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ABSTRACT
Data-driven control strategies for dynamical systems with un-
known parameters are popular in theory and applications. An
essential problem is to prevent stochastic linear systems be-
coming destabilized, due to the uncertainty of the decision-
maker about the dynamical parameter. Two randomized al-
gorithms are proposed for this problem, but the performance
is not sufficiently investigated. Further, the effect of key pa-
rameters of the algorithms such as the magnitude and the fre-
quency of applying the randomizations is not currently avail-
able. This work studies the stabilization speed and the failure
probability of data-driven procedures. We provide numerical
analyses for the performance of two methods: stochastic feed-
back, and stochastic parameter. The presented results imply
that as long as the number of statistically independent ran-
domizations is not too small, fast stabilization is guaranteed.

Index Terms— randomized algorithms, fast stabilization,
stochastic feedback, stochastic parameter, unstable dynamics.

1. INTRODUCTION

Sequential decision-making strategies for stochastic linear
systems is an ubiquitous model extensively used in different
fields such as biology, robotics, finance, and cryptography
[1, 2, 3, 4, 5]. The setting consists of a state-space dynamical
model following the stochastic trajectory

x(t+ 1) = A0x(t) +B0u(t) + ξ(t+ 1). (1)

That is, the current state vector x(t) ∈ Rp together with the
current action u(t) ∈ Rr lead the system to the next state
x(t+ 1), according to (1). The linear dynamical model is be-
ing disturbed by the stochastic noise process {ξ(t)}∞t=1. The
state transition matrixA0, and the action influence matrixB0,
both of appropriate dimensions, are unknown.

The objective is to analyze the performance of adaptive
stabilization procedures. The focus is on randomized algo-
rithms for stabilizing the system by designing the control ac-
tions according to the observed state sequence. Note that the
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control action can cause instability of the state vector. That
is due to the uncertainty of the decision maker about the dy-
namics matrices A0, B0. After the stabilization procedure,
the control policy for the operating plant under consideration
needs to be designed [6, 7, 8]. The real applications determine
the goal being for example minimizing the input energy or
regulating the state vector. Therefore, a reliable stabilization
algorithm is required to be executed prior to the regulation
step, and is desired to guarantee the stabilization quite fast. In
general, design of effective methods for finite time stabiliza-
tion has been recognized as a difficult problem [9, 10].

Next, we briefly review various algorithms proposed in
the literature for stabilization. Early work consider a re-
stricted setting where the operator norm of the closed-loop
matrix is less than one [11]. Then, employing parameter
estimation and policy design in an alternate manner, the sys-
tem is shown to be stabilized [12]. Ensuing work establishes
the theoretical guarantee for a randomized algorithm based
on stochastic feedbacks (SF) [13]. In case of availability of
many independent trajectories, stabilizing feedbacks can be
learned using only the last sample of each trajectory [14].
Further, reinforcement learning algorithms relying on other
randomization methods such as stochastic parameters (SP)
[15], and input perturbation [16, 17] are presented in the
literature. The former designs the stabilizing feedback for
a randomly generated dynamics parameter, while the latter
adds an independent dither signal to the control command.
Both procedures then learn the true dynamical parameters
through observing the state sequence.

This work studies the performance of SF and SP which
compared to the other aforementioned methods, are able to
stabilize a larger class of linear systems. In both algorithms,
k random control policies are being applied to the system for
episodes of equal lengths.1 Although some theoretical results
exist in the literature [13, 15], practicality of these stabiliza-
tion algorithms is not studied. Further, analysis of SF and
SP is of independent interest because the underlying stochas-
tic systems are unstable and time-varying. This work aims
to address the above gap through considering the implemen-
tation of the algorithms. We provide numerical analysis to
compare the amount of time needed for the stabilization. Fur-
ther, we study the learning accuracy, the failure probability,

1k ≥ 1 + dr/pe is required, see Section 3 for details



and the effect of both the number of episodes, and the stan-
dard deviation (of the stochastic feedbacks and the stochastic
parameters).

This paper is organized as follows. In Section 2 we for-
mulate the stabilization problem this work is addressing and
discuss the theoretical backgrounds. In Section 3, two ran-
domized algorithms to stabilize the system in finite time are
discussed. Then, in Section 4 the numerical analysis of the
presented algorithms are provided by depicting stabilization
speeds, learning accuracies, and failure probabilities.

Notation: For square matrix M , the largest eigenvalue of
M (in magnitude) is denoted by λmax(M). For vector v, ||v||
is the Euclidean norm, and the operator norm of matrices is
denoted by |||M ||| = sup

||v||=1

||Mv||. For the notation θ, see Def-

inition 1. Finally, N (µ,Σ) denotes the normal distribution
with mean vector µ and covariance matrix Σ.

2. THEORETICAL FRAMEWORK

To set the stage, we briefly discuss the theoretical framework
of the problem. First, the system needs to be stabilizable:

Assumption 1. There exists a r× p stabilizer matrix L. That
is, |λmax (A0 +B0L)| < 1.

The noise in (1) is a sequence of centered independent
random vectors; E [ξ(t)] = 0, satisfying the following.

Assumption 2. The noise covariance matrices are positive
definite; |λmin (E [ξ(t)ξ(t)′])| > 0. Further, the noise is sub-

Gaussian: sup
t≥1

E
[
exp

(
β||ξ(t)||2

)]
<∞, for some β > 0.

Given the time length T , the objective is to design the con-
trol sequence {u(t)}T−1t=0 effectively. That is, one can stabilize
the system utilizing the observations {x(t)}Tt=0 acquired by
applying {u(t)}T−1t=0 . For this purpose, we employ a model-
based approach so that the algorithm learns A0, B0 through
observing the history by date: Ht =

{
{x(i)}ti=0 , {u(i)}t−1i=0

}
.

The subsequent argument shows that a coarse approximation
suffices for stabilization. To proceed, we define a notation:

Definition 1. Henceforth, for all A ∈ Rp×p, B ∈ Rp×r, we
use [A,B] and θ ∈ Rp×q interchangeably, where q ≡ p+ r.

It is well known that the system can be stabilized by solv-
ing a Riccati equation [18]. First, let Q ∈ Rp×p, R ∈ Rr×r

be arbitrary positive definite matrices. Then, define K (θ) as
a possible solution of the algebraic Riccati equation K (θ) =

Q+A′K (θ)A−A′K (θ)B (B′K (θ)B +R)
−1
B′K (θ)A.

Accordingly, for an arbitrary dynamics parameter θ, define
the linear feedback matrix

L (θ) = − (B′K (θ)B +R)
−1
B′K (θ)A. (2)

The matrixK (θ) exists for almost all θ (w.r.t. Lebesgue mea-
sure [19]), and L (θ) stabilizes the system:

Lemma 1. [13] There exists a fixed ε0 > 0, such that an
ε0-accurate approximation ensures the stabilization. That is,∣∣∣∣∣∣∣∣∣θ̂ − θ0

∣∣∣∣∣∣∣∣∣ ≤ ε0 implies that
∣∣∣λmax

(
A0 +B0L

(
θ̂
))∣∣∣ < 1.

3. ALGORITHMS

The system can be stabilized by leveraging Lemma 1, to-
gether with the recent results on fast identification of unsta-
ble systems [20, 17]. In the sequel, we explain two differ-
ent randomization methods, and compare their performance
through numerical simulations. Note that since during the sta-
bilization period the system is presumably unstable, the state
vector can grow unbounded. In order to learn the unstable

Algorithm 1 : SF

Input: time length T , No. of episodes k, variance σ2.
for i = 1, · · · , k do

for j = 1, · · · , p do
Draw column j of Li from N

(
0, σ2Ir

)
end for
for (i− 1) bTk c ≤ t < ibTk c do

Apply u(t) = Lix(t)
end for
Estimate D̂i by (3)

end for
Compute θ̂T according to (4)

linear dynamical systems, a sufficient and necessary condi-
tion is the closed-loop regularity [21]. In regular matrices, all
eigenspaces corresponding to the eigenvalues of magnitude
larger than one are one dimensional. To satisfy the regularity
condition, it suffices to apply stochastic feedbacks [13]. The
stabilizing algorithm proposed in the above reference utilizes
a few random feedback matrices to accurately learn θ0.

Namely, suppose that we want to stabilize the system in
T time steps. The algorithm applies k statistically indepen-
dent Gaussian feedback matrices L1, · · · , Lk in episodes of
the equal length bT/kc. Collecting the history HkbT/kc, the
algorithm first estimates the closed-loop matrix A0 +B0Li:

D̂i = arg min
D∈Rp×q

ibT/kc−1∑
`=(i−1)bT/kc

||x(`+ 1)−Dx(`)||2. (3)

Then, the closed-loop estimates D̂1, · · · , D̂k are being used
to estimate the true dynamics parameter θ0 according to:

θ̂T = arg min
θ∈Rp×q

k∑
i=1

∣∣∣∣∣∣∣∣∣∣∣∣D̂i − θ

[
Ip
Li

]∣∣∣∣∣∣∣∣∣∣∣∣2. (4)

The corresponding pseudo-code is provided in Algorithm 1.
To ensure that the learning procedure leads to an accurate
approximation, the number of episodes k satisfies k ≥ 1 +



Fig. 1:
∣∣∣λmax

(
A0 +B0L

(
θ̂
))∣∣∣ vs

∣∣∣∣∣∣∣∣∣θ̂ − θ0

∣∣∣∣∣∣∣∣∣.
dr/pe [13]. The following high probability result is estab-
lished for the performance of the stochastic feedback (SF)
method.

Lemma 2. [13] Defining ε0 similar to Lemma 1, let θ̂T be
the output of Algorithm 1. Then, there is c0 > 0 such that

P
(∣∣∣∣∣∣∣∣∣θ̂T − θ0

∣∣∣∣∣∣∣∣∣ > ε0

)
≤ e−Tc0 .

Putting Lemma 1 and Lemma 2 together, we conclude that
the failure probability of SF decays exponentially with T .

Algorithm 2 : SP

Input: time length T , No. of episodes k, variance σ2.
for i = 1, · · · , k do

for j = 1, · · · , q do
Draw column j of θi from N

(
0, σ2Ip

)
end for
for (i− 1) bTk c ≤ t < ibTk c do

Apply u(t) = L (θi)x(t)
end for
Estimate D̂i by (3)

end for
Compute θ̂T according to (5)

Here, we also study another randomization procedure based
on stochastic parameters (SP). In this method, the algorithm
draws Gaussian independent parameters θ1, · · · ,θk. Then,
in each episode i, SP applies the control u(t) = L (θi)x(t),
which is computed according to (2). At the end of every
episode, the closed-loop matrix is estimated by (3). Finally,
putting the estimates D̂1, · · · , D̂k together, SP learns θ̂T by
the minimization problem

θ̂T = arg min
θ∈Rp×q

k∑
i=1

∣∣∣∣∣∣∣∣∣∣∣∣D̂i − θ

[
Ip

L (θi)

]∣∣∣∣∣∣∣∣∣∣∣∣2. (5)

Similarly, the lower bound k ≥ 1 + dr/pe is necessary to
ensure identifiability of θ̂T . Algorithm 2 depicts the imple-
mentation of SP.

Fig. 2:
∣∣∣∣∣∣∣∣∣θ̂T − θ0

∣∣∣∣∣∣∣∣∣ vs T , where θ̂T is given by Algorithm 1,
for k = 3 (red), k = 4 (green), and k = 5 (black).

Fig. 3: Percentage of stabilization by Algorithm 1 vs T , for
k = 2 (blue), k = 3 (red), k = 4 (green), and k = 5 (black).

Fig. 4:
∣∣∣∣∣∣∣∣∣θ̂T − θ0

∣∣∣∣∣∣∣∣∣ vs T , where θ̂T is given by Algorithm 2,
for k = 3 (red), k = 4 (green), and k = 5 (black).

4. NUMERICAL ANALYSIS

In this section we simulate SF and SP for the dynamics
matrices A0, B0 in (6), and the cost matrices Q,R in (6),



A0 =

1.07 0 −0.37
0.48 −0.88 0.85

0 0.03 −0.92

 , B0 =

−0.48 0.44 −0.29
−0.51 0.59 0.26
0.29 0 −0.74

 , Q =

 1.31 −0.17 −0.28
−0.17 1.14 0.51
−0.28 0.51 5.01

 , (6)

R =

2.01 0.54 0.77
0.54 1.38 0.42
0.77 0.42 2.38

 , K (θ0) =

 2.83 0 −0.87
0 2.20 −0.32

−0.87 −0.32 7.31

 , L (θ0) =

 0.45 −0.19 0.5
−0.62 0.35 −0.04
0.13 0.06 −0.77

 . (7)

Fig. 5: Percentage of stabilization by Algorithm 2 vs T , for
k = 2 (blue), k = 3 (red), k = 4 (green), and k = 5 (black).

(7). Entries of A0, B0, Q,R are rounded, after being ran-
domly generated by MATLAB. For this system, solving
the Riccati equation, we get K (θ0) , L (θ0) as (7). Then,
if one designs the feedback gain according to the true pa-
rameter θ0, the spectral radius of the closed-loop matrix is
|λmax (A0 +B0L (θ0))| = 0.51.

Fig. 1 illustrates the statement of Lemma 1. The largest
eigenvalue of the closed-loop matrix is reported as a func-
tion of the error in the dynamics parameter. The scatter plot
consists of different error values

∣∣∣∣∣∣∣∣∣θ̂ − θ0

∣∣∣∣∣∣∣∣∣, and the resulting

spectral radius
∣∣∣λmax

(
A0 +B0L

(
θ̂
))∣∣∣.

Fig. 2, and Fig 3 plot the performance of Algorithm 1
for 100 replications, as the number of time steps T grows.
The accuracy of learning the unknown dynamics parameter
θ0 is reported in Fig. 2 for different values of k, σ. Further,
Fig. 3 graphs the number of replications in which the system
is stabilized. This can be interpreted as a surrogate for the
stabilization probability in Lemma 2.

Similarly, Fig. 4 and Fig. 5 illustrate the performance of
Algorithm 2. The results on the learning error

∣∣∣∣∣∣∣∣∣θ̂T − θ0

∣∣∣∣∣∣∣∣∣
are depicted in Fig. 4. Then, Fig. 5 plots the percentage of
the 100 replications that the linear feedback designed by the
output of Algorithm 2 stabilizes the true dynamics θ0. Note
that in both Fig. 2 and Fig. 4, the graph for k = 2 is omitted
since in this case the learning error is much larger than the
other cases k = 3, 4, 5.

According to the above figures, as long as k ≥ 2, stabi-
lization will eventually occur. However, the case k = 2 is
significantly slower, and less accurate, compared to the oth-
ers. All three cases k = 3, 4, 5 although, exhibit similar per-
formances. On the other hand, comparing different values of
σ, it is clear that the magnitude of the random matrices (Li

in SF and θi in SP) does not have any remarkable influence
on the performance. More precisely, different values of σ are
indifferent as long as they are not too small, or too large. If
σ is very small, the randomization will be masked by the ran-
domness of the noise process {w(t)}∞t=1, and is not practical.
Further, for large values of σ, the spectral radius of the re-
sulting closed-loop is wildly large, and leads to an immediate
explosion.
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