample

complexity following the curriculum is upper bounded by Õ(
∑T
t=1 |A0|φ(t)+1) with high probability

and learning each molecule separately may require up to
∑T
t=1 |A0|t, which is essentially larger than

the first upper bound when φ(t) < t− 1. When φ(t) remains 0, the upper bound reduces to T |A0|.
Effects of direct parameter-transfer. While it is shown above that a purely random exploration
within marginal spaces can significantly reduce the sample complexity, the marginal spaces are
unknown in most cases as φ(t) is an unknown parameter. Instead, we use a direct parameter-
transfer and entropy based exploration. We train TorsionNet on 10 molecules of T-Branched Alkanes
sequentially and evaluate the performances on all the molecules at the end of each stage. As shown in
Figure 3, the performance on the hardest task increases linearly as the curriculum proceeds.

5 Conclusion and Outlook
Posing conformer search as an RL problem, we introduced the TorsionNet architecture and its related
training platform and environment. We find that TorsionNet reliably outperforms the best freely
available conformer sampling methods, sometimes by many orders of magnitude. We also investigate
the results of an enhanced molecular dynamics simulation and find that TorsionNet has actually
uncovered more of the conformational space than seen via the more intensive sampling method.
These results demonstrate the promise of TorsionNet and DeepRL methods in conformer generation
of large-scale high rbn molecules. Such methods open up the avenue to efficient conformer generation
on any large molecules without conformational databanks to learn from, and to solve downstream
tasks such as mechanistic analysis of reaction pathways. Furthermore, the curriculum-based RL
approach to combinatorial problems of increasing complexity is a powerful framework that can
extend to many domains, such as circuit design with a growing number of circuit elements, or robotic
control bodies with increasing levels of joint detail.
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Figure 3: We train a set of models sequentially on molecules indexed by {1, 2, . . . , 10} from the
T-Branched Alkanes. Axis x represents the model trained on molecule x with parameters transferred
from model x− 1. Axis y represents the distance in energy between the conformation predicted by
model x and the best conformer for target y marked by the colors. The confidence interval is the one
standard error among 5 runs. Red dashed line marks the one-step transferring performance.

Our work is a first step toward solving the conformer generation problem using deep reinforcement
learning. There are many opportunities for further work. First, the vast chemical space beyond lignin
and branched alkanes is worth exploring. Second, some molecules may have rotationally-equivalent
conformers, for example, conformations with methyl groups, which may undercount the free energy
of symmetrical configurations. Future work can work on extensions to deal with such symmetry
issues. Finally, to generate test molecules, we used simple incremental generation for branched
alkanes and fragments of lignin. Future work can consider more sophisticated molecular generation
methods [40, 52].

6 Broader Impacts
The reported viability of TorsionNet signifies that it can be applied to conformer generation of relevant
large flexible molecules in other areas such as chemistry and materials science. The investigation
on the non-fossil carbon source lignin helps inform targeted depolymerization strategies to yield
valuable products for applications such as renewable energy.
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A Proof of Theorem 1
Recall the Theorem 1.

The optimal policy π∗τt is guaranteed in Πτt(π̂τ:t) for all t ≥ 1. With probability at least 1− δ, the
algorithm takes at most O(

∑T
t=1Kτt |Πτt(π

∗
τ:t)| log2(T |Πτt(π

∗
τ:t)|/δ)) steps to end. A curriculum-

free algorithm that learns tasks separately requires samples at least
∑T
t=1Kt|Πt|.

For the first argument, we use induction. On round t, assuming

π∗τt ∈ Πτt(π̂τ:t), (1)

we have π̂t = π∗τt . Then for t+ 1, equation (1) also holds. As π∗τ1 ∈ Πτ1 , the argument follows by
induction. For the second part, we it is essentially a Coupon Collector’s problem.

Lemma 3 (Coupon Collector’s problem). It takes O(N log2(N/δ)) rounds of random sampling to
see all N distinct options with a probability at least 1− δ.

Proof. Consider a general sampling problem: for any finite set N with |N | = N . For any n, whose
sampling probability is p(c), with a probability at least 1− δ, it requires at most

log(1/δ)

log(1 + p(n)
1−p(n) )

for n to be sampled.

Since log(1 + x) ≥ x− 1
2x

2 for all x > 0, we have

log(1/δ)

log(1 + p(n)
1−p(n) )

≤ log(1/δ)
1

p(n)
1−p(n) −

p(n)2

2(1−p(n))2

= O(log(1/δ)
1− p(n)

p(n)
).

Searching the whole space N with each new element being found with probability N−i
N at round i, it

requires at most

O(

N∑
i=1

log(
N

δ
)
N

N − i
) = O(log2(

N

δ
)N),

with a probability at most 1− δ.

By Lemma 3, with a probability 1 − δ/T , search the marginal policy space Πτt(π:τt) requires at
most O(Kτt log2(T |Πτt(π:τt)|/δ)|Πτt(π:τt)|) times policy evaluation. As the horizon for task τt is
Kt, the total number of samples to search the whole joint space is

T∑
t=1

Kτt |Πτt(π:τt)| log2(T |Πτt(π:τt)|/δ).

B Combination lock
Problem setup. We consider the combination lock problem [20]. As shown in Figure 4, the set of T
MDPs {M1, . . . ,MT } share the same action space A = {−1,+1}. The t-th task has the state space
St = {1, . . . , t}, the episode length t. The agent receives 0 reward on all but the last state t in the
t-th task. There are two actions, one for staying on the current state and the other one for moving
forward, i.e. st+1 = st + 1.

1 2 3 T-1 Ta = +1 a = +1 a = +1

a = +1, reward = +1a = -1a = -1 a = -1 a = -1

Figure 4: Combination lock MDPs.

Joint policy space. We assume the same optimal actions on the common states shared by different
tasks. Formally, πt1(s, h1) = πt2(s, h2) for t2 ≥ t1, s ∈ St1 and h1 ∈ [t1], h2 ∈ [t2].
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Figure 5: We trained a set of models sequentially on gridworld problem with size {3, 5, . . . , 17}.
Model x is the model trained on environment x using the parameters transferred from model x− 1.
The colors represent the target environment. Each point (x, y) in the plot represents the distance in
rewards between the conformer suggested by model x and the optimal reward. The red dashed line
links the points of test environments x+ 1 using the model trained on environment x. The confidence
interval is based on the standard deviation over 100 episodes.

Sample complexity. By [50], the total number of steps needed to learn MT is at least AT 3. The
lower bound can only be achieved by carefully designed exploration strategy, which accounts for
the underlying function class. Applying Theorem 1, a purely random exploration strategy following
curricula M1, . . . ,MT has an upper bound of O(

∑T
t=1Ht|Πt(πt)| log(

∑T
t=1 |Πt(πt)|

δ )) = Õ(AT 3)
with probability at least 1− δ, which matches the lower bound. Solving MT directly using random
exploration requires O(2T ) samples.

Experiment setup. To match the experiment setup in our conformer generation problem, we conduct
the combination lock experiment on a harder environment, MiniGrid. MiniGrid is a minimalistic
gridworld environment for OpenAI Gym with an image input. The environment is shown in Figure 6.
In our experiments, we train an PPO on MiniGrid of size 25, with target grid changing according to
the sequence {(3, 3), (5, 5), (7, 7), . . . , (17, 17)}. The model setting and hyper-parameters are the
same in Torch-rl. Whenever the model converges on the current task, we test the average regret over
100 samples on all the tasks from 3 to 17. The results are shown in Figure 5. As we can see, we
observe a similar pattern as shown in Figure 3.

Figure 6: MiniGrid environment of size 6: an agent takes actions from {Turn Left, Turn Right, Move
Forward} to reach the target grid (green). The starting grid is always placed in the left-up corner (1,
1) of the gridworld. A positive reward 1 is received only when the agnet reaches the target grid.
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C Algorithm Details and Experimental Parameters
C.1 Curriculum Algorithm

Algorithm 1 TorsionNet trained with doubling curriculum

Initialize model parameter θ, round t = 1, the sequence of target molecule XJ , starting set
X1 = {XJ [1]};
for round t = 1, . . . , T do

while True do
1. Sample a molecule x from Xt
2. Train on x with TorsionNet.
if Performance Threshold Reached then

3. Set Xt+1 ← Xt
4. Add molecules from XJ to Xt+1 until |Xt+1| = 2|Xt|
5. XJ ← XJ\Xt+1

6. Break
end if

end while
end for

The specifics of our implementation is included with the code.

C.2 Features and Hyperparameters

Table 3: Molecule Features
Feature Feature Type Description Dimensionality

Atom type Node [C, O] (one-hot) 2
Position Node 3D Cartesian coordinates (float) 3
Bond type Edge [Single, Double, Triple, Aromatic] (one-hot) 4
Conjugated Edge Bond belongs to a conjugated system (boolean) 1
Ringed Edge Bond is in a closed ring (boolean) 1

Position of atoms are given by Cartesian coordinates. These are taken directly from the RDKit
conformer object, then normalized in two ways. Firstly atoms are centered on the origin. Then,
rotation is normalized such that eigenvectors align with coordinate axes.

Table 4: Experimental Constants
Molecules E0 (kcal/mol) Z0 τ(◦K)

11-torsion alkane 18.0451260322537 3.34544474520153 500
22-torsion alkane 14.882782943326 1.2363186365185 500
8-lignin 525.8597422 16.1548792743065 2000

E0 and Z0 are utilized for Gibbs evaluation. Normalizers for alkane train and test molecules are
sampled from RDKit ETKDG with default settings, and for the lignin test environment via exhaustive
SGMD sampling. The lignin train molecules have normalizers collected via OpenBabel sampling.
We include the constants for test molecules here, but all remaining constants for train molecules are
included in code repository in Appendix E.

Table 5: Selected Hyperparameters
Hyperparameter Value

Message Passing Steps 6
Set-to-Set Passes 6
Node Embedding Dimension 128
LSTM Hidden State Dimension 256

Full hyperparameter setup described in code repo (Appendix E).
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C.3 Test Molecule Depiction

(a) 11-torsion alkane (b) 22-torsion alkane

Figure 7: Stick visualization of alkane test molecules with implicit hydrogen atoms. (black: carbon)

Figure 8: Stick visualization of 8-lignin molecule with implicit hydrogen atoms. (black: carbon, red:
oxygen)
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(a) T-Alkane 0 (b) T-Alkane 4 (c) T-Alkane 9

Figure 9: Stick visualization of T-Branched Alkane molecule family with implicit hydrogen atoms.
Each subsequent T-alkane is a superset of the molecular graph of the prior T-alkane, with one
additional carbon on the long end. (black: carbon)

Full smiles string is given for each molecule in code repo (Appendix E).

C.4 Molecular Dynamics Computational Details

The lignin oligomer topology was obtained using Lignin-KMC [31] and 3D coordinates were
generated with OpenBabel’s gen3D [29] and optimized with molecular mechanics. CHARMM [6]
was the software used for the molecular dynamics simulations. Parametrization of the system was
done with the CHARMM General Forcefield (CGenFF) [46]. The simulations were carried out with
Langevin dynamics in vacuum at 300K with a collision frequency of 10 per ps. The nonbonded list
cutoff was set at 14 angstroms and interactions were modulated by a switching function between
10 and 12 angstroms. The shake constraint was used to fix bond lengths involving hydrogen atoms.
The simulations involved 2 ns of heating and 50 ns of production at 2 fs timestep. The self-guided
dynamics settings involved a local average time of 0.2 ps and momentum guiding factor of 1. The
coordinates in the production run were saved every 5 ps for subsequent analysis.

D Diversity of conformer sets
We calculate the RMSD (root-mean-square deviation) of every pair of conformers of 8-Lignin
generated by SGMD and TorsionNet. The former has 2352 conformers and the latter has 1000
conformers. As shown in Figure 10, both methods have similar distribution for the pair-wises RMSDs
with a range roughly in [4, 10] angstroms.

Figure 10: Histograms of pairwise RMSDs of two conformers sets, one from SGMD (left) and the
other one from TorsionNet (right). The unit of distance for the x-axis is angstrom.

E Code
Github link: https://github.com/tarungog/torsionnet_paper_version
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