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The predict-then-optimize framework is fundamental in many practical settings: predict the unknown param-

eters of an optimization problem, and then solve the problem using the predicted values of the parameters.

A natural loss function in this environment is to consider the cost of the decisions induced by the predicted

parameters, in contrast to the prediction error of the parameters. This loss function was recently introduced

in Elmachtoub and Grigas (2022) and referred to as the Smart Predict-then-Optimize (SPO) loss. In this

work, we seek to provide bounds on how well the performance of a prediction model fit on training data gen-

eralizes out-of-sample, in the context of the SPO loss. Since the SPO loss is non-convex and non-Lipschitz,

standard results for deriving generalization bounds do not apply.

We first derive bounds based on the Natarajan dimension that, in the case of a polyhedral feasible region,

scale at most logarithmically in the number of extreme points, but, in the case of a general convex feasible

region, have linear dependence on the decision dimension. By exploiting the structure of the SPO loss function

and a key property of the feasible region, which we denote as the strength property, we can dramatically

improve the dependence on the decision and feature dimensions. Our approach and analysis rely on placing

a margin around problematic predictions that do not yield unique optimal solutions, and then providing

generalization bounds in the context of a modified margin SPO loss function that is Lipschitz continuous.

Finally, we characterize the strength property and show that the modified SPO loss can be computed

e�ciently for both strongly convex bodies and polytopes with an explicit extreme point representation.

Key words : generalization bounds; prescriptive analytics; regression; predict-then-optimize

1. Introduction

A common application of machine learning is to predict-then-optimize, i.e., predict unknown param-

eters of an optimization problem and then solve the optimization problem using the predictions.
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For instance, consider a navigation task that requires solving a shortest path problem. The key

inputs into this problem are the travel times on each edge, typically called edge costs. Although the

exact costs are not known at the time the problem is solved, the edge costs are predicted using a

machine learning model trained on training data consisting of features (time of day, weather, etc.)

and edge costs (collected from app data). Fundamentally, a good prediction model induces the opti-

mization problem to find good shortest paths, as measured by the true edge costs. In fact, recent

work has been developed to consider how to solve problems in similar environments (Bertsimas

and Kallus 2020, Kao et al. 2009, Donti et al. 2017). In particular, Elmachtoub and Grigas (2022)

developed the Smart Predict-then-Optimize (SPO) loss function for the case of optimization with

an unknown linear objective subject to a convex feasible region, also known as contextual linear

optimization. The SPO loss exactly measures the quality of a prediction by the decision error, in

contrast to the prediction error as measured by standard loss functions such as mean squared error.

A key property of a loss function is to show that the generalization error is small, i.e., that the loss

observed in-sample is close to what we would observe out-of-sample. A generalization bound is an

upper bound on the generalization error that holds with high probability, and should be relatively

small to justify the use of minimizing the empirical risk on the training data. A generalization

bound also implies a convergence rate on the number of samples required to find the best prediction

model within a given hypothesis class. In this work, we seek to provide an assortment of novel and

strong generalization bounds for the SPO loss function.

Specifically, we shall assume that our optimization task is to minimize a linear objective over

a feasible region, and that this task can be completed e�ciently in the practical sense. This cap-

tures a wide range of optimization problems including linear programming, mixed-integer linear

programming, and a large class of nonlinear programs. In the shortest path example, the feasible

region is a polyhedron. We assume the objective cost vector is not known at the time that the opti-

mization problem is solved, but rather predicted from a prediction model that maps from features

to cost vectors. A decision is made with respect to the predicted cost vector, and the SPO loss

is computed by evaluating the decision on the true cost vector and then subtracting the optimal

cost assuming knowledge of the true cost vector. Unfortunately, the SPO loss is non-convex and

non-Lipschitz, and therefore proving generalization bounds is not immediate.

Our results consider two approaches, and in all cases achieve bounds that are Õ( 1
p
n
), where n

is the number of samples. Each approach uses the classic result of Bartlett and Mendelson (2002)

(Theorem 1), which allows us to bound the generalization error by using the Rademacher com-

plexity of the hypothesis class composed with predict-then-optimize models. In the first and more

straightforward approach, we treat the optimization task as a generalization of multiclass classi-

fication (see Example 3). When the feasible region is a polyhedron, this resorts to treating every
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extreme point as a class. The final bound depends on the square root of the Natarajan dimension of

the hypothesis class, and the square root of the log of the number of extreme points (Theorem 2).

The Natarajan dimension essentially measures how rich the hypothesis class of prediction models

is, and in the case of linear models it is exactly the number of parameters pd, where p is the feature

dimension and d is the decision dimension (Corollary 2). For a general convex body, we transform

the optimization task into a multiclass classification problem by discretizing the feasible region

with a ball covering that only results in a loss of O( 1

n
) (Corollary 3). The ball covering can be

exponential in d, and the final generalization bound can thus depend on d
p
p in the case of a linear

hypothesis class.

Fortunately, we show that for a large class of feasible regions, tighter generalization bounds can

be obtained with improved dependence on p and d, using margin-based methods. The key idea of

our approach is to reduce the analysis of the Rademacher complexity of the SPO framework to a

multivariate Rademacher complexity of the vector-valued hypothesis class, for which we can obtain

improved bounds in many cases. This reduction relies on a vector contraction inequality that only

works for Lipschitz loss functions. Since SPO loss is not Lipschitz, we transform it to a Lipschitz loss

function by using a margin-based analysis that bounds away predictions that yield multiple optimal

solutions (and cause discontinuities in the SPO loss). We define a property of the feasible region

which we call the strength property, and show that our margin-based loss function is Lipschitz

if the strength property is satisfied (Theorem 3). In turn, this allows to provide generalization

bounds with respect to the margin-based loss, the strength parameter, and with the more amenable

Rademacher complexity of the hypothesis class (Theorem 4). We also show the margin parameter

can be cross-validated by showing the generalization bound holds uniformly over an interval of

margin parameters (Theorem 5). We show that for suitably constrained linear hypothesis classes,

we get a much improved dependence on problem dimensions (Theorem 6). Finally, we show the

strength property and how to compute the margin-based loss for strongly convex sets (Theorem

7) and polyhedra with an explicit extreme point representation (Theorem 8).

1.1. Relation to Previous Work

We first summarize a few additional approaches proposed in the literature which for solving predict-

then-optimize problems. Kao et al. (2009) propose a loss function for training linear regression

models which minimizes a convex combination between the prediction error and decision error of an

unconstrained quadratic optimization. Donti et al. (2017) provide a more general methodology that

allows for constraints which relies on di↵erentiating the optimization problem using a technique

from Amos and Kolter (2017). Wilder et al. (2019a), Mandi et al. (2020), Ferber et al. (2020),

Wilder et al. (2019b), Pogančić et al. (2019), Mandi and Guns (2020), Berthet et al. (2020) consider
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training ML models using “decision-focused” loss functions for various linear and combinatorial

optimization problems; their methods do not attempt to minimize SPO loss directly but rather

employ di↵erentiable surrogate loss functions. Elmachtoub and Grigas (2022) propose a convex

surrogate loss funcion called SPO+ loss which is shown to be Fisher consistent with SPO loss. Loke

et al. (2021) consider a form of regularization that generalizes the SPO+ loss function. Demirovic

et al. (2019, 2020) propose algorithms for training linear regression models to directly minimize

SPO loss, but their methodology is specialized for ranking optimization problems and dynamic

programming problems, respectively. Ho-Nguyen and Kılınç-Karzan (2022) study the relationship

between the mean squared error loss and the SPO loss. See Kotary et al. (2021) for a recent survey

of more approaches. The SPO loss has been used in applications such as last mile delivery (Chu

et al. 2021) and ship inspection (Yan et al. 2020). Elmachtoub et al. (2020) and Kallus and Mao

(2020) train decision trees and random forests to directly minimize decision error in contextual

linear and nonlinear optimization problems, respectively.

A preliminary version of this paper appeared in El Balghiti et al. (2019) that did not include our

general framework for margin-based bounds using the strength property. Our results have found

use in Hu et al. (2022) which slightly improved Theorem 2 by a factor of
p
logn. They also show -

in settings where there is no model misspecification (realizability) - how to obtain regret rates that

can be faster than O( 1
p
n
) when using SPO loss and least squares loss. Wang et al. (2020) uses our

Theorem 2 to derive generalization bounds on compact surrogate loss functions. Generalization

bounds for related types of decision-making problems have been derived in Ban and Rudin (2019),

Ho and Hanasusanto (2019), Bertsimas and Kallus (2020).

As previously mentioned, the SPO framework is a generalization of multi-class classification, and

thus our results have some connections to results in this literature stream. In fact, our results can

be seen as extending the classic margin-based generalization bounds for classification (Koltchinskii

and Panchenko 2002, Koltchinskii et al. 2001, Mohri et al. 2018) to the predict-then-optimize

framework. Note that the reduction of a predict-then-optimize problem to multi-class classification

throws away potentially important information, namely the numerical values of the cost vectors.

Therefore a naive application of results in the classification literature would not lead to bounds on

our loss function of interest, the SPO loss. Furthermore, our approaches remove a strong explicit

dependency on the number of extreme points (classes) by exploiting the structure of the SPO

loss. Our data-independent bounds grow only logarithmically in the number of extreme points. In

contrast, for data-independent worst-case bounds in multiclass classification, the dependency is at

best square root in the number of classes (Guermeur 2007, Daniely et al. 2015). Our data-dependent

margin based bounds remove an explicit dependency on the number of extreme points entirely.

Since the seminal work of Koltchinskii and Panchenko (2002), much work in the classification
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literature has focused on improving the dependency on the number of classes for nonparameteric

hypothesis classes such as multi-class kernels. For example, by using data-dependent (margin-

based) approaches and local Rademacher complexity analysis, Lei et al. (2015) and Li et al. (2018)

obtain logarithmic complexity in the number of classes for such hypothesis classes.

2. Predict-then-Optimize Framework

We now formally describe the predict-then-optimize framework, which is central to many appli-

cations of machine learning for use in operations research problems. We are given a nominal

optimization problem of interest which models a downstream decision-making task. We assume

that the nominal problem has a linear objective and that the decision variable w 2Rd and feasible

region S ✓ Rd are well-defined and known with certainty. We assume S is a nonempty, compact,

and convex set. However, the cost vector of the objective, c 2 Rd, is not observed directly, and

rather an associated feature vector x 2Rp is observed. Let D be the underlying joint distribution

of (x, c) and let Dx be the conditional distribution of c given x. Then, the goal for the decision

maker is to solve the contextual stochastic optimization problem

min
w2S

Ec⇠Dx [c
T
w|x] = min

w2S

Ec⇠Dx [c|x]
T
w . (1)

The predict-then-optimize framework relies on using a prediction (estimate) for Ec⇠Dx [c|x], which

we denote by ĉ, and solving the deterministic version of the optimization problem based on ĉ.

From (1), it is clear that the linearity of the objective makes the predict-then-optimize approach

viable, where as a nonlinear objective may require an alternate approach such as that developed by

Bertsimas and Kallus (2020). Note that knowledge of the distribution Dx is typically unavailable,

thus necessitating a data-driven approach to solving (1).

We define P (ĉ) to be the optimization task with objective cost vector ĉ, namely

P (ĉ) : min
w

ĉ
T
w

s.t. w 2 S.
(2)

Since we are focusing on linear optimization problems, the assumption that S is convex is without

loss of generality as we can take S to be the convex hull of any potentially non-convex feasible region.

We let w
⇤(·) : Rd

! S denote any oracle for solving P (·). That is, w⇤(·) is a fixed deterministic

mapping such that w
⇤(c) 2 argminw2S {c

T
w} for all c 2 Rd. For instance, if (2) corresponds to a

linear, conic, or mixed-integer optimization problem (in which case S can be implicitly described

as a convex set), then a commercial optimization solver or a specialized algorithm su�ces for w⇤(·).

In this framework, we assume that predictions are made from a model that is learned on a

training data set. Specifically, we are provided sample training data (x1, c1), . . . , (xn, cn) drawn

i.i.d. from the joint distribution D, where xi 2 X ✓ Rp is a feature vector representing auxiliary



6 El Balghiti, Elmachtoub, Grigas, and Tewari: Generalization Bounds in the Predict-then-Optimize Framework

information associated with the cost vector ci 2 C ✓Rd. We denote by H our hypothesis class of cost

vector prediction models. Thus, for a function f 2H, we have that f :X !Rd. Most approaches for

learning a model f 2H from the training data are based on specifying a loss function that quantifies

the error in making prediction ĉ when the realized (true) cost vector is actually c. Following prior

work of Elmachtoub and Grigas (2022), our primary loss function of interest is the Smart Predict-

then-Optimize (SPO) loss function that directly takes the nominal optimization problem P (·) into

account when measuring errors in predictions. Namely, we consider the SPO loss function defined

by:

`SPO(ĉ, c) := c
T
w

⇤(ĉ)� c
T
w

⇤(c) ,

where ĉ is the predicted cost vector and c is the true realized cost vector. The SPO loss can be

described as the decision error of making the decision based on ĉ when the actual cost vector was c,

evaluated on the actual cost vector c. The SPO loss is always non-negative and is exactly zero when

the induced decisions from ĉ and c are equal, even if ĉ and c themselves are not necessarily close

(which is traditionally the goal in prediction). Note that, primarily for simplicity of presentation,

we consider the version of the SPO loss defined relative to the specific and fixed optimization oracle

w
⇤(·) (Definition 1 of Elmachtoub and Grigas (2022)) rather than the unambiguous variant that

does not depend on a specific optimization oracle (Definition 2 of Elmachtoub and Grigas (2022)).

Given a fixed sample (x1, c1), . . . , (xn, cn), we define the empirical risk with respect to the SPO

loss of a function f 2H as

R̂SPO(f) :=
1

n

nX

i=1

`SPO(f(xi), ci) ,

and the expected (or Bayes) risk as

RSPO(f) :=E(x,c)⇠D[`SPO(f(x), c)].

One can interpret the expected risk as the out-of-sample performance of f , and the empirical risk

as the in-sample performance. The empirical risk minimization principle states that we should

determine a prediction model f̂n 2H by solving the optimization problem

min
f2H

R̂SPO(f) . (3)

Empirical risk minimization with respect to the SPO loss is not the only way to train a prediction

model. Indeed, as pointed out in Elmachtoub and Grigas (2022), the SPO loss function is gener-

ally non-convex, may even be discontinuous, and is in fact a strict generalization of the 0-1 loss

function in binary classification. Thus, solving (3) to optimally is intractable even when H is a

linear hypothesis class. To circumvent these di�culties, alternative approaches include optimizing
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a convex surrogate loss such as the SPO+ loss presented in (Elmachtoub and Grigas 2022) or the

squared `2 loss, using methods exploiting structural properties of H (Elmachtoub et al. 2020), or

modifying P (·) and finding local optimal solutions (Wilder et al. 2019a). Most generally, one may

use any training procedure that determines a model in the hypothesis class H and therefore it is

important that generalization bounds apply uniformly for all functions in H. Our focus herein is

on deriving generalization bounds that hold uniformly over a given hypothesis class H and thus are

valid for any training approach, including the use of a surrogate or alternate loss function within

the framework of empirical risk minimization. We also note that a generalization bound for the

SPO loss directly translates to an upper bound guarantee for problem (1) that holds “on average”

over the distribution.

Provided with any prediction model f̂ trained on the given data, we can now simply express

the predict-then-optimize approach to solve (1); when presented with a feature vector x, select

the optimal solution with respect to the predicted cost vector, i.e., the decision made is w⇤(f̂(x)).

Ideally, in order to select see if f̂ is a good model, we would evaluate the expected future real-world

performance of f̂ , i.e., the decision-maker would evaluate the expected risk RSPO(f̂). Unfortu-

nately, as the true distribution is unknown, one can only estimate this quantity using data and the

most natural estimate is the empirical risk R̂SPO(f̂). Generalization bounds, which bound the gap

between the empirical and expected risk with high probability, are thus critical as they validate

that R̂SPO(f̂) is a reasonable estimate of RSPO(f̂). Strong validation bounds validate the usage of

empirical risk minimization and other model selection ideas that estimate the empirical risk on the

training data. Indeed, one may use a (two-sided) generalization bound to construct a confidence

interval for RSPO(f̂), for example. At a more cursory level, generalization bounds reveal how the

di↵erence between the expected and empirical risks scale with key parameters such as the sample

size and dimensions of the feature and decisions spaces.

To conclude this subsection, we present several important examples to illustrate the applicability

and generality of the SPO loss function and framework.

Example 1 (Shortest Path). In the shortest path problem, the feature vector x may include

features such as weather, speed limit, and time data that may be used to predict the cost vector c

representing the travel times along each edge of the network. In this case, the network is assumed to

be given (e.g., the road network of a city) and the feasible region S is a network flow polytope that

represents flow conservation and capacity constraints on the underlying network. More generally,

the class of vehicle routing problems with unknown edge costs falls in our framework, although the

feasible region is more complex as integer constraints are typically required. ⇤
Example 2 (Portfolio Optimization). In portfolio optimization, the returns of potential

investments can depend on many features which typically include historical returns, news, economic
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factors, social media, and others. We presume that these features may be used to predict the vector

of returns di↵erent assets, but that the covariance matrix of the asset returns does not depend on

the features. Maximizing the expected return is a linear objective, and with convex constraints that

the total amount invested is in the simplex and the overall variance of the portfolio is bounded.

⇤
Example 3 (Multiclass Classification). Our setting also captures multi-class (and

binary) classification by the following characterization: S is the d-dimensional unit simplex, namely

S := {w 2 Rd :
P

d

j=1
wj = 1,w � 0}, where d is the number of classes, and C = {�ei|i = 1, . . . , d}

where ei is the ith unit vector in Rd. It is easy to see that each vertex of the simplex corresponds to

a class, and correct/incorrect classification has a loss of 0/1. Specifically, `SPO(ĉ, c) = 0 if w⇤(ĉ) =�c

and `SPO(ĉ, c) = 1 if w⇤(ĉ) 6=�c. ⇤

2.1. Other Notation

We make use of a generic given norm k · k on w 2 Rd, as well as the `q-norm denoted by

k · kq for q 2 [1,1]. For the given norm k · k on Rd, k · k⇤ denotes the dual norm defined by

kck⇤ := maxw:kwk1 c
T
w. Let B(w̄, r) := {w : kw� w̄k  r} denote the ball of radius r centered at

w̄, and we analogously define Bq(w̄, r) for the `q-norm and B⇤(c, r) for the dual norm. For a set

W ✓Rd, let distW (w̄) := infw2W {kw� w̄k} be the distance from the point w̄ 2Rd to W measured

in the norm k · k. Likewise, for a set C ✓Rd, define dist⇤
C
(c̄) := infc2C {kc� c̄k⇤} which is measured

in the dual norm. For a set S ✓Rd, we define the size of S in the norm k ·k by ⇢(S) := sup
w2S
kwk,

and the diameter of S by �(S) := sup
w1,w22S

kw1 � w2k. We analogously define ⇢q(·) for the

`q-norm and ⇢⇤(·) for the dual norm. We define the “linear optimization gap” of S with respect

to c by !S(c) := maxw2S {c
T
w}�minw2S {c

T
w}, and for a set C ✓ Rd we slightly abuse notation

by defining !S(C) := sup
c2C

!S(c). Note that the `SPO(ĉ, c) is non-negative and bounded above by

!S(C) for all ĉ 2 Rd and c 2 C. Finally, we define the class of predict-then-optimize functions by

w
⇤(H) := {x 7!w

⇤(f(x)) : f 2H}.

2.2. Rademacher Complexity and Generalization Bounds

Let us now briefly review the notion of Rademacher complexity and its application in our frame-

work. We define the empirical Rademacher complexity of H with respect to the SPO loss, i.e., the

empirical Rademacher complexity of the function class obtained by composing `SPO with H, by

R̂n

SPO
(H) :=E�

"
sup
f2H

1

n

nX

i=1

�i`SPO(f(xi), ci)

#
,

where �1, . . . ,�n are i.i.d. Rademacher random variables, i.e., P(�i = 1) = P(�i = �1) =
1

2
. The

expected version of the Rademacher complexity is defined as Rn

SPO
(H) :=E

h
R̂n

SPO
(H)

i
where the
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expectation is w.r.t. an i.i.d. sample drawn from the underlying distribution D. This Rademacher

complexity intuitively measures how expressive H is in terms of correlating `SPO(f(xi), ci) with

random noise �i. The following theorem is an adaptation of the classical generalization bounds

based on Rademacher complexity due to Bartlett and Mendelson (2002) to our setting.

Theorem 1 (Bartlett and Mendelson (2002), Theorem 3.3 in Mohri et al. (2018)).

Let H be a family of functions mapping from X to Rd. Then, for any � > 0, with probability at

least 1� � over an i.i.d. sample drawn from the distribution D, each of the following holds for all

f 2H:

RSPO(f) R̂SPO(f)+ 2Rn

SPO
(H)+!S(C)

r
log(1/�)

2n
.

Remark 1. Note that the above Theorem provides a one-sided upper generalization bound and

that its proof relies on McDiarmid’s inequality. A two-sided generalization bound can be obtained

with only additional absolute constants by applying McDiarmid’s inequality twice. Such a result

yields upper and lower bounds on RSPO(f), enabling the construction of a two-sided confidence

interval. Since we are ultimately interested in minimizing RSPO(f), our focus herein is on providing

one-sided upper generalization bounds; however many of our results (with the notable exception of

the margin-based bounds in Section 4) can readily be extended to two-sided bounds for RSPO(f).

⇤
As previously noted, we are interested in guarantees that hold across a wide range of training

procedures, beyond simply the empirical risk minimizer of the SPO loss. The fact that Theorem 1

holds uniformly over the hypothesis class H critically provides us with a tool for obtaining such

guarantees: as long as the training procedure returns a predictor in f 2H and H has a bounded

Rademacher complexity Rn

SPO
(H), then Theorem 1 yields a useful upper bound on the out-of-

sample SPO risk RSPO(f). We also note that, equipped with Theorem 1, we obtain “for free” an

additional guarantee on the excess risk of the empirical risk minimizer of the SPO loss f̂n. Indeed,

Corollary 1 below is a standard combination of Theorem 1 with Hoe↵ding’s inequality. The full

proof is in Appendix A.1.

Corollary 1. Let H be a family of functions mapping from X to Rd. Then, for any �> 0, with

probability at least 1� � over an i.i.d. sample drawn from the distribution D, any empirical risk

minimizer f̂n solving (3) satisfies:

RSPO(f̂n)�min
f2H

RSPO(f) 2Rn

SPO
(H)+ 2!S(C)

r
log(2/�)

2n
.
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Finally, we review an extension of Rademacher complexity to the case of vector-valued func-

tion classes. Following Bertsimas and Kallus (2020) and Maurer (2016), given a fixed sample

(x1, c1), . . . , (xn, cn), we define the multivariate empirical Rademacher complexity of H as

R̂n(H) :=E�

"
sup
f2H

1

n

nX

i=1

dX

j=1

�ijfj(xi)

#
=E�

"
sup
f2H

1

n

nX

i=1

�T

i
f(xi)

#
, (4)

where �ij are i.i.d. Rademacher random variables for i = 1, . . . , n and j = 1, . . . , d, and �i :=

(�i1, . . . ,�id)T . The expected version of the multivariate Rademacher complexity is defined as

Rn(H) := E
h
R̂n(H)

i
where the expectation is taken with respect to the i.i.d. sample drawn from

the underlying distribution D.

3. Generalization Bounds Based on Multiclass Classification

In this section, we primarily consider the case where S is a polyhedron and derive generalization

bounds based on bounding the Rademacher complexity of H with respect to the SPO loss and

applying Theorem 1. The idea is similar to the bounds show for multiclass classification based

on Natarajan dimension (Shalev-Shwartz and Ben-David 2014, Ch. 29), where we now treat each

extreme point as a class label. Since S is polyhedral, the optimal solution of P (·) can always be

found by considering only the finite set of extreme points of S, which we denote by the set S.

Since the number of extreme points may be exponential in d, our goal is to provide bounds that are

logarithmic in |S|. Note that, in the case of ties, we do not require that w⇤(ĉ) necessarily returns an

extreme point of S. At the end of the section, we extend our analysis to any compact and convex

feasible region S by extending the polyhedral analysis with a covering number argument.

In order to derive a bound on the Rademacher complexity, we critically rely on the notion of

Natarajan dimension (Natarajan 1989), which is an extension of the VC-dimension to the multiclass

classification setting and is defined in our setting as follows.

Definition 1 (Natarajan dimension). Let F ✓ S
X be a hypothesis space of functions map-

ping from X to S, and let X✓X be given. We say that F N-shatters X if there exists g1, g2 :X! S

such that

• g1(x) 6= g2(x) for all x2X
• For all T ✓ X, there exists g 2 F such that (i) for all x 2 T , g(x) = g1(x) and (ii) for all

x2X\T , g(x) = g2(x).

The Natarajan dimension of F , denoted dN(F), is the maximal cardinality of a set N-shattered by

F . ⇤
Notice that our definition of the Natarajan dimension above is a slight generalization of the

standard definition, as we allow for functions that map to an infinite set S instead of a finite set of

“labels.” In our context, the labels correspond to the optimal decisions induced by the optimization
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oracle w
⇤(·). The slight generalization we consider allows us to accommodate cases when w

⇤(ĉ) is

not necessarily an extreme point of S (in the case of a tie). The Natarajan dimension is a measure

for the richness of a hypothesis class. In Theorem 2, we show that the Rademacher complexity for

the SPO loss can be bounded as a function of the Natarajan dimension of w⇤(H) := {x 7!w
⇤(f(x)) :

f 2H} and the number of extreme points of S. The proof, in Appendix B.1, follows a classical

argument and makes strong use of Massart’s lemma and the Natarajan lemma.

Theorem 2. Suppose that S is a polyhedron and S is the set of its extreme points. Let H be a

family of functions mapping from X to Rd. Then we have that

Rn

SPO
(H) !S(C)

r
2dN(w⇤(H)) log(n|S|2)

n
.

Furthermore, for any �> 0, with probability at least 1� � over an i.i.d. sample (x1, c1), . . . , (xn, cn)

drawn from the distribution D, for all f 2H we have

RSPO(f) R̂SPO(f)+ 2!S(C)

r
2dN(w⇤(H)) log(n|S|2)

n
+!S(C)

r
log(1/�)

2n
.

Next, we show that when H is restricted to the linear hypothesis class Hlin = {x 7! Bx : B 2

Rd⇥p
}, then the Natarajan dimension of w⇤(Hlin) can be bounded by dp. The proof, in Appendix

B.2, relies on translating our problem to an instance of a linear multiclass prediction problem and

using a result of Daniely and Shalev-Shwartz (2014).

Corollary 2. Suppose that S is a polyhedron and S is the set of its extreme points. Let Hlin

be the hypothesis class of all linear functions, i.e., Hlin = {x 7!Bx :B 2Rd⇥p
}. Then we have

dN(w
⇤(Hlin)) dp.

Furthermore, for any �> 0, with probability at least 1� � over an i.i.d. sample (x1, c1), . . . , (xn, cn)

drawn from the distribution D, for all f 2Hlin we have

RSPO(f) R̂SPO(f)+ 2!S(C)

r
2dp log(n|S|2)

n
+!S(C)

r
log(1/�)

2n
.

Next, we will build o↵ the previous results to prove a generalization bound in the case where

S is a general compact convex set. The arguments we made earlier made extensive use of the

extreme points of the polyhedron. Nevertheless, this combinatorial argument can be modified in

order to derive similar results for general S. The approach is to approximate S by a grid of points

corresponding to the smallest cardinality ✏-covering of S. To optimize over these grid of points, we

first find the optimal solution in S and then round to the nearest point in the grid. Both the grid

representation and the rounding procedure can fortunately both be handled by similar arguments

made in Theorems 2 and Corollary 2, yielding a generalization bound below. The full proof is in

Appendix B.3.
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Corollary 3. Let S be any compact and convex set, and let Hlin be the hypothesis class of

all linear functions. Then, for any � > 0, with probability at least 1 � � over an i.i.d. sample

(x1, c1), . . . , (xn, cn) drawn from the distribution D, for all f 2Hlin we have

RSPO(f) R̂SPO(f)+ 4d!S(C)

r
2p log(2n⇢2(S)d)

n
+!S(C)

r
log(1/�)

2n
+O

✓
1

n

◆
.

Although the dependence on the sample size n in the above bound is favorable, the dependence

on the dimension of the feature space p and the dimension of the feasible region d is relatively

weak. Given that the proofs of Corollary 3 and Theorem 2 are purely combinatorial and hold for

worst-case distributions, this is not surprising. In the next section, we demonstrate how to exploit

the structure of the SPO loss function and additional properties of the distribution D and the

feasible region S in order to develop improved bounds.

4. Margin-based Generalization Bounds

In this section, we seek to obtain generalization bounds that have better dependency on the feature

dimension p and the decision dimension d than those in Corollaries 2 and 3. The key idea in Section

3 is to essentially treat S as a collection of extreme points and treat the predict-then-optimize

problem as a multiclass classification problem. This approach invariably leads to a
p
pd dependence

on the number of parameters pd, with an additional factor of
p

d in the general convex case or a

square root logarithmic dependence on the number of extreme points in the polyhedral case. This

is not surprising, as the Natarajan dimension measures the maximum cardinality set (from the

collection of extreme points) that can be shattered by a linear hypothesis class with pd parameters.

However, given some constraints on the linear hypothesis class (i.e., ridge or lasso regularization)

one would hope to improve the dependence on the number of parameters leveraging relevant results

on the regular Rademacher complexity of the constrained version of Hlin. One would also hope

that the dependency on the number of extreme points is also not relevant to the generalization

bound. Interestingly, both the dependence on the number of parameters and the dependence on the

number of extreme points may be improved if the SPO loss were L-Lipschitz (w.r.t. the `2-norm)

due to the vector concentration inequality of Maurer (2016), which would imply that R̂n

SPO
(H)

is at most
p
2LR̂n(H). Although the Rademacher complexity of a multivariate hypothesis class

is less commonly used in machine learning, we show in Section 4.4 that many of the results that

bring down the dependency on the number of parameters in the univariate case still apply in the

multivariate case.

Unfortunately, the SPO loss is not Lipschitz. It is not so di�cult to see that there can be sets S

with predictions ĉ that yield wildly di↵erent solutions if ĉ is perturbed, i.e., w⇤(ĉ) is not Lipschitz.

Furthermore, the SPO loss is actually discontinuous when ĉ is a vector that has multiple optimal
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solutions (e.g., when ĉ is the zero vector or a normal vector to a face of a polyhedron). On the other

hand, the SPO loss may have desirable continuity properties when ĉ is bounded away from the

“degenerate” cost vectors that lead to multiple optimal solutions. This intuition motivates us to use

a modified version of the SPO loss called the margin SPO loss. Our developments are akin to and

in fact are a strict generalization of the margin analysis for classification developed in Koltchinskii

and Panchenko (2002). In particular, we extend the notion of margin from classification problems

to the predict-then-optimize setting by associating the “margin” of a cost vector prediction ĉ to its

“distance to degeneracy,” where here degeneracy refers to when problem (2) has multiple optimal

solutions. The margin SPO loss imposes an additional penalty on cost vector predictions when

they are close to being degenerate. We prove that the margin SPO loss is a Lipschitz function

when S satisfies what we call the strength property, which measures the sensitivity of the optimal

solution around ĉ with respect to the distance to degeneracy. We leverage the Lipschitz property of

the margin SPO loss in order to develop improved generalization bounds that use the multivariate

Rademacher complexity of H as discussed above, at the small expense of using the empirical margin

SPO loss rather than the empirical SPO loss as in Theorem 1.

The analysis and results in this section hold generally for any convex and compact feasible region

S that satisfies the strength property, but the ability to compute the distance to degeneracy and

subsequently evaluate the empirical margin SPO loss depends on the structural properties of S. We

note also that the Lipschitz parameter of the margin SPO loss depends on this strength property

and the size of the margin. A smaller margin implies a larger Lipschitz parameter yet a closer

imitation of the margin SPO loss to the original SPO loss. In Section 5, we discuss two special

cases, strongly convex sets and polyhedral sets with known convex hull representations, where the

strength property is satisfied and where one can e�ciently compute the distance to degeneracy,

enabling the application of the generalization bounds developed herein.

4.1. Margin SPO Loss

Let us now present the definition of the set of degenerate cost vectors and the distance to degen-

eracy. Recall that k · k is a generic given norm on Rd with dual norm denoted by k · k⇤.

Definition 2 (Distance to Degeneracy). The set of degenerate cost vector predictions is

C
� := {ĉ 2 Rd : P (ĉ) has multiple optimal solutions}, and the distance function (measured in the

dual norm) to this set is denoted by ⌫S(ĉ) := dist⇤
C�(ĉ) = infc2C� {kc� ĉk⇤}. ⇤

Notice that the set C
� and hence the function ⌫S(·) is determined completely by the set S, see

Figure 1 for an example. In this section, we assume without loss of generality that S is not a

singleton. Indeed, if S is a singleton then the SPO loss `SPO(·, c) is identically equal to 0 for all

c 2 Rd and generalization bounds are trivial. Since S is not a singleton, we have that 0 2 C
� and



14 El Balghiti, Elmachtoub, Grigas, and Tewari: Generalization Bounds in the Predict-then-Optimize Framework

Figure 1 A geometric example of distance to degeneracy.

},' 

Note. The left figure shows an example of a two-dimensional feasible region S that corresponds to a polyhedron. The

right figure shows the set of degenerate cost vectors C�
in the black arrows. The shaded area around C0

represents

a �-margin around the degenerate set of cost vectors. For some cost vector ĉ, we show the distance to the closest

degenerate point which is exactly ⌫S(ĉ) when using the 2-norm (whose dual norm is also the 2-norm).

therefore ⌫S(ĉ) 2 [0,1) for all ĉ 2 Rd. (In fact, 0 2 C
� implies that ⌫S(ĉ) kĉk⇤.) Therefore, since

⌫S(·) is a distance function to a non-empty set, it is also a 1-Lipschitz function (see, e.g., Rockafellar

and Wets (2009) for a reference on this standard fact). A key property of the feasible region S

and the function ⌫S(·) that will enable us to prove a “Lipschitz-like” property of the optimization

oracle w
⇤(·) is the following strength property formalized in Definition 3 below.

Definition 3 (Strength Property). The feasible region S satisfies the strength property if

for some constant µ> 0,

ĉ
T (w�w

⇤(ĉ)) �

✓
µ · ⌫S(ĉ)

2

◆
kw�w

⇤(ĉ)k2 for all w 2 S and ĉ2Rd
, (5)

where ⌫S(·) is the distance to degeneracy function. We refer to µ as the strength parameter. ⇤
The strength property above may be thought of as a type of “quantitative optimality condition”

that justifies the use of the term “strength.” Indeed, (5) indicates that larger values of ⌫S(ĉ) provide

stronger bounds on the optimality gap ĉ
T (w�w

⇤(ĉ)) relative to the squared distance kw�w
⇤(ĉ)k2.

The distance to degeneracy function is chosen to make the strength property as tight as possible,

and thus ensuring better generalization bounds since we want to avoid points in the �-margin of

⌫S(ĉ) as much as possible. The name is also inspired by results in the case when S is strongly

convex, although in Section 5 it it shown that the strength property holds in the polyhedral case

as well. An example of a convex set that does not satisfy the strength property for any µ> 0 is an

`p ball where 2< p<1.
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Remark 2 (Normal Cone Interpretation). Notice that the strength property in Defini-

tion 3 is independent of the optimization oracle w
⇤(·) since, for any ĉ where there are multiple

choices for w⇤(ĉ), by definition it holds that ⌫S(ĉ) = 0 and thus (5) is satisfied. In other words, we

can equivalently restate (5) as follows. Let the normal cone of S at a point w̄ 2 S be denoted by

NS(w̄) := {c2Rd : cT (w� w̄) 0 for all w 2 S}. Then, (5) is equivalent to requiring that

NS(w̄) =
n
c2Rd : cT (w� w̄)�

⇣
µ·⌫S(�c)

2

⌘
kw� w̄k

2 for all w 2 S
o

for all w̄ 2 S .

In Section 5, we show that strongly convex and polyhedral sets satisfy the strength property and

thus the equivalent property above. The above is a stronger characterization of the normal cones

of S and may be of interest in other contexts as well. For example, for the di↵erentiable nonlinear

minimization problem minw2S F (w), the above gives a tighter characterization of the optimality

condition �rF (w̄)2NS(w̄). ⇤
As discussed, the distance to degeneracy ⌫S(ĉ) provides a measure of “confidence” regarding

the cost vector prediction ĉ and its implied decision w
⇤(ĉ). This intuition motivates us to define

a margin-based version of the SPO loss, which places a greater penalty on cost vector predictions

that are nearly degenerate. In other words, the “margin SPO loss” encourages predictions that have

small SPO loss values as well as predictions that are far enough away from the set of degenerate

cost vector predictions C�. Definition 4 presents the definition of the “�-margin SPO loss,” which

requires a fixed parameter � > 0 that controls the size of the “margin” around C
� where cost vector

predictions are more heavily penalized.

Definition 4 (�-margin SPO Loss). For a fixed parameter � > 0, given a cost vector predic-

tion ĉ and a realized cost vector c, the �-margin SPO loss `
�

mSPO
(ĉ, c) is defined as:

`
�

mSPO
(ĉ, c) :=

(
`SPO(ĉ, c) if ⌫S(ĉ)> �⇣

⌫S(ĉ)

�

⌘
`SPO(ĉ, c)+

⇣
1� ⌫S(ĉ)

�

⌘
!S(c) if ⌫S(ĉ) �. ⇤

Recall that, for any ĉ, c2Rd, it holds that `SPO(ĉ, c) !S(c). Hence, we also have that `SPO(ĉ, c)

`
�

mSPO
(ĉ, c), that is the �-margin SPO loss provides an upper bound on the SPO loss. Notice that

the �-margin SPO loss linearly interpolates between the SPO loss `SPO(ĉ, c) and the upper bound

!S(c) whenever ⌫S(ĉ)  �. The �-margin SPO loss also satisfies a simple monotonicity property

whereby `
�

SPO
(ĉ, c) `

�̄

SPO
(ĉ, c) for any ĉ, c2Rd and �̄ � � > 0.

We are now ready to state a theorem concerning the Lipschitz properties of the optimization

oracle w⇤(·) and the �-margin SPO loss, which will then be used to derive margin-based generaliza-

tion bounds. Theorem 3 below first demonstrates that the optimization oracle w
⇤(·) and SPO loss

both satisfy a “Lipschitz-like” property when the distance to degeneracy function ⌫S(·) is bounded

away from zero. Subsequently, these Lipschitz-like properties are a key ingredient in demonstrating

that the �-margin SPO loss is a Lipschitz function.
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Theorem 3. Suppose that the feasible region S satisfies the strength property with parameter µ.

Then, we have the following:

(a) The optimization oracle w
⇤(·) satisfies the following Lipschitz-like property:

kw
⇤(ĉ1)�w

⇤(ĉ2)k 

✓
1

µ ·min{⌫S(ĉ1),⌫S(ĉ2)}

◆
kĉ1� ĉ2k⇤ for all ĉ1, ĉ2 2Rd

.

(b) For any fixed c2Rd, the SPO loss satisfies the following Lipschitz-like property:

|`SPO(ĉ1, c)� `SPO(ĉ2, c)| 

✓
kck⇤

µ ·min{⌫S(ĉ1),⌫S(ĉ2)}

◆
kĉ1� ĉ2k⇤ for all ĉ1, ĉ2 2Rd

.

(c) For any fixed c 2Rd and � > 0, the �-margin SPO loss is 1

�µ
(kck⇤ +µ ·!S(c))-Lipschitz with

respect to the dual norm k · k⇤, i.e., it holds that:

|`
�

mSPO
(ĉ1, c)� `

�

mSPO
(ĉ2, c)| 

✓
kck⇤ +µ ·!S(c)

�µ

◆
kĉ1� ĉ2k⇤ for all ĉ1, ĉ2 2Rd

.

Proof. If S is a singleton, then all of these results are trivial. Otherwise, as mentioned previously,

⌫S(·) is finite valued and 1-Lipschitz on Rd. Let ĉ1, ĉ2 2Rd be given and let ⌧ :=min{⌫S(ĉ1),⌫S(ĉ2)}.

Part (a): If ⌧ = 0 then (a) holds since the right-hand side of (a) is equal to +1 by convention.

Otherwise ⌧ > 0 and applying (5) twice yields

ĉ
T

1
(w⇤(ĉ2)�w

⇤(ĉ1)) �
⇣

µ·⌫S(ĉ1)

2

⌘
kw

⇤(ĉ2)�w
⇤(ĉ1)k

2
�

�
µ⌧

2

�
kw

⇤(ĉ1)�w
⇤(ĉ2)k

2
,

and

ĉ
T

2
(w⇤(ĉ1)�w

⇤(ĉ2)) �
⇣

µ·⌫S(ĉ2)

2

⌘
kw

⇤(ĉ1)�w
⇤(ĉ2)k

2
�

�
µ⌧

2

�
kw

⇤(ĉ1)�w
⇤(ĉ2)k

2
.

Adding the above two inequalities together yields

µ⌧kw
⇤(ĉ1)�w

⇤(ĉ2)k
2
 (ĉ2� ĉ1)

T (w⇤(ĉ1)�w
⇤(ĉ2))  kĉ1� ĉ2k⇤kw

⇤(ĉ1)�w
⇤(ĉ2)k ,

where the second inequality is Hölder’s inequality. Dividing both sides of the above by µ⌧kw
⇤(ĉ1)�

w
⇤(ĉ2)k yields item (a).

Part (b): Now let c2Rd be given and note that

|`SPO(ĉ1, c)� `SPO(ĉ2, c)| = |c
T (w⇤(ĉ1)�w

⇤(ĉ2))|  kck⇤kw
⇤(ĉ1)�w

⇤(ĉ2)k ,

where the inequality follows from Hölder’s inequality. Hence, (b) follows by combining the above

with (a).
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Part (c): Without loss of generality, we consider three cases: (i) ⌫S(ĉ1) � and ⌫S(ĉ2) �, (ii)

⌫S(ĉ1)� � and ⌫S(ĉ2)� �, and (iii) ⌫S(ĉ1) � and ⌫S(ĉ2)> �.

Let us first consider case (i) and let us suppose without loss of generality that 0 < ⌫S(ĉ1) 

⌫S(ĉ2) �. By definition, we know that |`�
mSPO

(ĉ1, c)� `
�

mSPO
(ĉ2, c)| is equal to

����

✓
⌫S(ĉ1)

�

◆
`SPO(ĉ1, c)+

✓
1�

⌫S(ĉ1)

�

◆
!S(c)�

✓
⌫S(ĉ2)

�

◆
`SPO(ĉ2, c)�

✓
1�

⌫S(ĉ2)

�

◆
!S(c)

����

=

����

✓
⌫S(ĉ1)

�

◆
[`SPO(ĉ1, c)� `SPO(ĉ2, c)] +

✓
`SPO(ĉ2, c)�!S(c)

�

◆
[⌫S(ĉ1)� ⌫S(ĉ2)]

����



✓
⌫S(ĉ1)

�

◆
|`SPO(ĉ1, c)� `SPO(ĉ2, c)|+

✓
!S(c)

�

◆
|⌫S(ĉ1)� ⌫S(ĉ2)|



✓
⌫S(ĉ1)

�

◆✓
kck⇤

µ · ⌫S(ĉ1)

◆
kĉ1� ĉ2k⇤ +

✓
!S(c)

�

◆
kĉ1� ĉ2k⇤

=
1

�

✓
kck⇤

µ
+!S(c)

◆
kĉ1� ĉ2k⇤ ,

where the first inequality follows from the triangle inequality and the definition of !S(c) and the

second inequality follows from part (b) and the facts that 0 < ⌫S(ĉ1) = min{⌫S(ĉ1),⌫S(ĉ2)} and

⌫S(·) is 1-Lipschitz.

Now, in case (ii), we have that `�
mSPO

(ĉ1, c) = `SPO(ĉ1, c) and `
�

mSPO
(ĉ2, c) = `SPO(ĉ2, c). Therefore,

applying part (b) yields

|`
�

mSPO
(ĉ1, c)�`

�

mSPO
(ĉ2, c)|

kck⇤

µ ·min{⌫S(ĉ1),⌫S(ĉ2)}
kĉ1� ĉ2k⇤ 

kck⇤

�µ
kĉ1� ĉ2k⇤ 

kck⇤ +µ ·!S(c)

�µ
kĉ1� ĉ2k⇤ ,

where the second inequality follows since � min{⌫S(ĉ1),⌫S(ĉ2)}.

Finally, in case (iii), by the intermediate value theorem we can define c̄ := �ĉ1+(1��)ĉ2 where

�2 (0,1] such that ⌫S(c̄) = �. Then, we have that |`�
mSPO

(ĉ1, c)� `
�

mSPO
(ĉ2, c)| is equal to

|(`�
mSPO

(ĉ1, c)� `
�

mSPO
(c̄, c))+ (`�

mSPO
(c̄, c)� `

�

mSPO
(ĉ2, c))|

 |`
�

mSPO
(ĉ1, c)� `

�

mSPO
(c̄, c)|+ |`

�

mSPO
(c̄, c)� `

�

mSPO
(ĉ2, c)|



✓
kck⇤ +µ ·!S(c)

�µ

◆
kĉ1� c̄k+

✓
kck⇤ +µ ·!S(c)

�µ

◆
kc̄� ĉ2k

=

✓
kck⇤ +µ ·!S(c)

�µ

◆
(kĉ1� c̄k+ kc̄� ĉ2k),

where the first inequality follows from the triangle inequality, the second inequality follows from

cases (i) and (ii), and the final equality follows the definition of c̄ ⇤

4.2. Connecting to Multivariate Rademacher Complexity

As we are extending standard margin-based generalization theory from binary classification to the

predict-then-optimize setting, it is instructive to recall the steps involved in the binary classification

setting (e.g., see (Mohri et al. 2018, Section 5.4)). First, the 0-1 loss function is upper bounded by



18 El Balghiti, Elmachtoub, Grigas, and Tewari: Generalization Bounds in the Predict-then-Optimize Framework

the �-margin loss function. Second, the Rademacher complexity of the �-margin loss function class

is upper bounded by the Rademacher complexity of the underlying function class. This second

step uses the Lipschitz property of the �-margin loss function and a result known as the Ledoux-

Talagrand contraction inequality (e.g., see (Mohri et al. 2018, Lemma 5.7))

We have already accomplished step one above by constructing the �-margin SPO loss which is

Lipschitz and also upper bounds the SPO loss. Note that this step was significantly more challenging

than in the binary classification case. Step two also poses its own set of challenges. In the binary

classification case, the function class is a class of scalar-valued functions. However, in our case, the

class H consists of vector-valued functions. This raises two important questions. First, how do we

define the Rademacher complexity of a vector-valued function class? Second, what is the analogue

of the Ledoux-Talagrand contraction inequality for the vector case?

Recall that the multivariate empirical Rademacher complexity of H is defined as

R̂n(H) :=E�

"
sup
f2H

1

n

nX

i=1

dX

j=1

�ijfj(xi)

#
=E�

"
sup
f2H

1

n

nX

i=1

�T

i
f(xi)

#
, (6)

where �ij are i.i.d. Rademacher random variables for i = 1, . . . , n and j = 1, . . . , d, and �i :=

(�i1, . . . ,�id)T . The expected version of the multivariate Rademacher complexity is defined as

Rn(H) := E
h
R̂n(H)

i
where the expectation is taken with respect to the i.i.d. sample drawn from

the underlying distribution D. It is often the case that the structure of the hypothesis class H nat-

urally leads to a bound on Rn(H) that can have mild, even logarithmic, dependence on dimensions

p and d. We give examples of such bounds in Section 4.4, after first presenting our margin-based

generalization bounds.

Let us also introduce the empirical �-margin SPO loss:

R̂
�

SPO
(f) :=

1

n

nX

i=1

`
�

SPO
(f(xi), ci) ,

and the empirical Rademacher complexity of H with respect to the �-margin SPO loss:

R̂n

�SPO
(H) :=E�

"
sup
f2H

1

n

nX

i=1

�i`
�

SPO
(f(xi), ci)

#
,

where f 2 H on the left side above and �i are i.i.d. (scalar) Rademacher random variables for

i= 1, . . . , n. So we need tools that allow us to transition from the standard Rademacher complexity

of H with respect to the �-margin SPO loss to the multivariate Rademacher complexity of H.

Let us now briefly review the concept of vector contraction inequalities for multivariate

Rademacher complexities, which turns out to provide precisely the right set of tools. Let �i :Rd
!R

for i2 {1, . . . , n} be a collection of L-Lipschitz functions with respect to the given norm k ·k defined

on Rd:

|�i(u)��i(v)|L · ku� vk for all u, v 2Rd
.
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A vector contraction inequality takes the form:

E�

"
sup
f2H

1

n

nX

i=1

�i�i(f(xi))

#
CL ·E�

"
sup
f2H

1

n

nX

i=1

�T

i
f(xi)

#
=CL · R̂n(H) , (7)

where C is a constant. As we have already demonstrated that the �-margin SPO loss is Lipschitz,

our next step is to apply a vector contraction inequality in order to obtain improved generalization

bounds.

4.3. Generalization Bounds in the `2 Case

We now focus on the case of the `2-norm set-up, i.e., the norm on the space of w variables as well

as the norm on the space of cost vectors c are both the `2-norm. Our primary reason for focusing

on the `2 case is that we can apply an elegant vector contraction inequality due to Maurer (2016),

which exactly takes the form of (7) with C =
p
2. Vector contraction inequalities have also been

developed in other norm setups, but the result of Maurer (2016) in the `2 case appears to be the

most elegant and the most applicable result for our purposes.

Remark 3 (Other Vector Contraction Inequalities). Indeed, for the case when �i are

Lipschitz with respect to the `1-norm, the first relevant inequality is that of Bertsimas and Kallus

(2020) (see Lemma EC.1 in their supplementary material). Note that this inequality is inferior to

the result of Maurer (2016) since the `1 Lipschitz constant of a function is always larger than, or

equal to, the `2 Lipschitz constant. An alternative contraction inequality for the `1 case is due to

Foster and Rakhlin (2019), which involves a worst case alternative to the multivariate Rademacher

complexity and may be favorable in some situations. Finally, Zatarain-Vera (2019) has recently

considered the case of an `p-norm for p 2 (1,2), which involves replacing Rademacher random

variables with p-stable random variables. The result of Zatarain-Vera (2019) is not particularly

useful in the case of strongly convex sets S since all common examples of strongly convex sets

with strong convexity constant independent of dimension are strongly convex with respect to an `p

norm for some p 2. However, this result may have potential uses for some polyhedral sets. ⇤
With Theorem 3 and the vector contraction inequality of Maurer (2016) in place, we are now

ready to present our margin-based generalization bound in the predict-then-optimize setting in

Theorem 4 below. Recall that C denotes the domain of the true cost vectors c, ⇢2(C) := sup
c2C
kck2,

and !S(C) := sup
c2C

!S(c).

Theorem 4. Suppose that the feasible region S satisfies the strength property with parameter

µ> 0 and with respect to the `2-norm. Let � > 0 be fixed, and let H be a family of functions mapping

from X to Rd. Then, for any fixed sample ((x1, c1)...(xn, cn)) we have that

R̂n

�SPO
(H) 

✓p
2⇢2(C)+

p
2µ ·!S(C)

�µ

◆
R̂n(H) .
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Furthermore, for any � > 0, with probability at least 1� � over an i.i.d. sample drawn from the

distribution D, the following holds for all f 2H

RSPO(f)  R̂
�

SPO
(f)+

✓
2
p
2⇢2(C)+ 2

p
2µ ·!S(C)

�µ

◆
Rn(H)+!S(C)

r
log(1/�)

2n
.

Proof. The bound on R̂n

�SPO
(H) follows simply by combining Theorem 3(c) with the vector

contraction inequality (7) due to Maurer (2016). The subsequent generalization bound then simply

follows since RSPO(f)R
�

SPO
(f) for all f 2H and by applying the version of Theorem 1 for the

�-margin SPO loss. ⇤
Theorem 4 may also be extended to a bound that holds uniformly over all values of � 2 (0, �̄],

where �̄ > 0 is a fixed parameter. This extension is presented below in Theorem 5 and proved in

Appendix C.1. The advantage of the bound presented in Theorem 5 versus the bound presented in

Theorem 4 is that � in Theorem 5 can be chosen in a data-driven way, e.g., through cross-validation.

Theorem 5. Suppose that the feasible region S satisfies the strength property with parameter

µ> 0 and with respect to the `2-norm. Let �̄ > 0 be fixed, and let H be a family of functions mapping

from X to Rd. Then, for any �> 0, with probability at least 1� � over an i.i.d. sample drawn from

the distribution D, the following holds for all f 2H and for all � 2 (0, �̄]

RSPO(f) R̂
�

SPO
(f)+

✓
4
p
2⇢2(C)+ 4

p
2µ ·!S(C)

�µ

◆
Rn(H)+!S(C)

 r
log(log

2
(2�̄/�))

n
+

r
log(2/�)

2n

!
.

The proof of Theorem 5 is presented in Appendix C. Note that a natural choice for �̄ in Theorem

5 is �̄  sup
f2H,x2X

⌫S(f(x)) or an upper bound thereof, presuming that one can obtain such a

bound based on the properties of S, H, and X . In addition, since ⌫S(ĉ) kĉk2 for all ĉ 2Rd, one

can also take �̄ sup
f2H,x2X

kf(x)k2 or an upper bound thereof. As mentioned, the value of � in

Theorem 5 can be chosen in a data-driven way so that, given a prediction function f̂ trained on

the observed data, the upper bound on R̂SPO(f̂) given by Theorem 5 is minimized. Since Theorem

5 is a uniform result over � 2 (0, �̄], this data-driven procedure for choosing � is indeed valid.

It is important to note that the utility of Theorems 4 and 5 is strengthened when the underlying

distribution D has a “favorable margin property,” whereby R̂
�

SPO
(f)⇡ R̂SPO(f) for some value of

� > 0 that is reasonably large. A su�cient condition to ensure such a favorable margin property

is if ⌫S(f(x))� � with high probability over x, i.e., most predictions of the model f are far from

degenerate. When such a favorable margin property occurs, the bounds in Theorems 4 and 5 can

be much stronger than those of Corollaries 2 and 3. Indeed, we demonstrate in Section 4.4 and 5

examples of hypothesis classes and feasible regions, respectively, such that the dependence on the

number of parameters pd in the bounds of Theorems 4 and 5 is significantly stronger than that of

Corollaries 2 and 3.
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4.4. Bounding the Multivariate Rademacher Complexity for Linear Classes

As mentioned, it is often the case that the structure of the hypothesis class H naturally leads

to a bound on Rn(H) that has favorable dependence on dimensions p and d. For example, let us

consider the general setting of a constrained linear function class, namely H=HB := {f : f(x) =

Bx for some B 2Rd⇥p
,B 2 B}, where B ✓Rd⇥p. Theorems 4 and 5 apply more broadly than just

linear function classes, but these examples are illustrative and comparable to Corollaries 2 and 3.

Theorem 6 below is an extension of Theorem 3 of Kakade et al. (2008) to multivariate Rademacher

complexity and provides a convenient way to bound Rn(HB) in the case when B lies in a level set

of a strongly convex function. In a slight abuse of notation, in Theorem 6 only we use k · k and

k · k⇤ to refer to a norm and corresponding dual norm, respectively, on the space of matrices Rd⇥p.

The full proof is in Appendix C.2.

Theorem 6. Let S ✓Rd⇥p be a closed convex set, and let F : S!R be ↵-strongly convex with

respect to k · k⇤ and satisfy infB2S F (B) = 0. Suppose that B ✓ {B 2 S : F (B) �
2
} and let ⌦ be

such that

sup
�2{±1}d

sup
x2X

k�xT
k  ⌦.

Then, it holds that

Rn(HB)  ⌦�

r
2

↵n
.

This theorem can be applied with many di↵erent strongly convex functions of matrices (Kakade

et al. 2012, Section 2.4). We give some interesting examples below.

Example 4 (Bounded Frobenius norm, i.e., ridge regularization). The most basic

case is B = {B 2Rd⇥p : 1

2
kBk

2

F
 �

2
}, in which case F (B) = 1

2
kBk

2

F
is 1-strongly convex on Rd⇥p

w.r.t. k · kF . Note that

sup
�2{±1}d

sup
x2X

k�xT
kF = sup

�2{±1}d

k�k2 · sup
x2X

kxk2 =
p

d sup
x2X

kxk2.

Therefore, if 1

2
kBk

2

F
 �

2 and ⇢2(X ) := sup
x2X
kxk2 we have

Rn(HB)  ⇢2(X )�

r
2d

n
.

⇤
Example 5 (Bounded `1 norm of vectorized matrix, i.e., lasso regularization).

Another case is when B = {B 2 Rd⇥p : 1

2
kBk

2

1
 �

2
}, where kBkq is `q norm of the vectorized

matrix B. We set F (B) = 1

2
kBk

2

q
for q= log(pd)

log(pd)�1
which is 1/(3 log(pd))-strongly convex w.r.t. k ·k1

(Kakade et al. 2012, Corollary 10). Since kBkq  kBk1, we clearly have F (B) �
2. Note that

sup
�2{±1}d

sup
x2X

k�xT
k1 = sup

�2{±1}d

k�k1 · sup
x2X

kxk1 = sup
x2X

kxk1.
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Therefore, if 1

2
kBk

2

1
 �

2 and ⇢1(X ) := sup
x2X
kxk1 we have

Rn(HB)  ⇢1(X )�

r
6 log(pd)

n
.

⇤
Example 6 (Bounded group-lasso norm). In cases where the feature dimension p is large,

we might want to encode prior knowledge that only a subset of the p input variables are relevant

for making predictions. The vectorized `1 norm considered in the previous example encourages

sparsity but does not result in shared sparsity structure over the rows of B. That is, it does not

cause entire columns to be set to zero. In multivariate regression, the group-lasso norm (Tibshirani

et al. 2015, Section 4.3) is used to enforce such a structured from of sparsity. Define the norm

kBk2,q =

 
pX

j=1

kB·jk
q

2

!1/q

.

The subscripts above remind us that we first take the `2 norms of columns B·j and then take the `q

norm of the p resulting values. The group-lasso norm is simply k ·k2,1. Let us consider the case when

the matrices B are constrained to have low group-lasso norm, i.e., B= {B 2Rd⇥p : 1

2
kBk

2

2,1
 �

2
}.

We set F (B) = 1

2
kBk

2

2,q
for q = log(p)

log(p)�1
which is 1/(3 log(p))-strongly convex w.r.t. k · k2,1 (Kakade

et al. 2012, Corollary 14). Since kBk2,q  kBk2,1, we clearly have F (B) �
2. Note that the dual

norm of the k · k2,1 norm is the k · k2,1 norm and we have

sup
�2{±1}d

sup
x2X

k�xT
k2,1 = sup

�2{±1}d

k�k2 · sup
x2X

kxk1 

p

d sup
x2X

kxk1.

Therefore, if 1

2
kBk

2

2,1
 �

2 and ⇢1(X ) := sup
x2X
kxk1 we have

Rn(HB)  ⇢1(X )�

r
6d log(p)

n
.

⇤

Remark 4 (Dimension Dependence). The reader will notice that in Examples 4 and 6,

the dependence on the output/decision dimension d is O(
p

d) in contrast to the dependence on

input/feature dimension p which is either absent (Example 4) or logarithmic (Examples 5 and 6).

This is a direct consequence of the fact that multivariate Rademacher complexity involves a d-

dimensional vector of Radamacher variables per training example. In standard Rademacher com-

plexity, the output dimension is 1 and therefore the dependence on d is not manifest. However, it

shows up in our more general setting. ⇤
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5. Applications to Strongly Convex and Polyhedral Sets

In this section, we consider two special cases for the feasible region S: (i) S is a strongly convex

set, and (ii) S is polyhedral. In both cases, we show that the distance to degeneracy function ⌫S(·)

satisfies the strength property and specify the strength parameter µ. In the strongly convex case,

⌫S(ĉ) = kĉk⇤ and is easily computable whenever the dual norm is. In the polyhedral case, we show

that a su�cient condition for computing ⌫S(·) is that S has a known convex hull representation,

i.e., S = conv{v1, . . . , vK} where v1, . . . , vK 2Rd are given vectors. Thus, in these two cases, we can

readily compute the empirical margin SPO loss and apply Theorems 4 and 5.

5.1. Strongly Convex Sets

We adopt the classical definition of strongly convex sets (see, e.g., Vial (1983), Journée et al.

(2010), Garber and Hazan (2015)), which is reviewed in Definition 5 below. Recall that k · k is a

generic given norm on Rd with dual norm k · k⇤, and B(w̄, r) := {w : kw� w̄k  r} denotes the ball

of radius r centered at w̄. Recall also that the normal cone of S at a point w̄ 2 S is defined by

NS(w̄) := {c2Rd : cT (w� w̄) 0 for all w 2 S}.

Definition 5 (Strongly Convex Set). For a constant µ̄� 0, we say that a convex set S ✓

Rd is µ̄-strongly convex with respect to the norm k · k if, for any w1,w2 2 S and for any � 2 [0,1],

it holds that:

B
�
�w1 +(1��)w2,

�
µ̄

2

�
�(1��)kw1�w2k

2
�
✓ S . ⇤

Informally, Definition 5 says that, for every convex combination of points in S, a ball of appropriate

radius also lies in S. Several examples of strongly convex sets are presented by Journée et al. (2010)

and Garber and Hazan (2015), including `q and Schatten `q balls for q 2 (1,2], certain group norm

balls, and generally any level set of a smooth and strongly convex function.

Our analysis herein relies on the following proposition, which gives a tighter characterization of

the normal cones of strongly convex sets. Proposition 1 can be derived as a consequence of a result

of Vial (1983), but we include its proof in Appendix D.1 in our notation for completeness.

Proposition 1 (Vial (1983), Proposition 2.9). Let S ✓ Rd be a µ̄-strongly convex set for

some µ̄� 0. Then, for any w̄ 2 S it holds that:

NS(w̄) =
�
c2Rd : cT (w� w̄)�

�
µ̄

2

�
kck⇤kw� w̄k

2 for all w 2 S
 

. (8)

We are now ready to state our main theorem in the strongly convex case, which shows that the

distance to degeneracy is exactly the dual norm and that (5) is satisfied.

Theorem 7. Suppose that S is is not a singleton and is µ̄-strongly convex for some µ̄ > 0. Then

the distance to degeneracy function satisfies ⌫S(ĉ) = kĉk⇤ for all ĉ 2Rd, and the strength property

is satisfied with µ µ̄.
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Proof. To show that ⌫S(ĉ) = kĉk⇤, it su�ces to show that C� = {0}. Since S is not a singleton,

we have that 0 2 C
�. Conversely, suppose that ĉ 6= 0. Then, since kĉk⇤ > 0 and �ĉ 2 NS(w⇤(ĉ)),

Proposition 1 implies that ĉTw⇤(ĉ)< ĉ
T
w for all w 2 S. Thus w⇤(ĉ) is the unique optimal solution of

P (ĉ) and ĉ 62 C
�. Then the strength property with parameter µ̄ follows immediately from Proposition

1 and the observation that �ĉ2NS(w⇤(ĉ)). ⇤
With Theorem 7 in place, we can now apply the margin-based generalization bounds of Theorems

4 and 5 to any strongly convex set. When combined with bounds on the multivariate Rademacher

complexity, such as those developed in Section 4.4, we obtain generalization bounds with signifi-

cantly better dependence on the number of parameters than Corollary 3. As a basic example, we

also recover known results in binary classification, which is described in Example 7 below.

Example 7. In Elmachtoub and Grigas (2022), it is shown that the SPO loss corresponds

exactly to the 0-1 loss in binary classification when d= 1, S = [�1/2,+1/2], and C = {�1,+1}. In

this case, using our notation, the margin value of a prediction ĉ is cĉ. It is also easily seen that

!S(C) = ⇢2(C) = 1, the �-margin SPO loss corresponds exactly to the margin loss (or ramp loss)

that interpolates between 1 and 0 when cĉ2 [0,�] Furthermore, note that the interval S = [� 1

2
,+ 1

2
]

is 2-strongly convex Garber and Hazan (2015). In this case, the right hand side of the generalization

bound of Theorem 4, for example, can be upper bounded by O(Rn(H)/� +
p
log(1/�)/n), where

the O(·) notation hides absolute constants. This recovers a well known result in binary classification

(Koltchinskii and Panchenko 2002) and, altogether, Theorems 4, 5, and 7 generalize the well-known

results on margin guarantees based on Rademacher complexity for binary classification. ⇤

5.2. Polyhedral Sets

Let us now assume that S is polyhedral with a known convex hull representation, i.e., S =

conv{v1, . . . , vK} where v1, . . . , vK 2Rd are given vectors. We allow redundancies in the convex hull

representation (i.e., it may be possible to express vj as a convex combination of other points in the

basis), but for simplicity and ease of exposition we do require that vi 6= vj for i 6= j.

Let Kj :=�NS(vj) be the negative normal cone at vj for j = 1, . . . ,K. Equivalently, we have that

Kj = {ĉ2Rd : ĉT (w� vj)� 0 for all w 2 S}= {ĉ2Rd : ĉT (vi� vj)� 0 for all i= 1, . . . ,K} , (9)

and hence Kj is a polyhedral cone. Note also that, by the fundamental theorem of linear optimiza-

tion, we have that [K

j=1
Kj = Rd. Moreover, K1, . . . ,KK form part of a polyhedral complex called

the normal fan of a polytope (Ziegler 2012). In our context, we can use K1, . . . ,KK to character-

ize the set C� and subsequently compute the distance to degeneracy function ⌫S(·). The following

proposition exactly characterizes C� in terms of K1, . . . ,KK .
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Proposition 2. Suppose that S is polyhedral with S = conv{v1, . . . , vK}. Then, for any ĉ 2Rd,

P (ĉ) has a unique optimal solution if and only if there exists j 2 {1, . . . ,K} such that ĉ 2 int(Kj).

Subsequently, it holds that C� =Rd
\[

K

j=1
int(Kj).

Proof. If P (ĉ) has a unique optimal solution, then w
⇤(ĉ) = vj is the unique optimal solution

for some j 2 {1, . . . ,K}. Furthermore, we have that ĉTvj < ĉ
T
vi for all i 2 {1, . . . ,K}, i 6= j, which

implies that ĉ2 int(Kj). Conversely, if ĉ2 int(Kj) then (9) implies that ĉT (vi� vj)> 0 for all i 6= j.

Therefore, since any w 2 S is a convex combination of v1, . . . , vK , it must be the case that vj is the

unique optimal solution of P (ĉ). Note that we have shown that ĉ is in the complement of C� if and

only if ĉ2[K

j=1
int(Kj), hence C

� =Rd
\[

K

j=1
int(Kj). ⇤

We are now ready to state our main theorem in the polyhedral case, which gives an exact

formula for the distance to degeneracy function ⌫S(·) in terms of v1, . . . , vK and shows that the

strength property is satisfied. Recall that the diameter of S in the given norm is defined by �(S) :=

sup
w1,w22S

kw1�w2k, which in the polyhedral case satisfies �(S) =maxi,j2{1,...,K} kvi� vjk.

Theorem 8. Suppose that S is not a singleton and is polyhedral with S = conv{v1, . . . , vK}.

Then the distance to degeneracy function satisfies

⌫S(ĉ) = min
j:vj 6=w⇤(ĉ)

⇢
ĉ
T (vj �w

⇤(ĉ))

kvj �w⇤(ĉ)k

�
for all ĉ2Rd

, (10)

and the strength property in (5) is satisfied with µ 
2

�(S)
.

Proof. Let us first consider the case where ĉ 2 C
�, and hence ⌫S(ĉ) = 0. Then, since there

are multiple optimal solutions of P (ĉ), there exists vj that is an optimal solution of P (ĉ) with

vj 6=w
⇤(ĉ). Thus, the right side of (10) is equal to zero, which matches ⌫S(ĉ).

Let us now consider the case where ĉ 62 C
�. Since ⌫S(·) is a distance function in Rd, we have for

any ĉ 62 C
� that ⌫S(ĉ) = dist⇤

C�(ĉ) = sup
r

�
r :B⇤(ĉ, r)✓Rd

\ C
�
 
. Thus, by Proposition 2, we have

that ⌫S(ĉ) = sup
r

�
r :B⇤(ĉ, r)✓[K

j=1
int(Kj)

 
for ĉ 62 C�.

In the remainder of the proof, we let j
⇤(·) : Rd

! {1, . . . ,K} be any mapping such that vj⇤(ĉ)

is an optimal solution of P (ĉ) for all ĉ 2 Rd. Now, for any r > 0 and ĉ 62 C
�, using ⌫S(ĉ) =

sup
r

�
r :B⇤(ĉ, r)✓[K

j=1
int(Kj)

 
we have the following chain of equivalences:

⌫S(ĉ)� r ()B⇤(ĉ, r� ✏)✓[K

j=1
int(Kj) for all ✏2 (0, r]

()B⇤(ĉ, r� ✏)✓ int(Kj⇤(ĉ)) for all ✏2 (0, r]

()B⇤(ĉ, r)✓Kj⇤(ĉ)

() (ĉ+�)T (vj � vj⇤(ĉ))� 0 for all j = 1, . . . ,K and � s.t. k�k⇤  r

() ĉ
T (vj � vj⇤(ĉ))� rkvj � vj⇤(ĉ)k � 0 for all j = 1, . . . ,K

() r min
j 6=j⇤(ĉ)

⇢
ĉ
T (vj � vj⇤(ĉ))

kvj � vj⇤(ĉ)k

�
= min

j:vj 6=w⇤(ĉ)

⇢
ĉ
T (vj �w

⇤(ĉ))

kvj �w⇤(ĉ)k

�
.
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where the second equivalence holds since [K

j=1
int(Kj) is a disjoint union of open sets, the third

equivalence holds since Kj⇤(ĉ) is a closed set, the fifth equivalence uses the fact that k ·k is the dual

norm of k ·k⇤, and the equality at the end uses the fact that vj⇤(ĉ) =w
⇤(ĉ) since ĉ 62 C�. Since C� is a

closed set by Proposition 2, we have that ⌫S(ĉ)> 0. Furthermore, since w⇤(ĉ) is the unique optimal

solution of P (ĉ), we have that minj:vj 6=w⇤(ĉ)

n
ĉ
T
(vj�w

⇤
(ĉ))

kvj�w⇤(ĉ)k

o
> 0. Therefore, applying the above chain

of equivalences twice with both r ⌫S(ĉ) and r minj:vj 6=w⇤(ĉ)

n
ĉ
T
(vj�w

⇤
(ĉ))

kvj�w⇤(ĉ)k

o
yields (10).

Now, to see that (5) (strength property) holds, let ĉ 2 Rd and w 2 S be arbitrary. Then, there

exist nonnegative scalars ↵1, . . . ,↵K such that w =
P

K

j=1
↵jvj and

P
K

j=1
↵j = 1. By (10), it holds

that

ĉ
T (vj �w

⇤(ĉ)) � ⌫S(ĉ)kvj �w
⇤(ĉ)k for all j = 1, . . . ,K . (11)

Now we have

ĉ
T (w�w

⇤(ĉ)) =
KX

j=1

↵j ĉ
T (vj �w

⇤(ĉ))

� ⌫S(ĉ)
KX

j=1

↵jkvj �w
⇤(ĉ)k

� ⌫S(ĉ)kw�w
⇤(ĉ)k

�

✓
⌫S(ĉ)

�(S)

◆
kw�w

⇤(ĉ)k2 ,

where the first inequality uses (11), the second uses convexity, and the third uses the definition of

the diameter �(S). ⇤
With Theorem 8 in place, we can now apply the margin-based generalization bounds of Theorems

4 and 5 to any polyhedral set with a known convex hull representation. The most basic example

of such a set is the unit simplex, which corresponds to the case of multiclass-classification as

described in Examples 3 and 8. More generally, when combined with bounds on the multivariate

Rademacher complexity, such as those developed in Section 4.4, we obtain generalization bounds

in the polyhedral case that may have significantly better dependence on the number of parameters

than Corollary 2.

Example 8 (Continuation of Example 3). Recall that S := {w 2 Rd :
P

d

j=1
wj = 1,w � 0}

and, using the `2-norm, we have that �(S) = 2. Additionally, C = {�ei|i= 1, . . . , d} and therefore

⇢2(C) = !S(C) = 1. In this case, the right hand side of the generalization bound of Theorem 4, for

example, can be upper bounded by O(Rn(H)/�+
p

log(1/�)/n), which recovers a well known result

in multi-class classification (see, e.g., Li et al. (2018) and the references therein). Altogether, The-

orems 4, 5, and 7 generalize known results on margin guarantees based on Rademacher complexity

for multi-class classification. ⇤
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6. Conclusions and Future Directions

Our work extends learning theory, as developed for binary and multiclass classification, to predict-

then-optimize problems in two very significant directions: (i) obtaining worst-case generalization

bounds using combinatorial parameters that measure the capacity of function classes, and (ii)

exploiting special structure in data by deriving margin-based generalization bounds that scale more

gracefully w.r.t. problem dimensions. It also motivates several interesting avenues for future work.

Beyond the margin theory, other aspects of the problem that lead to improvements over worst case

rates should be studied. In this respect, developing a theory of local Rademacher complexity for

predict-then-optimize problems would be a promising approach. Developing a theory of surrogate

losses, especially convex ones, that are calibrated w.r.t. the non-convex SPO loss will also be

extremely important. Finally, the assumption that the optimization objective is linear could be

relaxed to include non-linear objectives, in which case a new framework and methodology would

be required.
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Appendix

A. Proofs for Section 2

A.1. Proof of Corollary 1

Proof. Let f⇤
2 argminf2H

RSPO(f). Then,

RSPO(f̂n)�RSPO(f
⇤) =RSPO(f̂n)� R̂SPO(f̂n)+ R̂SPO(f̂n)� R̂SPO(f

⇤)+ R̂SPO(f
⇤)�RSPO(f

⇤)

RSPO(f̂n)� R̂SPO(f̂n)+ R̂SPO(f
⇤)�RSPO(f

⇤)

The inequality follows from the fact that f̂n minimizes the empirical risk, i.e., f̂n 2 argminf2H
R̂SPO(f).

From Theorem 1, we know that

RSPO(f̂n)� R̂SPO(f̂n) 2Rn
SPO

(H)+!S(C)

r
log(2/�)

2n
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with probability at least 1� �
2
. From From Hoe↵ding’s inequality, we have that

R̂SPO(f
⇤)�RSPO(f

⇤) !S(C)

r
log(2/�)

2n

with probability at least 1� �
2
. Thus, with probability at least 1� � we can combine the three previous

inequalities and obtain the desired result. ⇤
B. Proofs for Section 3

B.1. Proof of Theorem 2

Proof. The proof is along the lines of Corollary 3.8 in Mohri et al. (2018). Fix a sample of data Sn =

(X,C)2 (X ,C)n, where X= (x1, . . . , xn) and C= (c1, . . . , cn). Let F|X := {(w⇤(f(x1)), . . . ,w⇤(f(xn))) : f 2H}.

From the definition of empirical Rademacher complexity, we have that

R̂n
SPO

(H) =E�

"
sup
f2H

1

n

nX

i=1

�i`SPO(f(xi), ci)

#

=E�

"
sup
f2H

1

n

nX

i=1

�ic
T
i (w

⇤(f(xi))�w
⇤(ci))

#

=E�

"
sup

(w1,...,wn)2F|X

1

n

nX

i=1

�ic
T
i (wi�w

⇤(ci))

#

 !S(C)

r
2 log |F|X|

n

 !S(C)

r
2dN(w⇤(H)) log(n|S|2)

n

where the first inequality is directly due to Massart’s lemma and the definition of !S(C) and the second

inequality follows from the Natarajan Lemma (see Lemma 29.4 in Shalev-Shwartz and Ben-David (2014)).

When using the Natarajan Lemma, we observe that there w⇤(·) has at most |S| possible values w.l.o.g. by the

equivalence of optimizing over S to optimizing overS. The bound for the expected version of the Rademacher

complexity follows immediately from the bound on the empirical Rademacher complexity. Applying this

bound with Theorem 1 concludes the proof. ⇤

B.2. Proof of Corollary 2

Proof. We will prove that w⇤(Hlin) is an instance of a linear multiclass predictor for a particular class-

sensitive feature mapping  . In our application of linear multiclass predictors, let  : X ⇥ S 7! Rd⇥p be a

function that takes as input a feature vector and an extreme point and outputs a matrix and let

H = {x 7! argmax
w2S

hB, (x,w)i :B 2Rd⇥p
}.

We will show that, for  (x,w) =wx
T , we have that w⇤(Hlin)✓H . Consider any f 2Hlin and the associated

matrix Bf . Then

w
⇤(Bfx)2 argmin

w2S
(Bfx)

T
w

= argmax
w2S

�Tr
�
(Bfx)

T
w
�

= argmax
w2S

�Tr
�
B

T
f wx

T
�

= argmax
w2S

h�Bf ,wx
T
i.
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Thus, it is clear that for  (x,w) =wx
T , choosing the function in H corresponding to �Bf yields exactly the

function f . Therefore w⇤(Hlin)✓H . Theorem 7 in Daniely and Shalev-Shwartz (2014) shows that dN(H )

dp. Since w
⇤(Hlin)✓H , then dN(w⇤(Hlin)) dp. Combining this bound on the Natarajan dimension with

Theorem 2 concludes the proof. ⇤

B.3. Proof of Corollary 3

Proof. Consider the smallest cardinality ✏-covering of the feasible region S by Euclidean balls of radius

✏. From Example 27.1 in Shalev-Shwartz and Ben-David (2014), the number of balls needed is at most⇣
2⇢2(S)

p

d

✏

⌘d

. Let the set S̃ denote the centers of the balls from the smallest cardinality covering. Then it

immediately follows that

|S̃|

 
2⇢2(S)

p
d

✏

!d

. (12)

Finally, let the function w̃ : S 7! {1, . . . , |S̃|} be the function that takes a feasible solution in S and maps it

to the closest point in in S̃.

We can bound the empirical Rademacher complexity by

R̂n
SPO

(H) =E�

"
sup
f2H

1

n

nX

i=1

�i`SPO(f(xi), ci)

#

=E�

"
sup
f2H

1

n

nX

i=1

�ic
T
i (w

⇤(f(xi))�w
⇤(ci))

#

=E�

"
sup
f2H

1

n

nX

i=1

�ic
T
i [w⇤(f(xi))� w̃(w⇤(f(xi)))+ w̃(w⇤(f(xi)))�w

⇤(ci)]

#

E�

"
sup
f2H

1

n

nX

i=1

�ic
T
i [w⇤(f(xi))� w̃(w⇤(f(xi)))]

#
+E�

"
sup
f2H

1

n

nX

i=1

�ic
T
i [w̃(w⇤(f(xi)))�w

⇤(ci)]

#

 2✏⇢2(C)+E�

"
sup
f2H

1

n

nX

i=1

�ic
T
i [w̃(w⇤(f(xi)))�w

⇤(ci)]

#

 2✏⇢2(C)+ (!S(C)+ 2✏⇢2(C))

s
2dN(w̃(w⇤(H))) log(n|S̃|2)

n
(13)

The first inequality follows from the triangle inequality. The second inequality follows from the fact that

w
⇤(f(xi)) and w̃(w⇤(f(xi))) are at most 2✏ away by the definition of w̃. In the worst case, the di↵erence

is in the direction of ci, and c
T
i [w⇤(f(xi))� w̃(w⇤(f(xi)))] 2✏||ci|| 2✏⇢2(C). The third inequality follows

from the same exact argument as that in Theorem 2 with two additional observations. First, the maximum

value of cTi [w̃(w⇤(f(xi)))�w
⇤(ci)] is !S(C) + 2✏⇢2(C) using a similar reasoning as in the second inequality.

Second, the number of possible values for w̃(·) is at most |S̃| by definition.

Thus, all that remains is to bound dN(w̃(w⇤(H))). To do this, we first observe that dN(w⇤(H)) dp, where

the proof follows exactly that of Corollary 2. Finally, we observe that

dN(w̃(w
⇤(H))) dN(w

⇤(H)) dp (14)

since w̃ is simply a deterministic function, and thus the number of dichotomies (labelings) that can be

generated by w̃(w⇤(H)) is at most that of w⇤(H).
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Now setting ✏= 1

n
, and combining Eq. (12), Eq. (13), and Eq. (14) yields

R̂n
SPO

(H)
2⇢2(C)

n

0

@1+

s
2dp log(n(2n⇢2(S)

p
d)2d)

n

1

A+!S(C)

s
2dp log(n(2n⇢2(S)

p
d)2d)

n


2⇢2(C)

n

 
1+2d

r
2p log(2n⇢2(S)d)

n

!
+2d!S(C)

r
2p log(2n⇢2(S)d)

n
. (15)

Finally, combining Eq. (15) with Theorem 1 yields

RSPO(f) R̂SPO(f)+ 4d!S(C)

r
2p log(2n⇢2(S)d)

n
+!S(C)

r
log(1/�)

2n
+O

✓
1

n

◆
.

⇤

C. Proofs for Section 4

C.1. Proof of Theorem 5

Proof. The argument here follows closely the proof of Theorem 5.9 of Mohri et al. (2018). Define ✏ :=

!S(C)
q

log(2/�)

2n
and two sequences {�k}

1

k=1
and {✏k}

1

k=1
by

✏k := ✏+!S(C)

r
log(k)

n
, and �k :=

�̄

2k
, for k� 1 .

Define the following events:

Ak :=

(
sup
f2H

(
RSPO(f)� R̂

�k
SPO

(f)�
2
p
2(⇢2(C)+µ ·!S(C))Rn(H)

�kµ
� ✏k

)
> 0

)
for k� 1 ,

Ã :=
1[

k=1

Ak , and

Ǎ :=

(
sup

f2H,�2(0,�̄]

(
RSPO(f)� R̂

�
SPO

(f)�
4
p
2(⇢2(C)+µ ·!S(C))Rn(H)

�µ
�!S(C)

r
log(log

2
(2�̄/�))

n
� ✏

)
> 0

)
.

Let us first argue that Ǎ ✓ Ã. Indeed, suppose that Ǎ occurs. Then, there exists some f 2 H and some

� 2 (0, �̄] such that:

RSPO(f)� R̂
�
SPO

(f)�
4
p
2(⇢2(C)+µ ·!S(C))Rn(H)

�µ
�!S(C)

r
log(log

2
(2�̄/�))

n
� ✏> 0 . (16)

By definition of the sequence {�k}, there exists k � 1 such that �k  �  2�k. Thus, �k  � implies that

R̂
�k
SPO

(f) R̂
�
SPO

(f). Moreover, �  2�k implies that �1/�k ��2/�, k log
2
(2�̄/�), and thus

✏k = ✏+!S(C)

r
log(k)

n
 ✏+!S(C)

r
log(log

2
(2�̄/�))

n
.

Now, combining the previous inequalities together with (16) yields:

RSPO(f)� R̂
�k
SPO

(f)�
2
p
2(⇢2(C)+µ ·!S(C))Rn(H)

�kµ
� ✏k > 0 ,

which means that the event Ak and correspondingly the event Ã have occurred.
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Now, for each k � 1, we apply Theorem 4 using �  �k and �  exp((�2n✏2k)/!S(C)2), which yields

P(Ak) exp((�2n✏2k)/!S(C)2). We now apply P(Ǎ) P(Ã) and the union bound to obtain:

P(Ǎ)
1X

k=1

exp

✓
�

2n✏2k
!S(C)2

◆

=
1X

k=1

exp

0

@�2n
 r

log(2/�)

2n
+

r
log(k)

n

!2
1

A

<

1X

k=1

exp (�(log(2/�)+ 2 log(k)))

=
�

2

1X

k=1

1

k2
=

�

2
·
⇡
2

6
< � .

Thus, we have completed the proof. ⇤

C.2. Proof of Theorem 6

Proof. Define �i = (�i1, . . . ,�id)T for i= 1, . . . , n whose components are i.i.d. Rademacher random vari-

ables. Then, we have

Rn(HB) =E
"
sup
B2B

1

n

nX

i=1

�T
i Bxi

#

=E
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sup
B2B
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�
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T
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B
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�ix
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�ix
T
i i

#
.

Note that the inner product between matrices B,A 2 Rd⇥p is defined as hB,Ai :=
P

i,j BijAij = Tr(BA
T ).

Now fix x1, . . . , xn and note that, by our assumption, we have, for all i,

sup
�2{±1}d

k�xT
i k ⌦.

Let ⇥ be the random matrix 1

n

Pn

i=1
�ix

T
i . Choose arbitrary �> 0. By Fenchel’s inequality,

hB,⇥i 
F (B)

�
+

F
⇤(�⇥)

�
.

Since F (B) �
2 for all B 2B, we have

sup
B2B
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�
2

�
+

F
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�
.

Taking expectations (w.r.t. �ij) gives

E[sup
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�
2

�
+
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Now let Zi =
�
n
�ix

T
i so that Sn :=

Pn

i=1
Zi = �⇥. Note that kZik 

�
n
⌦. So the conditions of Lemma 4

in Kakade et al. (2008) are satisfied with V
2 = �

2⌦2
/n

2. That lemma gives us E[F ⇤(�⇥)]  �
2⌦2

/(2↵n).

Plugging this above, we have

E[sup
B2B

hB,⇥i]
�
2

�
+

�⌦2

2↵n
.

Setting �= (�/⌦)
p
2↵n gives

E[sup
B2B

hB,⇥i]⌦�

r
2

↵n

which completes the proof. ⇤

D. Proofs for Section 5

D.1. Proof of Proposition 1

Proof. It is clear that the set on the right-hand side of (8) is a subset of NS(w̄). To see the reverse, let

c2NS(w̄) and w 2 S be given. Define ŵ(�) := �w+(1��)w̄ and r(�) :=
�
µ̄
2

�
�(1��)kw� w̄k

2 for �2 [0,1].

By the µ̄-strong convexity of S, we have that B(ŵ(�), r(�))✓ S. Now notice that

c
T (w̃� w̄) 0 for all w̃ 2B(ŵ(�), r(�)) ,

since c2NS(w̄) and B(ŵ(�), r(�))✓ S. Clearly the above condition is equivalent to:

c
T
w̄ � max

w̃2B(ŵ(�),r(�))

�
c
T
w̃
 

= c
T
ŵ(�)+ r(�)kck⇤ ,

where the equality above follows from the definition of the dual norm k ·k⇤. Rearranging the above and using

ŵ(�)� w̄= �(w� w̄) as well as the definition of r(�) yields:

�c
T (w� w̄)  �

�
µ̄
2

�
�(1��)kck⇤kw� w̄k

2 for all �2 [0,1] .

Now suppose that �> 0. Dividing the above by � yields:

c
T (w� w̄)  �

�
µ̄
2

�
(1��)kck⇤kw� w̄k

2 for all �2 (0,1] .

Taking the limit as �! 0 yields

c
T (w� w̄)  �

�
µ̄
2

�
kck⇤kw� w̄k

2
,

which completes the proof. ⇤
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