
1

On Applications of Bootstrap in Continuous Space
Reinforcement Learning

Mohamad Kazem Shirani Faradonbeh, Ambuj Tewari, and George Michailidis

Abstract—In decision making problems for continuous state
and action spaces, linear dynamical models are widely employed.
Specifically, policies for stochastic linear systems subject to
quadratic cost functions capture a large number of applications
in reinforcement learning. Selected randomized policies have
been studied in the literature recently that address the trade-
off between identification and control. However, little is known
about policies based on bootstrapping observed states and control
inputs. In this work, we show that bootstrap-based policies
achieve a square root scaling of regret with respect to time.
We also obtain results on the accuracy of learning the model’s
dynamics. Corroborative numerical analysis that illustrates the
technical results is also provided.

Index Terms—Residual Bootstrap; Randomized Policies; Re-
gret Analysis; Continuous State-Space; Identification for Control;
Sequential Decision-making under Uncertainty.

I. INTRODUCTION

In the theory of reinforcement learning, efficient algorithms
with provable theoretical guarantees are established for two
canonical settings. The first is finite state Markov decision
processes (MDPs) with state spaces of small cardinalities [1].
The second is the continuous space setting of linear quadratic
(LQ) systems [2]. In the latter one, the control action and
the state both are multidimensional real vectors, and the state
evolves according to stochastic linear dynamics determined
by the control action. Further, the cost (or negative reward)
has a quadratic form in both the state and the control input.
Besides being theoretically amenable, LQ models capture a
wide range of applications from air conditioning control [3]
to portfolio optimization [4]. LQ models also arise when
studying the behavior of nonlinear systems around the working
equilibrium [5], [6].

In applications where the true system model is not known,
data-driven strategies are required for decision making under
uncertainty [7]. Then, the learning algorithm has to select
actions among infinitely many options in order to steer the
system toward minimizing the costs incurred. Note that, unlike
the finite state MDP case, in LQ systems there is a possible
danger of the state vector becoming unbounded [8], [9],
[10]. Therefore, the design and analysis of reinforcement
learning algorithms for LQ systems involve significantly dif-
ferent conceptual and technical issues to balance exploration
(identification) and exploitation (control). For this purpose,

M.K. Shirani Faradonbeh and G. Michailidis are with the Department of
Statistics and the Informatics Institute, University of Florida, Gainesville, FL,
32611-5585 USA (e-mail: mfaradonbeh@ufl.edu, gmichail@ufl.edu)

Ambuj Tewari is with the Department of Statistics and the Department
of Electrical Engineering and Computer Science (by courtesy), University of
Michigan, Ann Arbor, MI 48109-1107 USA (e-mail: tewaria@umich.edu)

one might consider to use upper-confidence bound (UCB)
approaches [11], [12], [13], [14] that rely on the optimism in
the face of uncertainty (OFU) principle. The UCB approach
was historically first developed for finite action bandit prob-
lems [15]. While being efficient in the finite action setting,
UCB-based approaches have been found to be computationally
intractable in more general problems [16].

Recently, various methods for reinforcement learning have
been proposed that leverage randomization strategies to guide
the learning process. Randomized policy search methods have
been studied both empirically, as well as theoretically (see
e.g. [17], [18]). For the problem of stabilizing an unknown
LQ system, an algorithm leveraging random feedback gains is
proposed [19]. There is also work showing the efficiency of
achieving the exploration-exploitation trade-off by randomiz-
ing the learned model through both posterior sampling [20]
and additive randomization [21]. Finally, finite time analysis
of Certainty Equivalent policies utilizing input perturbation
has led to performance guarantees for both learning [22] and
planning [16].

In this paper, we study randomized algorithms that leverage
the statistical bootstrap [23] for reinforcement learning in LQ
systems. Bootstrap-based exploration has been analyzed in
simpler settings, such as bandit problems [24], [25]. There
has been a lot of interest recently in using bootstrap-based
exploration strategies especially along with deep neural net-
works [26], [27], [28], [29]. However, results on bootstrap-
based reinforcement learning algorithms for LQ models have
been limited to primarily numerical analyses for learning the
model-misspecification error [30], while rigorous performance
guarantees are not currently available.

Further, bootstrap methods are also of practical interest be-
cause of their robustness to misspecified models. The amount
of exploration in bootstrap-based adaptive control policies is
endogenously determined by the history of the system to date.
Therefore, the policy adapts its decision-making strategy with
possible systematic and/or latent “biases” occurring due to
lack of accurate information regarding the system’s dynamics1.
Examples of such biases include structural breaks [31], system
resets [30], and misspecification of the model dimension [32],
[33], [34].

The focus of this work is on the performance of rein-
forcement learning policies that use the residual bootstrap to
balance exploration and exploitation. We show that model-
based strategies that use linear regression for learning the
model and bootstrapping for policy design, provide a regret

1See the discussion at the end of Section IV for more details.

2

that scales as the square root of the total time of interacting
with the system. Further, the accuracy of learning the unknown
dynamics parameter will be specified. To establish the results,
we carefully examine the effect of different converging and
diverging quantities involved in the problem, such as the
errors in learning the model, the distributions induced by the
regression residuals, the correlation within and between the ob-
served input-state signals, and the ongoing learning-planning
interactions, that are of independent interest. At the technical
level, we leverage results in the literature on the bootstrap [35],
as well as those on the martingale convergence [36] and central
limit theorems [37], [38].

The remainder of the paper is organized as follows: Section
II introduces the mathematical model under consideration, dis-
cusses the rigorous formulation of the problem, and also pro-
vides some necessary preliminaries. Section III describes the
bootstrap procedure and the resulting reinforcement learning
algorithm to design the policy. Subsequently, the main result
on the performance of the proposed algorithm is presented,
together with numerical work showcasing the performance of
the algorithm, in Section IV.

a) Notation: The following notation will be employed
throughout the paper. A′ is the transpose of matrix or vector A.
The largest and the smallest eigenvalues of square Hermitian
matrix A are denoted by λmax(A) and λmin(A), respectively.
If A is not Hermitian, the ordering of the eigenvalues is de-
termined by their magnitudes. The norm of the d dimensional

vector v is denoted by ||v|| =
(

d∑
i=1

|vi|2
)1/2

, and |||·||| is used

for the operator norm of matrices: |||A||| = sup
||v||=1

||Av||. For

atomic measures on Euclidean spaces we use Dirac function;
that is, δ[v] denotes a unit point mass at v ∈ Rd. Finally, the
letters π and θ (or θ̃, θ̂) are being used for generic reinforce-
ment learning policies and model parameters, respectively, and
will be rigorously defined later on.

II. SETTING AND PROBLEM FORMULATION

The model, denoted by M, consists of multidimensional
state and control vectors, parameters that specify its dynamical
evolution over time, and cost matrices, as defined next. The p
dimensional state process {x (t)}∞t=0 evolves according to an
unknown stochastic linear dynamic equation governed by the
r dimensional control action u (t), and the random disturbance
(or noise) process {ξ (t)}∞t=1:

x (t+ 1) = A0x (t) +B0u (t) + ξ (t+ 1) . (1)

That is, the current state x (t) and the input u (t) determine the
next state x (t+ 1) through the state transition matrix A0 ∈
Rp×p, and the input influence matrix B0 ∈ Rp×r, respectively.

Definition 1. Henceforth, we will denote the true parameter
tuple [A0, B0] ∈ Rp×(p+r) by the p × q dynamics matrix θ0,
with q ≡ p+ r. Similarly, we use the parameter θ ∈ Rp×q to
denote generic dynamics matrices.

The additive noise in the stochastic dynamics (1) satisfies
E [ξ (t)] = 0. For the sake of simplicity, we assume that
the sequence of noise vectors are independent, and have a

stationary covariance structure: E
[
ξ (t) ξ (t)

′]
= Σ. Further, Σ

is assumed to be positive definite, and sup
t≥1

E [||ξ (t)||α] < ∞,

for some fixed α > 4. As a matter of fact, extensions to
more general technical settings such as non-stationary [16]
or singular covariance matrices (assuming reachability [9]),
as well as conditionally independent processes [13], can be
accommodated in a similar manner. Note though that the
assumed noise process is not necessarily stationary in the strict
sense.

We are interested in finding reinforcement learning policies
to minimize the long-term average cost as formally defined
next. First, suppose that Qx and Qu are the regulation weight
matrices reflecting the effect of the state and the input vectors
in the cost function, respectively. Specifically, letting π be the
decision making law (policy) determining the control input
u (t) at every time t, define the quadratic instantaneous cost
of π according to

ct (π) =
∣∣∣∣∣∣Q1/2

x x (t)
∣∣∣∣∣∣2 +

∣∣∣∣∣∣Q1/2
u u (t)

∣∣∣∣∣∣2, (2)

where Qx ∈ Rp×p, and Qu ∈ Rr×r are symmetric positive
definite matrices. Thus, (2) reflects the desire to regulate the
state of the system through control actions of small magnitude.

When the dynamics follow (1), and the instantaneous cost is
given by (2), we denote the model byM (θ0) = (θ0, Qx, Qu).
Further, the history of the system at time t, denoted as Ht,
consists of the sequence of the control inputs applied so far,
and the resulting state vectors:

Ht = (x (0) , · · · , x (t) , u (0) , · · · , u (t− 1)) .

A reinforcement learning policy observes the history Ht at
time t aiming to control the cost incurred. That is, the policy
π is a (possibly random) mapping which designs the input
sequence {u (t)}∞t=0 according to the history available up to
that time;

u (t) = π (Ht, Qx, Qu) , (3)

so that the average cost is minimized. Thus, the objective is
summarized in the following regulation problem:

Problem 1. Find π to minimize the average cost below,
subject to (1), (2), and (3);

lim sup
n→∞

1

n

n−1∑
t=0

ct (π). (4)

Importantly, according to (3) the true dynamics parameter
θ0 in (1) is unknown. Therefore, the policy must also employ
an exploration procedure to accurately learn the model param-
eters, thus addressing the following identification problem:

Problem 2. Using (1) and (3), design π to learn θ0, as
accurately as possible.

Note that in the above formulation, the true system dynam-
ics are unknown, while the cost matrices are known. It gives
rise to a realistic setting, since the decision making algorithm
does not know the actual evolution of the underlying system
(i.e., θ0), but is aware of the criteria according to which a
policy to achieve the goal is being assessed (i.e., Qx, Qu).

3

Subsequently, we define the regret of a policy, which is the
amount of sub-optimality it incurs due to lack of knowledge of
the parameters of the model (1). To do so, we need to introduce
an optimal policy π? that minimizes the average cost, given
full knowledge of the system model M (θ0). Then, π? will
be the baseline for assessing the exploitation performance of
the arbitrary reinforcement learning policy π. It is well known
that in order to find π?, an algebraic Riccati equation needs
to be solved [39], [40].

To proceed, we introduce some additional notation. First,
for an arbitrary θ = [A,B] define the matrix valued mapping

Φθ (P) = Qx +A′PA−A′PB (B′PB +Qu)
−1
B′PA.

Both the domain and the range of Φθ (·) are the set of p× p
matrices. Next, if there is a positive semidefinite matrix P (θ)
satisfying the algebraic Riccati equation P (θ) = Φθ (P (θ)),
let the feedback gain matrix G (θ) be

G (θ) = − (B′P (θ)B +Qu)
−1
B′P (θ)A. (5)

Furthermore, for θ0 = [A0, B0] in (1), define the linear time-
invariant (LTI) policy

π? : u (t) = G (θ0)x (t) , t = 0, 1, 2, · · · . (6)

Finally, using π?, the regret of π is naturally defined by:

Rn (π) =

n−1∑
t=0

[ct (π)− ct (π?)] . (7)

It remains to specify settings for which π? is well-defined.
To that end, the following closed-loop stabilizability condition
for the model (1) is necessary and sufficient [39], [40].

Assumption 1. There is a LTI feedback gain u (t) = Gsx (t),
such that Gs ∈ Rr×p satisfies |λmax (A0 +B0Gs)| < 1.

Note that in general, the stabilizing gain Gs mentioned
above is only required to exist, and does not need to be
known to the decision maker. In other words, to verify that
the stabilizability Assumption 1 holds, it suffices to show that
a hypothetical omniscient decision maker (who knows the
true model M (θ0)) possessing an omnipotent computational
power is able to stabilize the system. However, we briefly
outline the available constructive methods to compute Gs (as
well as π?). It is shown (see for example [39], [40], [19]) that
under Assumption 1 the following statements hold;

1) The positive definite matrix P (θ0) uniquely exists. So,
both the feedback G (θ0) and the optimal policy π? are
well defined.

2) Letting P0 be an arbitrary positive semidefinite p×p ma-
trix, the recursive formula Pk+1 = Φθ0 (Pk) converges
exponentially fast to P (θ0) as k grows.

3) The feedback matrix G (θ0) stabilizes the system:

|λmax (A0 +B0G (θ0))| < 1.

4) The minimum of the average cost (4) is achieved by π?.
5) In the class of LTI policies (i.e. of the form u (t) =

Gx (t)), the policy π? is the only optimal one.
In the remainder of the paper, we employ reinforcement

learning algorithms to address Problem 1, studying the growth

rates of Rn (π). Similarly, letting θ̃n be the learned/estimated
parameter at time n (the sample size is n as well), we consider
the exploration performance in Problem 2 through the rates of
the learning error

∣∣∣∣∣∣∣∣∣θ̃n − θ0

∣∣∣∣∣∣∣∣∣. Bootstrap is the cornerstone of
the proposed algorithms to efficiently randomize the design
of the control inputs, and address the trade-off between the
learning accuracy and the regret.

III. ALGORITHMS

An algorithm needs to address the common dilemma of
decision making under uncertainty, as follows. First, if the
algorithm makes decisions naively according to the estimated
(learned) dynamics parameter, it can incur high regret. In-
tuitively, the state x (t) and the action u (t) are required to
be highly correlated in order to remain close to the optimal
strategy π? in (6). Because of this correlation, history Ht may
fail to accurately learn θ0, which can lead to drastically large
regret values. Technically, if u (t) = Gx (t) for some r × p
feedback gain matrix G, then the dimension of the observed
history is effectively p, while the rows of the matrices θ in
the parameter space belong to Rq . Therefore, learning can be
dramatically misleading. This phenomenon of failing to falsify
the imprecise approximations of the true model is extensively
discussed in the adaptive control literature [41], [42], [12],
[21].

In other words, if the policy fails to sufficiently explore the
parameter space, an inaccurate approximation θ̃t can falsely
be treated as an accurate one. This necessitates an efficient
exploration strategy to decrease the aforementioned correlation
between the state and the action. Moreover, the above argu-
ment reveals the reasoning leading to UCB approaches [13],
[14], or statistically independent dither schemes [16], [22], as
useful prescriptions to overcome the exploration-exploitation
dilemma.

In order to explore, the decision maker needs to deviate
from the learned model θ̃t prior to using M

(
θ̃t

)
to design

the reinforcement learning policy. On the other hand though,
the above deviations must be sufficiently small in order to
avoid significant deterioration in the exploitation performance
(i.e., increase in the regret). The solution we discuss here is to
utilize the bootstrap to provide the necessary balance between
these two competing objectives.

To this end, the policy π applies the supposedly optimal
control action treatingM

(
θ̂t

)
as the true model, where θ̂t is

provided by the bootstrap algorithm. It computes the regres-
sion residuals for the learned parameter θ̃t, and bootstraps (i.e.,
resamples) them to reconstruct a surrogate system. Then, the
history of the surrogate system will be the data being used
to compute θ̂t. In the first subsection, we explain the least
squares estimator for learning the model parameter, as well as
the above residual bootstrap procedure.

Subsequently, in the second subsection we present an
episodic algorithm which updates the model-based policy at
the end of every episode, while the lengths of the episodes
grow exponentially fast. Therefore, as the duration of the
interaction with the system grows, the number of policy

4

updates scales logarithmically. In fact, this leads to a signifi-
cant reduction in the computation of the policy, by avoiding
unnecessary updates before collecting sufficient data, due to
the fact that the solution of the algebraic Riccati equation (5)
for a hypothetical model is not instantly available. The latter
would impose a substantial computational burden, especially
for systems whose dimension is fairly large. Note that in
this case, additional considerations might be needed since the
memory required by the bootstrap procedure scales with the
dimension q.

A. Residual Bootstrap

According to the linear dynamical model in (1), a natural
procedure to learn θ0 through the control input u (t) and the
observed states x (t) , x (t+ 1) is based on least squares. In
the sequel, we discuss the residual bootstrap method for the
least squares learning procedure. Further, we will present the
corresponding algorithm which will be used as a subroutine in
the reinforcement learning algorithm in the next subsection.

Recall that the LTI policy π? in (6) is optimal. Thus, a
natural form of the adaptive policies that a reinforcement
learning algorithm is expected to provide through planing
according to the learned model, is u (t) = Gtx (t). Assuming
so for t < n, now the algorithm needs to decide about the
control action at time n. Thus, plugging u (t) = Gtx (t) in
the dynamical model (1), and denoting

Ft = [Ip, G
′
t]
′ ∈ Rq×p,

we get the so-called closed-loop evolution of the system by
the (possibly time-varying) autoregressive dynamics

x (t+ 1) = θ0Ftx (t) + ξ (t+ 1) ,

for 0 ≤ t < n. Then, Algorithm 1 returns the bootstrapped
parameter θ̂n based on the matrices {Ft}n−1t=0 , as well as
the available state observations {x (t)}nt=0. The details are
provided below.

First, based on the collected history {Ft}n−1t=0 , {x (t)}nt=0,
define the following least square estimate of θ0:

θ̃n = arg min
θ∈Rp×q

n−1∑
t=0

||x (t+ 1)− θFtx (t)||2. (8)

The learning procedure (8) treats the noise vectors ξ (t) as the
errors of a linear regression procedure, based on the dynamical
model (1). Therefore, the residuals of the least squares estimate
are defined by the difference between the observed response
x (t+ 1), and the fitted response θ̃nFtx (t). That is,

ζ (t+ 1) = x (t+ 1)− θ̃nFtx (t) , (9)

for 0 ≤ t < n. The residuals {ζ (t)}nt=1 can conceptually
be considered as approximations of the actual regression
errors {ξ (t)}nt=1. Using the residuals {ζ (t)}nt=1, we define
the centered empirical distribution

P̂n =
1

n

n∑
t=1

δ
[
ζ (t)− ζn

]
, (10)

where ζn, the average of the residuals given by

ζn =
1

n

n∑
t=1

ζ (t) , (11)

is being used for centering the empirical distribution. In fact,
P̂n is the sample probability measure for the population
distribution of the noise process {ξ (t)}∞t=1. Note that P̂n
is defined on Rp. We then use θ̃n and P̂n to generate the
surrogate state vectors {x̂ (t)}nt=0 by the dynamical model

x̂ (t+ 1) = θ̃nFtx̂ (t) + ξ̂ (t+ 1) ,

where the bootstrap noise vectors ξ̂ (t+ 1) are drawn in-
dependently from P̂n. Hence, letting Ên be the expectation
with respect to P̂n, clearly we have Ên

[
ξ̂ (t)

]
= 0. Also

note that the actual dynamics parameter for the surrogate
system {x̂ (t)}nt=0 is the learned parameter θ̃n defined in (8).
Finally, the algorithm applies the least squares estimator to the
generated surrogate states to obtain θ̂n:

θ̂n = arg min
θ∈Rp×q

n−1∑
t=0

||x̂ (t+ 1)− θFtx̂ (t)||2. (12)

The pseudo-code for the above residual bootstrap procedure
is given in Algorithm 1. It will be used later at the heart of
Algorithm 2 to design reinforcement learning policies.

Algorithm 1 : BOOTSTRAP

Inputs: data {x (t)}nt=0 , {Ft}
n−1
t=0

Output: bootstrapped estimate θ̂n

Define θ̃n, {ζ (t)}nt=1 , ζn, and P̂n according to (8), (9),
(11), and (10), respectively
Let x̂ (0) = x (0)
for t = 0, 1, 2, · · · , n− 1 do

Draw ξ̂ (t+ 1) from P̂n, independently

Let x̂ (t+ 1) = θ̃nFtx̂ (t) + ξ̂ (t+ 1)
end for
Return θ̂n given by (12)

Remark 1. If the noise process is parameterized, one can
accordingly draw ξ̂ (t) from the corresponding parametric
sample distribution.

To see that, assume we know that the noise vectors belong
to a parametric family of stochastic processes. Then, instead
of using the nonparametric empirical distribution in (10), one
can use the the residuals ζ (t) to estimate the parameters of
interest. So, letting P̂n be the parametric distribution provided
by the obtained estimate, the bootstrap noise ξ̂ (t) can be
sampled independently from P̂n. For example, if we know
that ξ (t) are i.i.d. Gaussian vectors, we can find the sample

covariance matrix Σ̂n = n−1
n∑
t=1

ζ (t) ζ (t)
′− ζn ζ

′
n, and draw

ξ̂ (t) independently from the centered Gaussian distribution
with covariance matrix Σ̂n.

Remark 2. In the original version of bootstrap [23], the
covariates (i.e., the state vectors) are fixed, and only the

5

residuals are being bootstrapped. In the time series models
such as (1), every state vector comprises of the previous noise
vectors. Therefore, bootstrapping the residuals automatically
leads to new state sequence {x̂ (t)}∞t=0 for the surrogate
system [30].

B. Policy Design

Next, Algorithm 2 for decision making under uncertainty
based on bootstrapping the residuals (Algorithm 1) is dis-
cussed. For this purpose, we first define the extended gain
matrix F (θ) based on the optimal feedback G (θ).

Definition 2. For parameter θ ∈ Rp×q , using the matrix G (θ)

in (5), define the q × p matrix F (θ) =
[
Ip, G (θ)

′]′.
The matrix F (θ) can be interpreted as an extension of

the original feedback gain; applying u (t) = G (θ)x (t), the
closed-loop transition matrix takes the form A0 +B0G (θ) =
θ0F (θ).

Recall that the true model is not known, and a reinforcement
learning policy needs to simultaneously learn the dynamics
parameter, and design the control input. To do so, we present
an episodic decision making strategy outlined in Algorithm 2.
That is, the policy applies control actions during each episode,
assuming that the approximation of the model available at the
time coincides with the true model. Then, at the end of every
episode, the algorithm updates the learned model based on
the history collected so far, and continues making decisions
as if the new approximate model is the truth. The learning
mentioned above is through a linear regression for the dynam-
ics (1), and the approximation consists of bootstrapping (by
Algorithm 1) the model estimate obtained by the regression.
In the sequel, we explain the details of the above alternating
steps of the algorithm.

Algorithm 2 : POLICY DESIGN

Let H0 = {x (0)}
Choose stabilizable θ̂0 arbitrarily
for m = 1, 2, · · · do

while t < βm do
Apply feedback gain u (t) = G

(
θ̂t

)
x (t)

Update history Ht+1 = Ht ∪
{
x (t+ 1) , F

(
θ̂t

)}
θ̂t+1 = θ̂t

end while
Update parameter θ̂t+1 = BOOTSTRAP (Ht+1)

end for

The reinforcement learning policy is initiated with the
history H0 in the first line of Algorithm 2. Then, it chooses
an arbitrary stabilizable approximation of θ0, denoted by θ̂0,
and starts the system by applying the action prescribed by
the model M

(
θ̂0

)
; that is, u (t) = G

(
θ̂0

)
x (t). Note that

selection of θ̂0 is straightforward, since almost all (w.r.t.
Lebesgue measure) parameter matrices are stabilizable [20].

The starting time-points of the episodes are determined by
the exponents of a fixed constant β > 1. That is, at every time
t = dβme, the approximation θ̂t will be updated, while for

βm ≤ t < βm+1 the algorithm freezes θ̂t. In other words,
whenever t = dβme, Algorithm 2 calls the residual bootstrap
Algorithm 1 to get θ̂t according to the collected history of the
control actions and the states. So, for all βm ≤ t < βm+1,
the matrices F

(
θ̂t

)
are exactly the same. The efficiency of

the policy relies on the idea that the sequence
{
θ̂t

}∞
t=0

will
provide finer approximations of the truth θ0, as the algorithm
proceeds (or more precisely, as m grows).

IV. THEORETICAL RESULTS AND SIMULATIONS

We start by establishing performance guarantees on the
regret and the learning accuracy for bootstrap-based policies,
supplemented by numerical examples that illustrate the behav-
ior of Algorithm 2 for both identification and regulation. The
following result specifies the growth rate of the regret Rn (π)
for the policy π designed by Algorithm 2, as well as the decay
rate of the identification error

∣∣∣∣∣∣∣∣∣θ̃n − θ0

∣∣∣∣∣∣∣∣∣.
Theorem 1. Letting π be the policy given by Algorithm 2,
define the learned parameter θ̃n by (8). Then, we have

lim sup
n→∞

(
n−1/2 log−2 n

)
Rn (π) < ∞,

lim sup
n→∞

(
n1/2 log−2 n

) ∣∣∣∣∣∣∣∣∣θ̃n − θ0

∣∣∣∣∣∣∣∣∣2 < ∞.

Due to space limitations, the proof of Theorem 1 is dele-
gated to the longer version of the paper, which is available
online [43]. Technically, it relies on the careful examination
of the effect of Algorithm 1 on the randomization of the
feedback gains G

(
θ̂dβie

)
. This randomization in turn diversi-

fies the extended gain matrices
{
F
(
θ̂dβie

)}m
i=1

, so that their
superposition efficiently explores the whole parameter space
Rp×q , as m grows. To this end, we utilize the state-of-the-art
results on the behavior of the algebraic Riccati equation [14],
properties of the optimality manifold [44], [45], [21], results
from martingale theory [46], [47], [48], limit distributions of
dependent sequences [37], [38], and the bootstrap [35].

The regulation and identification rates of Theorem 1 are
(modulo logarithmic factors) similar to the corresponding rates
of the reinforcement learning policies utilizing OFU [13], [14],
additive randomization [21], posterior sampling [20], and input
perturbation [16]. Moreover, the square root scaling of the
regret is efficient for adaptive regulation of LQ systems as
discussed next.

Recalling the discussion at the beginning of Section III,
an adaptive control policy needs to sufficiently explore the
parameter space in order to balance the trade-off of identifica-
tion and regulation. For falsifying the imprecise approximation
θ̃n through an exploration procedure, the control signals
{u (t)}n−1t=0 need to deviate from the optimal feedback gain
G (θ0). More precisely, for a policy π, let the deviations
from the optimal feedback be εt = ||u (t)−G (θ0)x (t)||,
for 0 ≤ t < n. Then, observing the history Hn, the error
of estimating the true dynamics parameter θ0 is at least σn

(modulo a constant factor), where σ−2n =
n−1∑
t=0

ε2t [7], [10].

6

A0 =

1.07 0 −0.37
0.48 −0.89 0.85

0 0.04 −0.93

 , B0 =

−0.48 0.44 −0.30
−0.52 0.59 0.26
0.30 0 −0.74

 , Qx =

 0.65 −0.08 −0.14
−0.08 0.57 0.26
−0.14 0.26 1.00

 , (13)

Qu =

0.20 0.05 0.09
0.05 0.14 0.04
0.08 0.04 0.28

 , P (θ0) =

 0.94 0.06 −0.32
0.06 0.88 0.02
−0.32 0.02 1.37

 , G (θ0) =

 0.64 −0.13 0.44
−0.71 0.63 −0.11
0.22 0.08 −0.91

 . (14)

Figure 1: Normalized regret n−1/2Rn (π) vs n, for Algo-
rithm 2 with β = 1.2.

Hence, if π aims to falsify θ̃n, the difference
∣∣∣∣∣∣∣∣∣θ̃n − θ0

∣∣∣∣∣∣∣∣∣
needs to be in the order of magnitude at least σn [12],
[21]. Whenever π employs θ̂n for designing control inputs,
lim inf
n→∞

σ−1n

∣∣∣∣∣∣∣∣∣θ̂n − θ0

∣∣∣∣∣∣∣∣∣ > 0 holds, since θ̂n needs to be found

through θ̃n.
On the other hand, for the above deviations we have

lim inf
n→∞

σ2
nRn (π) > 0, (15)

according to the regret specification recently established [21].
Further, applying the adaptive feedback u(n) = G

(
θ̂n

)
x(n)

at time n, the increase Rn+1 (π) − Rn (π) in the regret

is approximately
∣∣∣∣∣∣∣∣∣G(θ̂n)−G (θ0)

∣∣∣∣∣∣∣∣∣2 [16], which is

up to a constant factor at least
∣∣∣∣∣∣∣∣∣θ̂n − θ0

∣∣∣∣∣∣∣∣∣2 [14],

[21]. Thus, the lower bound σn for
∣∣∣∣∣∣∣∣∣θ̂n − θ0

∣∣∣∣∣∣∣∣∣
implies that lim inf

n→∞
σ−2n (Rn+1 (π)−Rn (π)) > 0.

Putting the latter result and (15) together, we obtain
lim inf
n→∞

(
Rn+1 (π)

2 −Rn (π)
2
)

> 0, which provides the

lower bound lim inf
n→∞

n−1/2Rn (π) > 0. Note that a rigorous
proof of the above lower bound argument is beyond the scope
of this paper. For more detailed discussions, we refer the
reader to the aforementioned references.

A. Numerical Illustration

Next, we present numerical analyses employing Algorithm 2
for decision-making under uncertainty. Henceforth, let π be
the reinforcement learning policy provided by Algorithm 2,
with rate β = 1.2. The true dynamical model and cost matrices
are provided in (13), (14). Solving the algebraic Riccati

Figure 2: Normalized identification error n1/4
∣∣∣∣∣∣∣∣∣θ̃n − θ0

∣∣∣∣∣∣∣∣∣ vs
n, for Algorithm 2 with β = 1.2.

equation, we get P (θ0) , G (θ0) given in (14), which lead to a
closed-loop matrix of the spectral radius |λmax (θ0F (θ0))| =
0.26.

Figure 1 depicts the normalized regret as a function of
n, for 100 replicates of the stochastic linear system in (1).
The corresponding normalized identification errors are plotted
in Figure 2. These figures are in a full agreement with the
theoretical result of Theorem 1; that is, both normalized
rates n−1/2Rn (π) and n1/4

∣∣∣∣∣∣∣∣∣θ̃n − θ0

∣∣∣∣∣∣∣∣∣ are dominated by
logarithmic factors of the time index n. In Figure 3, we
plot the resulting spectral radius of the reinforcement learning
policy π for the actual system of the dynamics parameter
θ0, as well as that of the surrogate system of θ̃n. According
to Figure 3, Algorithm 2 fully stabilizes the system, even
though in the first few episodes the system is unstable. The
ensuing figures indicate the robustness of Algorithm 2 to
structural breaks. Figure 4 shows the curves of n−1/2Rn (π)

and n1/4
∣∣∣∣∣∣∣∣∣θ̃n − θ0

∣∣∣∣∣∣∣∣∣ for a single break in the model, wherein
at time t = 400 the dynamics matrices suddenly become

A0 =

1.07 0 −0.37
0.48 −0.89 0.85
0.44 0.04 0

 , B0 =

−0.48 0.44 −0.30
−0.52 0.59 0.26
0.30 −0.44 0

 .

A similar analysis while the system incurs two breaks is
provided in Figure 5. The first break is similar to the one
mentioned above, and occurs at t = 200. Then, for the second
break at t = 700, the true dynamics matrices change to

A0 =

1.07 0 −1.04
0.48 −0.89 0.85
0.44 0.81 0

 , B0 =

−0.48 0.44 −0.30
−0.52 0.59 −0.26
0.30 −0.30 0

 .

7

Figure 3: Stability of the closed-loop matrices for Algorithm 2 with β = 1.2: the spectral radius of the actual system∣∣∣λmax

(
θ0F

(
θ̂dβme

))∣∣∣, and the surrogate system
∣∣∣λmax

(
θ̃dβmeF

(
θ̂dβme

))∣∣∣, are reported as functions of m.

Figure 4: Normalized regret n−1/2Rn (π) and normalized
learning error n1/4

∣∣∣∣∣∣∣∣∣θ̃n − θ0

∣∣∣∣∣∣∣∣∣ vs n. Algorithm 2 is run with
β = 1.2, while a break occurs at time t = 400.

According to figures 4 and 5, Algorithm 2 is robust to
remarkably large values of model misspecifications. Note that
since the reinforcement learning policy is fully ignorant of the
breaks, Algorithm 2 adaptively adjusts its decision-making law
toward the new optimal policies.

The rationale for the exhibited robustness is as follows:
when a break occurs, the parameter estimate θ̃ becomes an
inaccurate approximation of the true dynamics matrix θ0. This
in turn leads the regression residuals {ζ (t)}nt=1 becoming
large. Therefore, the bootstrapped parameter θ̂ computed by
Algorithm 1 provides a large randomization, which in turn
leads to an increase in the exploration phase. Then, after
a few episodes, the resulting enhanced exploration provides
more accurate estimates θ̃, and the above negative feedback
procedure proceeds. Thus, as time grows, Algorithm 2 self-
tunes to the equilibrium of the suitable amount of exploration.

The above argument intuitively indicates that the afore-
mentioned equilibrium is a stable one. Since the endogenous
randomization of the bootstrap procedure consistently assesses

Figure 5: Normalized regret n−1/2Rn (π) and normalized
learning error n1/4

∣∣∣∣∣∣∣∣∣θ̃n − θ0

∣∣∣∣∣∣∣∣∣ vs n. Algorithm 2 is run with
β = 1.2, while two breaks occur at times t = 200, t = 700.

the accuracy of the fitted model θ̃, the resulting adaptive policy
automatically adjusts the old decision-making strategy to the
new environment. Hence, the algorithm accordingly addresses
the unexpected flaw of the sudden and unknown changes in
the true model M (θ0), as well as the resulting unforeseen
deviations in the trajectory of the state sequence {x (t)}∞t=0.

V. CONCLUDING REMARKS

We proposed a reinforcement learning algorithm for se-
quential decision-making for an LQ system with unknown
temporal dynamics. The presented model-based policy is based
on residual bootstrap, and is shown to be efficient in terms
of both identification and regulation. Namely, we establish the
rates for the worst-case regret, as well as the learning accuracy.
Moreover, we discussed the robustness of the bootstrap method
for handling unexpected changes in the dynamical model.

As the first work on bootstrap-based policies for LQ models,
it poses a number of interesting questions. For example, theo-
retical analysis for addressing the performance of bootstrap

8

method under imperfect observation is a natural direction
for future work. Further subjects of interest include design
and analysis of fully non-parametric randomization methods
such as covariate resampling. Finally, extending the presented
framework to model-free algorithms can be considered as
another fruitful research direction to examine.

REFERENCES

[1] L. Li, “Sample complexity bounds of exploration,” in Reinforcement
Learning. Springer, 2012, pp. 175–204.

[2] P. Dorato, C. T. Abdallah, V. Cerone, and D. H. Jacobson, Linear-
quadratic control: an introduction. Prentice Hall Englewood Cliffs,
NJ, 1995.

[3] N. Lazic, C. Boutilier, T. Lu, E. Wong, B. Roy, M. Ryu, and G. Imwalle,
“Data center cooling using model-predictive control,” in Advances in
Neural Information Processing Systems, 2018, pp. 3814–3823.

[4] M. Abeille, A. Lazaric, and X. Brokmann, “LQG for portfolio optimiza-
tion,” arXiv preprints arXiv:1611.00997, 2016.

[5] W. Li and E. Todorov, “Iterative linear quadratic regulator design for
nonlinear biological movement systems.” in ICINCO (1), 2004, pp. 222–
229.

[6] H. J. Kappen, “Linear theory for control of nonlinear stochastic sys-
tems,” Physical review letters, vol. 95, no. 20, p. 200201, 2005.

[7] T. L. Lai, “Asymptotically efficient adaptive control in stochastic re-
gression models,” Advances in Applied Mathematics, vol. 7, no. 1, pp.
23–45, 1986.

[8] T. L. Lai and C. Z. Wei, “Asymptotic properties of multivariate weighted
sums with applications to stochastic regression in linear dynamic sys-
tems,” Multivariate Analysis VI, pp. 375–393, 1985.

[9] M. K. S. Faradonbeh, A. Tewari, and G. Michailidis, “Finite time
identification in unstable linear systems,” Automatica, vol. 96, pp. 342–
353, 2018.

[10] T. Sarkar and A. Rakhlin, “Near optimal finite time identification of
arbitrary linear dynamical systems,” in International Conference on
Machine Learning, 2019, pp. 5610–5618.

[11] M. C. Campi and P. Kumar, “Adaptive linear quadratic gaussian control:
the cost-biased approach revisited,” SIAM Journal on Control and
Optimization, vol. 36, no. 6, pp. 1890–1907, 1998.

[12] S. Bittanti and M. C. Campi, “Adaptive control of linear time invariant
systems: the bet on the best principle,” Communications in Information
& Systems, vol. 6, no. 4, pp. 299–320, 2006.

[13] Y. Abbasi-Yadkori and C. Szepesvári, “Regret bounds for the adaptive
control of linear quadratic systems.” in COLT, 2011, pp. 1–26.

[14] M. K. S. Faradonbeh, A. Tewari, and G. Michailidis, “Optimism-
based adaptive regulation of linear-quadratic systems,” arXiv preprint
arXiv:1711.07230, 2017.

[15] T. L. Lai and H. Robbins, “Asymptotically efficient adaptive allocation
rules,” Advances in applied mathematics, vol. 6, no. 1, pp. 4–22, 1985.

[16] M. K. S. Faradonbeh, A. Tewari, and G. Michailidis, “Input perturbations
for adaptive control and learning,” arXiv preprint arXiv:1811.04258,
2018.

[17] H. Mania, A. Guy, and B. Recht, “Simple random search of static
linear policies is competitive for reinforcement learning,” in Advances
in Neural Information Processing Systems, 2018, pp. 1800–1809.

[18] D. Malik, A. Pananjady, K. Bhatia, K. Khamaru, P. Bartlett, and
M. Wainwright, “Derivative-free methods for policy optimization: Guar-
antees for linear quadratic systems,” in The 22nd International Confer-
ence on Artificial Intelligence and Statistics, 2019, pp. 2916–2925.

[19] M. K. S. Faradonbeh, A. Tewari, and G. Michailidis, “Finite time adap-
tive stabilization of linear systems,” IEEE Transactions on Automatic
Control, vol. 64, no. 8, pp. 3498–3505, 2019.

[20] M. Abeille and A. Lazaric, “Improved regret bounds for thompson sam-
pling in linear quadratic control problems,” in International Conference
on Machine Learning, 2018, pp. 1–9.

[21] M. K. S. Faradonbeh, A. Tewari, and G. Michailidis, “On optimality of
adaptive linear-quadratic regulators,” arXiv preprint arXiv:1806.10749,
2018.

[22] S. Dean, S. Tu, N. Matni, and B. Recht, “Safely learning to control
the constrained linear quadratic regulator,” in 2019 American Control
Conference (ACC). IEEE, 2019, pp. 5582–5588.

[23] B. Efron, “Bootstrap methods: Another look at the jackknife,” The
Annals of Statistics, vol. 7, no. 1, pp. 1–26, 1979.

[24] B. Kveton, C. Szepesvari, S. Vaswani, Z. Wen, T. Lattimore, and
M. Ghavamzadeh, “Garbage in, reward out: Bootstrapping exploration in
multi-armed bandits,” in International Conference on Machine Learning,
2019, pp. 3601–3610.

[25] S. Vaswani, B. Kveton, Z. Wen, A. Rao, M. Schmidt, and Y. Abbasi-
Yadkori, “New insights into bootstrapping for bandits,” arXiv preprint
arXiv:1805.09793, 2018.

[26] D. Eckles and M. Kaptein, “Thompson sampling with the online
bootstrap,” arXiv preprint arXiv:1410.4009, 2014.

[27] I. Osband and B. Van Roy, “Bootstrapped thompson sampling and deep
exploration,” arXiv preprint arXiv:1507.00300, 2015.

[28] I. Osband, C. Blundell, A. Pritzel, and B. Van Roy, “Deep exploration
via bootstrapped DQN,” in Advances in neural information processing
systems, 2016, pp. 4026–4034.

[29] K. Rajagopal, S. N. Balakrishnan, and J. R. Busemeyer, “Neural
network-based solutions for stochastic optimal control using path in-
tegrals,” IEEE transactions on neural networks and learning systems,
vol. 28, no. 3, pp. 534–545, 2017.

[30] S. Dean, H. Mania, N. Matni, B. Recht, and S. Tu, “On the
sample complexity of the linear quadratic regulator,” arXiv preprint
arXiv:1710.01688, 2017.

[31] M. H. Pesaran and A. Timmermann, “Small sample properties of
forecasts from autoregressive models under structural breaks,” Journal
of Econometrics, vol. 129, no. 1-2, pp. 183–217, 2005.

[32] C. I. Byrnes, A. Lindquist, and Y. Zhou, “On the nonlinear ddynamics
of fast filtering algorithms,” SIAM Journal on Control and Optimization,
vol. 32, no. 3, pp. 744–789, 1994.

[33] L. Guo and C. Wei, “Global stability/instability of LS-based discrete-
time adaptive nonlinear control,” IFAC Proceedings Volumes, vol. 29,
no. 1, pp. 5215–5220, 1996.

[34] E. Todorov and W. Li, “A generalized iterative LQG method for locally-
optimal feedback control of constrained nonlinear stochastic systems,”
in American Control Conference, 2005. Proceedings of the 2005. IEEE,
2005, pp. 300–306.

[35] P. Hall, The bootstrap and Edgeworth expansion. Springer Science &
Business Media, 2013.

[36] P. Hall and C. C. Heyde, Martingale limit theory and its application.
Academic press, 2014.

[37] B. M. Brown et al., “Martingale central limit theorems,” The Annals of
Mathematical Statistics, vol. 42, no. 1, pp. 59–66, 1971.

[38] D. L. McLeish et al., “Dependent central limit theorems and invariance
principles,” the Annals of Probability, vol. 2, no. 4, pp. 620–628, 1974.

[39] D. P. Bertsekas, Dynamic programming and optimal control. Athena
Scientific Belmont, MA, 1995, vol. 1, no. 2.

[40] P. R. Kumar and P. Varaiya, Stochastic systems: Estimation, identifica-
tion, and adaptive control. SIAM, 2015.

[41] A. Becker, P. Kumar, and C.-Z. Wei, “Adaptive control with the
stochastic approximation algorithm: Geometry and convergence,” IEEE
Transactions on Automatic Control, vol. 30, no. 4, pp. 330–338, 1985.

[42] T. L. Lai and C.-Z. Wei, “Extended least squares and their applications
to adaptive control and prediction in linear systems,” IEEE Transactions
on Automatic Control, vol. 31, no. 10, pp. 898–906, 1986.

[43] M. K. S. Faradonbeh, A. Tewari, and G. Michailidis, “On applications
of bootstrap in continuous space reinforcement learning,” arXiv preprint
arXiv:1903.05803, 2019.

[44] J. W. Polderman, “On the necessity of identifying the true parameter in
adaptive LQ control,” Systems & control letters, vol. 8, no. 2, pp. 87–91,
1986.

[45] ——, “A note on the structure of two subsets of the parameter space in
adaptive control problems,” Systems & control letters, vol. 7, no. 1, pp.
25–34, 1986.

[46] T. L. Lai and C. Z. Wei, “Asymptotic properties of general autoregres-
sive models and strong consistency of least-squares estimates of their
parameters,” Journal of Multivariate Analysis, vol. 13, no. 1, pp. 1–23,
1983.

[47] V. Dani, T. P. Hayes, and S. M. Kakade, “Stochastic linear optimization
under bandit feedback,” 21st Annual Conference on Learning Theory,
pp. 355–366, 2008.

[48] Y. Abbasi-Yadkori, D. Pál, and C. Szepesvári, “Improved algorithms for
linear stochastic bandits,” Advances in Neural Information Processing
Systems, pp. 2312–2320, 2011.

	Introduction
	Setting and Problem Formulation
	Algorithms
	Residual Bootstrap
	Policy Design

	Theoretical Results and Simulations
	Numerical Illustration

	Concluding Remarks
	References

