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Optimism-Based Adaptive Regulation of
Linear-Quadratic Systems

Mohamad Kazem Shirani Faradonbeh, Ambuj Tewari, and George Michailidis

Abstract—The main challenge for adaptive regulation of linear-
quadratic systems is the trade-off between identification and
control. An adaptive policy needs to address both the estimation
of unknown dynamics parameters (exploration), as well as the
regulation of the underlying system (exploitation). To this end,
optimism-based methods which bias the identification in favor of
optimistic approximations of the true parameter are employed
in the literature. A number of asymptotic results have been
established, but their finite time counterparts are few, with
important restrictions.

This study establishes results for the worst-case regret of
optimism-based adaptive policies. The presented high probability
upper bounds are optimal up to logarithmic factors. The non-
asymptotic analysis of this work requires very mild assumptions;
(i) stabilizability of the system’s dynamics, and (ii) limiting the
degree of heaviness of the noise distribution. To establish such
bounds, certain novel techniques are developed to comprehen-
sively address the probabilistic behavior of dependent random
matrices with heavy-tailed distributions.

Index Terms—Regret Bounds, Optimism in the Face of Un-
certainty, Certainty Equivalence, Exploration-Exploitation, Re-
inforcement Learning.

I. INTRODUCTION

ADAPTIVE control of Linear-Quadratic (LQ) state space
models represents a canonical problem, and is the main

focus of this work. Such a model describes the dynamics of
the system as follows: starting from the initial state x(0) ∈ Rp,
its temporal evolution and cost are determined by

x(t+ 1) = A0x(t) +B0u(t) + w(t+ 1), (1)
ct = x(t)′Qx(t) + u(t)′Ru(t), (2)

for t = 0, 1, · · · . The vector x(t) ∈ Rp denotes the output
(and state) of the system at time t, u(t) ∈ Rr represents the
control signal, and the stochastic process of the noise sequence
is denoted by {w(t)}∞t=1. Further, the quadratic function ct
corresponds to the instantaneous cost of the system (the trans-
pose of the vector v is denoted by v′). The transition matrix
A0 ∈ Rp×p and the input matrix B0 ∈ Rp×r which constitute
the dynamical parameters of the system are unknown, while
the positive definite matrices of the cost, Q ∈ Rp×p, R ∈ Rr×r
are assumed known.
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The main goal is to adaptively regulate the system in
order to minimize its long-term average cost. This canonical
problem has been thoroughly studied in the literature and a
number of asymptotic results have been established, as briefly
summarized next. However, finite time results are scarce and
rather incomplete, despite their need in applications (e.g.
network systems [1]). Note that the theoretical guarantee for
fast stabilization of general linear systems has been recently
established [2], but the existing analysis of the regulation
problem of cost minimization leads to a remarkable loss of
generality, as will be discussed shortly.

Since the system dynamics are unknown, a popular adaptive
procedure for regulation is based on the principle of Certainty
Equivalence (CE) [3]. Alternating between estimation and
regulation, CE applies a control feedback as if the identified
parameters A0, B0 are the true matrices that drive the system’s
evolution [4], [5], [6]. However, it has been shown that the
CE based strategy can lead to wildly incorrect parameter esti-
mates [7], [8], [9], and thus suitable modifications have been
introduced in the literature [10], [11]. A popular approach,
known as Optimism in the Face of Uncertainty (OFU) [12],
was developed to address the suboptimality of CE. In OFU,
after constructing a confidence set for the model parameters,
a regulation policy is designed based on the most optimistic
parameter in the confidence set [13].

The above references establish the asymptotic convergence
of the average cost to the optimal value. However, non-
asymptotic results on the growth rate of regret (i.e., the accu-
mulative deviation from the optimal cost, see (5)) have recently
appeared [14], [15]. These papers provide a near-optimal upper
bound for the regret of OFU, under the following rather
restrictive conditions:

1) The dynamics matrices are assumed to be controllable
and observable. This leads to an excessive complexity
in the computation of the adaptive regulator. Further,
this assumption restricts the applicability of the analysis
since the condition may be violated in many LQ systems.

2) The operator norm of the closed-loop matrix is less than
one, which excludes a remarkable fraction of systems
with stable closed-loop matrices. In fact, a stable matrix
can have an arbitrarily large operator norm. Note that
condition 1 only implies that the largest closed-loop
eigenvalue (not the operator norm) is less than one [16].

3) The noise distribution satisfies a tail condition such as
sub-Gaussianity [14] or Gaussianity [15]. Moreover, the
coordinates of the noise vectors are uncorrelated.

This work aims to address these shortcomings by providing
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a comprehensive treatment of the problem. We study optimal-
ity of OFU policies for an extensive family of LQ systems by
establishing upper bounds for the worst-case regret, under a
minimal set of assumptions. Namely, we remove condition 1
above, and replace the strict condition 2 with stabilizability,
which is the necessary assumption for the optimal control
problem to be well-defined. Further, the high probability
near-optimal upper bound for regret established in this work
holds for a class of heavy-tailed noise vectors with arbitrary
correlation structures, thus significantly relaxing condition 3.
To the authors’ knowledge, this work is the first addressing
the non-asymptotic analysis of the regret of adaptive policies
for general LQ systems.

There are a number of conceptual and technical difficul-
ties one needs to address in order to obtain the results of
optimal regulation. First, existing methodology for analyzing
adaptive policies [11], [14], [15] becomes non-applicable
beyond condition 2. One reason is due to the fact that
matrix multiplication preserves the operator norm; i.e., the
norm of the product is upper bounded by the product of
the norms. However, the product of two stable matrices can
have eigenvalues of arbitrarily large magnitude. Further, sub-
Weibull distributions assumed in this work do not need to have
generating functions [17]. Hence, new tools are required to
establish concentration inequalities for random matrices with
heavy-tailed probability distributions [18], [19].

In addition, an adaptive strategy is needed to stabilize the
system so that the uncertainty about A0, B0 does not lead to
instability. Adaptive stabilization methods are proposed before,
and their finite time performance analysis is provided [2]. First,
a coarse approximation of the unknown dynamics parameter
is shown to be enough for stabilization. Then, it is estab-
lished that such approximations can be achieved by employing
independent random feedbacks in sufficiently many periods.
Nevertheless, for non-asymptotic analysis of the performance
of regulation policies, a comprehensive study is not currently
available, and is adopted as the focus of this study. In case
the operator is concerned with stability issues, the algorithm
in the aforementioned reference can be applied a priori to the
regulation algorithms we discuss here.

The remainder of this paper is organized as follows. Section
II formally defines the problem. Section III addresses the
problem of accurate estimation of the closed-loop matrix
and includes the analysis of the empirical covariance ma-
trix, as well as a high probability prediction bound. Finally,
an optimism-based algorithm for adaptive regulation of the
system is presented in Section IV. We show that the regret
of Algorithm 1 is with high-probability optimal, up to a
logarithmic factor.

The following notation is used throughout this paper. For
matrix A ∈ Cp×q , A′ is its transpose. When p = q, the
smallest (respectively largest) eigenvalue of A (in magnitude)
is denoted by λmin(A) (respectively λmax(A)) and the trace
of A is denoted by tr (A). For γ ∈ R, γ ≥ 1, v ∈ Cq , the

norm of v is ||v||γ =

(
q∑
i=1

|vi|γ
)1/γ

. Further, when γ = ∞,

the norm is defined according to ||v||∞ = max
1≤i≤q

|vi|. We also

use the following notation for the operator norm of matrices.
For β, γ ∈ [1,∞], and A ∈ Cp×q , define

|||A|||γ→β = sup
v∈Cq\{0}

||Av||β
||v||γ

.

Whenever γ = β, we simply write |||A|||β . Finally, the sigma-
field generated by random vectors X1, · · · , Xn is denoted by
σ (X1, · · · , Xn). The notation for θ,K (θ) , L (θ), and L̃ (θ)
are provided in Definition 2, equations (3), (4), and Definition
4, respectively. Finally, log is employed throughout the paper
to refer to the natural logarithm function.

II. PROBLEM FORMULATION

First, we formally discuss the problem of adaptive regulation
this work is addressing. Equation (1) depicts the dynamics of
the system, where {w(t)}∞t=1 are independent mean-zero noise
vectors with full rank covariance matrix C:

E [w(t)] = 0, E [w(t)w(t)′] = C, |λmin (C)| > 0.

The results established also hold if the noise vectors are mar-
tingale difference sequences. The true dynamics are assumed
to be stabilizable, as defined below.

Definition 1 (Stabilizability [16]). [A0, B0] is stabilizable if
there is L ∈ Rr×p such that |λmax (A0 +B0L)| < 1. The
linear feedback matrix L is called a stabilizer.

Definition 2 (Notation θ). We use θ to denote the dynamics
parameter [A,B], where A and B are p×p and p×r matrices,
respectively. Obviously θ ∈ Rp×q , for q = p+r. In particular,
we frequently refer to θ0 = [A0, B0] throughout the paper.

Here, we consider perfect observations, i.e., the output of
the system corresponds to the state vector itself. Next, an
admissible control policy is a mapping π which designs the
control action according to the dynamics matrix θ0, the cost
matrices Q,R, and the history of the system; that is, for all
t ≥ 0,

u(t) = π
(
θ0, Q,R, {x(i)}ti=0 , {u(j)}t−1

j=0

)
.

An adaptive policy is ignorant about the parameter θ0. So,

u(t) = π
(
Q,R, {x(i)}ti=0 , {u(j)}t−1

j=0

)
.

When applying the policy π, the resulting instantaneous
quadratic cost at time t defined according to (2) is denoted by
c
(π)
t . If there is no superscript, the corresponding policy will

be clear from the context. For arbitrary policy π, let J π (θ0)
be the average cost of the system:

J π (θ0) = lim sup
T→∞

1

T

T∑
t=1

c
(π)
t .

Note that the dependence of J π (θ0) to the known cost
matrices Q,R is suppressed. Then, the optimal average cost
is defined by J ? (θ0) = min

π
J π (θ0), where the minimum

is taken over all admissible policies. Further, π? is called an
optimal policy for system θ, if satisfying J π? (θ) = J ? (θ).
To find π? for general θ ∈ Rp×q , one has to solve a Riccati
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equation. A solution, is a positive semidefinite matrix K (θ)
satisfying

K (θ) = Q+A′K (θ)A

−A′K (θ)B (B′K (θ)B +R)
−1
B′K (θ)A. (3)

The following result establishes optimality of the linear feed-
back provided by K (θ) according to

L (θ) = − (B′K (θ)B +R)
−1
B′K (θ)A. (4)

Definition 3 (Policy π?). Henceforth, let π? denote the linear
feedback policy u(t) = L (θ0)x(t), for all t ≥ 0.

Lemma 1 (Optimality [2]). If θ0 is stabilizable, then (3) has a
unique solution, π? is optimal, and J ? (θ0) = tr (K (θ0)C).
Conversely, if K (θ0) is a solution of (3), L (θ0) is a stabilizer.

Note that in the latter case of Lemma 1, the existence of
a solution K (θ0) implies that it is unique, π? is an optimal
policy, and J ? (θ0) = tr (K (θ0)C).

In order to measure the quality of (adaptive) policy π, the
resulting cost will be compared to the optimal average cost
defined above. More precisely, letting c

(π)
t be the resulting

instantaneous cost at time t, regret at time T is defined as

R (T ) =

T∑
t=1

[
c
(π)
t − J ? (θ0)

]
. (5)

The comparison between adaptive control policies is made
according to regret. The next result describes the asymptotic
distribution of the regret. Lemma 2, which is basically a
Central Limit Theorem for R (T ), states that even when
applying optimal policy, the regret R (T ) scales as O

(
T 1/2

)
,

multiplied by a normal random variable.

Lemma 2. Applying π?, let D = A0+B0L (θ0) be the closed-
loop matrix. Then, T−1/2R (T ) converges in distribution to
N
(
0, σ2

)
as T grows, where

σ2 = 4 tr

(
K (θ0)CK (θ0)

∞∑
n=1

DnCD′
n

)

+ lim
T→∞

T−1
T∑
t=1

Var [w(t)′K (θ0)w(t)] > 0.

The proof of Lemma 2 based on an application of the
martingale Central Limit Theorem [19] is deferred to the
supplementary materials [20]. In the sequel, we discuss the
result of Lemma 2. In the definition of regret in (5), the
cumulative deviation from the optimal average cost can be
decomposed into the following two fractions:
(i) The probabilistic fraction contributed by the stochastic
evolution of the system and randomness of {w(t)}∞t=1.
(ii) The statistical fraction caused by the uncertainty about the
dynamics and unknownness of θ0 to the operator.
Lemma 2 states that the probabilistic fraction scales with
the growth rate O

(
T 1/2

)
. So, trying to push the statistical

fraction of the regret (which is due to the error in learning
the unknown dynamics) to have a rate less than O

(
T 1/2

)
is actually unnecessary. Further, Lemma 2 provides a lower
bound for the worst-case regret of adaptive policies. Since

the optimal policy for minimizing the expected cumulative

cost
T∑
t=0

E [ct] converges to π? as T grows [16], the regret

of an arbitrary policy can not be smaller than that of π?. On
the other hand, the high probability upper bound of a normal
distribution is in magnitude at least (− log δ)

1/2. Therefore,
Lemma 2 implies that a high probability regret bound to
hold with probability at least 1 − δ, needs to be at least
of the order of magnitude of T 1/2 (− log δ)

1/2. Note that
the above argument does not necessarily imply impossibility
of the smaller magnitudes for the statistical fraction of the
regret1. However, since there are information theoretic limits
in learning the unknown parameter θ0, statistical regret can
not be small. A rigorous derivation of lower bounds for the
statistical regret is beyond the scope of this work. Although,
later on we will intuitively discuss efficiency of the rate T 1/2,
based on the decomposition being used in the regret analysis
of Section IV.

Definition 4 (Notation L̃ (θ)). For arbitrary stabilizable
θ1, θ2, let L̃ (θ1) =

[
Ip, L (θ1)

′]′. So, θ2L̃ (θ1) = A2 +
B2L (θ1).

III. CLOSED-LOOP IDENTIFICATION

When applying linear feedback L ∈ Rr×p to the system, the
closed-loop dynamics becomes x(t+ 1) = Dx(t) +w(t+ 1),
where D = A0 + B0L. Subsequently, we present bounds for
the time length the user can interact with the system in order to
have sufficiently many observations for accurate identification
of the closed-loop matrix. The next set of results are used
later on to construct the confidence sets being used to design
the adaptive policy. Since the focus is on adaptive policies for
regulating the system, the matrix D is assumed to be stable.

First, we define least-squares estimation for matrix D, as
follows. Observing the state vectors {x(t)}nt=0, for an arbitrary
matrix M ∈ Rp×p consider the sum-of-squares loss function

Ln (M) =

n−1∑
t=0

||x(t+ 1)−Mx(t)||22.

Then, the true closed-loop transition matrix D is estimated
by D̂n, which is a minimizer of the above loss: Ln

(
D̂n

)
=

min
M∈Rp×p

Ln (M). Solving for D̂n, one can easily see that it

admits the closed form expression

D̂n =

n−1∑
t=0

x(t+ 1)x(t)′V −1
n ,

where Vn =
n−1∑
t=0

x(t)x(t)′ denotes the (invertible) empirical

covariance matrix of the state process. Therefore, the behavior
of Vn needs to be carefully studied. To this end, one needs to
tightly examine the state sequence {x(t)}nt=0, which in turn
highly depends on both the spectral properties of the transition
matrix D, as well as the noise process {w(t)}nt=1. The former
is reflected through the constant η (D), while the latter is
indicated by νn (δ) we shortly define.

1for example, applying π?, we get lim
T→∞

T−1/2E [R (T )] = 0.
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To proceed, let D = P−1ΛP be the Jordan decomposition
of D; i.e., Λ is block diagonal, Λ = diag (Λ1, · · · ,Λk), where
for all i = 1, · · · , k, Λi is a Jordan matrix of λi:

Λi =


λi 1 0 · · · 0
0 λi 1 · · · 0
...

...
...

...
...

0 0 · · · 0 λi

 ∈ Cmi×mi .

Definition 5 (Constant η (D)). Denote the Jordan decompo-
sition described above by D = P−1ΛP . Letting

ηt (Λi) = inf
ρ≥|λi|

tmi−1ρt
mi−1∑
j=0

ρ−j

j!
,

for t ≥ 1, define ηt (Λ) = max
1≤i≤k

ηt (Λi). Then, let η0 (Λ) = 1,

and

η (D) =
∣∣∣∣∣∣P−1

∣∣∣∣∣∣
∞→2

|||P |||∞
∞∑
t=0

ηt (Λ) .

Letting λ = |λmax (D)|, if D is diagonalizable, then clearly
η (D) ≤

∣∣∣∣∣∣P−1
∣∣∣∣∣∣
∞→2

|||P |||∞
(
1− λ

)−1
. In general, denoting

the dimension of the largest block in the Jordan decomposition
of D by µ = max

1≤i≤k
mi, we have ηt (Λ) ≤ tµ−1λ

t
e1/λ, and

η (D) ≤
∣∣∣∣∣∣P−1

∣∣∣∣∣∣
∞→2

|||P |||∞e
1/λ

[
µ − 1

− log λ
+

(µ − 1)!(
− log λ

)µ
]
.

Toward studying the effect of the noise vectors on the state
process, the following tail condition is assumed.

Assumption 1 (Sub-Weibull distribution [17]). There are
positive reals b1, b2, and α, such that for all t ≥ 1; 1 ≤ i ≤ p;
and y > 0,

P (|wi(t)| > y) ≤ b1 exp

(
−y

α

b2

)
.

Clearly, the smaller the exponent α is, the heavier the tail
of wi(t) will be. Assuming a sub-Weibull distribution for the
noise coordinates is more general than the sub-Gaussian (or
sub-exponential) assumption routinely made in the literature of
non-asymptotic analysis [14], where α ≥ 2 (α ≥ 1). To gain
insight into the basic properties of sub-Weibull distributions,
consider the setting α < 1. It delivers an extensive family of
distributions for which moments of all orders are well-defined,
while the moment generating function does not exist. So, it
relaxes more restrictive tail conditions to a minimal framework
that finite time concentration results can be established. Fur-
ther, Assumption 1 encompasses fundamental distributions that
sub-Exponential families fail to capture, such as polynomials
of Gaussian random variables. Finally, to obtain analogous
results for uniformly bounded noise sequences, it suffices to
let α→∞ in the subsequently presented materials.

In order to study magnitudes of the state vectors over time,
define:

νn (δ) =

(
b2 log

(
b1np

δ

))1/α

, (6)

ξn (δ) = η (D) (||x(0)||∞ + νn (δ)) . (7)

Lemma 3 and Lemma 4 show that νn (δ) , ξn (δ) are the
high probability uniform bounds for the size of the noise and
the state vectors. As a matter of fact, νn (δ) , ξn (δ) scale
as log1/α (n/δ). Hence, for uniformly bounded noise, both
of them are fixed constants. Then, recalling that C is the
positive definite covariance matrix of the noise vectors, let
N (ε, δ) be large enough, such that the followings hold for all
n ≥ N (ε, δ):

n

νn (δ)
2 ≥ 18 |λmax (C)|+ 2ε

ε2
p log

(
4p

δ

)
, (8)

n

ξn (δ)
2
νn (δ)

2 ≥ 288

ε2
p|||D|||22 log

(
4p

δ

)
, (9)

n

ξn (δ)
2 ≥ 6

ε

(
|||D|||22 + 1

)
. (10)

The following result provides a high probability lower bound
for the smallest eigenvalue of Vn+1. Essentially, Theorem 1
determines the number of state observations needed to ensure
that the excitation is persistent enough to identify the closed-
loop matrix [21], [22].

Theorem 1 (Empirical covariance). If n ≥ N (ε, δ), then

P (|λmin (Vn+1)| < n (|λmin (C)| − ε)) < 2δ.

Moreover, lim
n→∞

n−1Vn =
∞∑
i=0

DiCD′
i.

Proof. First, for n ≥ 1, and 0 < δ < 1, define the event:

W =

{
max

1≤t≤n
||w(t)||∞ ≤ νn (δ)

}
. (11)

We use the following intermediate results, for which the proofs
are delegated to the supplement, due to space limitations (also
available online [20]).

Lemma 3. Defining W according to (11), we have P (W) ≥
1− δ.

Lemma 4. The following holds on the event W in (11):

max
1≤t≤n

||x(t)||2 ≤ ξn (δ) .

Lemma 5. Let the event W be as (11), and de-

fine Cn = n−1
n∑
i=1

w(i)w(i)′. Then, on W we have

P (|λmax (Cn − C)| > ε) ≤ δ, if

n

νn (δ)
2 ≥

6 |λmax (C)|+ 2ε

3ε2
p log

(
2p

δ

)
. (12)

Lemma 6. Let Un = n−1
n−1∑
i=0

[
Dx(i)w(i + 1)′ + w(i +

1)x(i)′D′
]
, and define W by (11). Then, on W we have

P (|λmax (Un)| > ε) ≤ δ, if

n

|||D|||22νn (δ)
2
ξn (δ)

2 ≥
32p

ε2
log

(
2p

δ

)
. (13)

Next, note that x(t+ 1) = Dx(t) + w(t+ 1) implies

Vn+1 = x(0)x(0)′ +D

n−1∑
i=0

x(i)x(i)′D′ + nUn + nCn,
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where Cn, Un are defined in Lemma 5, and Lemma 6. So, we
obtain the Lyapunov equation Vn+1 = DVn+1D

′ + nEn, for

En = Un+Cn+
D (x(0)x(0)′ − x(n)x(n)′)D′

n
+
x(0)x(0)′

n
,

to obtain

Vn+1 = n

∞∑
i=0

DiEnD
′i. (14)

Henceforth, suppose that W holds. According to Lemma 5,
(8) implies that

P
(
|λmax (Cn − C)| > ε

3

)
≤ δ

2
. (15)

In addition, by Lemma 6, (9) implies that

P
(
|λmax (Un)| > ε

3

)
≤ δ

2
. (16)

Finally, using Lemma 4, by (10) we get

1

n

(
|||D|||22 + 1

)(
||x(0)||22 + ||x(n)||22

)
≤ ε

3
. (17)

Putting (15), (16), and (17) together, onW , with probability at
least 1− δ, it holds that |λmin (En)| ≥ |λmin (C)| − ε. There-
fore, since (14) implies that |λmin (Vn+1)| ≥ n |λmin (En)|,
we get the desired result.When n → ∞, the conditions
hold for arbitrary positive values of ε, δ. Thus, we have
|λmax (En − C)| → 0, which according to (14) implies the
desired result.

The following corollary provides a high probability confi-
dence set for D, which will be used later in Algorithm 1.
Using the bounds νn (δ) , ξn (δ) introduced in (6), (7), define
the prediction bound βn (δ) according to:

βn (δ) =
16np

(n− 1) |λmin (C)|
ξn (δ)

2
νn (δ)

2
log

(
2p

δ

)
.

(18)

Corollary 1 (Prediction bound). Define βn (δ) by (18). Then,
n ≥ N (|λmin (C)| /2, δ) + 1 implies that

P

(∣∣∣∣∣∣∣∣∣∣∣∣Vn1/2
(
D̂n −D

)′∣∣∣∣∣∣∣∣∣∣∣∣2
2

> βn (δ)

)
≤ 3δ.

Proof. First, since n ≥ N (|λmin (C)| /2, δ) + 1, similar to
the proof of Theorem 1, on the event W defined in (11),
with probability at least 1 − δ, we have |λmin (Vn)| ≥
|λmin (C)| (n− 1) /2. Then, as long as Vn is nonsingular,

one can write D̂n − D =

(
n−1∑
t=0

w(t+ 1)x(t)′
)
V −1
n , which

yields
(
D̂n −D

)
Vn

(
D̂n −D

)′
= U ′nV

−1
n Un, where Un =

n−1∑
t=0

x(t)w(t+ 1)′. Therefore,∣∣∣∣∣∣∣∣∣∣∣∣(D̂n −D
)
Vn

(
D̂n −D

)′∣∣∣∣∣∣∣∣∣∣∣∣
2

≤
|||Un|||22
|λmin (Vn)|

. (19)

To proceed, for arbitrary matrix H ∈ Rk×`, define the dilation

Φ (H) =

[
0k×k H
H ′ 0`×`

]
∈ R(k+`)×(k+`).

A well known fact states that the equality |||H|||2 =
|λmax (Φ (H))| holds [18]. So, letting Zt = x(t)w(t + 1)′,
apply the following random matrix concentration inequality
to Xt = Φ (Zt) ∈ R2p×2p.

Lemma 7. [18] Let {Xi}ni=1 be a martingale difference
sequence of symmetric p×p matrices adapted to the filtration
{Fi}ni=0. Assume for fixed symmetric matrices {Mi}ni=1, all
matrices M2

i − X2
i are positive semidefinite. Then, letting

σ2 =

∣∣∣∣λmax

(
n∑
i=1

M2
i

)∣∣∣∣, for all y ≥ 0 we have

P

(∣∣∣∣∣λmax

(
n∑
i=1

Xi

)∣∣∣∣∣ ≥ y
)
≤ 2p exp

(
− y2

8σ2

)
.

Since

Xt
2 =

[
||w(t+ 1)||22x(t)x(t)′ 0p×p

0p×p ||x(t)||22w(t+ 1)w(t+ 1)′

]
,

by Lemma 3 and Lemma 4, all matrices Mt
2−Xt

2 are positive
semidefinite on the event W defined in (11), with Mt =
Φ
(
p1/2νn (δ) ξn (δ) Ip

)
. By σ2 = npνn (δ)

2
ξn (δ)

2, letting
y = 81/2σ log1/2

(
2p
δ

)
, Lemma 7 implies P (|||Un|||2 > y) =

P (|λmax (Φ (Un))| > y) ≤ δ. Plugging in (19), we get the
desired result.

IV. DESIGN OF ADAPTIVE POLICY

In this section, we present an algorithm for adaptive regula-
tion of LQ systems. When applying the following algorithm,
we assume that a stabilizing set is provided. Construction
of such a set with an arbitrary high probability guarantee
is addressed in the literature [2]. It is established that the
proposed adaptive stabilization procedure returns a stabilizing
set in finite time. Nevertheless, if such a set is not available,
the operator can apply the proposed method of random linear
feedback [2] in order to stabilize the system before running
the following adaptive policy.

In the episodic algorithm below, estimation will be rein-
forced at the end of every episode. Indeed, the algorithm is
based on a sequence of confidence sets, which are constructed
according to Corollary 1. This sequence will be tightened
at the end of every episode so that the provided confidence
sets become more and more accurate. According to this
sequence, the adaptive linear feedback will be updated after
every episode. After explaining the algorithm, we present a
high probability regret bound.

First, we provide a high level explanation of the algorithm.
Starting with the stabilizing set Ω(0), we select a parameter
θ̃(1) ∈ Ω(0) based on OFU principle; θ̃(1) is a minimizer of
the optimal average cost over the corresponding confidence set
(see (20)).

Then, assuming θ̃(1) is the true parameter the system evolves
according to, during the first episode the algorithm applies
the optimal linear feedback L

(
θ̃(1)
)

. Once the observations
during the first episode are collected, they are used to improve
the accuracy of the high probability confidence set. Therefore,
Ω(0) is tightened to Ω(1), and the second episode starts by
selecting θ̃(2), iterating the above procedure, and so on. The
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lengths of the episodes will be increasing, to make every
confidence set significantly more accurate than all previous
ones.

The intuition behind proficiency of the OFU principle is
as follows. Applying a linear feedback L, the closed-loop
transition matrix is A0 + B0L = θ0L̃, where L̃ = [Ip, L

′]
′.

Importantly, the observed sequence of state vectors accurately
identifies the closed-loop matrix θ0L̃. However, an accurate
estimation of θ0L̃ does not lead to that of θ0. Therefore, θ0

is not guaranteed to be effectively approximable, regardless of
the accuracy in the approximation of θ0L̃.

Nevertheless, one has to focus on finding accurate approx-
imations of the feedback matrix L (θ0), in order to design
an effective adaptive policy for minimizing the average cost.
Specifically, as long as θ1 is available satisfying L (θ1) =
L (θ0), one can apply an optimal linear feedback L (θ1), no
matter how large |||θ1 − θ0|||2 is. In general, estimation of
such a θ1 is not possible. Yet, an optimistic approximation in
addition to exact knowledge of the closed-loop dynamics lead
to an optimal linear feedback, thanks to the OFU principle.

Lemma 8. If J ? (θ1) ≤ J ? (θ0), and θ1L̃ (θ1) = θ0L̃ (θ1),
then L (θ1) is optimal for the system θ0: L (θ0) = L (θ1).

In other words, applying linear feedback L (θ1) which is
designed according to an optimistically selected parameter
θ1, as long as the closed-loop matrix θ0L̃ (θ1) is exactly
identified, the optimal linear feedback is automatically pro-
vided. Recall that the lengths of the episodes are growing so
that the estimation of the closed-loop matrix becomes more
precise at the end of every episode. Thus, the approximation
θ1L̃ (θ1) ≈ θ0L̃ (θ1) is becoming more and more accurate.
Rigorous analysis of the discussion above, leads to the high
probability near-optimal regret bound of Theorem 2.

Algorithm 1 takes the stabilizing set Ω(0), the failure prob-
ability 6δ, and the reinforcement rate γ > 1 as inputs. Indeed,
Ω(0) is a bounded stabilizing set such that for every θ ∈ Ω(0),
the system will be stable if the optimal linear feedback of θ is
applied; that is,

∣∣∣λmax

(
θ0L̃ (θ)

)∣∣∣ < 1. As mentioned before,
an algorithmic procedure to obtain a bounded stabilizing set
in finite time is available in the literature [2]. Furthermore,
6δ > 0 is the highest probability that Algorithm 1 fails to
adaptively regulate the system such that the regret will be
nearly optimal (see Theorem 2). The reinforcement rate γ
determines the growth rate of the lengths of the time intervals
(episodes) a specific feedback is applied until being updated
(see (21)).

The algorithm provides an adaptive policy as follows. For
i = 1, 2, · · · , at the beginning of the i-the episode, we apply
linear feedback u(t) = L

(
θ̃(i)
)
x(t), where

θ̃(i) ∈ arg min
θ∈Ω(i−1)

J ? (θ) . (20)

Indeed, based on OFU principle, at the beginning of every
episode, the most optimistic parameter among all we are
uncertain about is being selected. The length of episode i,
which is the time period we apply the adaptive control policy
u(t) = L

(
θ̃(i)
)
x(t), is designed according to the following

Algorithm 1 : Adaptive Regulation

Inputs: Ω(0) ⊂ Rp×q , 6δ > 0, γ > 1
Let τ0 = 0
for i = 1, 2, · · · do

Define θ̃(i), τi according to (20), (21), respectively
while t < τi do

Apply control feedback u(t) = L
(
θ̃(i)
)
x(t)

end while
Find the estimate D̂(i) given in (22)
Using V (i) in (23), construct Γ(i) according to (24)
Update Ω(i) by (25)

end for

equation. Letting τ0 = 0, we update the control policy at the
end of episode i at the time t = τi, defined according to

τi = τi−1 + γi/qN

(
|λmin (C)|

2
,
δ

i2

)
+ γi/q, (21)

where N (·, ·) is defined by (8), (9), and (10). After the
i-th episode, we estimate the closed-loop transition matrix
θ0L̃

(
θ̃(i)
)

by the following least-squares estimator:

D̂(i) = arg min
M∈Rp×p

τi−1∑
t=τi−1

||x(t+ 1)−Mx(t)||22. (22)

Letting V (i) be the empirical covariance matrix of episode i,

V (i) =

dτie−1∑
t=dτi−1e

x(t)x(t)′, (23)

define the high probability confidence set

Γ(i) =

{
θ ∈ Rp×q :

∣∣∣∣∣∣∣∣∣∣∣∣V (i)1/2
(
θL̃
(
θ̃(i)
)
− D̂(i)

)′∣∣∣∣∣∣∣∣∣∣∣∣2
2

≤ βτi−τi−1

(
δ

i2

)}
, (24)

where βn (δ) is defined in (18). Note that according to
Corollary 1, P

(
θ0 ∈ Γ(i)

)
≥ 1 − 3δi−2. Then, at the end of

episode i, the confidence set Ω(i−1) will be updated to

Ω(i) = Ω(i−1) ∩ Γ(i), (25)

and episode i + 1 starts, finding θ̃(i+1) by (20), and then
iterating all steps described above.

Remark 1. The choice of θ̃(i) does not need to be as extreme
as (20) [14]. In fact, it suffices to satisfy J ?

(
θ̃(i)
)
≤

(τi − τi−1)
−1/2

+ inf
θ∈Ω(i−1)

J ? (θ).

The following result states that performance of the above
adaptive control algorithm is optimal, apart from a logarithmic
factor. Theorem 2 also provides the effect of the degree of
heaviness of the noise distribution (denoted by α in Assump-
tion 1) on the regret. Compared to O (·), the notation Õ (·)
used below, hides the logarithmic factors.

Theorem 2 (Regret bound). For bounded Ω(0), with proba-
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bility at least 1− 6δ, the regret of Algorithm 1 satisfies:

R (T ) ≤ Õ
(
T 1/2 (− log δ)

1/2+2/α
)
.

Proof. The stabilizing set Ω(0) is bounded:

ρ1 = sup
θ∈Ω(0)

|||θ′|||2 <∞. (26)

Suppose that for t = 1, 2, · · · , the parameter θt is being used
to design the adaptive linear feedback u(t) = L (θt)x(t). So,
during every episode, θt does not change, and for τi−1 ≤ t <
τi we have θt = θ̃(i).

Letting Ft = σ (w(1), · · · , w(t)), the infinite horizon dy-
namic programming equations [16] are

J ? (θt) + x(t)′K (θt)x(t) = x(t)′Qx(t) + u(t)′Ru(t)

+ E
[
y(t+ 1)′K (θt) y(t+ 1)

∣∣∣Ft] ,
where u(t) = L (θt)x(t), and

y(t+1) = Atx(t)+Btu(t)+w(t+1) = θtL̃ (θt)x(t)+w(t+1)
(27)

describes the desired dynamics of the system. Note that since
the true evolution of the system is governed by θ0, the next
state is

x(t+1) = A0x(t)+B0u(t)+w(t+1) = θ0L̃ (θt)x(t)+w(t+1).
(28)

Substituting (27), and (28) in the dynamic programming
equation, and using (2) for the instantaneous cost ct, we have

J ? (θt) + x(t)′K (θt)x(t)

= ct + E
[
w(t+ 1)′K (θt)w(t+ 1)

∣∣∣Ft]
+ x(t)L̃ (θt)

′
θ′tK (θt) θtL̃ (θt)x(t)

= ct + E
[
x(t+ 1)′K (θt)x(t+ 1)

∣∣∣Ft]
+ x(t)L̃ (θt)

′
[θ′tK (θt) θt − θ′0K (θt) θ0] L̃ (θt)x(t).

Adding up the terms for t = 1, · · · , T , we obtain:

R (T ) =

T∑
t=1

[ct − J ? (θ0)] = Y1 + Y2 + Y3 + Y4, (29)

where the expressions for Y1,Y2,Y3,Y4 are defined in (30)-
(33). Let m (T ) be the number of episodes considered until
time T . Thus,

τm(T ) ≤ T < τm(T )+1.

Now, letting ni = bτi−τi−1c be the length of episode i, define
the following events

G =

∞⋂
i=1

{
max

τi−1≤t<τi
||w(t)||∞ ≤ νni

(
δ

i2

)}
,

H =

∞⋂
i=1

{
θ0 ∈ Ω(i)

}
.

According to Corollary 1,

P (G ∩ H) ≥ 1−
∞∑
i=1

3δ

i2
≥ 1− 5δ. (34)

For all i = 1, 2, · · · , as long as θ0 ∈ Ω(i−1), according to (20)
we have J ?

(
θ̃(i)
)
≤ J ? (θ0); i.e., J ? (θt) − J ? (θ0) ≤ 0.

Therefore, on G ∩ H we have

Y1 ≤ 0. (35)

To conclude the proof, we leverage some auxiliary results. The
proofs of the following lemmas are deferred to supplement due
to space limitations (available online [20]).

Lemma 9 (Bounding Y2). On G∩H, the following holds with
probability at least 1− δ:

Y2 ≤ ρ2 + (8T )1/2ρ3

(
log (Tm (T ))

)2/α

(− log δ)
1/2+2/α

,

where ρ2, ρ3 <∞ are fixed constants.

Lemma 10 (Bounding Y3). On G ∩ H, we have

Y3 ≤ ρ3

(
log (Tm (T ))

)2/α

(− log δ)
2/α

m (T ) ,

where ρ3 is the same as Lemma 9.

Lemma 11 (Bounding Y4). On the event G ∩H, it holds that

Y4 ≤ ρ4m (T )
3/2

βT

(
δ

m (T )
2

)1/2

T 1/2,

for some fixed constant ρ4 <∞.

Lemma 12 (Bounding m (T )). On the event G ∩ H the
following holds:

m (T ) ≤ q

log γ
log

(
T
(
γ1/q − 1

)
τ1

+ 1

)
.

Finally, the definition of βn (δ) in (18) yields

βn (δ) = O
(

(log n)
4/α

(− log δ)
1+4/α

)
.

Therefore, plugging (35), and the results of Lemmas 9, 10, 11,
and 12 into (29), we get R (T ) ≤ Õ

(
T 1/2 (− log δ)

1/2+2/α
)

,
with probability at least 1− δ on G ∩H. Hence, according to
(34), the failure probability is at most 6δ, which completes the
proof.

To conclude this section, we briefly discuss the behavior
of the statistical regret introduced in the discussion after
Lemma 2. For this purpose, we use the regret decomposition of
(29) into the terms Y1, · · · ,Y4 being defined in (30) - (33).
According to Lemma 10, Y3 scales logarithmically with T .
Further, since the martingale Y2 is bounded in expectation, we
have lim sup

T→∞
E [Y2] <∞. Hence, one can approximately study

the behavior of the statistical regret by addressing Y1,Y4.
First, note that the expression θ′0K (θt) θ0−θ′tK (θt) θt in (33)
can be substituted by (θ0 + θt)

′
K (θt) (θ0 − θt). Since K (θt)

is positive definite [2], the magnitude of Y4 is approximately

as large as
T∑
t=1
|||θt − θ0|||2. A similar argument applies to Y1

in the sense that the decay rate of J ? (θt)− J ? (θ0) heavily
relies on the error of learning θ0 through θt. Then, the learning
accuracy at time t is at best of the order t−1/2 [4]. Hence,
the statistical regret an adaptive policy needs to incur is at
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Y1 =

T∑
t=1

[J ? (θt)− J ? (θ0)] , (30)

Y2 =

T∑
t=1

(
x(t)′K (θt)x(t)− E

[
x(t+ 1)′K (θt+1)x(t+ 1)

∣∣∣Ft] ), (31)

Y3 =

T∑
t=1

E
[
x(t+ 1)′ (K (θt+1)−K (θt))x(t+ 1)

∣∣∣Ft] , (32)

Y4 =

T∑
t=1

x(t)′L̃ (θt)
′
[
θ′0K (θt) θ0 − θ′tK (θt) θt

]
L̃ (θt)x(t). (33)

least O
(
T 1/2

)
, because of lack of knowledge about the true

parameter. Converting this lower bound sketch into a rigorous
proof is beyond the scope of this work, and is left as an
interesting problem for future studies.

V. CONCLUSION

This work investigated adaptive regulation schemes for
linear dynamical systems with quadratic costs, focusing on
finite time analysis for regret. Using the OFU principle, we
established non-asymptotic efficiency results under the mild
condition of stabilizability, and also assuming a fairly general
heavy-tailed noise distributions.

Note that implementation of the OFU principle in (20) leads
to a non-convex optimization problem. Thus, from a practi-
cal viewpoint, computationally faster algorithms for adaptive
regulation are of interest. For this purpose, one can employ
randomization methods in order to balance identification and
regulation. Analysis of adaptive policies based on dithering
the control signal, or randomizing the parameter estimate is
provided by Faradonbeh et al. [23], [24].

There are a number of interesting extensions of the current
work. First, generalizing the non-asymptotic analysis of effi-
ciency to imperfect observations of the state vector is a topic of
future investigation. Another interesting direction is to specify
the sufficient and necessary conditions for the true dynamics
which lead to optimality of Certainty Equivalence. In addition,
re-examining the problem for large network systems where the
dynamics matrices can be sparse is also of interest.
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