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Abstract

We present a new method for regularized convex optimization and analyze it under both
online and stochastic optimization settings. In addition to unifying previously known first-
order algorithms, such as the projected gradient method, mirror descent, and forward-
backward splitting, our method yields new analysis and algorithms. We also derive specific
instantiations of our method for commonly used regularization functions, such as `1, mixed
norm, and trace-norm.

1 Introduction and Problem Statement

Regularized loss minimization is a common learning paradigm in which one jointly minimizes an
empirical loss over a training set plus a regularization term. The paradigm yields an optimization
problem of the form

min
w∈Ω

1
n

n∑
t=1

ft(w) + r(w) , (1)

where Ω ⊂ Rd is the domain (a closed convex set), ft : Ω→ R is a (convex) loss function associated
with a single example in a training set, and r : Ω → R is a (convex) regularization function. A
few examples of famous learning problems that fall into this framework are least squares, ridge
regression, support vector machines, support vector regression, lasso, and logistic regression.

In this paper, we describe and analyze a general framework for solving Eq. (1). The method we
propose is a first-order approach, meaning that we access the functions ft only by receiving subgra-
dients. Recent work has shown that from the perspective of achieving good statistical performance
on unseen data, first order methods are preferable to higher order approaches, especially when the
number of training examples n is very large (Bottou and Bousquet, 2008; Shalev-Shwartz and Sre-
bro, 2008). Furthermore, in large scale problems it is often prohibitively expensive to compute the
gradient of the entire objective function (thus accessing all the examples in the training set), and
randomly choosing a subset of the training set and computing the gradient over the subset (perhaps
only a single example) can be significantly more efficient. This approach is very closely related to
online learning. Our general framework handles both cases with ease—it applies to accessing a single
example (or subset of the examples) at each iteration or accessing the entire training set at each
iteration.

The method we describe is an adaptation of the Mirror Descent (MD) algorithm (Nemirovski
and Yudin, 1983; Beck and Teboulle, 2003), an iterative method for minimizing a convex function
φ : Ω → R. If the dimension d is large enough, MD is optimal among first-order methods, and it
has a close connection to online learning since it is possible to bound the regret

T∑
t=1

φt(wt)− inf
w∈Ω

T∑
t=1

φt(w) ,

where {wt} is the sequence generated by mirror descent and the φt are convex functions. In fact, one
can view popular online learning algorithms, such as weighted majority (Littlestone and Warmuth,
1994) and online gradient descent (Zinkevich, 2003) as special cases of mirror descent. A guarantee
on the online regret can be translated directly to a guarantee on the convergence rate of the algorithm
to the optimum of Eq. (1), as we will show later.



Following Beck and Teboulle’s exposition, a Mirror Descent update in the online setting can be
written as

wt+1 = argmin
w∈Ω

Bψ(w,wt) + η 〈φ′t(wt),w −wt〉 , (2)

where Bψ is a Bregman divergence and φ′t denotes an arbitrary subgradient of φt. Intuitively, MD
minimizes a first-order approximation of the function φt at the current iterate wt while forcing the
next iterate wt+1 to lie close to wt. The step-size η controls the trade-off between these two.

Our focus in this paper is to generalize mirror descent to the case when the functions φt are
composite, that is, they consist of two parts: φt = ft + r. Here the ft change over time but the
function r remains constant. Of course, one can ignore the composite structure of the φt and use
MD. However, doing so can result in undesirable effects. For example, when r(w) = ‖w‖1, applying
MD directly does not lead to sparse updates. Since the sparsity inducing property of the `1-norm is
a major reason for its use. The modification of mirror descent that we propose is simple:

wt+1 , argmin
w∈Ω

η 〈f ′t(wt),w〉+Bψ(w,wt) + ηr(w). (3)

This is almost the same as the mirror descent update with an important difference: we do not
linearize r. We call this algorithm Composite Objective MIrror Descent, or Comid. One of our
contributions is to show that, in a variety of cases, the Comid update is no costlier than the usual
mirror descent update. In these situations, each Comid update is efficient and benefits from the
presence of the regularizer r(w).

We now outline the remainder of the paper. We begin by reviewing related work, of which
there is a copious amount, though we try to do some justice to prior research. We then give a
general O(

√
T ) regret bound for Comid in the online optimization setting, after which we give

several extensions. We show O(log T ) regret bounds for Comid when the composite functions ft+ r
are strongly convex, after which we show convergence rates and concentration results for stochastic
optimization using Comid. The second focus of the paper is in the derived algorithms, where we
outline step rules for several choices of Bregman function ψ and regularizer r, including `1, `∞, and
mixed-norm regularization, as well as presenting new results on efficient matrix optimization with
Schatten p-norms.

2 Related Work

Since the idea underlying Comid is simple, it is not surprising that similar algorithms have been
proposed. One of our main contributions is to show that Comid generalizes much prior work and
to give a clean unifying analysis. We do not have the space to thoroughly review the literature,
though we try to do some small justice to what is known. We begin by reviewing work that we
will show is a special case of Comid. Forward-backward splitting is a long-studied framework for
minimizing composite objective functions (Lions and Mercier, 1979), though it has only recently been
analyzed for the online and stochastic case (Duchi and Singer, 2009). Specializations of forward-
backward splitting to the case where r(w) = ‖w‖1 include iterative shrinkage and thresholding from
the signal processing literature (Daubechies et al., 2004), and from machine learning, Truncated
Gradient (Langford et al., 2009) and SMIDAS (Shalev-Shwartz and Tewari, 2009) are both special
cases of Comid.

In the optimization community there has there has been significant recent interest—both applied
and theoretical—on minimization of composite objective functions such as that in Eq. (1). Some
notable examples include Wright et al. (2009); Nesterov (2007); Tseng (2009). These papers all
assume that the objective f + r to be minimized is fixed and that f is smooth, i.e. that it has
Lipschitz continuous derivatives. The most related of these to Comid is probably Tseng (2009,
see his Sec. 3.1 and the references therein), which proposes the same update as ours, but gives a
Nesterov-like optimal method for the fixed f case. We do not have restrictions on f , though by going
to stochastic, nondifferentiable f we naturally suffer in convergence rate. Nonetheless, we do answer
in the affirmative a question posed by Tseng (2009), which is whether stochastic or incremental
subgradient methods work for composite objectives.

Two recent papers for online and stochastic composite objective minimization are Xiao (2009)
and Duchi and Singer (2009). The former extends Nesterov’s 2009 analysis of primal-dual subgra-
dient methods to the composite case, giving an algorithm which is similar to ours; however, our
algorithms are different and the analysis for each is completely different. Duchi and Singer (2009)
is simply a specialization of Comid to the case where the Euclidean Bregman divergence is used.

As a consequence of our general setting, we are able to give elegant new algorithms for min-
imization of functions on matrices, which include efficient and simple algorithms for trace-norm



minimization. Trace norm minimization has recently found strong applicability in matrix rank min-
imization (Recht et al., 2007), which has been shown to be very useful, for example, in collaborative
filtering (Srebro et al., 2004). A special case of Comid has recently been developed for this task,
which is very similar in spirit to fixed point and shrinkage methods from signal processing for `1-
minimization (Ma et al., 2009). The authors of this paper note that the method is extremely efficient
for rank-minimization problems but do not give rates of convergence, which we give as a corollary
to our main convergence theorems.

3 Notation and Setting

Before continuing, we establish notation and our problem setting formally. Vectors are lower case
bold italic letters, such as x ∈ Rd, and scalars are lower case italics such as x ∈ R. We denote a
sequence of vectors by subscripts, i.e. wt,wt+1, . . ., and entries in a vector by non-bold subscripts
as in wj . Matrices are upper case bold italic letters, such as W ∈ Rd×d. The subdifferential set of a
function f evaluated at w is denoted ∂f(w) and a particular subgradient by f ′(w) ∈ ∂f(w). When
a function is differentiable, we write ∇f(w).

We focus mostly on the problem of regularized online learning, in which the goal is to achieve
low regret w.r.t. a static predictor w∗ ∈ Ω on a sequence of functions φt(w) , ft(w) + r(w). Here,
ft and r ≥ 0 are convex functions, and Ω is some convex set (which could be Rd). Formally, at every
round of the algorithm we make a prediction wt ∈ Rd and then receive the function ft. We seek
bounds on the regularized regret with respect to w∗, defined as

Rφ(T,w∗) ,
T∑
t=1

[
ft(wt) + r(wt)− ft(w∗)− r(w∗)

]
. (4)

In batch optimization we set ft = f for all t, while in stochastic optimization we choose ft to be the
average of some random subset of {f1, . . . , fn}. As mentioned previously and as we will show, it is
not difficult to transform regret bounds for Eq. (4) into convergence rates in expectation and with
high probability for Eq. (1), which we do using techniques similar to Cesa-Bianchi et al. (2004).

Throughout, ψ designates a continuously differentiable function that is α-strongly convex w.r.t.
a norm ‖ · ‖ on the set Ω. Recall that this means that the Bregman divergence associated with ψ,

Bψ(w,v) = ψ(w)− ψ(v)− 〈∇ψ(v),w − v〉 ,
satisfies Bψ(w,v) ≥ α

2 ‖w − v‖
2 for some α > 0.

4 Composite Objective MIrror Descent

We use proof techniques similar to those in Beck and Teboulle (2003) to derive “progress” bounds
on each step of the algorithm. We then use the bounds to straightforwardly prove convergence
results for online and batch learning. We begin by bounding the progress made by each step of the
algorithm in either an online or a batch setting. This lemma is the key to our later analysis, so we
prove it in full here.

Lemma 1 Let the sequence {wt} be defined by the update in Eq. (3). Assume that Bψ(·, ·) is
α-strongly convex with respect to a norm ‖·‖, that is, Bψ(w,v) ≥ α

2 ‖w − v‖
2. For any w∗ ∈ Ω,

η (ft(wt)− ft(w∗)) + η (r(wt+1)− r(w∗)) ≤ Bψ(w∗,wt)−Bψ(w∗,wt+1) +
η2

2α
‖f ′t(wt)‖

2
∗ .

Proof: The optimality of wt+1 for Eq. (3) implies for all w ∈ Ω and r′(wt+1) ∈ ∂r(wt+1),

〈w −wt+1, ηf
′(wt) +∇ψ(wt+1)−∇ψ(wt) + ηr′(wt+1)〉 ≥ 0. (5)

In particular, this obtains for w = w∗. From the subgradient inequality for convex functions, we
have ft(w∗) ≥ ft(wt) + 〈f ′t(wt),w∗ −wt〉, or ft(wt)−ft(w∗) ≤ 〈f ′t(wt),wt −w∗〉, and likewise for
r(wt+1). We thus have

η [ft(wt) + r(wt+1)− ft(w∗)− r(w∗)]
≤ η 〈wt −w∗, f ′t(wt)〉+ η 〈wt+1 −w∗, r′(wt+1)〉
= η 〈wt+1 −w∗, f ′t(wt)〉+ η 〈wt+1 −w∗, r′(wt+1)〉+ η 〈wt −wt+1, f

′
t(wt)〉

= 〈w∗ −wt+1,∇ψ(wt)−∇ψ(wt+1)− ηf ′t(wt)− ηr′(wt+1)〉+ 〈w∗ −wt+1,∇ψ(wt+1)−∇ψ(wt)〉
+ η 〈wt −wt+1, f

′
t(wt)〉 .



Now, by Eq. (5), the first term in the last equation is non-positive. Thus we have that

η [ft(wt) + r(wt+1)− ft(w∗)− r(w∗)]
≤ 〈w∗ −wt+1,∇ψ(wt+1)−∇ψ(wt)〉+ η 〈wt −wt+1, f

′
t(wt)〉

= Bψ(w∗,wt)−Bψ(wt+1,wt)−Bψ(w∗,wt+1) + η 〈wt −wt+1, f
′
t(wt)〉 (6)

= Bψ(w∗,wt)−Bψ(wt+1,wt)−Bψ(w∗,wt+1) + η

〈√
α

η
(wt −wt+1),

√
η

α
f ′t(wt)

〉
≤ Bψ(w∗,wt)−Bψ(wt+1,wt)−Bψ(w∗,wt+1) +

α

2
‖wt −wt+1‖2 +

η2

2α
‖f ′t(wt)‖

2
∗

≤ Bψ(w∗,wt)−Bψ(w∗,wt+1) +
η2

2α
‖f ′t(wt)‖

2
∗ .

In the above, the first equality follows from simple algebra of Bψ, that is, 〈∇ψ(b)−∇ψ(a), c− a〉 =
Bψ(c,a) + Bψ(a, b)− Bψ(c, b) and setting c = w∗, a = wt+1, and b = wt. The second to last in-
equality follows from the Fenchel-Young inequality applied to the conjugate pair 1

2 ‖·‖
2, 1

2 ‖·‖
2
∗ (Boyd

and Vandenberghe, 2004, Example 3.27). The last inequality follows from the strong convexity of
Bψ with respect to the norm ‖·‖.
The following theorem uses Lemma 1 to establish a general regret bound for the Comid framework.

Theorem 2 Let the sequence {wt} be defined by the update in Eq. (3). Then for any w∗ ∈ Ω,

Rφ(T,w∗) ≤ 1
η
Bψ(w∗,w1) + r(w1) +

η

2α

T∑
t=1

‖f ′t(wt)‖
2
∗ .

Proof: By Lemma 1,

η

T∑
t=1

[ft(wt)− ft(w∗) + r(wt+1)− r(w∗)] ≤
T∑
t=1

Bψ(w∗,wt)−Bψ(w∗,wt+1) +
η2

2α

T∑
t=1

‖f ′t(wt)‖
2
∗

= Bψ(w∗,w1)−Bψ(w∗,wT+1) +
η2

2α

T∑
t=1

‖f ′t(wt)‖
2
∗ .

Noting that Bregman divergences are always non-negative, recall our assumption that r(w) ≥ 0.
Adding ηr(w1) to both sides of the above equation and dropping the r(wt+1) term gives

η

T∑
t=1

[ft(wt)− ft(w∗) + r(wt)− r(w∗)] ≤ Bψ(w∗,w1) + ηr(w1) +
η2

2α

T∑
t=1

‖f ′t(wt)‖
2
∗ .

Dividing each side by η gives the result.

A few corollaries are immediate from the above result. First, suppose that the functions ft are
Lipschitz continuous. Then there is some G∗ such that ‖f ′t(wt)‖∗ ≤ G∗. In this case, we have

Corollary 3 Let {wt} be generated by the update Eq. (3) and assume that the functions ft are
Lipschitz with dual Lipschitz constant G∗. Then

Rφ(T ) ≤ 1
η
Bψ(w∗,w1) + r(w1) +

Tη

2α
G2
∗.

If we take η ∝ 1/
√
T , then we have a regret which is O(

√
T ) when the functions ft are Lipschitz. If

Ω is compact, the ft are guaranteed to be Lipschitz continuous (Rockafellar, 1970).

Corollary 4 Suppose that either Ω is compact or the functions ft are Lipschitz so ‖f ′t‖∗ ≤ G∗. Also
assume r(w1) = 0. Then setting η =

√
2αBψ(w∗,w1)/(G∗

√
T ),

Rφ(T ) ≤
√

2TBψ(w∗,w1)G∗/
√
α.

It is straightforward to prove results under the slightly different restriction that ‖f ′t(w)‖2∗ ≤
ρft(w), which is similar to assuming a Lipschitz condition on the gradient of ft. A common example
in which this holds is linear regression, where fi(w) = 1

2 (〈w,xi〉−yi)2, so ∇fi(w) = (〈w,xi〉−yi)xi
and ρ = 1

2 ‖xi‖
2. The proof essentially amounts to dividing out constants dependent on η and ρ

from both sides of the regret.



Corollary 5 Let ‖f ′t(w)‖2∗ ≤ ρft(w), r ≥ 0, and assume r(w1) = 0. Setting η ∝ 1/
√
T gives

Rφ(T ) = O(ρ
√
TBψ(w∗,w1)/α) .

Proof: From Theorem 2, the non-negativity of r, and that r(w1) = 0 we immediately have
T∑
t=1

(
1− ρη

2α

)
[ft(wt) + r(wt)] ≤

T∑
t=1

(
1− ρη

2α

)
ft(wt) + r(wt) ≤

1
η
Bψ(w∗,w1) +

T∑
t=1

ft(w∗) + r(w∗)

Setting η = 2α/(ρ
√
T ) gives 1− ρη/(2α) = (

√
T − 1)/

√
T so that

T∑
t=1

ft(wt) + r(wt) ≤
ρT

2α(
√
T − 1)

Bψ(w∗,w1) +
√
T√

T − 1

T∑
t=1

ft(w∗) + r(w∗).

5 Logarithmic Regret for Strongly Convex Functions

Following the vein of research begun in Hazan et al. (2006) and Shalev-Shwartz and Singer (2007), we
show that Comid can get stronger regret guarantees when we assume curvature of the loss functions
ft or r. Similar to Shalev-Shwartz and Singer, we now assume that for all t, ft + r is λ-strongly
convex with respect to a differentiable function ψ, that is, for any w,v ∈ Ω,

ft(v) + r(v) ≥ ft(w) + r(w) + 〈f ′t(w) + r′(w),v −w〉+ λBψ(v,w). (7)

For example, when ψ(w) = 1
2 ‖w‖

2
2, we recover the usual definition of strong convexity. For simplic-

ity, we assume that we push all the strong convexity into the function r so that the ft are simply
convex (clearly, this is possible by redefining f̂t(w) = ft(w)−λψ(w) if the ft are λ-strongly convex).
In this case, a straightforward corollary to Lemma 1 follows.

Corollary 6 Let the sequence {wt} be defined by the update in Eq. (3) with step sizes ηt. Assume
that Bψ(·, ·) is α-strongly convex with respect to a norm ‖·‖ and that r is λ-strongly convex with
respect to ψ. Then for any w∗ ∈ Ω

ηt (ft(wt)− ft(w∗)) + ηt (r(wt+1)− r(w∗))

≤ Bψ(w∗,wt)−Bψ(w∗,wt+1) +
η2
t

2α
‖f ′t(wt)‖

2
∗ − ληtBψ(w∗,wt+1).

Proof: The proof is effectively identical to that of Lemma 1. We simply note that r(wt+1)−r(w∗) ≤
〈r′(wt+1),wt+1 −w∗〉 − λBψ(w∗,wt+1) so that

ηt [ft(wt) + r(wt+1)− ft(w∗)− r(w∗)]
≤ ηt 〈wt −w∗, f ′t(wt)〉+ ηt 〈wt+1 −w∗, r′(wt+1)〉 − ληtBψ(w∗,wt+1).

Now we simply proceed as in the proof of Lemma 1 following Eq. (5).

The above corollary almost immediately gives a logarithmic regret bound.

Theorem 7 Let r be λ-strongly convex with respect to a differentiable function ψ and suppose ψ is
α-strongly convex with respect to a norm ‖·‖. Assume that r(w1) = 0. If ‖f ′t(wt)‖∗ ≤ G∗ for all t,

Rφ(T ) ≤ λBψ(w∗,w1) +
G2
∗

λα
(log T + 1) = O

(
G2
∗

λα
log T

)
.

Proof: Rearranging Corollary 6, we have
T∑
t=1

ft(wt) + r(wt+1)− ft(w∗)− r(w∗)

≤
T∑
t=1

[
1
ηt
Bψ(w∗,wt)−

1
ηt
Bψ(w∗,wt+1)− λBψ(w∗,wt+1)

]
+

T∑
t=1

ηt
2α
‖f ′t(wt)‖

2
∗ .

=
1
η1
Bψ(w∗,w1)− 1

ηT
Bψ(w∗,wt+1) +

T−1∑
t=1

[
Bψ(w∗,wt+1)

(
1

ηt+1
− 1
ηt

)
− λBψ(w∗,wt+1)

]

+
T∑
t=1

ηt
2α
‖f ′t(wt)‖

2
∗



If we set ηt = 1
λt , then the first summation above is zero and

T∑
t=1

ft(wt) + r(wt+1)− ft(w∗)− r(w∗) ≤ λBψ(w∗,w1) +
1
λα

T∑
t=1

1
t
‖f ′t(wt)‖

2
∗ .

Noting that
∑T
t=1

1
t ≤ log T + 1 completes the proof of the theorem.

An interesting point regarding the above theorem is that we do not require Bψ(w∗,wt) to be
bounded or the set Ω to be compact, which previous work assumed. When the functions ft are
Lipschitz, then whenever r is strongly convex Comid still attains logarithmic regret.

Two notable examples attain the logarithmic bounds in the above theorem. It is clear that if
r defines a valid Bregman divergence then that r is strongly convex with respect to itself in the
sense of Eq. (7). First, consider optimization over the simplex with entropic regularization, that is,
we set r(w) = λ

∑
i wi logwi and Ω = {w : w � 0,1>w = 1}. In this case it is straightforward

to see that r(w) =
∑
j wi logwi is λ-strongly convex with respect to ψ(w) = r(w), which in turn

is strongly convex with respect to the `1-norm ‖·‖1 over Ω (see Shalev-Shwartz and Singer, 2007,
Definition 2 and Example 2). Since the dual of the `1-norm is the `∞ norm, we have Rφ(T ) =

O
(

log T
λ maxt ‖f ′t(wt)‖∞

)
. We can also use r(w) = λ

2 ‖w‖
2
2, in which case we recover the same

bounds as those in Hazan et al. (2006).

6 Stochastic Convergence Results

In this section, we examine the application of Comid to solving stochastic optimization problems.
The techniques we use have a long history in online algorithms and make connections between the
regret of the algorithm and generalization performance using martingale concentration results (Lit-
tlestone, 1989). We build on known techniques for data-driven generalization bounds (Cesa-Bianchi
et al., 2004) to give concentration results for Comid in the stochastic optimization setting. Further
work on this subject for the strongly convex case can be found in Kakade and Tewari (2008), though
we focus on the case when ft + r is weakly convex.

We let f(w) = Ef(w;Z) =
∫
f(w; z)dP (z), and at every step t the algorithm receives an

independent random variable Zt ∼ P that gives an unbiased estimate ft(wt) = f(wt;Zt) of the
function f evaluated at wt and an unbiased estimate f ′t(wt) = f ′(wt;Zt) of an arbitrary subgradient
f ′(wt) ∈ ∂f(wt). We assume that Bψ(w∗,wt) ≤ D2 for all t and for simplicity that ‖f ′t(wt)‖∗ ≤ G∗
for all t, which are satisified when Ω is compact. We also assume without loss of generality that
r(w1) = 0. For example, our original problem in which f(w) = 1

n

∑n
i=1 fi(w), where we randomly

sample one fi at each iteration, falls into this setup, resolving the question posed by Tseng (2009)
on the existence of stochastic composite incremental subgradient methods.

Theorem 8 Given the assumptions on f and Ω in the above paragraph, let {wt} be the sequence
generated by Eq. (3). In addition, let w̄T = 1

T

∑T
t=1wt and ηt = D

G∗
√
αt

. Then

P

(
f(w̄T ) + r(w̄T ) ≥ f(w∗) + r(w∗) +

DG∗√
αT

+ ε

)
≤ exp

(
− Tαε2

16D2G2
∗

)
.

Alternatively, with probability at least 1− δ

f(w̄T ) + r(w̄T ) ≤ f(w∗) + r(w∗) +
DG∗√
αT

(
1 + 4

√
log

1
δ

)
.

Proof: We begin our derivation by recalling Lemma 1. Convexity of f and r imply

ηt [f(wt) + r(wt+1)− f(w∗)− r(w∗)]
≤ ηt 〈wt −w∗, f ′(wt)〉+ ηt 〈wt+1 −w∗, r′(wt+1)〉
= ηt 〈wt −w∗, f ′t(wt)〉+ ηt 〈wt+1 −w∗, r′(wt+1)〉+ ηt 〈wt −w∗, f ′(wt)− f ′t(wt)〉

We now follow the same derivation as Lemma 1, leaving ηt 〈wt −w∗, f ′(wt)− f ′t(wt)〉 intact, thus

ηt [f(wt) + r(wt+1)− f(w∗)− r(w∗)]

≤ Bψ(w∗,wt)−Bψ(w∗,wt+1) +
η2
t

2α
‖f ′t(wt)‖

2
∗ + ηt 〈wt −w∗, f ′(wt)− f ′t(wt)〉 . (8)



Now we subtract r(wT+1) ≥ 0 from both sides, use the assumption that r(w1) = 0, and sum to get
T∑
t=1

[f(wt) + r(wt)− f(w∗)− r(w∗)]

≤
T∑
t=1

1
ηt

[Bψ(w∗,wt)−Bψ(w∗,wt+1)] +
1

2α

T∑
t=1

ηt ‖f ′t(wt)‖
2
∗ +

T∑
t=1

〈wt −w∗, f ′(wt)− f ′t(wt)〉

≤ 1
η1
Bψ(w∗,w1) +

T∑
t=2

Bψ(w∗,wt)
[

1
ηt
− 1
ηt−1

]
+
G2
∗

2α

T∑
t=1

ηt +
T∑
t=1

〈wt −w∗, f ′(wt)− f ′t(wt)〉 .

(9)

Let Ft be a filtration with Zτ ∈ Ft for τ ≤ t. Since wt ∈ Ft−1,

E [〈wt −w∗, f ′(wt)− f ′(wt;Zt)〉 | Ft−1] = 〈wt −w∗, f ′(wt)− E[f ′(wt;Zt) | Ft−1]〉 = 0 ,

and thus the last sum in Eq. (9) is a martingale difference sequence. We next use our assumptions
that Bψ(w∗,wt) ≤ D2 and α

2 ‖w
∗ −wt‖2 ≤ Bψ(w∗,wt), therefore ‖w∗ −wt‖ ≤

√
2/αD. Then

〈wt −w∗, f ′(wt)− f ′t(wt)〉 ≤ ‖wt −w∗‖ ‖f ′(wt)− f ′t(wt)‖∗ ≤ 2
√

2/αDG∗ .

Thus Eq. (9) consists of a bounded difference martingale, and we can use standard concentration
techniques to get strong convergence guarantees. Applying Azuma’s inequality,

P

(
T∑
t=1

〈wt −w∗, f ′(wt)− f ′t(wt)〉 ≥ ε

)
≤ exp

(
− αε2

16TD2G2
∗

)
. (10)

Define γT =
∑T
t=1 〈wt −w∗, f ′t(wt)− f ′(wt)〉 and recall that Bψ(w∗,wt) ≤ D2. The convexity

of f and r give T [f(w̄T ) + r(w̄T )] ≤
∑T
t=1 f(wt) + r(wt), so that

T [f(w̄T ) + r(w̄T )] ≤ T [f(w∗) + r(w∗)] +D2

[
1
η1

+
T∑
t=1

(
1
ηt
− 1
ηt−1

)]
+
G2
∗

2α

T∑
t=1

ηt + γT

= T [f(w∗) + r(w∗)] +
D2

ηT
+
G2
∗

2α

T∑
t=1

ηt + γT .

Setting ηt = D
√
α

G∗
√
t

we have f(w̄T ) + r(w̄T ) ≤ f(w∗) + r(w∗) + DG2
∗
√
T/
√
α + 1

T γT , and we can
immediately apply Azuma’s inequality from Eq. (10) to complete the theorem.

7 Special Cases and Derived Algorithms

In this section, we show specific instantiations of our framework for different regularization functions
r, and we also show that some previously developed algorithms are special cases of the framework
for optimization presented here. We also give results on learning matrices with Schatten p-norm
divergences that generalize some recent interesting work on trace norm regularization.

7.1 Fobos
The recently proposed Fobos algorithm of Duchi and Singer (2009) is comprised, at each iteration,
of the following two steps:

w̃t+1 = wt − ηf ′t(wt) and wt+1 = argmin
w

1
2
‖w − w̃t+1‖2 + ηr(w) .

It is straightforward to verify that the update

wt+1 = argmin
w

1
2
‖w −wt‖22 + η 〈f ′t(wt),w −wt〉+ ηr(w)

is equivalent to the two step update above. Thus, Comid reduces to Fobos when we take ψ(w) =
1
2 ‖w‖

2
2 and Ω = Rd (with constant learning rate η). This also shows that we can run Fobos by

restricting to a convex set Ω 6= Rd. Further, our results give tighter convergence guarantees than
Fobos, in particular, they do not depend in any negative way on the regularization function r.



It is also not difficult to show in general that the two step process of setting

w̃t+1 = argmin
w

Bψ(w,wt) + η 〈f ′t(wt),w〉 and wt+1 = argmin
w

Bψ(w, w̃t) + ηr(w)

is equivalent to the original Comid update of Eq. (3) when Ω = Rd. Indeed, the optimal solution
to the first step satisfies

∇ψ(w̃t+1)−∇ψ(wt) + ηf ′t(wt) = 0 so that w̃t+1 = ∇ψ−1(∇ψ(wt)− ηf ′t(wt)).

Then looking at the optimal solution for the second step, for some r′(wt+1) ∈ ∂r(wt+1) we have

∇ψ(wt+1)−∇ψ(w̃t+1) + ηr′(wt+1) = 0 i.e. ∇ψ(wt+1)−∇ψ(wt) + ηf ′t(wt) + ηr′(wt+1) = 0.

This is clearly the solution to the one-step update of Eq. (3).

7.2 p-norm divergences

Now we consider divergence functions ψ which are the `p-norms squared. 1
2 ‖w‖

2
p is (p− 1)-strongly

convex over Rd with respect to the `p-norm for any p ∈ (1, 2] (Ball et al., 1994). We see that if we
choose ψ(w) = 1

2 ‖w‖
2
p to be the divergence function, we have a corollary to Theorem 2.

Corollary 9 Suppose that r(0) = 0 and that w1 = 0. Let p = 1 + 1/ log d and use the Bregman
function ψ(w) = 1

2 ‖w‖
2
p. Further suppose that either Ω is compact or the ft are Lipschitz so that

for q = log d+ 1, maxt ‖f ′t(wt)‖q ≤ Gq. Setting η =
‖w∗‖p

Gq

√
1

T log d , the regret of Comid satisfies

Rφ(T ) ≤ ‖w∗‖pGq
√
T log d � ‖w∗‖1G∞

√
T log d .

Proof: Recall that the dual norm for an `p-norm is an `q-norm, where q = p/(p−1). From Thm. 2,
we immediately have that when w1 = 0 and ψ(w) = 1

2 ‖w‖
2
p

R(T ) ≤ 1
2η
‖w∗‖2p +

η

2(p− 1)

T∑
t=1

‖f ′t(wt)‖
2
q .

Now use the assumption that maxt ‖f ′t(wt)‖q ≤ Gq, replace p with 1 + 1/ log d (so q = log d + 1),

and set η = c
√

1
T log d , which results in

R(T ) ≤
√
T log d
2c

‖w∗‖2p + c

√
T log d

2
G2
q.

Setting c = ‖w∗‖p /Gq gives us our desired result.

From the above, we see that Comid is a good candidate for (dense) problems in high dimensions,
especially when we use `1-regularization. For high dimensions whenw ∈ Rd, taking p = 1+1/ log d ≈
1 means our bounds depend roughly on the `1-norm of the optimal predictor and the infinity norm
of the function gradients ft. Shalev-Shwartz and Tewari (2009) recently proposed the “Stochastic
Mirror Descent made Sparse” algorithm (SMIDAS) using this intuition. We recover SMIDAS by
taking the divergence in Comid to be ψ(w) = 1

2 ‖w‖
2
p and r(w) = λ ‖w‖1. The Comid update is

∇ψ(w̃t+1) = ∇ψ(wt)− ηf ′t(wt), wt+1 = argmin
w

Bψ(w, w̃t+1) + ηλ‖w‖1 .

The SMIDAS update, on the other hand, is

∇ψ(w̃t+1) = ∇ψ(w)− ηf ′t(wt), ∇ψ(wt+1) = Sηλ (∇ψ(w̃t+1)) ,

where Sτ is the shrinkage/thresholding operator defined by

[Sτ (x)]j = sign(xj) [|xj | − τ ]+ . (11)

The following lemma proves that the two updates are identical in cases including p-norm divergences.

Lemma 10 Suppose ψ is strongly convex and its gradient satisfies

sign([∇ψ(w)]j) = sign(wj) . (12)

Then the unique solution v of v = argminw {Bψ(w,u) + τ ‖w‖1} is given by

∇ψ(v) = Sτ (∇ψ(u)) . (13)



Proof: Since ψ is strongly convex, the solution is unique. We will show that if v satisfies Eq. (13)
then it is a solution to the problem. Therefore, suppose Eq. (13) holds. The proof proceeds by
considering three cases.

Case I: [∇ψ(u)]j > τ . In this case, [∇ψ(v)]j = [∇ψ(u)]j − τ > 0 and by Eq. (12), vj > 0. Thus

[∇ψ(v)]j − [∇ψ(u)]j + τ sign(vj) = 0 .

Case II: [∇ψ(u)]j < −τ . In this case, [∇ψ(v)]j = [∇ψ(u)]j + τ < 0 and Eq. (12) implies vj < 0. So

[∇ψ(v)]j − [∇ψ(u)]j + τ sign(vj) = 0 .

Case III: [∇ψ(u)]j ∈ [−τ, τ ]. Here, we can take vj = 0 and Eq. (12) will give [∇ψ(v)]j = 0. Thus

0 ∈ [∇ψ(v)]j − [∇ψ(u)]j + τ [−1, 1] .

Combining the three cases, v satisfies 0 ∈ ∇ψ(v) − ∇ψ(u) + τ∂ ‖v‖1, which is the optimality
condition for v ∈ argminw{Bψ(w,u) + τ ‖w‖1}. We thus have ∇ψ(v) = Sτ (∇ψ(u)) as desired.

Rewriting the above lemma slightly gives the following result. The solution to

wt+1 = argmin
w

{Bψ(w,wt) + η 〈f ′t(wt),w −wt〉+ ηr(w)}

when ψ satisfies the gradient condition of Eq. (12) is

wt+1 = (∇ψ)−1 [sign (∇ψ(wt)− ηf ′t(wt))�max {|∇ψ(wt)− ηf ′t(wt)| − ηλ, 0}]
= (∇ψ)−1 [Sηλ(∇ψ(wt)− ηf ′t(wt))] . (14)

Note that when ψ(·) = ‖·‖2p we recover Shalev-Shwartz and Tewari’s SMIDAS, while with p = 2
we get Langford et al.’s 2009 truncated gradient method. See Shalev-Shwartz and Tewari (2009)
or Gentile and Littlestone (1999) for the simple formulae to compute (∇ψ)−1 ≡ ∇ψ∗.

`∞-regularization Let us now consider the problem of setting r(w) to be a general `p-norm (we
will specialize this to `∞ shortly). We describe the dual function and then use it to derive a few
particular updates, mentioning an open problem. First, let p1 > 1 be the norm associated with the
Bregman function ψ and p2 be the norm for r(w) = ‖w‖p2 . Let qi = pi/(pi − 1) be the associated
dual norm. Then, ignoring constants, the minimization problem from Eq. (3) becomes

min
w
〈v,w〉+

1
2
‖w‖2p1 + λ ‖w‖p2 .

We introduce a variable z = w and get the equivalent problem minw=z 〈v,w〉+ 1
2 ‖w‖

2
p1

+ λ ‖z‖p2 .
To derive the dual of the problem, we introduce Lagrange multiplier θ and find the Lagrangian

L(w, z,θ) = 〈v − θ,w〉+
1
2
‖w‖2p1 + λ ‖z‖p2 + 〈θ, z〉 .

Taking the infimum over w and z in the Lagrangian, since the conjugate of 1
2 ‖·‖

2
p is 1

2 ‖·‖
2
q when

1/p+ 1/q = 1 (Boyd and Vandenberghe, 2004, Example 3.27) we have

inf
w

[
〈v − θ,w〉+ 1

2 ‖w‖
2
p1

]
= −1

2
‖v − θ‖2q1 inf

z

[
λ ‖z‖p2 + 〈θ, z〉

]
=
{

0 if ‖θ‖q2 ≤ λ
−∞ otherwise.

Thus, our dual is the non-Euclidean projection problem

min
θ

1
2
‖v − θ‖q1 s.t. ‖θ‖q2 ≤ λ.

The Lagrangian earlier is differentiable with respect to w, so we can recover the optimal w from θ
by noting that when ψ(w) = 1

2 ‖w‖
2
p1

, ∇ψ(w)+v−θ = 0 at optimum or w = (∇ψ)−1(θ−v). When
p2 = 1, we easily recover Eq. (14) as our update. However, the case p2 =∞ is more interesting, as
it can be a building block for group-sparsity (Obozinski et al., 2007). In this case our problem is

min
θ

1
2
‖v − θ‖q s.t. ‖θ‖1 ≤ λ.

It is clear by symmetry in the above that we can assume v � 0 with no loss of generality. We can
raise the `q-norm to a power greater than 1 and maintain convexity, so our equivalent problem is

min
θ

1
q
‖v − θ‖qq s.t. 〈1,θ〉 ≤ λ,θ � 0. (15)



Let θ̂ be the solution of Eq. (15). Clearly, at optimum we will have θ̂i ≤ vi, though we use
this only for clarity in the derivation and omit constraints as they do not affect the optimization
problem. Introducing Lagrange multipliers ν and α � 0 we get the Lagrangian

L(θ, ν,α) =
1
q

d∑
i=1

(vi − θi)q + ν(〈1,θ〉 − λ)− 〈α,θ〉

Taking the derivative of the above, we have

−(vi − θi)q−1 + ν − αi = 0 ⇒ θi = vi − (ν − αi)1/(q−1)

Now suppose we knew the optimal ν. If an index i satisfies ν ≥ vq−1
i , then we will have θ̂i = 0. To

see this, suppose for the sake of contradiction that θ̂i > 0. The KKT conditions for optimality of
Eq. (15) (Boyd and Vandenberghe, 2004) imply that for such i we have

θ̂i = vi − (ν − αi)1/(q−1) = vi − ν1/(q−1) ≤ 0,

a contradiction. Similarly, if ν < vq−1
i and αi ≥ 0, then θ̂i > 0. Ineed, since αi ≥ 0,

θ̂i = vi − (ν − αi)1/(q−1) > vi − (vq−1
i − αi)1/(q−1) ≥ vi − vi = 0,

so that θ̂i > 0 and the KKT conditions imply αi = 0. Had we known ν, the optimal θ̂i would have
been easy to attain as θ̂i(ν) = vi− (min{ν, vq−1

i })1/(q−1) (note that this satisfies 0 ≤ θ̂i ≤ vi). Since
we know that the structure of the optimal θ̂ must obey the above equation, we can boil our problem
down to finding ν ≥ 0 so that

d∑
i=1

θ̂i(ν) =
d∑
i=1

vi −min{ν, vq−1
i }1/(q−1) = λ. (16)

Interestingly, this reduces to exactly the same root-finding problem as that for solving Euclidean
projection to an `1-ball (Duchi et al., 2008). As shown by Duchi et al., it is straightforward to find
the optimal ν in time linear in the dimension d.

An open problem is to find an efficient algorithm for solving the generalized projections above
when using the 2 rather than ∞ norm.

Mixed-norm regularization Now we consider the problem of mixed-norm regularization, in
which we wish to minimize functions ft(W ) + r(W ) of a matrix W ∈ Rd×k. In particular, we
define wi ∈ Rk to be the ith row of W , and we set r(W ) = λ

∑d
i=1 ‖wi‖p2 . We also use the p-norm

Bregman functions as above with ψ(W ) = 1
2 ‖W ‖

2
p = 1

2

(∑
i,jW

p
ij

)1/p

, which are (p− 1)-strongly
convex with respect to the `p-norm squared. As earlier, our minimization problem becomes

min
W
〈V ,W 〉+

1
2
‖W ‖2p1 + λ ‖W ‖`1/`p2

,

whose dual problem is
min
Θ
‖V −Θ‖q1 s.t.

∥∥θi∥∥q2 ≤ λ
Raising the first norm to the q1-power, we see that the problem is separable, and we can solve it
using the techniques in the prequel.

7.3 Matrix Composite Mirror Descent
We now consider a setting that generalizes the previous discussions in which our variables W t are
matrices W t ∈ Ω = Rd1×d2 . We use Bregman functions based on Schatten p-norms (e.g. Horn
and Johnson, 1985, Section 7.4). Schatten p-norms are the family of unitarily invariant matrix
norms arising out of applying p-norms to the singular values of the matrix W . That is, letting
σ(W ) denote the vector of singular values of W , we set |||W |||p = ‖σ(W )‖p. We use Bregman
functions ψ(W ) = 1

2 |||W |||
2
p, which, similar to the p-norm on vectors, are (p − 1)-strongly convex

over Ω = Rd1×d2 with respect to the norm |||·|||p (Ball et al., 1994).
As in the previous subsection, we mainly consider two values for p, p = 2 and a value very near

1, namely p = 1 + 1/ log d. For p = 2, ψ is 1-strongly convex with respect to |||·|||2 = |||·|||Fr, the



Frobenius norm. For the second value, ψ is 1/ log d-strongly convex with respect to |||·|||1+1/ log d, or,
with a bit more work, ψ is 1/(3 log d)-strongly convex w.r.t. |||·|||1, the trace or nuclear norm.

We focus on the specific setting of trace-norm regularization, or r(W ) = λ |||W |||1. This norm,
similar to the `1-norm on vectors, gives sparsity in the singular value spectrum of W and hence is
useful for rank-minimization (Recht et al., 2007). The generic Comid update with the above choice
of ψ gives a “Schatten p-norm” Comid algorithm for matrix applications:

W t+1 = argmin
W∈Ω

η 〈f ′t(W t),W 〉+Bψ(W ,W t) + ηλ |||W |||1 . (17)

The update is well defined since ψ is strongly convex as per the above discussion. We also have
defined 〈W ,V 〉 = tr(W>V ) as the usual matrix inner product. The generic Comid convergence
result in Thm. 2 immediately yields the following two corollaries.

Corollary 11 Let the sequence {W t} be defined by the update in Eq. (17) with p = 2. If each ft
satisfies |||f ′t(W t)|||2 ≤ G2, then there is a stepsize η for which the regret against W ∗ ∈ Ω is

Rφ(T ) ≤ G2 |||W ∗|||2
√
T

Corollary 12 Let p = 1 + 1/ log d in the Schatten Comid update of Eq. (17). Let q = 1 + log d. If
each ft satisfies |||f ′t(W t)|||q ≤ Gq then

Rφ(T ) ≤ Gq |||W ∗|||p
√
T log d � G∞ |||W ∗|||1

√
T log d

where G∞ = maxt |||f ′t(W t)|||∞ = maxt σmax(f ′t(W t)).

Let us consider the actual implementation of the Comid update. Similar convergence rates (with
worse constants and a negative dependence on the spectrum of r) to those above can be achieved
via simple mirror descent, i.e. by linearizing r(W ). The advantage of Comid is that it achieves
sparsity in the spectrum, as the following proposition demonstrates.

Proposition 13 Let Ψ(w) = 1
2 ‖w‖

2
p and Sτ (v) = sign(v) [|v| − τ ]+ as in the prequel. For p ∈ (1, 2],

the update in Eq. (17) can be implemented as follows.

Compute SVD: W t = U t diag(σ(W t))V >t (18a)

Gradient step: Θt = U t diag(∇Ψ(σ(W t)))V >t − ηf ′t(W t)

Compute SVD: Θt = Ũ t diag(σ(Θt))Ṽ
>
t

Splitting update: W t+1 = Ũ t diag
(
(∇Ψ)−1(Sηλ(σ(Θt)))

)
Ṽ
>
t (18b)

Note that the first SVD, Eq. (18a), is used for notational convenience only and need not be computed
at each iteration, since it is maintained at the end of iteration t−1 via Eq. (18b). The computational
requirements for Comid are thus the same as standard mirror descent, which also requires an SVD
computation on each step to compute ∂ |||W |||1. The last step of the update, Eq. (18b) applies the
shrinkage/thresholding operator Sηλ to the spectrum of Θt, which introduces sparsity. Furthermore,
due to the sign (and hence sparsity) preserving nature of the map (∇Ψ)−1, the sparsity in the
spectrum is maintained in W t+1. Lastly, the special case for p = 2, the standard Frobenius norm
update, was derived (but without rates or allowing stochastic gradients) by Ma et al. (2009), who
report good empirical results for their algorithm. In trace-norm applications, we expect |||W ∗|||1 to
be small. Therefore, in such applications, our new Schatten-p COMID algorithm with p ≈ 1 should
give strong performance since G∞ can be much smaller than G2.
Proof of Proposition 13: We know from the prequel that the Comid step is equivalent to

∇ψ(W̃ t) = ∇ψ(W t)− ηf ′t(W t) and W t+1 = argmin
W

{
Bψ(W , W̃ t) + ηr(W̃ t)

}
.

Since W t has singular value decomposition U t diag(σ(W ))V t and ψ(W ) = Ψ(σ(W )) is unitarily
invariant, ∇ψ(W t) = U t diag(∇Ψ(σ(W t)))V t (Lewis, 1995, Corollary 2.5). This means that the
Θt computed in step 2 above is simply ∇ψ(W̃ t). The proof essentially amounts to a reduction to
the vector case, since the norms are unitarily invariant, and will be complete if we prove that

V = argmin
W

{
Bψ(W , W̃ t) + τ |||W |||1

}



has the unique solution

V = Ũ t diag
(

(∇Ψ)−1(Sτ (σ(∇ψ(W̃ t))))︸ ︷︷ ︸
w̃

)
Ṽ t , (19)

where Ũ t diag(σ(W̃ t))Ṽ
>
t is the SVD of W̃ t. By subgradient optimality conditions, it is sufficient

that the proposed solution V satisfy

0d1×d2 ∈ ∇ψ(V )−∇ψ(W̃ t) + τ∂ |||V |||1 .

Applying Lewis’s Corollary 2.5, we can continue to use the orthonormal matrices Ũ t and Ṽ t, and
we see that the proposed V in Eq. (19) satisfies

∇ψ(V ) = Ũ t diag(∇Ψ(w̃)))Ṽ
>
t and ∂ |||V |||1 = Ũ t diag(∂ ‖w̃‖1)Ṽ

>
t .

We have thus reduced the problem to showing that 0d ∈ ∇Ψ(w̃) +∇Ψ(σ(W̃ t)) + τ∂ ‖w̃‖1, since we
chose the matrices to have the same singular vectors by construction. From Lemma 10 presented
earlier, we already know that w̃ satisfies this equation if and only if ∇Ψ(w̃) = Sτ (∇Ψ(σ(W̃ t))),
which is indeed the case by definition of w̃ (noting of course that σ(∇ψ(W̃ t)) = ∇Ψ(σ(W̃ t))).
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