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Finite Time Adaptive Stabilization of LQ Systems
Mohamad Kazem Shirani Faradonbeh, Ambuj Tewari, and George Michailidis

Abstract—Stabilization of linear systems with unknown dy-
namics is a canonical problem in adaptive control. Since the
lack of knowledge of system parameters can cause it to become
destabilized, an adaptive stabilization procedure is needed prior
to regulation. Therefore, the adaptive stabilization needs to be
completed in finite time. In order to achieve this goal, asymptotic
approaches are not very helpful. There are only a few existing
non-asymptotic results and a full treatment of the problem is not
currently available.

In this work, leveraging the novel method of random linear
feedbacks, we establish high probability guarantees for finite time
stabilization. Our results hold for remarkably general settings
because we carefully choose a minimal set of assumptions. These
include stabilizability of the underlying system and restricting the
degree of heaviness of the noise distribution. To derive our results,
we also introduce a number of new concepts and technical tools
to address regularity and instability of the closed-loop matrix.

Index Terms—Random Feedbacks, Unstable Estimation, Fast
Stabilization, Finite Time Identification, Closed-loop Regularity.

I. INTRODUCTION

WE consider finite time stabilization of the following
linear system. Given the initial state x(0) ∈ Rp, for

t = 0, 1, · · · , we have

x(t+ 1) = A0x(t) +B0u(t) + w(t+ 1), (1)

where at time t, the vector x(t) ∈ Rp corresponds to the state
(and output) of the system, u(t) ∈ Rr is the control action, and
{w(t)}∞t=1 is a sequence of noise (i.e., random disturbance)
vectors. The dynamics of the system, i.e., both the transition
matrix A0 ∈ Rp×p, as well as the input matrix B0 ∈ Rp×r,
are fixed but unknown.

In order to stabilize the system, we need to design an adap-
tive procedure and establish finite time theoretical guarantees
of stabilization. Once the system has been stabilized, we can
use an adaptive regulation policy to minimize the cost function
determined by the application. Hence, the stabilization proce-
dure needs to be completed in a relatively short time period.
There is an extensive literature providing infinite time analyses
to adaptively stabilize a Linear-Quadratic (LQ) system [1],
[2], [3], [4], [5], whereas finite time results are scarce and
rather incomplete. This work aims to contribute to the limited
literature on this topic.

M.K.S.F. acknowledges partial support by the UF Informatics Institute. The
work of G.M. was supported in part by the National Science Foundation under
grants IIS-1632730, DMS-1821220, and CCF-1442493. A.T. acknowledges
the support of NSF CAREER grant IIS-1452099 and of a Sloan Research
Fellowship.

M.K. Shirani Faradonbeh and G. Michailidis are with the Department of
Statistics, University of Florida, Gainesville, FL, 32611-5585 USA (e-mail:
mfaradonbeh@ufl.edu, gmichail@ufl.edu)

Ambuj Tewari is with the Department of Statistics, University of Michigan,
Ann Arbor, MI 48109-1107 USA (e-mail: tewaria@umich.edu)

The evolution of LQ systems is governed by linear dynam-
ics, while the operating cost is a quadratic function of the
state and the control signal. To deal with the uncertainty about
the true matrices guiding the system’s dynamics, a standard
scheme is Certainty Equivalence (CE) [6]. Its prescription is to
assume that the estimated parameters coincide with the true
dynamics matrices. However, it is shown that inconsistency
occurs with positive probability [7], [8], [9], which can lead
to instability. This motivated modifying CE to Optimism in
the Face of Uncertainty (OFU) [10], [11], [12], [13]. OFU
prescribes to act as if an optimistic approximation of the true
parameter is the one guiding the evolution of the system.

Recent finite time analyses consider a restricted setting
[14], [15], where the proposed adaptive stabilization procedure
heavily relies on the following strong conditions. First, control-
lability and observability of the true dynamics matrices of the
system are assumed. Second, the closed-loop transition matrix
is required to have operator norm less than one. Note that the
former does not imply the latter [16]. Third, uncertainty about
the true dynamics matrices is restricted to an a priori known
bounded box in the space of p× (p+ r) matrices. Finally, the
noise vectors are supposed to have a sub-Gaussian distribution
with uncorrelated coordinates.

We introduce our stabilization algorithm and establish finite
time guarantees for it in Section IV. Leveraging the novel
method of random linear feedbacks, we address the four afore-
mentioned limitations. The first assumption (which imposes
a computationally intractable constraint [17]), as well as the
third one (which requires possibly unavailable information)
are not needed. Further, we relax the operator norm condition
to the minimal assumption of stabilizability. Finally, the noise
process is generalized to the much larger class of sub-Weibull
distributions which includes some heavy-tailed distributions
and allows coordinates to be correlated. Note that unlike the
operator norm condition, stability of matrices is not preserved
by multiplication (i.e., the product of stable matrices can be
unstable). This means that existing theoretical techniques [13],
[14] used in addressing the stabilization problem fail to work
when the operator norm is not less than one.

To derive finite time guarantees of stabilization, new con-
cepts and technical tools are needed to address the following
issues:

1) Because of the unbounded growth of the state vectors
[18], the classical results of persistent excitation [19] are
not applicable.

2) Since the system is not fully stabilized yet, the closed-
loop matrix can have eigenvalues both inside and outside
the unit circle. Thus, the smallest (largest) eigenvalue
of the Gram matrix scales linearly (exponentially) with
time [20], [21]. This leads to the failure of the existing
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approaches which do not need the persistent excitation
condition [14], [22].

3) For unstable systems, it is shown that the normalized
empirical covariance of the state vector is a random
matrix [23], [24]. So, in order to obtain reliable identi-
fication results, anti-concentration properties of random
matrices need to be carefully examined [25].

4) For accurate identification, one needs to ensure that
the important condition of closed-loop regularity holds
(see Definition 2). It is a necessary condition on the
eigenvalues of magnitude larger than one [26].

The remainder of the paper is organized as follows. The
problem is rigorously formulated in Section II. Then, in
Section III we study the key identification results for unstable
closed-loop dynamics as the cornerstone of the stabilization
algorithm presented later on. Subsequently in Section IV,
results regarding the properties of random linear feedback
are established. Finally, we propose the adaptive stabilization
Algorithm 1, and show that it is guaranteed to return a high
probability stabilizing set.

A. Notation

The following notation is used throughout this paper. For
matrix A ∈ Cp×q , A′ is its transpose. When p = q, the
smallest (respectively largest) eigenvalue of A (in magnitude)
is denoted by λmin(A) (respectively λmax(A)) and the trace
of A is denoted by tr (A). For v ∈ Cq , the norm of vector v

is ||v|| =

(
q∑
i=1

|vi|2
)1/2

. We also use the following notation

for the operator norm of matrices: |||A||| = sup
||v||=1

||Av||. To

denote the dimension of manifold M over the field F , we
use dimF (M). The definitions of the symbols θ,K (θ) , L (θ),
and L̃ (θ) can be found in Remark 1, equations (3), (4), and
Remark 2, respectively.

II. PROBLEM FORMULATION

We start by discussing the adaptive stabilization problem
that constitutes the primary focus of this work. As mentioned
above, once the system has stabilized, an adaptive policy
for regulating the system (i.e., cost minimization) can be
employed, Results of this work can be used in the finite
time analysis of adaptive regulation for LQ systems. Further,
stabilization of linear systems is intimately related to a Riccati
equation for the corresponding LQ system. Therefore, we
comprehensively discuss the necessary preliminaries here.

The stochastic evolution of the system is governed by the
linear dynamics (1), where {w(t)}∞t=1 are independent mean-
zero noise vectors with full rank covariance matrix C:

E [w(t)] = 0, E [w(t)w(t)′] = C, |λmin (C)| > 0.

Generalizations of the established results to dependent noise
vectors (i.e., martingale difference sequences) is rather
straightforward. The true dynamics matrices A0, B0 are as-
sumed to be stabilizable, as defined below.

Definition 1 (Stabilizability [16]). [A,B] is stabilizable if
there exists L ∈ Rr×p such that |λmax (A+BL)| < 1. The
linear feedback matrix L is called a stabilizer for [A,B].

Remark 1. For notational convenience, henceforth for A ∈
Rp×p, B ∈ Rp×r, we use θ to denote [A,B]. Clearly, θ ∈
Rp×q , where q = p+ r.

We assume perfect observations, i.e., the operator can fully
observe the sequence of state vectors. Next, suppose that ct is
the quadratic instantaneous cost function at time t:

ct = x(t)′Qx(t) + u(t)′Ru(t), (2)

which is defined according to the known positive definite cost
matrices Q ∈ Rp×p, R ∈ Rr×r. An adaptive policy is a
mapping which designs the control action according to the
cost matrices, and the history of the system. That is, for all
t = 0, 1, · · · , the operator needs to determine u(t) according
to Q,R, {x(i)}ti=0 , {u(j)}t−1j=0.

The following proposition shows that in order to stabilize
a linear system, one can solve a Riccati equation. A solution,
is a positive semidefinite matrix K (θ) satisfying (3). For
this purpose, we introduce a notation that simplifies certain
expressions throughout this work.

Remark 2. For arbitrary stabilizable θ1, θ2 ∈ Rp×q , let

L̃ (θ1) =

[
Ip

L (θ1)

]
∈ Rq×p.

So, θ2L̃ (θ1) = A2 +B2L (θ1).

Proposition 1. If θ is stabilizable, (3) has a unique solution.
Conversely, if (3) has a solution, L (θ) defined by (4) is a stabi-
lizer for the dynamics parameter θ; i.e.

∣∣∣λmax

(
θL̃ (θ)

)∣∣∣ < 1.

The proof of Proposition 1 is provided in Appendix A,
where the following cost minimization property of Riccati
equations (3), (4) is established as well. Assuming the sys-
tem evolves according to (1), the linear feedback u(t) =
L (θ0)x(t) minimizes the expected average cost of the system
of dynamics parameter θ0. Namely, letting ct be as (2), in
general it holds that

lim sup
T→∞

1

T

T∑
t=0

E [ct] ≥ tr (K (θ0)C) ,

where the linear feedback u(t) = L (θ0)x(t) attains the
equality. An adaptive stabilization procedure is ignorant about
the true parameter θ0, and needs to estimate it. The following
lemma addresses the stability when the actual system evolution
parameter is θ0 but the linear feedback L (θ) is designed
according to the approximation θ. The proof of Lemma 1 can
be found in Appendix B.

Lemma 1 (Stabilizing neighborhood). There exists ε0 > 0,
such that for every stabilizable θ, if |||θ − θ0||| < ε0, then,
θ0L̃ (θ) is stable.

III. CLOSED-LOOP IDENTIFICATION

When applying linear feedback L ∈ Rr×p, the dynamics
take the form x(t + 1) = Dx(t) + w(t + 1), where D =



3

K (θ) = Q+A′K (θ)A−A′K (θ)B (B′K (θ)B +R)
−1
B′K (θ)A, (3)

L (θ) = − (B′K (θ)B +R)
−1
B′K (θ)A. (4)

A0+B0L is the unstable closed-loop transition matrix. Subse-
quently, we present results for the accurate identification of D
through the least-squares estimator. Observing the state vectors
{x(t)}nt=0, for an arbitrary matrix E ∈ Rp×p define the sum-

of-squares loss function Ln (E) =
n−1∑
t=0
||x(t+ 1)− Ex(t)||2.

Then, the true closed-loop transition matrix D is estimated by
D̂n, which is a minimizer of the loss function; Ln

(
D̂n

)
=

min
E∈Rp×p

Ln (E). To analyze the finite time behavior of the

aforementioned identification procedure, the following is as-
sumed for the tail-behavior of every coordinate of the noise
vector.

Assumption 1 (Sub-Weibull distribution [21]). There are
positive reals b1, b2, and α, such that for all t ≥ 1; 1 ≤ i ≤
p; y > 0,

P (|wi(t)| > y) ≤ b1 exp

(
−y

α

b2

)
.

Intuitively, smaller values of the exponent α correspond
to heavier tails for the noise distribution, and vice versa.
Note that whenever α < 1, the noise coordinates wi(t) do
not need to have a moment generating function. Further, the
noise coordinates can be either discrete or continuous random
variables, and are not assumed to have a probability density
function (pdf). Henceforth, the special case of bounded noise
can be obtained from the presented results letting α→∞.

Next, we define an important property of unstable transition
matrices which is required in order to obtain accurate estima-
tion results.

Definition 2 (Regularity [26]). D ∈ Rp×p is regular if for any
eigenvalue λ of D such that |λ| > 1, the geometric multiplicity
of λ is one.

Regularity implies that the eigenspace corresponding to λ
is one dimensional, and vice versa. There are other equivalent
formulations for regularity. Indeed, D is regular if and only
if for any eigenvalue λ such that |λ| > 1, in the Jordan
decomposition of D there is only one block correspond-
ing to λ, regardless of its algebraic multiplicity. Another
equivalent formulation is that D is regular, if and only if
rank (D − λIp) ≥ p− 1, for all λ ∈ C, |λ| > 1. For example,
let P1, P2 ∈ C2×2 be arbitrary invertible matrices, and assume

D1 = P−11

[
ρ 1
0 ρ

]
P1, D2 = P−12

[
ρ 0
0 ρ

]
P2,

are real 2 × 2 matrices, where ρ ∈ C satisfies |ρ| > 1. Then,
D1 is regular, but D2 is not.

In order to examine the accuracy of the least-squares esti-
mation, we leverage existing finite time identification results
for unstable dynamics [21]. First, if the empirical covariance

matrix Vn =
n−1∑
t=0

x(t)x(t)′ is non-singular, one can write

D̂n =
n−1∑
t=0

x(t+ 1)x(t)′V −1n . Hence, the behavior of Vn gov-

erns the estimation accuracy. For unstable D, an appropriately
normalized Vn is shown to be a random matrix [21]. Thus,
letting Ṽn denote the normalized matrix, the accuracy of D̂n

depends on the stochastic lower bounds of Ṽn. Let ψ (δ) be
the high probability lower bound of Ṽn; i.e. it is sufficiently
small to satisfy P

(∣∣∣λmin

(
Ṽn

)∣∣∣ < ψ (δ)
)
< δ. The following

statement studies ψ (δ) based on anti-concentration results for
sequences of random matrices [25].

Proposition 2. [21] Suppose that D is regular. In general,
δ > 0 implies that ψ (δ) > 0. Further, if w(t0) has a bounded
pdf for some t0 ≥ 1, then for all δ > 0 we have ψ (δ) ≥ ψ0δ,
where ψ0 > 0 is a fixed constant.

Theorem 1 determines the time length the user should
interact with the system, in order to collect sufficiently many
observations for accurate identification of the unstable ma-
trix D. The sample size is based on the constant ρ, for
which the exact dependence on the noise parameters b1, b2, α,
|λmin (C)| , |λmax (C)|, and the closed-loop matrix D is avail-
able [21]. Moreover, let λ1, · · · , λk (respectively λ1, · · · , λ`)
be the distinct eigenvalues of D outside (respectively inside)
the unit circle. Then, ψ (δ) depends on [21]:

|λmin (C)| , min
1≤i≤`

1− |λi| ,

min
1≤i≤k

log
∣∣λi∣∣ , min

1≤i<j≤k
log
∣∣λi − λ̄j∣∣ .

The constant ψ0 depends on the upper bound of the pdf of
w(t0) as well. The explicit specification of these dependencies
is fully presented in [21] and hence ommitted. Next, let
N (ε, δ) be large enough, such that n ≥ N (ε, δ) implies

n

(log n)
4/α
≥ ρ

ε2

(
(− log δ)

1+4/α − logψ (δ)
)
. (5)

Theorem 1 (Unstable identification [21]). Suppose that D is
regular, and has no eigenvalue of unit size. As long as n ≥
N (ε, δ), we have

P
(∣∣∣∣∣∣∣∣∣D̂n −D

∣∣∣∣∣∣∣∣∣ ≤ ε) ≥ 1− δ.

Hence, by (5), the probability δ of having an identification
error of magnitude ε, decays exponentially fast when n grows.
In the next section, we show that one can satisfy the assump-
tions of Theorem 1 by applying random linear feedbacks to a
stabilizable system with unknown dynamics parameters.

IV. STABILIZATION ALGORITHM

Although the true parameter θ0 is unknown, according to
Lemma 1, a stabilizing linear feedback L (θ) can be designed,
if one can find a stabilizing neighborhood Ω(0), such that

Ω(0) ⊂
{
θ ∈ Rp×q : |||θ − θ0||| ≤ ε0

}
. (6)
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Using Theorem 1, we establish that Ω(0) can be estimated if
one applies a random linear feedback to the system. Since
in Theorem 1 the closed-loop transition matrix needs to be
regular with no eigenvalue of unit size, first we need to show
that these conditions can be satisfied. Lemma 2, and Lemma
3 accomplish this, with no knowledge beyond stabilizability
of [A0, B0]. Based on the properties of the distribution of a
random linear feedback matrix L, the above lemmas provide
general statements, which hold almost surely. Then, we present
a finite time stabilizing algorithm, and prove that it will
provide us the desired stabilizing neighborhood. To proceed,
we define the following classes of probability distributions
over real valued vectors and matrices.

Definition 3 (Full rank distributions). Let X be a random
vector in Rm. X has a linearly full rank distribution if for any
arbitrary hyperplane P ⊂ Rm, it holds that P (X ∈ P) = 0.
Further, X has a general full rank distribution, if for every
manifold M ⊂ Rm such that dimR (M) ≤ m − 1, it holds
that P (X ∈M) = 0.

The following example illustrates the difference between the
two types of full rank distributions defined above.

Example 1. Let Z ∈ Rp be normally distributed, Z ∼
N (µ,Σ), with arbitrary mean µ ∈ Rp, and positive definite
covariance matrix Σ ∈ Rp×p. Then, Z has a general full rank
distribution. Letting Y = (Z/||Z||)1{Z 6=0}, the random vector
Y has a linearly full rank distribution, but since it lives on the
unit sphere, Y does not have a general full rank distribution.

Random linear feedbacks with full rank distributions induce
the desired properties to the closed-loop transition matrix, as
we rigorously establish below.

Lemma 2 (Closed-loop regularity). Assume [A0, B0] is sta-
bilizable. Let the columns of L ∈ Rr×p be independent (but
not necessarily identically distributed), with linearly full rank
distributions. The matrix A0+B0L is regular, with probability
one.

Proof of Lemma 2. Let the event G be that D = A0 +B0L
is irregular. We prove that for all λ ∈ C, |λ| ≥ 1, with
probability one, rank (D − λIp) ≥ p− 1. Note that according
to the discussion after Definition 2, this implies P (G) = 0.

First, let Yi ∈ Rm, i = 1, · · · ,m have linearly full rank
distributions. Define Y = [Y1, · · · , Ym], and let M (λ) be a
m×m matrix, with all coordinates being real polynomials of
λ. Let f (λ) be a real polynomial of λ as well. We show that

P
(
∃λ ∈ C, f (λ) 6= 0 : rank

(
Y − M (λ)

f (λ)

)
< m− 1

)
= 0.

(7)
If rank (Y −M (λ0) /f (λ0)) < m− 1, denoting

M (λ0)

f (λ0)
= [M1, · · · ,Mm] ,

two of the vectors Yi −Mi, i = 1, · · · ,m, such as Ym−1 −
Mm−1, Ym−Mm, can be written as linear combinations of the
others. There are finitely many values of λ0 for which Ym−1−
Mm−1 is a linear combination of Y1−M1, · · · , Ym−2−Mm−2,

since for every such a λ0, det
(
Ỹ
)

= 0, where Ỹ is the square
matrix whose columns are Y1 − M1, · · · , Ym−1 − Mm−1,
removing an arbitrary row. Note that det

(
Ỹ
)

is a polynomial
of λ0, divided by f (λ0), and f (λ0) 6= 0.

Note that λ0 is a deterministic function of Y1, · · · , Ym. For
every such λ0, the dimension of the subspace P spanned by
Y1−M1, · · · , Ym−2−Mm−2,Mm is at most m−1. Because
Ym is independent of Y1, · · · , Ym−1, and Ym has a linearly
full rank distribution, P (Ym ∈ P) = 0; i.e. (7) holds.

Now, let m = rank (B0). If m = p, applying the above
argument to Y = D,M (λ) = λIp, f (λ) = 1, we have
P (G) = 0, since full rankness of B0 implies linearly full
rank distributions for all columns of B0L. If m < p, there is
a p× p permutation matrix J , and K ∈ R(p−m)×m, such that

JB0 =

[
B̃

KB̃

]
=

[
Im
K

]
B̃,

where B̃ ∈ Rm×r is full rank. Let L0 be a stabilizer,
D0 = A0 +B0L0, and JD0 = [D′1, D

′
2]
′
, D1 ∈ Rm×p, D2 ∈

R(p−m)×p, to get

J (A0 +B0L) =

[
D1 + B̃ (L− L0)

D2 +KB̃ (L− L0)

]
.

Writing J = [J ′1, J
′
2]
′
, J1 ∈ Rm×p, J2 ∈ R(p−m)×p, we have

rank (A0 +B0L− λIp)

= rank

([
Im 0m×(p−m)

−K Ip−m

]
(J (A0 +B0L)− λJ)

)
= rank

([
D1 + B̃ (L− L0)− λJ1
[−K, Ip−m] J (D0 − λIp)

])
.

Denote the last matrix above by X̃ . Since |λmax (D0)| < 1,
for |λ| ≥ 1 the matrix D0 − λIp is full rank. There-
fore, because of rank ([−K, Ip−m]) = p − m, we have
rank ([−K, Ip−m] J (D0 − λIp)) = p−m.

Rearrange the columns of matrix X̃ to get

X =

[
X11 X12

X21 X22

]
,

such that X11 ∈ Cm×m, X22 ∈ C(p−m)×(p−m), rank (X22) =
p −m. In other words, p −m linearly independent columns
of [−K, Ip−m] J (D0 − λIp) have been put together to form
X22. If D is not regular,

p− 2 ≥ rank
(
X̃
)

= rank (X)

= rank

(
X

[
Im 0m×(p−m)

−X−122 X21 Ip−m

])
= rank

([
X11 −X12X

−1
22 X21 X12

0(p−m)×m X22

])
.

Hence, rank
(
X11 −X12X

−1
22 X21

)
≤ m − 2. Re-

call that columns of [X11, X12] are exactly the same
as D1 + B̃ (L− L0) − λJ1, and all coordinates of
det (X22)X12X

−1
22 X21 are polynomials of λ (since all co-

ordinates of det (X22)X−122 are polynomials of the co-
ordinates of X22). Taking f (λ) = det (X22), by (7),
since full rankness of B̃ implies linearly full rank
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distributions for all columns of B̃ (L− L0), we have
P
(
rank

(
X11 −X12X

−1
22 X21

)
≤ m− 2

)
= 0, which is the

desired result since rank (X22) = p−m.

If the distribution of linear feedback L is generally full rank,
the following results shows that A0 +B0L has no eigenvalue
on the unit circle of the complex plane.

Lemma 3 (Closed-loop eigenvalues). Assume [A0, B0] is sta-
bilizable. Let L ∈ Rr×p have a general full rank distribution
over Rr×p. With probability one, A0 + B0L has no unit size
eigenvalue.

Proof of Lemma 3. Assume D = A0 +B0L has a unit-root
eigenvalue, denoted by λ ∈ C, |λ| = 1. Further, assume that
m = rank (B0), and let the permutation matrix J and the
matrix K ∈ R(p−m)×m be such that

JB0 =

[
B̃

KB̃

]
=

[
Im
K

]
B̃,

where B̃ ∈ Rm×r is full rank. Letting L0 be a stabilizer,
D0 = A0+B0L0, and X = B̃ (L− L0) ∈ Rm×p, note that X
has a general full rank distribution, thanks to the full-rankness
of B̃. Since D0 is stable, det (D0 − λIp) 6= 0, and

0 = det (A0 +B0L− λIp)

= det

(
JD0 +

[
Im
K

]
X − λJ

)
= det

(
(D0 − λIp)−1 J−1

[
Im
K

]
X + Ip

)
= det

(
X (D0 − λIp)−1 J−1

[
Im
K

]
+ Im

)
,

where the last equality above is implied by Sylvester’s deter-
minant identity. Denote the complex conjugate of λ by λ̄, and
define the real matrix

M (λ) = M
(
λ̄
)

=
(
D0 − λ̄Ip

)−1
(D0 − λIp)−1 J−1

[
Im
K

]
.

Further, define the space of eigenvectors in Cm as follows.
First, consider the relation ∼ on Cm, defined as

x ∼ y, if x = cy for some c ∈ C, c 6= 0.

Since ∼ is an equivalence relation, for the set of equivalence
classes denoted by S = Cm

∼ (which is the direction space in
Cm) we have dimC (S) = m− 1; i.e. dimR (S) = 2m− 2.

Note that for every matrix Y ∈ Cm×m and every vector
v ∈ Cm, Y v = 0 if and only if Y ṽ = 0 for every ṽ ∼ v.
Thus, according to

det

(
X (D0 − λIp)−1 J−1

[
Im
K

]
+ Im

)
= 0,

there is v ∈ S, v 6= 0, such that(
X
(
D0 − λ̄Ip

)
M (λ) + Im

)
v = 0 (8)

Denote the set of all matrices X satisfying (8) by X (λ, v) ⊂
Rm×p. Separating the real (<) and imaginary (=) parts, we
get Xa(v) = < (v), Xb(v) = = (v), where for v ∈ S, the

vectors a(v), b(v) ∈ Rp are defined as

a(v) = M (λ)<
(
λ̄v
)
−D0M (λ)< (v) ,

b(v) = M (λ)=
(
λ̄v
)
−D0M (λ)= (v) .

Next, we partition S to S1, S2; i.e. S = S1 ∪S2, S1 ∩S2 = ∅,
where

S1 = {v ∈ S : a(v), b(v) are in-line },
S2 = {v ∈ S : a(v), b(v) are not in-line }.

Whenever v ∈ S2, for j = 1, · · · ,m, the j-th row of X
needs to be in the intersection of two nonparallel hyperplanes
P1,P2 ⊂ Rp, where

P1 = {y ∈ Rp : y′a(v) = <(vj)} ,
P2 = {y ∈ Rp : y′b(v) = =(vj)} .

Since dimR (P1) ≤ p − 1, dimR (P2) ≤ p − 1, and v ∈ S2,
we have dimR (P1 ∩ P2) ≤ p− 2. Therefore, for v ∈ S2, we
have dimR (X (λ, v)) ≤ m(p− 2). Since dimR (|λ| = 1) = 1,
using dimR (S2) ≤ 2m− 2 we have

dimR (Z1) ≤ 1 + 2m− 2 +m(p− 2) = mp− 1, (9)

where Z1 =
⋃

|λ|=1,v∈S2

X (λ, v).

On the other hand, for v ∈ S1, there is a real number, say
ϕ(v), such that b(v) = ϕ(v)a(v). Then,

= (v) = Xb(v) = ϕ(v)Xa(v) = ϕ(v)< (v) , (10)

i.e. whenever v ∈ S1, the vectors <(v),=(v) are in-line. So,
dimR (S1) = m − 1, and for v ∈ S1, we have P1 = P2, i.e.
dimR (X (λ, v)) ≤ m(p − 1). After doing some algebra, we
obtain

0 = ϕ(v)a(v)− b(v)

= ϕ(v) (< (λ) Ip + ϕ(v)= (λ) Ip −D0)M (λ)< (v)

− (ϕ(v)< (λ) Ip −= (λ) Ip − ϕ(v)D0)M (λ)< (v)

=
(
1 + ϕ(v)2

)
= (λ)M (λ)< (v) ,

i.e. either = (λ) = 0, or M (λ)< (v) = 0. According to
the definition of M (λ), the latter case implies < (v) = 0,
which due to (10) leads to v = 0, and is impossible. So, by
dimR (|λ| = 1,=(λ) = 0) = 0, we have

dimR (Z2) ≤ m− 1 +m(p− 1) = mp− 1, (11)

where Z2 =
⋃

|λ|=1,=(λ)=0

X (λ, v). Writing X =⋃
|λ|=1,v∈S

X (λ, v) ⊂ Z1 ∪ Z2, according to (9), (11) we have

dimR (X ) ≤ mp − 1, and by general full-rankness of the
distribution of X , the desired result holds: P (X ) = 0.

Subsequently, an algorithmic procedure to find a stabilizing
neighborhood will be presented based on random linear feed-
backs discussed above. First, letting k = 1 + dr/pe, draw the
columns of L1, · · · , Lk ∈ Rr×p from independent standard
Gaussian distributions N (0, Ir). Note that because of inde-
pendence, for all i = 1, · · · , k, the random feedback Li has
a general full rank distribution Rr×p. Lemma 2 and Lemma
3 show that the conditions of Theorem 1 hold. Therefore,



6

every closed-loop transition matrix D(i) = A0 + B0Li can
be estimated arbitrarily accurate. We show how to find a high
probability confidence set for θ0, using the accurate estimates
of D(1), · · · , D(k).

Algorithm 1 : Adaptive Stabilization
Output: Stabilizing Set Ω(0)

Let k = 1 + d rpe, τ0 = 0
for i = 1, · · · , k do

for j = 1, · · · , p do
Draw column j of Li from N (0, Ir), independently

end for
end for
Define M, ε̃ according to (12), (13), respectively
for i = 1, · · · , k do

Define τi by (14)
while t < τi do

Apply control action u(t) = Lix(t)
end while
Estimate D̂(i) by (15)
Construct Ω(i) by (16)

end for
return Ω(0) =

k⋂
i=1

Ω(i)

Letting ε0 be as Lemma 1, define the precision ε̃ and the
matrix M containing all matrices L1, · · · , Lk by

M =

[
Ip · · · Ip
L1 · · · Lk

]
∈ Rq×kp, (12)

ε̃ =
ε0
2k

inf

{
|||θM |||
|||θ|||

: θ ∈ Rp×q
}
. (13)

As a matter of fact, since kp ≥ q and L1, · · · , Lk are
independent, we have rank (M) = q, almost surely; i.e.
P (ε̃ > 0) = 1. Further, if ε̃ became too small once L1, · · · , Lk
are drawn, one can repeatedly draw the random feedbacks to
avoid pathologically small values of ε̃.

Then, let τ0 = 0, and for i = 1, · · · , k define the following:

τi = τi−1 +N

(
ε̃,
δ

k

)
, (14)

D̂(i) = arg min
E∈Rp×p

τi−1∑
t=τi−1

||x(t+ 1)− Ex(t)||2, (15)

Ω(i) =

{
θ ∈ Rp×q :

∣∣∣∣∣∣∣∣∣∣∣∣θ [IpLi
]
− D̂(i)

∣∣∣∣∣∣∣∣∣∣∣∣ ≤ ε̃} , (16)

where the sample size N (·, ·) is given in (5). Conceptually,
τi is the time point when the control action changes, D̂(i) is
the least-squares estimate, and Ω(i) is a confidence set for θ0.
In fact, for each i = 1, · · · , k, Algorithm 1 applies the linear
feedback u(t) = Lix(t) during the time period τi−1 ≤ t <
τi. Then, observing {x(t)}τi−1t=τi−1

, the algorithm uses D̂(i) to
estimate the true closed-loop matrix

D(i) = A0 +B0Li = θ0

[
Ip
Li

]
.

Finally, the high probability confidence set Ω(i) is constructed

for the true parameter θ0, according to Li. Iterating the above
procedure for all 1 ≤ i ≤ k, the algorithm constructs

Ω(1), · · · ,Ω(k), and returns Ω(0) =
k⋂
i=1

Ω(i) as an stabilizing

set. Below, we show that it satisfies (6).
By Theorem 1, (14) implies that

∣∣∣∣∣∣∣∣∣D̂(i) −D(i)
∣∣∣∣∣∣∣∣∣ ≤ ε̃,

with probability at least 1 − δ/k. So, by (16), we have
P
(
θ0 /∈ Ω(i)

)
≤ δ/k; i.e. P

(
θ0 /∈ Ω(0)

)
≤ δ. To show that

Ω(0) is a stabilizing set, let θ1 ∈ Ω(0) be arbitrary. On the
event θ0 ∈ Ω(0), for all i = 1, · · · , k we have∣∣∣∣∣∣∣∣∣∣∣∣(θ1 − θ0)

[
Ip
Li

]∣∣∣∣∣∣∣∣∣∣∣∣ ≤ 2ε̃.

Using the definition of M in (12), the latter result leads to
|||(θ1 − θ0)M ||| ≤ 2kε̃. Thus, (13) implies the following for
θ1 6= θ0:

2kε̃

|||θ1 − θ0|||
≥ |||(θ1 − θ0)M |||

|||θ1 − θ0|||
≥ 2kε̃

ε0
,

or equivalently |||θ1 − θ0||| ≤ ε0, which is the desired inequal-
ity of (6). Note that since θ0 ∈ Ω(0), with probability at least
1− δ, the failure probability of Algorithm 1 is at most δ. This
completes the proof of the following result.

Theorem 2 (Stabilization). Let Ω(0) be the stabilizing set
provided by Algorithm 1. For arbitrary θ ∈ Ω(0), we have

P
(∣∣∣λmax

(
θ0L̃ (θ)

)∣∣∣ < 1
)
≥ 1− δ.

In other words, the probability of failing to stabilize the
system decays exponentially when the time of interaction with
the system grows (see (5)). Obviously, the normal distribution
N (0, Ir) used in Algorithm 1 is not unique, and can be
substituted by any general full rank distribution over Rr.

V. CONCLUSION

We studied an adaptive stabilization scheme for linear
dynamical systems, focusing on finite time analysis. Tailoring
a novel procedure based on random linear feedbacks, we
established non-asymptotic results under mild assumptions,
namely those of system stabilizability and a fairly general
noise process that encompasses heavy-tailed distributions.

There are a number of interesting extensions of the current
work. First, finite time analysis of stabilization given noisy
observations of the state vector is an interesting topic for future
investigation. Second, studying the stabilization problem in
a high-dimensional setting (assuming sparsity or some other
low dimensional structure) is also an interesting subject to be
addressed in the future.

APPENDIX A

Proof of Proposition 1. For convenience, let K0 = K (θ0) ,
and L0 = L (θ0). First, assume [A0, B0] is stabilizable, L is a
stabilizer, D = A0 +B0L, and |λmax (D)| < 1. For arbitrary
fixed PSD matrix P0, define Pt (P0) , t = 1, · · · , T recursively,

Pt (P0) = Q+A′0Pt−1 (P0)A0

− A′0Pt−1 (P0)B0 (B′0Pt−1 (P0)B0 +R)
−1
B′0Pt−1 (P0)A0.
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Letting ct be as defined in (2), the optimal control policy
for minimizing the finite horizon cumulative cost JT =
T−1∑
t=0

E [ct] + E [x(T )′P0x(T )], is u(t) = Ltx(t), t =

0, · · · , T − 1, [16], where

Lt = − (B′0PT−t−1 (P0)B0 +R)
−1
B′0PT−t−1 (P0)A0.

(17)
Moreover, this optimal policy yields the optimal cost

minJT = x(0)′PT (P0)x(0) +

T−1∑
t=0

tr (CPt (P0)) . (18)

On the other hand, applying the control policy u(t) =
Lx(t), 0 ≤ t ≤ T − 1, we have

E [x(T )′P0x(T )|x(T − 1)] = x(T − 1)′D′P0Dx(T − 1)

+ tr (CP0) ,

E [ct+1|x(t)] = x(t)′D′ (Q+ L′RL)Dx(t)

+ tr (C (Q+ L′RL)) ,

for t = 0, · · · , T − 2. Hence, the finite horizon cost becomes

JT = x(0)′P̃T (P0)x(0) +

T−1∑
t=0

tr
(
CP̃t (P0)

)
, (19)

where P̃t (P0) , t = 1, · · · , T are defined recursively as

P̃0 (P0) = P0, (20)
P̃t (P0) = Q+ L′RL+D′P̃t−1 (P0)D. (21)

Since |λmax (D)| < 1, lim
T→∞

P̃T (P0) = P∞ for a PSD matrix
P∞. Letting C → 0, by (18), (19) we have

x(0)′PT (P0)x(0) ≤ x(0)′P̃T (P0)x(0),

i.e. x(0)′PT (P0)x(0), T = 1, 2, · · · is bounded. If P0 = 0,
this sequence is nondecreasing, because minimizing both sides
of

T−1∑
t=0

ct ≤
T∑
t=0

ct

subject to
x(t+ 1) = A0x(t) +B0u(t),

we get

x(0)′PT (0)x(0) ≤ x(0)′PT+1 (0)x(0).

Therefore, the nondecreasing bounded sequence
{x(0)′PT (0)x(0)}∞T=1 converges. Since x(0) is arbitrary,
{PT (0)}∞T=1 itself converges:

lim
T→∞

PT (0) = P∞(0).

According to the recursive definition of Pt(0) in (17), P∞(0)
is a solution of (3). This shows the existence of a solution,
while uniqueness will be established later.

Next, since lim
T→∞

PT (0) = P∞(0), (18) implies
lim
t→∞

tr (CPt(0)) = tr (CP∞(0)). So, the Cesaro mean also
converges to this limit, i.e.

J ? (θ0) = tr (CP∞(0)) .

Optimality of the linear feedback u(t) = L0x(t), is then
established through (17). Now, we are ready to show that L0

is a stabilizer. Letting

D = A0 +B0L0, C → 0,K0 = P∞(0),

we show that for arbitrary x(0), x(t) = Dtx(0) vanishes as t
grows. First, note that by (3), (4),

(B′0K0B0 +R)L0 = −B′0K0A,

L′0 (B′0K0B0 +R)L0 = A′0K0B0 (B′0K0B0 +R)
−1
B′0K0A0.

Therefore, we obtain

Q+ L′0RL0 +D′K0D

= Q+A′0K0A0 + L′0 (B′0K0A0 +R)L0

+ A′0K0B0L0 + L′0B
′
0K0A0

= Q+A′0K0A0 −A′0K0B0 (B′0K0B0 +R)
−1
B′0K0A0

+ [L′0 (B′0K0B0 +R) +A′0K0B0]L0

+ L′0 [(B′0K0B0 +R)L0 +B′0K0A0] = K0,

that is,
K0 −D′K0D = Q+ L′0RL0. (22)

So,

x(t+1)′K0x(t+1)−x(t)′K0x(t) = −x(t)′ (Q+ L′0RL0)x(t).
(23)

Adding up both sides of (23), because K0 is PSD we get

−x(0)′K0x(0) ≤ x(t+ 1)′K0x(t+ 1)− x(0)′K0x(0)

= −
t∑
i=0

x(i)′ (Q+ L′0RL0)x(i). (24)

In other words,

lim
t→∞

x(t)′ (Q+ L′0RL0)x(t) = 0.

Thus, since Q is positive definite, lim
t→∞

x(t) = 0, i.e. L0

is a stabilizer. Back to the proof of the existence of a
solution K0, we show that for arbitrary PSD P0, it holds that
lim
T→∞

PT (P0) = P∞(0). To do so, minimizing both sides of

T−1∑
t=0

ct ≤
T−1∑
t=0

ct + x(T )′P0x(T ),

subject to
x(t+ 1) = A0x(t) +B0u(t),

we get

x(0)′PT (0)x(0) ≤ x(0)′PT (P0)x(0). (25)

On the other hand, applying controller u(t) = L0x(t), the cost
T−1∑
t=0

ct + x(T )′P0x(T ) becomes

T−1∑
t=0

x(0)′D′
t
(Q+ L′0RL0)Dtx(0) + x(0)′D′

T
P0D

Tx(0).

(26)
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Note that because of stability |λmax (D)| < 1, we have

lim
T→∞

x(0)′D′
T
P0D

Tx(0) = 0.

Therefore, by combining (25), (26), and (22),

x(0)′P∞ (0)x(0)

= lim
T→∞

x(0)′PT (0)x(0) ≤ lim
T→∞

x(0)′PT (P0)x(0)

≤ lim
T→∞

T−1∑
t=0

x(0)′D′
t
(Q+ L′0RL0)Dtx(0)

+ x(0)′D′
T
P0D

Tx(T )

= lim
T→∞

T−1∑
t=0

x(0)′D′
t
(K0 −D′K0D)Dtx(0)

= x(0)′K0x(0),

i.e. for an arbitrary P0,

lim
T→∞

PT (P0) = P∞(0).

Using this, we show that K0 is the unique solution of (3).
If P∗ is another solution, let P0 = P∗, which plugging in
(17) implies that Pt (P∗) = P∗, for all t = 1, 2, · · · . Hence
P∗ = lim

T→∞
PT (P∗) = P∞(0), i.e. the solution K0 of (3)

exists, and is unique.
Conversely, if K0 is a solution of (3), define L0 as (4)

and D = A0 + B0L0. Note that K0 is positive semidefinite,
and let P0 = K0. Defining Pt by (17), we obtain Pt = K0,
for all t = 0, 1, · · · . As before, (3), (4) imply (22). Similarly,
(23), (24) hold, i.e. lim

t→∞
Dtx(0) = 0 for arbitrary x(0), which

implies that L0 defined in (4) is a stabilizer.

APPENDIX B

Proof of Lemma 1. Since θ is stabilizable, according to
Proposition 1, θL̃ (θ) is stable;∣∣∣λmax

(
θL̃ (θ)

)∣∣∣ ≤ 1− 2ρ,

for some ρ > 0. For arbitrary fixed 1 ≤ i ≤ p, 1 ≤ j ≤ q, let
all entries of the matrix Xij ∈ Rp×q be zero, except the ij-th
entry, which is one. Then, for ϕ ∈ R, consider the polynomial

fϕ (λ) = det
(

(θ + ϕXij) L̃ (θ)− λIp
)
.

All coefficients of fϕ (λ) are linear functions of ϕ. Further, the
magnitudes of the roots of fϕ (λ) are continuous with respect
to the coefficients, and so, are also continuous with respect to
ϕ. Since all roots of f0 (λ) are in magnitude at most 1− 2ρ,
there exists εij > 0, such that |ϕ| < εij implies that all roots
of fϕ (λ) are in magnitude at most 1− (2− 1/(pq)) ρ. Taking
ε0 = min

i,j
εij , by |||θ − θ0||| < ε0, θ0 can be written in the

form of θ0 = θ +
p∑
i=1

q∑
j=1

ϕijXij , where |ϕij | < εij , for all

i, j. Therefore, all roots of

f (λ) = det
(
θ0L̃ (θ)− λIp

)
are in magnitude at most 1−ρ, which is the desired result.
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