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Optimality of Fast Matching Algorithms for
Random Networks with Applications to Structural

Controllability
Mohamad Kazem Shirani Faradonbeh, Ambuj Tewari, and George Michailidis

Abstract—Network control refers to a very large and diverse
set of problems including controllability of linear time-invariant
dynamical systems, where the objective is to select an appro-
priate input to steer the network to a desired state. There are
many notions of controllability, one of them being structural
controllability, which is intimately connected to finding maximum
matchings on the underlying network topology. In this work, we
study fast, scalable algorithms for finding maximum matchings
for a large class of random networks. First, we illustrate that
degree distribution random networks are realistic models for real
networks in terms of structural controllability. Subsequently, we
analyze a popular, fast and practical heuristic due to Karp and
Sipser as well as a simplification of it. For both heuristics, we
establish asymptotic optimality and provide results concerning
the asymptotic size of maximum matchings for an extensive class
of random networks.

Index Terms—Maximum Matching, Karp-Sipser, Structural
Controllability, Network Control, Random Networks.

I. INTRODUCTION

NETWORKS are capable of capturing relationships be-
tween a set of entities (vertices) and have found applica-

tions in diverse scientific fields including biology, engineering,
economics and the social sciences [1], [2], [3]. Network
control refers to a very large and diverse set of problems
that involve control actions over a network (see for example,
[4], [5], [6], [7], [8], [9], [10], [11], [12], [13] and references
therein).

A class of control problems involves dynamical systems
evolving over time that have inputs and outputs and many
results exist for systems that exhibit linear and time-invariant
dynamics [11]. One particular notion of control is that of struc-
tural controllability [1], [14], which was recently explored by
Liu et al. [12]. Under this notion, the structural controllability
problem reduces to find maximum matchings on appropriate
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matrices as reviewed in Section I-A. The problem of obtaining
maximum matchings has been extensively studied in the
computer science literature both for deterministic [15] as well
as random networks [16]. However, the focus in the literature
has been on special classes of undirected random networks
[17], [18]. For example, using the results of Tao and Vu [19],
one can infer that for dense Erdos-Renyi random networks,
a single controller is sufficient to ensure controllability. Little
is known about the performance of matching algorithms in
other interesting classes of random networks [20], with an
exception of the recent work of Balister and Gerke [21]. We
focus on degree distribution random network models, and
establish results on the minimum number of controllers needed
to guarantee structural controllability. We also show that these
models are realistic representations for real world applications.

A popular, fast and practical algorithm for matchings on
undirected random networks is due to Karp and Sipser [22],
which represents the cornerstone of our theoretical investiga-
tions and through it we provide generalizations of previous
work in the literature to broader classes of undirected random
networks. Further, we also extend the results for directed
variants of the same classes of random networks.

A. Structural Controllability and Maximum Matchings

Next, we review some key concepts in structural con-
trollability for linear dynamical systems. Consider a sys-
tem described by a n-dimensional state vector x(t) =
(x1(t), ..., xn(t))T ∈ Rn, whose dynamical evolution is de-
scribed by

dx

dt
= Ax(t) +Bu(t),

where A ∈ Rn×n is the system transition matrix, u(t) =
(u1(t), ..., uk(t))T ∈ Rk captures control actions and B ∈
Rn×k is the input matrix. Assuming that the n-dimensional
system can be represented by vertices on a network G =
(V,E) with V = {1, 2, ..., n} denoting the set of vertices and
E ⊂ V × V the set of edges, it can be seen that the non-zero
entries in the transition matrix A correspond to the directed
edges in E. Indeed, for i, j ∈ V the edge i→ j exists if and
only if vertex i influences vertex j, i.e. Aji 6= 0. Such a system
is called controllable if for any initial state x(0) = x0 and any
desired state xd for some T <∞ one can find an input matrix
B and control vectors {u(t)}0≤t≤T so that the system reaches
state xd i.e. x(T ) = xd. The minimum k for which system can
be controllable is called the minimum number of controllers.
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The magnitude of the entries in the transition matrix A
captures the interaction strength between the vertices in the
network; for example, the traffic on individual communica-
tion links in a communications network or the strength of
a regulatory interaction in a biological network. The time
invariant matrix B indicates which vertices are controlled by
an outside controller. Hence, the set of vertices that when
applying controllers to them makes the system controllable
needs to be identified.

Note that we don’t assume any constraint on the number
of nonzero elements in the columns of input matrix B, i.e.
one controller ui(t) can influence multiple vertices. The case
where every controller can be applied to only one vertex in
the network (which in turn implies that the goal is to find the
minimum number of vertices the controllers can be applied to)
is studied by Olshevsky [23]. He shows that finding the exact
solution to the problem is NP hard.

The algebraic criterion to check controllability of a time
invariant linear dynamical system is Kalman’s controllability
rank condition, that states that controllability can be achieved,
if and only if the matrix C = [B,AB, ..., An−1B] is full
rank; i.e. rank(C) = n. Note that C ∈ Rn×nk. This algebraic
criterion is computationally hard to check, especially for large
systems. Further, in many applications, obtaining exact values
of A may not be feasible and hence a tractable alternative is
needed.

Thus, we say that a time invariant linear dynamical system
is structurally controllable, if it is possible to select the
non-zero values of A,B, so that Kalman’s rank condition is
satisfied [1]. A structurally controllable system is controllable
for almost all A,B; i.e. the pathological cases for which a
structurally controllable network is not controllable has zero
Lebesgue measure. The relation between the minimum number
of controllers needed to structurally control a network and the
size of its maximum matching has been presented in several
forms (see [24]). The version used in the current work is
the one appearing in Liu et al. [12] “minimum inputs the-
orem” (stated below). Moreover, similar equivalence between
structural controllability and maximum matching when every
controller can be applied to only one vertex, is studied by
Assadi et al. [25].

Furthermore, Commault and Dion [26] study the problem of
using only a single controller applied to as few vertices as pos-
sible. More general results regarding the control configuration
selection can be found in the work of Pequito et al. [27] which
discusses relations to maximum matching problem as well.
Other considerations must be taken into account for deciding
which approach is most suitable for the practical application
under consideration. Finally, we have no assumption regarding
self-loops in the network. Cowan et al. [28] study networks,
where every vertex influences itself.

Algorithms to find a maximum matching are well studied
in the literature and exhibit polynomial time complexity (with
respect to the size of the network). A popular one developed
by Micali and Vazirani [29] has running time O

(
|V |0.5|E|

)
.

Next, for completeness we provide a definition of maximum
matching and also state the minimum inputs theorem.

Definition 1. For a directed network G = (V,E), a subset of
edges M is a matching, if no two edges in M share a common
starting or a common ending vertex. A maximum matching
corresponds to a matching of maximum size.

Definition 2. Given a matching M for directed network G =
(V,E), a vertex is matched, if it is an ending vertex of an
edge in the matching M . Otherwise, it is unmatched.

Minimum Inputs Theorem [12]: Let M∗ be a maximum
matching of the network G = (V,E). The minimum number of
controllers needed for structural controllability of the network
is max{1, n − |M∗|}. Moreover, for any matching M , the
network is struturally controllable using max{1, n − |M |}
controllers.

The upshot of this result is that in order to find the minimum
number of required controllers for structural controllability
we can equivalently find the size of a maximum matching.
Furthermore, one can explicitly find the structure of the input
matrix B according to the proof of minimum inputs theorem.
In fact, one can see that a matching is formed of a set of
directed loops and a set of directed paths. The first vertex of
each path is unmatched, while all other vertices are matched.
According to Lin’s work [1], one controller is used to actuate
every unmatched vertex. Amongst matched vertices, some
might need to be actuated by a controller, but no new controller
is needed, as it suffices to apply any of the previously used
controllers to one arbitrary vertex of each loop. So the number
of nonzero components in B ∈ Rn×k, or equivalently the total
number of the connections between the inputs and vertices in
the network, is at most n. More details are provided by Liu
et al. (Supplementary Information of [12]).

As the problem of finding the minimum number of con-
trollers needed for structural controllability of a network
reduces to maximum matching type of problems, henceforth
we use the (minimum) number of unmatched vertices and
the (minimum) number of controllers interchangeably. In this
work, we provide results about the size of matchings obtained
by different fast algorithms for classes of random networks.
In fact, Karp and Sipser [22] proved that, for the classical
undirected Erdos-Renyi random network, the KS algorithm
is optimal. We generalize their results to a larger class of
random networks. The remainder of the paper is organized as
follows. In Section II we introduce different classes of random
networks subsequently studied in this work. Furthermore,
some probabilistic results needed for technical developments
are summarized. The main algorithms studied are introduced
in Section III and connections to real networks using some
numerical examples are provided in Section IV. The key
results of the paper are presented in Sections V (analysis and
optimality of the algorithms).

Notations: For set S, let |S| be the number of elements in
S.
(

n
n1,...,nr

)
= n!

n1!...nr!
. For vertices u, v ∈ V in the network

G = (V,E), {u, v} ((u, v) or (v, u) in directed or bipartite
networks) denotes an edge, so N = M ∪ {{u, v}} means
adding the edge {u, v} to M gives N . G − {u, v} means
removing vertices u, v (and so all edges connected to them)
from network G. Further, degG(v) denotes the degree of v in
G i.e. the number of edges in G connected to v. When there
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is no subscript, the network G is identifiable from the context.
Finally, for x ∈ Rn, n ∈ {0, 1, 2, ...} ∪ {∞}, ‖x‖1 is `1 norm

of x: ‖x‖1 =
n∑
i=1

|xi|.

II. RANDOM NETWORKS

In this section, we introduce different classes of random
network models and then present some general results about
convergence and concentration of real-valued functions on
networks. In order to have a general framework which includes
both directed and undirected networks, we note that every
undirected network G = (V,E) can be considered as a
directed network in which, for all vertices i, j, both edges
i→ j and j → i exist, if and only if the edge i↔ j exists in
the original undirected network. All statements presented are
true for both directed and undirected networks unless explicitly
mentioned. For a comprehensive discussion on constructions
and properties of (undirected) random networks, see chapter
3 in Durrett [30].

The first model for random networks we consider is the
Erdos-Renyi (ER) model. A directed network G = (V,E),
V = {1, 2, ..., n} is (drawn from) ER if every edge i → j
for i, j = 1, 2, ..., n is present in the network independently
with probability p(n). Analogously, an undirected network
G = (V,E), V = {1, 2, ..., n} is ER if every edge i↔ j for
i, j = 1, 2, ..., n, i ≤ j is present in the network independently
with probability p(n). Henceforth, for λ ∈ [0,∞], ER(λ)
is a Erdos-Renyi random network, for which np(n) → λ
as n → ∞. In ER(λ) random networks, the parameter λ
corresponds to the average degree.

The next model we consider is the Uniform Fixed-Size
(UFS) model. A directed network G = (V,E), V =
{1, 2, ..., n} is UFS when the cardinality of the edge set
|E| = kn for some fixed kn, and the kn directed edges are
drawn uniformly among all n2 possible edges. The construc-
tion for the undirected network is similar, but the kn edges
are chosen uniformly among all n(n+1)

2 possible edges. For
λ ∈ [0,∞], we denote by UFS(λ) a random network of the
UFS class, for which kn

n → λ for directed and kn
n →

λ
2 for

the undirected case, as n→∞. Once again, the λ parameter
corresponds to the average degree.

Finally, we introduce the class of Degree Distribution
(DD) random networks. There are a couple of reasons for
considering this class. First, it lets us consider networks with
degree distributions commonly found in real networks that
simpler models such as ER (where the degree distribution
is Poisson) cannot model. For example, as shown in Fig.
1, the degree distribution of real world networks can be
any arbitrary non-parametric distribution. Studying the degree
distribution of more networks leads to a similar conclusion
(see the Supplementary Materials).

Second, as empirically shown in Section IV, the number
of controllers for structural controllability of a network is, to
a large extent, determined by its degree distribution. More
details can be found in Section IV as well as the work of Liu
et al. [12].

An undirected random network is a member of the DD
class, if for a given degree distribution the attachment of edges

Fig. 1: Histogram of the degree distribution of the social
network between prison inmates (blue: input degree, red:
output degree). As shown here, it is difficult to model de-
gree distributions of real networks using standard parameteric
distributions. Additional information for this network is given
in the Supplementary Materials.

is random. Specifically, let p be a probability distribution with
support on the set {0, 1, 2, . . .} of nonnegative integers. We
then construct an undirected network DD(p) = (V,E) as
follows. Let V = {1, 2, ..., n} and for i ∈ V , let vertex i have
Di undirected half-edge(s) (one-half of an edge is connected
to vertex i). Note that D1, . . . , Dn are the corresponding
degrees which are assumed to be independent and identically
distributed (iid) with distribution p; P(Di = k) = p(k).
To complete the construction, we then pair all half-edges

randomly; i.e. all
( n∑
i=1

Di

2,...,2

)
possible attachments of half-edges

have equal probability.

When the number of half-edges
n∑
i=1

Di is an even number,

the construction is straightforward and the number of edges

will be 1
2

n∑
i=1

Di. When it is an odd number, we pair the half-

edges randomly to obtain the network and omit the last single
half-edge for which no pairing was established at the end of the

construction, so that the number of edges will be 1
2 (

n∑
i=1

Di−1).

Note that the omission or presence of multiple edges will lead
to a difference between D1, . . . , Dn and the actual observed
degrees deg(1), . . . ,deg(n) once the network construction
is completed. However, as Lemma 1 below establishes, the
asymptotic empirical degree distribution will be the original
degree distribution from which the network was constructed,
as long as the expected value of Di, EDi is finite.

Viewing an undirected network DD(p) as a directed
one, both input and output degrees of vertex i are deg(i).
To construct a directed DD random network, denoted by
DD(pin, pout), with distinct input (degin) and output (degout)
degrees, we do the following: once we have iid draws D(in)

i

and D
(out)
i from the input and output degree probability

distributions pin and pout respectively:

P(D
(in)
i = k) = pin(k), P(D

(out)
i = k) = pout(k),

let vertex i ∈ V have D
(in)
i directed half-edges pointing
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into vertex i and D
(out)
i directed half-edges pointing out

from vertex i. Next, we pair directed half-edges randomly to

have min{
n∑
i=0

D
(in)
i ,

n∑
i=0

D
(out)
i } edges and omit the remaining

half-edges. The random pairing of half-edges implies that

all
(

max
{ n∑
i=0

D
(in)
i ,

n∑
i=0

D
(out)
i

})
! possible pairings of half-

edges are equally likely. Note that D(in)
i , D

(out)
i do not need

to be independent.
Furthermore, in general, the degrees do not need to be

iid. In fact, as shown later in the paper, the key asymp-
totic results we establish are based on the empirical degree
distributions which are, by the following lemma, same as
the original degree distributions when vertex degrees are iid.
However, as long as for all k = 0, 1, . . ., lim

n→∞
|{i∈V :Di=k}|

n

(equivalently lim
n→∞

|{i∈V :D
(in)
i =k}|
n , lim

n→∞
|{i∈V :D

(out)
i =k}|
n ) are

deterministic, our results hold using the resulting asymptotic
empirical degree distributions.

Lemma 1. For an undirected network G = (V,E), define the
asymptotic empirical degree distribution as

p̂(k) = lim
n→∞

|{i ∈ V : deg(i) = k}|
n

.

If G = DD(p) is a random network and µ =
∞∑
k=0

kp(k) <∞,

then the limit above exists and we have p̂(k) = p(k) for all
k = 1, 2, . . .. In general for a network G = (V,E), define the
asymptotic empirical input and output degree distributions as

p̂in(k) = lim
n→∞

|{i ∈ V : degin(i) = k}|
n

p̂out(k) = lim
n→∞

|{i ∈ V : degout(i) = k}|
n

.

If G = DD(pin, pout) is a random network and µ =
∞∑
k=0

kpin(k) =
∞∑
k=0

kpout(k) < ∞, then for all k = 1, 2, . . .

the limits above exist and we have p̂in(k) = pin(k), p̂out(k) =
pout(k).

Henceforth, for all networks by pin, pout we mean asymp-
totic empirical degree distributions p̂in, p̂out respectively.

Next, we define the Lipschitz property for real valued
functions defined over networks.

Definition 3. Let f be a real-valued function on the set of
directed networks. We say f has the Lipschitz property, if
|f(G1)− f(G2)| ≤ 1 whenever G1 = (V,E1), G2 = (V,E2),
E2 = E1 ∪ {e}; i.e. the value of f will change at most by 1
if one new edge is added to the network.

Remark 1. Properly defining the norm ‖ · ‖ on the networks,
one can see the Lipschitz property is the same as the classic
notion |f(G1)− f(G2)| ≤ ‖G1−G2‖. For additional discus-
sion, see the Supplementary Materials.

Next, we present convergence and concentration inequalities
for functions of random networks which have the Lipschitz
property. Specifically, the number of unmatched vertices (or
equivalently the number of controllers) obtained by a matching

algorithm, has the Lipschitz property as shown in Section
V. The consequence of the Lipschitz property for a function
defined on a “not too dense” random network, is that it
concentrates around its expected value. Further, if the aver-
age degree of the network is finite, then the concentration
occurs exponentially fast. These results are summarized in the
following theorem.

Theorem 1 (Convergence of real-valued functions for ran-
dom networks). Let G = (V,E) belong to the ER, UFS,
DD(pin, pout) or DD(p) class. For a real-valued function f
which has the Lipschitz property, if

lim sup
n→∞

E (|E|)
n2

= 0,

then f(G)−E(f(G))
n →P 0 as n→∞. If in addition,

lim sup
n→∞

E (|E|) log n

n2
= 0,

then f(G)−E(f(G))
n → 0 a.s. as n → ∞. When sup

n≥1

E(|E|)
n <

∞ the rate of convergence is exponential; i.e. there is C > 0
such that for every 0 < ε < 1 :

P(
|f(G)− E(f(G))|

n
> ε) ≤ 2 exp(−nCε2).

III. MATCHING ALGORITHMS

Before studying the algorithms, we provide a description
of networks which will be useful later. As mentioned before,
every undirected network can be considered as a directed one.
Now to have a better understanding of how the algorithms
work we view every directed network as a bipartite network
G = (L,R,E) where L = R = V , E ⊂ L×R, L and R are
respectively the left and the right side of the bipartite network,
and for l ∈ L, r ∈ R there is an edge (l, r) ∈ E if and only if
in the original directed network there is an edge from l to r:
l→ r. Henceforth we will only deal with bipartite networks.

Matching algorithms take a network as input and produce a
matching as output. Maximum matching algorithms will give
a matching of maximum size. Algorithm 1 is the well known
Greedy Algorithm that produces a suboptimal matching MG

in general. For an arbitrarily chosen vertex v on the right
side, Greedy tries to find an arbitrary vertex u on the left
side which is connected to v and has not been used before
by any other vertex on the right side. Note that as mentioned
above, networks can be assumed to be bipartite. Moreover,
clearly the time complexity of Greedy is O(n).

Note that Greedy picks an arbitrary vertex v ∈ R in
every iteration. Because the goal is to find a matching of
largest possible size, this strategy for picking a vertex can be
improved. First note that for every vertex v ∈ R of degree one,
there is a matching of maximum size in which v is matched.
The logic is as follows. Let u ∈ L be the vertex on the left
side connected to v, (u, v) ∈ E. There must exist a vertex on
the right side, w ∈ R, such that (u,w) ∈ E, such that w is
matched to u by a matching M of maximum size; since, if
not, adding (u,w) to it leads to a matching of larger size. Now
defining a new matching M ′ which is exactly M with (u,w)
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Algorithm 1 : Greedy
Input: G = (L,R,E)
Output: matching MG(G)

MG ← ∅
while E 6= ∅ do

let v ∈ R
if deg(v) = 0 then

G← G− {v}
else if for u ∈ L, (u, v) ∈ E then

G← G− {u, v}
MG ←MG ∪ {(u, v)}

end if
end while
return MG

removed and (u, v) added, i.e. M ′ = M ∪{(u, v)}−{(u,w)},
we have |M | = |M ′| i.e. M ′ is a maximum matching as
well. Hence as long as we can find a vertex of degree one,
we can find a matching of exactly maximum size. In other
words: no mistake occurs as long as a degree one vertex is
picked in every iteration of Greedy (a mistake occurs if in an
iteration, the algorithm adds an edge to the matching which is
not optimal, i.e. leads to a deviation from maximum matching).

Algorithm 2 : Karp-Sipser
Input: G = (L,R,E)
Output: matching MKS(G)

MKS ← ∅
while E 6= ∅ do

let v = arg min
w∈L∪R

deg(w)

if deg(v) = 0 then
G← G− {v}

else if for u ∈ L ∪R, {u, v} ∈ E then
G← G− {u, v}
MKS ←MKS ∪ {{u, v}}

end if
end while
return MKS

This fact is the idea behind Algorithm 2, called the Karp-
Sipser Algorithm (KS) [22], which produces a matching
MKS . In every iteration of KS, among all vertices a vertex
of minimum degree is picked.

Regarding time complexity of the KS algorithm, note the
following connection with the Greedy one: in every iteration,
KS picks a vertex of minimum degree and by using a
“Heap” data structure, finding a vertex of minimum degree
has complexity O(1) [31]; therefore, the running time of KS
is linear. Further, since for real networks, the average degree
is finite, for each iteration of the KS algorithm (i.e. excluding
up to o(n) iterations) there are O(n) many vertices of degree
one, which implies that determining a degree one vertex takes
on average in O(1) steps.

We can simplify the KS algorithm and search for a mini-
mum degree vertex among vertices on only one side to derive
Algorithm 3 that we call the One-sided Karp-Sipser (OKS)

Algorithm and whose output we denote by MOKS . As we
will see later in the analysis of real networks, the size of the
matching given by OKS is usually less than or equal to the
size of the matching given by KS. The intuition behind this is
as follows. It is possible to make a mistake in OKS because of
lack of degree one vertices on the right side, but if degree one
vertices exist on the left side, KS can still work optimally. Yet,
later we will prove (asymptotic) optimality of both algorithms.

Algorithm 3 : One-Sided Karp-Sipser
Input: G = (L,R,E)
Output: matching MOKS(G)

MOKS ← ∅
while E 6= ∅ do

let v = argmin
w∈R

deg(w)

if deg(v) = 0 then
G← G− {v}

else if for u ∈ L, (u, v) ∈ E then
G← G− {u, v}
MOKS ←MOKS ∪ {(u, v)}

end if
end while
return MOKS

IV. NUMERICAL EXAMPLES

In this section, we present the results of selected numerical
analyses on real world networks. We study the number of
controllers, or equivalently the number of unmatched vertices
for 10 different networks. This provides support to studying
DD random networks as a realistic model for control ap-
plications. In other words, using Fig. 3, to find the number
of controllers needed to structurally control a network, one
can assume real networks are in fact DD random networks.
The full description of these networks can be found in the
Supplementary Materials.

Table I contains the results for 10 networks, including social,
internet, web, electronic, neuronal, power grid and transcrip-
tional regulatory networks, enumerated by the first row of
the table. The second (third and fourth respectively) row is
the number of controllers needed for structural controllability
of the corresponding network if OKS (KS and Maximum
Matching respectively) algorithm will be used.

The fifth row shows the average number of controllers for
a random network generated by degree distribution model
for random networks, i.e. input and output degrees of all
vertices are the same as the original real-world network but
the attachment of half-edges is random. Finally, the last row of
the table shows the size of the networks. As seen in the table,
OKS and KS perform very close to Maximum Matching
for all networks. Moreover, network 9 is the only one for
which the performance of OKS is significantly different than
KS. We suspect that this is because network 9 is the only
undirected network.

The numerical results in Table I can be understood better
by the following figures. Fig. 2 shows the performance of
OKS and KS versus Maximum Matching, i.e. rows 2,3
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Networks
Algorithms 1 2 3 4 5 6 7 8 9 10
|V | − |MOKS | 6 51 5033 703 10 29 59 119 610 565
|V | − |MKS | 6 49 5033 702 9 29 59 119 577 565
|V | − |M∗| 6 49 5033 702 9 29 59 119 575 565
average of |V |− |MOKS | for ran-
dom network 5.6 29.8 5006.8 616.5 10.1 24.7 48.6 100.5 454.9 557.7

|V | = n 32 297 8717 1490 67 122 252 512 4941 688

TABLE I: The number of controllers given by different algorithms for different networks as well as the average number of
controllers for equivalent degree distribution random network and the size of the networks.

Fig. 2: The number of controllers given by OKS ( ◦ ) and
KS ( × ) versus the number of controllers given by Maximum
Matching for 10 different real networks.

Fig. 3: The number of controllers for randomly rewired
networks versus the number of controllers for the original
networks.

of the Table I versus row 4. The similarity in performance
between OKS,KS and maximum matching algorithms is
better depicted in Fig. 2.

The number of controllers for equivalent degree distribution
random network versus the original network, i.e. row 5 of the
Table I versus row 4 is shown in Fig. 3. According to this plot,
degree distribution random networks are sufficiently realistic
models for real-world networks in terms of the number of
controllers needed for structural controllability.

V. MATCHING ALGORITHMS IN RANDOM NETWORKS

In this section, we present results about the asymptotic size
of matchings produced by the algorithms presented above. We
first consider the general case where the asymptotic degree

distribution of the random network is any arbitrary degree
distribution with finite mean. Then, more detailed results
regarding the special case for a Poisson asymptotic empirical
degree distribution will be provided. Even though as seen
before, the latter case is not common among real networks,
because of classical interests on ER and UFS random net-
works and the KS algorithm, as well as comprehensiveness,
we also study it.

Before proceeding with the analysis of matching algorithms
in an extensive class of random networks, we must ensure
that the size of the matchings provided by either Greedy,
KS, OKS algorithms or any maximum matching algorithm
has the Lipschitz property in order to have convergence of
|MG(G)|

n , |MKS(G)|
n , |MOKS(G)|

n and |M∗(G)|
n for random net-

work G where M∗(G) is a maximum matching of network G.
The following lemma establishes the desired Lipschitz prop-
erty. The size of the matching provided by any of the above
algorithms has the Lipschitz property due to the recursive
nature of the algorithms. The Lipschitz property for the size of
maximum matchings comes from their maximality regardless
of the algorithm used to obtain the maximum matching (this
follows easily from the definition of maximum matching).

Lemma 2. The real-valued functions |MG|, |MKS |, |MOKS |
and |M∗| which are the size of matchings provided by Greedy,
KS, OKS and maximum matching algorithms, respectively,
have the Lipschitz property.

A. Arbitrary Degree Distribution

We establish the optimality of OKS algorithm which
immediately yields optimality of KS as well, for reasons
explained before. For this purpose, we follow in the footsteps
of Karp and Sipser [22] and embed the dynamics of both
input and output degree sequences as the algorithm proceeds
in continuous time. This embedding provides differential equa-
tions governing the degree sequence vectors. However, in
the general degree distribution case, unlike the classic Erdos-
Renyi case, the differential equations are defined in arbitrarily
high dimensions. So there is little hope of working in fixed
small dimension as Karp and Sipser [22] did (their differential
equations were 3 dimensional) and new ideas are needed. The
key idea in our proof is to use the differential equations to
show that the number of iterations when there is no degree
one vertex (and so the algorithm can possibly make a mistake)
is sublinear (in n) which means the fraction of unmatched
vertices (or equivalently the relative size of the number of
controllers) given by OKS is asymptotically the same as that
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of maximum matching. Finally, a set of equations for the
relative size of maximum matching according to asymptotic
empirical input and output degree distributions is provided.

Theorem 2 (Asymptotic optimality of OKS algorithm). For
network G = (L,R,E), |R| = |L| = n let |MOKS(G)| and
|M∗(G)| be the size of matching given by OKS algorithm
and the size of maximum matching respectively. Let G be
either ER, UFS or DD random network with finite average

degree, i.e. lim
n→∞

|E|
n =

∞∑
i=0

ipin(i) =
∞∑
i=0

ipout(i) <∞ (where

pin, pout are asymptotic empirical degree distributions). Then

lim
n→∞

|MOKS(G)|
n

= lim
n→∞

|M∗(G)|
n

.

Remark 2. Under the assumptions of Theorem 2,
one can show the asymptotic optimality of KS as
well: lim

n→∞
|MKS(G)|

n = lim
n→∞

|M∗(G)|
n . We omit the proof

here as it is very similar to the proof of Theorem 2.

Note that in Theorem 1 letting ε = n−r for every r > 1
2

the convergence holds. So the difference between |MOKS | and
|M∗| is O(

√
n). Now the following questions arise: (i) what is

the size of maximum matching? (ii) how can we compute the
answer (asymptotically) without running the algorithm? The
following theorem gives the size of maximum matching in
terms of input and output degree distributions. For u ∈ [0, 1)
define moment generating functions:

Φin(u) =

∞∑
i=0

pin(i)ui,Φout(u) =

∞∑
i=0

pout(i)u
i,

φin(u) =
1

µ
Φ′in(u) =

∞∑
i=1

ipin(i)

µ
ui−1,

φout(u) =
1

µ
Φ′out(u) =

∞∑
i=1

ipout(i)

µ
ui−1,

where µ =
∞∑
i=0

ipin(i) =
∞∑
i=0

ipout(i) is the average degree.

Theorem 3 (Size of Maximum Matching). For (either ER,
UFS or DD) random network G = (L,R,E), |R| = |L| = n
if µ <∞ let U∗ be

U∗ =
1

2

[
Φin(1− w1) + Φin(w2) + Φout(1− w3)− 2

+ Φout(w4) + µ (w3(1− w2) + w1(1− w4))
]

(1)

where (w1, w2, w3, w4) ∈ [0, 1)
4 is the smallest solution of

φout(1− w3) = 1− w2 , φin(w2) = w3,

φin(1− w1) = 1− w4 , φout(w4) = w1,

then the asymptotic fraction of unmatched vertices is U∗:

lim
n→∞

1− |M
∗(G)|
n

= U∗.

Note that the formula (1) first appeared in Liu et al.’s
work [12] and was supported by numerical experiments. The
result above formally proves its validity.

B. Poisson Degree Distribution

We first present selected asymptotic and non-asymptotic
results about the fraction of matched vertices for the matching
given by Greedy. Subsequently we generalize the results
provided by Karp and Sipser [22] on the performance of KS.

Studying a simple algorithm (Greedy) on a simple random
network G (drawn from directed ER where every edge i→ j
exists with probability p) allows us to obtain explicitly the
non-asymptotic probability mass function for |MG(G)|. The
following theorem also provides the asymptotic behavior of
|MG(G)| for directed ER.

Theorem 4 (Greedy for directed ER). Let the network G be
directed ER of size n. Then:

P(|MG(G)| = n− k) =
αn(q)2

αk(q)2αn−k(q)
qk

2

,

where q = 1 − p and αi(q) =
i∏

j=1

(1− qj). For ER(λ)

(i.e. np → λ) if λ = 0 then lim
n→∞

|MG(G)|
n = 0. If λ = ∞

then lim
n→∞

|MG(G)|
n = 1. For λ ∈ (0,∞), |MG(G)| is

asymptotically normal:

N
(
n
λ− log(2− e−λ)

λ
, n

1

4λ

)
.

Some of the results in Theorem 4 remain valid for a larger
class of random networks including directed and undirected
networks.

Theorem 5 (Greedy for asymptotically Poisson degree distri-
butions). Assume G is one of ER(λ), UFS(λ), DD(p) and
DD(p, p) where probability distribution p is Poisson(λ). If
λ = 0 (respectively λ = ∞) then lim

n→∞
|MG(G)|

n = 0 (respe-

spectively 1). For λ ∈ (0,∞), lim
n→∞

|MG(G)|
n = 1− log(2−e−λ)

λ .

Similar results hold for KS. In fact, Karp and Sipser [22]
proved that, for the classical undirected Erdos-Renyi random
network (denoted by undirected ER(λ), λ ∈ (0,∞) here), KS
is optimal. They split the running of the algorithm into two
phases. Phase 1 begins when the algorithms starts and finishes
the first time there is no vertex of degree one in the network,
when phase 2 starts and proceeds until the algorithm removes
all edges from the network. For network G let U(G), U1(G)
and U2(G) be the number of vertices left unmatched (became
of degree zero before being removed from the network) when
running maximum matching, phase 1 and phase 2 respectively,
H = (V ′, E′) be the remaining network at the beginning of
phase 2. Hence |M∗(G)| = n − U(G), |MKS(G)| = n −
U1(G) − U2(G), |MKS(H)| = |V ′| − U2(G). Since there is
no deviation from maximum matching as long as vertices of
degree one exists, we have U1(G) ≤ U(G) ≤ U1(G)+U2(G).
Karp and Sipser show U2(G)

n → 0 as n→∞ so the algorithm
is optimal, i.e. lim

n→∞
|MKS(G)|

n = lim
n→∞

|M∗(G)|
n . Further, they

show U1(G)
n → k(λ) and |V

′|
n → h(λ) and find functions k, h

as k(λ) = γ∗+γ
∗+γ∗γ

∗

λ −1, h(λ) = (1−γ∗)(γ∗−γ∗)
λ where γ∗ is

the smallest root of γ = λ exp(−λe−γ) and γ∗ = λe−γ∗ . For
λ ≤ e we have h(λ) = 0 because of γ∗ = γ∗. In the following
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theorem, we generalize these results to a larger class of random
networks.

Theorem 6 (KS for asymptotically Poisson degree distribu-
tions). Assume G is one of ER(λ), UFS(λ), DD(p) and
DD(p, p) where probability distribution p is Poisson(λ). If
λ = 0 then lim

n→∞
|MKS(G)|

n = lim
n→∞

|M∗(G)|
n = 0. If λ = ∞

then lim
n→∞

|MKS(G)|
n = lim

n→∞
|M∗(G)|

n = 1. For λ ∈ (0,∞), we
have

lim
n→∞

|MKS(G)|
n

= lim
n→∞

|M∗(G)|
n

= 1− k(λ).

Furthermore, U2(G)
n → 0 , U1(G)

n → k(λ) and |V
′|
n → h(λ)

as n→∞.

Remark 3. Note that the results in Theorem 6 are consistent
with Theorem 3 as follows. Letting pin, pout be Poisson(λ),
calculations show U∗ = k(λ) because of µ = λ, Φin(u) =
Φout(u) = φin(u) = φout(u) = exp (λ(u− 1)).

Results presented in Theorems 5 and 6 are based on the
fact that in all mentioned random networks, the asymptotic
empirical degree distribution is Poisson.

VI. CONCLUSION

We proved that the OKS algorithm is (asymptotically) opti-
mal for determining a set of vertices where controllers should
be applied to. Indeed, first benefiting from the connection
between structural controllability of networks and maximum
matching problems (minimum inputs theorem) we introduced
simple fast matching algorithms OKS and KS. Further,
using topologies extracted from real networks, we empirically
showed that the minimum number of controllers for structural
controllability heavily depends on the degree distribution of
the network, which in turn implies that the assumption of
a random network with specified degree distribution is rea-
sonable for many real world networks. Finally, new proof
techniques introduced in this study enable the rigorous analysis
of the the performance of a class of fast matching algorithms
for random networks.

Ruths and Ruths [32] showed that existing random network
models, while capturing the key features for predicting the
minimum number of controllers, are not predicting more
detailed control profiles of real networks. This calls for the
development of new random network models that match
control profiles, and associated fast control algorithms.
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APPENDIX

Proof of Theorem 2

The complete appendix including proofs of all established
results can be found in the Supplementary Materials.

We prove the theorem in two steps. In Step 1, first we
embed the dynamics of input and output degree sequences
during the algorithm in a continuous time Markov process

for a random network with bounded degrees. Then, we find
explicit expressions for differential equations governing the
dynamics of degree sequences for infinitely large networks.
Then, we show that for a finite random network, the dynamics
of degree sequences can be approximated by the solution of
the presented initial value problem. Finally, we show that this
solution spends zero time in the cases where there is no vertex
of degree one so the number of iterations of the algorithm there
is no vertex of degree one on the right side of the random
network is sublinear w.r.t. the size of the network. In Step 2,
we generalize the proof to the unbounded, but finite mean,
degree sequences.

Step 1: Embedding in a continuous time Markov pro-
cess. Assume in addition that the asymptotic empirical degree
distributions are bounded: pin(i) = pout(i) = 0 for i > N i.e.
for every vertex v ∈ L ∪ R we have deg(v) ≤ N . First,
we embed the dynamics of the algorithm in a continuous
time Markov process. To go to continuous time, define Gn(t)
as the n-vertex network at time t ∈ R where state changes
Gn = Gn − {u, v} occur at Exp(n) interarrival times. More
precisely, let τ1, τ2, . . . be i.i.d Exp(n) random variables,
i.e. the probability density function is ne−nt for t ≥ 0 so
E(τi) = 1

n . The first state change Gn = Gn − {u, v} occurs
at time t = τ1, the second one occurs at t = τ1 + τ2 and so
forth. Now we construct a Markov process on R2N which
describes the performance of the algorithm. The transition
kernel of the Markov process will be described later. Define
X(n)(t), Y (n)(t) ∈ RN as:

X
(n)
k (t) =

1

n

∣∣{v ∈ R : deg(v) = k in Gn(t)}
∣∣,

Y
(n)
k (t) =

1

n

∣∣{v ∈ L : deg(v) = k in Gn(t)}
∣∣,

for k = 1, 2, . . . , N . In addition let m = m(X(n)(t)) be the
minimum degree of vertices in R(t): m(X(n)(t)) = min{k :

X
(n)
k (t) 6= 0} so letting v1 = v, u1 = u whenever a state

change occurs we have deg(v1) = m. Let (ui, v) ∈ E for i =
1, . . . ,m, K = deg(u1) and (u, vj) ∈ E for j = 1, . . . ,K.
So for a network of size n we have the following conditional
degree distributions for vertices u1, . . . , um, v2, . . . , vK :

Pn (deg(ui) = k|Ai−1(t)) =

nkY
(n)
k (t)− k

i−1∑
j=1

1deg(uj)=k

n
N∑
k=1

kY
(n)
k (t)−

i−1∑
j=1

deg(uj)

,

Pn (deg(vi) = k|Bi−1(t)) =

nkX
(n)
k (t)− k

i−1∑
j=1

1deg(vj)=k

n
N∑
k=1

kX
(n)
k (t)−

i−1∑
j=1

deg(vj)

,

where Ai(t) = (deg(u1), . . . ,deg(ui), Y
(n)(t)),Bi(t) =

(deg(v1), . . . ,deg(vi), X
(n)(t)). Note that since interarrival

times are i.i.d exponential random variables, X(n)(t), Y (n)(t)
are continuous time Markov processes.
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Letting X̃(n), Ỹ (n) ∈ RN be the corresponding vectors after
one state change for x, y ∈ RN define functions Fn,Gn :
R2N → RN as:

Fn(x, y) = nEn(X̃(n) −X(n)|X(n) = x, Y (n) = y),

Gn(x, y) = nEn(Ỹ (n) − Y (n)|X(n) = x, Y (n) = y),

where En is expected value w.r.t Pn. Since the process is
Markov, probability distribution of X̃(n), Ỹ (n) depends only
on X(n), Y (n).

Asymptotic initial value problem: Define P(deg(ui) =

k) =
kY

(n)
k (t)

N∑
k=1

kY
(n)
k (t)

,P(deg(vi) = k) =
kX

(n)
k (t)

N∑
k=1

kX
(n)
k (t)

. Note that

Pn,P can be defined for every x, y ∈ RN with non-negative
components. Now, for arbitrary x, y, some algebra gives:

|Pn(deg(ui) = k|Ai−1(t))− P(deg(ui) = k)| ≤ C1

n
, (2)

|Pn(deg(vi) = k|Bi−1(t))− P(deg(vi) = k)| ≤ C2

n
. (3)

For C1 = 2N2

N∑
k=1

kyk

, C2 = 2N2

N∑
k=1

kxk

. Define:

F(x, y) = nE(X̃(n) −X(n)|X(n) = x, Y (n) = y),

G(x, y) = nE(Ỹ (n) − Y (n)|X(n) = x, Y (n) = y),

where E is expected value w.r.t P. Since

nX̃
(n)
k = nX

(n)
k +

K∑
j=2

[1deg(vj)=k+1 − 1deg(vj)=k]− 1k=m, (4)

nỸ
(n)
k = nY

(n)
k +

m∑
j=2

[1deg(uj)=k+1 − 1deg(uj)=k]− 1k=K , (5)

inequalities (2), (3) yield

‖Fn(x, y)− F(x, y)‖1 ≤
4N4

N∑
k=1

kxk

1

n
, (6)

‖Gn(x, y)−G(x, y)‖1 ≤
4N4

N∑
k=1

kyk

1

n
, (7)

and,

F(x, y) = (
‖A2y‖1
‖Ay‖1

− 1)
1

‖Ax‖1
(SAx−Ax)− 1m(x),

G(x, y) = − Ay

‖Ay‖1
+
m(x)− 1

‖Ay‖1
(SAy −Ay),

where A and S are moment matrix and shift matrix re-
spectively, i.e., A,S ∈ RN×N , Aij is i for i = j and 0
otherwise, and Sij is 1 for i = j − 1 and 0 otherwise,
m(x) = min{k : xk 6= 0} and 1m ∈ RN is the vector
in which m-th component is 1 and all others are 0. Note
that ‖AX(n)(t)‖1 = ‖AY (n)(t)‖1 because for finite n always

|E(t)| = n
N∑
k=1

kX
(n)
k (t) = n

N∑
k=1

kY
(n)
k (t). Besides, transi-

tion kernel of the Markov process can be formulated by Pn
according to (4), (5).

Approximating the dynamics of the degree sequences by
the solution of asymptotic initial value problem: Now we
can use Kurtz’s Theorem [33]. Given functions F,G : R2N →
RN and positive constant T , define x(t), y(t) : [0, T ] → RN
as the solution of the initial value problems

ẋ = F(x, y), xk(0) = pin(k), k = 1, . . . , N, (8)
ẏ = G(x, y), yk(0) = pout(k), k = 1, . . . , N, (9)

and let E = {z ∈ RN such that: ε <
N∑
k=1

kzk ≤ N}. Suppose

the following statements hold:
1) lim

n→∞
sup

z1,z2∈E
‖Fn(z1, z2)− F(z1, z2)‖1 = 0.

2) lim
n→∞

sup
z1,z2∈E

‖Gn(z1, z2)−G(z1, z2)‖1 = 0.

3) for all k = 1, . . . , N , lim
n→∞

X
(n)
k (0) = pin(k).

4) for all k = 1, . . . , N , lim
n→∞

Y
(n)
k (0) = pout(k).

5) functions F,G are Lipschitz (in the classic sense).
Then

lim
n→∞

Pn
(
∃t ∈ [0, T ] : m(X(n)(t)) 6= m(x(t))

)
= 0. (10)

Letting T = T (ε) = sup{t :
N∑
k=1

kxk(t) > ε,
N∑
k=1

kyk(t) > ε}
for some arbitrary ε > 0, the first two conditions are satisfied
by (6), (7). By the definition of asymptotic empirical degree
distributions lim

n→∞
X

(n)
k (0) = pin(k) and lim

n→∞
Y

(n)
k (0) =

pout(k). On the other hand, the initial value problems (8),
(9) have unique solutions since defining metric d on RN as
d(x, y) = ‖x − y‖1 + 1m(x)6=m(y), F,G are Lipschitz with
respect to this metric i.e. there is a B < ∞ such that for all
x, x′, y, y′ ∈ RN

d(F(x, y),F(x′, y′)) < B(d(x, x′) + d(y, y′)),

d(G(x, y),G(x′, y′)) < B(d(x, x′) + d(y, y′)).

Note that stopping time at T (ε), i.e. when εn edges are
remaining in the network to be removed by the algorithm, will
not cause any problem since continuing the algorithm from
that point on cannot add more than ε edges to the matching
on a scale relative to the number n of vertices.

Properties of the asymptotic initial value problems: The
useful fact about the solutions of (8), (9) is that Lebesgue
measure of the set {0 < t < T : m(x(t)) > 1} is zero.
Suppose it is not. So there are 0 < t1 < t2 such that x1(t) = 0

for all t ∈ [t1, t2] so dx1(t)
dt = 0 for all t ∈ (t1, t2). But

dx1(t)

dt
= F1(x, y) = (

‖A2y‖1
‖Ay‖1

− 1)
1

‖Ax‖1
(2x2(t)− x1(t))

implies x2(t) = 0 for all t ∈ (t1, t2) which means m(x(t)) >
2 for all t ∈ (t1, t2). Repeating this argument for x2 now
we will get m(x(t)) > 3 and so on. Therefore, m(x(t)) > N
which is impossible. Thus, the set {0 < t < T : m(x(t)) > 1}
has zero Lebesgue measure.
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Sublinearity of the number of iterations of the algorithm
with no degree one vertex: Let J (n) ⊂ {1, 2, . . . , n} be the
set of indices i of iterations of OKS such that after the i-th it-
eration the minimum degree on the right side of the network is
larger than one. Since the set {0 < t < T : m(x(t)) > 1} has
zero Lebesgue measure by (10) Lebesgue measure of the set
{0 < t < T : m(X(n)(t)) > 1} goes to 0 as n grows. Because
the Lebesgue measure of the set {0 < t < T : m(X(n)(t)) >
1} is

∑
i∈J(n)

τi+1 we have lim
n→∞

∑
i∈J(n)

τi+1 = 0 but by the

Law of Large Numbers lim
n→∞

1
|J(n)|

∑
i∈J(n)

nτi+1 = E(nτ1) =

1. Therefore lim
n→∞

|J(n)|
n = lim

n→∞
|J(n)|
n

1
|J(n)|

∑
i∈J(n)

nτi+1 =

lim
n→∞

∑
i∈J(n)

τi+1 = 0 i.e. the number of iterations of OKS

algorithm for which there is no vertex of degree one on the
right side of the network is sublinear w.r.t. the size of the
network.

Sublinearity of difference between the output of OKS
and maximum matching: Using lim

n→∞
|J(n)|
n = 0 we prove

that the size of the matching provided by the OKS algorithm
is away from maximum matching size by a sublinear factor.
Starting the algorithm, as long as the minimum degree on the
right side of the network is one, OKS makes no mistake,
i.e. the size of the matching by OKS is the same as the size
of maximum matching. When the minimum degree is m =
m(X(n)(t)) > 1 it is possible that OKS picks a vertex on the
left side which is not the optimal choice. We make it optimal
by manipulating the network: if v ∈ R, u ∈ L,deg(v) = m
are the chosen vertices in the iteration of the algorithm to
be removed from the network, MOKS = MOKS ∪ {(u, v)},
manipulate the network by removing all other m − 1 edges
connected to v. Since |M∗| has the Lipschitz property, remov-
ing these m − 1 edges will change the size of the maximum
matching by at most m− 1. Since m is the minimum degree
and the average degree is bounded, m−1 is bounded as well.
On the other hand, the number of iterations that OKS will
face such cases is sublinear w.r.t. the size of the network, so
the whole number of possible errors, or in other words, the
whole deviation from maximum matching made by OKS is
sublinear, i.e. lim

n→∞
|MOKS(G)|

n = lim
n→∞

|M∗(G)|
n .

Step 2: Generalization to unbounded degree. Now to
generalize the proof to cases where the asymptotic empirical
degree distributions are not bounded, we use the classical
technique of truncation. For arbitrary ε > 0, let N be large

enough such that
∞∑

k=N+1

kpin(k) < ε
2 ,

∞∑
i=N+1

kpout(k) < ε
2 .

In random network G remove some edges in order to have
no vertex of degree larger than N to get random network H
which has bounded asymptotic empirical degree distributions.
By Step 1,

lim
n→∞

|MOKS(H)|
n

= lim
n→∞

|M∗(H)|
n

. (11)

Because by Lemma 2 both functions |M∗|, |MOKS | have the
Lipschitz property and asymptotically the number of edges

removed from G to get H is less than nε:

lim
n→∞

∣∣|M∗(H)| − |M∗(G)|
∣∣

n
< ε, (12)

lim
n→∞

∣∣|MOKS(H)| − |MOKS(G)|
∣∣

n
< ε. (13)

Now (11), (12), (13) imply the desired result.
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