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Abstract

Increasingly, optimization problems in machine learning,especially those arising
from high-dimensional statistical estimation, have a large number of variables.
Modern statistical estimators developed over the past decade have statistical or
sample complexitythat depends only weakly on the number of parameters when
there is some structure to the problem, such as sparsity. A central question is
whether similar advances can be made in their computationalcomplexity as well.
In this paper, we propose strategies that indicate that suchadvances can indeed be
made. In particular, we investigate the greedy coordinate descent algorithm, and
note that performing the greedy step efficiently weakens thecostly dependence on
the problem size provided the solution is sparse. We then propose a suite of meth-
ods that perform these greedy steps efficiently by a reduction to nearest neighbor
search. We also devise a more amenable form of greedy descentfor composite
non-smooth objectives; as well as several approximate variants of such greedy
descent. We develop a practical implementation of our algorithm that combines
greedy coordinate descent with locality sensitive hashing. Without tuning the lat-
ter data structure, we are not only able to significantly speed up the vanilla greedy
method, but also outperform cyclic descent when the problemsize becomes large.
Our results indicate the effectiveness of our nearest neighbor strategies, and also
point to many open questions regarding the development of computational geo-
metric techniques tailored towards first-order optimization methods.

1 Introduction
Increasingly, optimization problems in machine learning are very high-dimensional, where the num-
ber of variables is very large. This has led to a renewed interest in iterative algorithms that require
bounded time per iteration. Such iterative methods take various forms such as so-called row-action
methods [6] which enforce constraints in the optimization problem sequentially, or first-order meth-
ods [4] which only compute the gradient or a coordinate of thegradient per step. But the overall time
complexity of these methods still has a high polynomial dependence on the number of parameters.
Modern statistical estimators developed over the past decade have statistical or sample complexity
that depends only weakly on the number of parameters [5, 15, 18]. Can similar advances be made
in their computational complexity?

Towards this, we investigate one of the simplest classes of first order methods: coordinate descent,
which only updates a single coordinate of the iterate at every step. The coordinate descent class
of algorithms has seen a renewed interest after recent papers [8, 10, 19] have shown considerable
empirical success in application to large problems. Saha and Tewari [13] even show that under
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certain conditions, the convergence rate of cyclic coordinate descent is at least as fast as that of
gradient descent.

In this paper, we focus on high-dimensional optimization problems where the solution is sparse.
We were motivated to investigate coordinate descent algorithms by the intuition that they could
leverage the sparsity structure of the solution by judiciously choosing the coordinate to be updated.
In particular, we show that a greedy selection of the coordinates succeeds in weakening the costly
dependence on problem size with the caveat that we could perform the greedy step efficiently. The
naive greedy updates would however take time that scales at least linearly in the problem dimension
O(p) since it has to compute the coordinate with the maximum gradient. We thus come to the other
main question of this paper:Can the greedy steps in a greedy coordinate scheme be performed
efficiently?Surprisingly, we are able to answer in the affirmative, and weshow this by a reduction
to nearest neighbor search. This allows us to leverage the significant amount of recent research
on sublinearmethods for nearest neighbor search, provided it suffices tohave approximate nearest
neighbors. The upshot of our results is a suite of methods that depend weakly on the problem size
or number of parameters. We also investigate several notions of approximate greedy coordinate
descent for which we are able to derive similar rates. For thecomposite objective case, where the
objective is the sum of a smooth component and a separable non-smooth component, we propose
and analyze a “look-ahead” variant of greedy coordinate descent.

The development in this paper thus raisesa new line of researchon connections between computa-
tional geometry and first-order optimization methods. For instance, given our results, it would be of
interest to develop approximate nearest neighbor methods tuned to greedy coordinate descent. As an
instance of such a connection, we show that if the covariatesunderlying the optimization objective
satisfy a mutual incoherence condition, then a very simple nearest neighbor data structure suffices to
yield a good approximation. Finally, we provide simulations that not only show that greedy coordi-
nate descent with approximate nearest neighbor search performs overwhelmingly better than vanilla
greedy coordinate descent, but also that it starts outperforming cyclic descent when the problem size
increases: the larger the number of variables, the greater the relative improvement in performance.
The results of this paper naturally lead to several open problems: can effective computational ge-
ometric data structures be tailored towards greedy coordinate descent? Can these be adapted to
(a) other first-order methods, perhaps based on sampling, and (b) different regularized variants that
uncover structured sparsity. We hope this paper fosters further research and cross-fertilization of
ideas in computational geometry and optimization.

2 Setup and Notation
We start our treatment with differentiable objective functions, and then extend this to encompass
non-differentiable functions which arise as the sum of a smooth component and a separable non-
smooth component. LetL : R

p → R be a convex differentiable function. We do not assume that
the function is strongly convex: indeed most optimizationsarising out of high-dimensional machine
learning problems are convex but typically not strongly so.Our analysis requires that the function
satisfies the following coordinate-wise Lipschitz condition:
AssumptionA1. The loss functionL satisfies

‖∇L(w)−∇L(v)‖∞ ≤ κ1 · ‖w − v‖1, for someκ1 > 0.
We note that this condition is weaker than the standard Lipschitz conditions on the gradients. In par-
ticular, we say thatL hasκ2-Lipschitz continuous gradient w.r.t.‖ ·‖2 when‖∇L(w)−∇L(v)‖2 ≤
κ2 · ‖w − v‖2, Note thatκ1 ≤ κ2; indeedκ1 could be up top times smaller thanκ2. E.g. when
L(w) = 1/2w>Aw with a positive semi-definite matrixA , we haveκ1 = maxj Aj,j , the maximum
entry on the diagonal, whileκ2 = maxj λj(A), the maxium eigenvalue ofA. It is thus possible for
κ2 to be much larger thanκ1: for instanceκ2 = pκ1 whenA is the all1’s matrix.

We are interested in the general optimization problem,
min
w∈Rp

L(w). (1)

We will focus on the case where the solution is bounded and sparse. We thus assume:
AssumptionA2. The solutionw∗ of (1) satisfies:‖w∗‖∞ ≤ B for some constantB <∞ indepen-
dent ofp, and that‖w∗‖0 = s, i.e., solution iss-sparse.

2.1 Coordinate Descent
Coordinate descent solves (1) iteratively by optimizing over a single coordinate while holding others
fixed. Typically, the choice of the coordinate to be updated is cyclic. One caveat with this scheme
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however is that it could be expensive to compute the one-dimensional optimum for general functions
L. Moreover whenL is not smooth, such coordinatewise descent is not guaranteed to converge to
the global optimum in general, unless the non-differentiable component is separable [16]. A line
of recent work [16, 17, 14] has thus focused on a “gradient descent” version of coordinate descent,
that iteratively uses a local quadratic upper boundLU of the functionL. For the case where the
optimization function is the sum of a smooth function and the`1 regularizer, this variant is also
called Iterative Soft Thresholding [7]. A template for suchcoordinate gradient descent is the set of
iterates:wt = wt−1 − 1

κ1

∇jL(wt)ej . Friedman et al. [8], Genkin et al. [10], Wu and Lange [19]
and others have shown considerable empirical success in applying these to large problems.

2.2 Greedy Coordinate Descent
In this section, we focus on a simple deterministic variant of coordinate descent that picks the coor-
dinate that attains the coordinatewise maximum of the gradient vector:
Algorithm 1 Greedy Coordinate Gradient Descent

Initialize: Set the initial value ofw0.
for t = 1, . . . do

j = argmaxl |∇lL(wt)|.
wt = wt−1 − 1

κ1

∇jL(wt)ej .
end for

Lemma 1. Suppose the convex differentiable functionL satisfies Assumptions A1 and A2. Then
the iterates of Algorithm 1 satisfy:

L(wt)− L(w∗) ≤ κ1

2

‖w0 − w∗‖21
t

.

Lettingc(p) denote the time required to solve each greedy stepmaxl |∇lL(wt)|, the greedy version
of coordinate descent achieves the rateL(wt) − L(w∗) = O(s2 c(p)/T ) at timeT . Note that the
dependence on the problem sizep is restricted to the greedy step: if we could solve this maximization
more efficiently, then we have a powerful “active-set” method. While brute force maximization for
the greedy step would takeO(p) time, if it can be done inO(1) time, then at timeT , the iteratew
satisfiesL(w) − L(w∗) = O(s2/T ) which would beindependent of the problem size.

3 Nearest Neighbor and Fast Greedy
In this section, we examine whether the greedy step can be performed insublinear time. We focus in
particular on optimization problems arising from statistical learning problems where the optimiza-
tion objective can be written as

L(w) =

n
∑

i=1

`(wT xi, yi), (2)

for some loss functioǹ : R×R 7→ R, and a set of observations{(xi, yi)}ni=1, with xi ∈ R
p, yi ∈ R.

Note that such an optimization objective arises in most statistical learning problems. For instance,
consider linear regression, with responsey = 〈w, x〉 + ε, whereε ∼ N (0, 1). Then given observa-
tions{(xi, yi)}ni=1, the maximum likelihood problem has the form of (2), with`(u, v) = (u− v)2.

Letting g(u, v) = ∇u`(u, v) denote the gradient of the sample loss with respect to its first ar-
gument, andri(w) = g(wT xi, yi), the gradient of the objective (2) may be written as∇jL(w) =
∑n

i=1 xi
j ri(w) = 〈xj , r(w)〉 . It then follows that the greedy coordinate descent step in Algorithm 1

reduces to the following simple problem:

max
j
| 〈xj , r(w)〉 |. (3)

We can now see why the greedy step (3) can be performed efficiently: it can be cast as a nearness
problem. Indeed, assume that the data is standardized so that ‖xj‖ = 1 for j = 1, . . . , p. Let
x̄ = {x1, . . . , xp,−x1, . . . ,−xp} include the negated data vectors. Then, it can be seen that

argmax
j∈[p]
| 〈xj , r〉 | ≡ arg min

j∈[2p]
‖x̄j − r‖22. (4)

Thus, the greedy step amounts to a nearest neighbor problem of computing the nearest point tor in
the set{x̄j}2p

j=1. While this would takeO(pn) time via brute force, the hope is to leverage the state of
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the art in nearest neighbor search [11] to perform this greedy selection in sublinear time. Regarding
the time taken to compute the gradientr(w), note that after any coordinate descent update, we can
updateri in O(1) time if we cache the values{

〈

w, xi
〉

}, so thatr can be updated inO(n) time.

The reduction to nearest neighbor search however comes witha caveat: nearest neighbor search vari-
ants that run in sublinear time only computeapproximate nearest neighbors. This in turn amounts
to performing the greedy step approximately. In the next fewsubsections, we investigate the conse-
quences of such approximations.

3.1 Multiplicative Greedy
We first consider a variant where the greedy step is performedunder a multiplicative approximation,
where we choose a coordinatejt such that, for somec ∈ (0, 1],

|[∇L(wt)]jt
| ≥ c · ‖∇L(wt)‖∞ . (5)

As the following lemma shows, the approximate greedy steps have little qualitative effect (proof in
Supplementary Material).

Lemma 2. The greedy coordinate descent iterates, with the greedy step computed as in (5), satisfy:

L(wt)− L(w?) ≤ 1

c
· κ1‖w0 − w?‖21

t
.

The price for the approximate greedy updates is thus just a constant factor1/c ≥ 1 reduction in the
convergence rate.

Note that the equivalence of (4) need not hold under multiplicative approximations. That is, approx-
imate nearest neighbor techniques that obtain anearest neighborupto a multiplicative factor, do not
guarantee a multiplicative approximation for the inner product in the greedy step in turn. As the next
lemma shows this still achieves the required qualitative rate.

Lemma 3. Suppose the greedy step is performed as in (5) with a multiplicative approximation factor
of (1 + εnn) (due to approximate nearest neighbor search for instance).Then, at any iterationt, the
greedy coordinate descent iterates satisfy either of the following two conditions, for anyε > 0:

(a) ∇L(wt) is small (i.e. the iterate is near-stationary):‖∇L(wt)‖∞ ≤ ε+εnn
(1+εnn)

‖r(wt)‖2, or

(b) L(wt)− L(w?) ≤ 1+εnn
εnn(1/ε)+1 ·

κ1‖w0−w?‖2

1

t .

3.2 Additive Greedy
Another natural variant is the following additive approximate greedy coordinate descent, where we
choose the coordinatejt such that

|[∇L(wt)]jt
| ≥ ‖∇L(wt)‖∞ − εadd , (6)

for someεadd. As the lemma below shows, the approximate greedy steps havelittle qualitative effect.

Lemma 4. The greedy coordinate descent iterates, with the greedy step computed as in (6), satisfy:

L(wt)− L(w?) ≤ κ1‖w0 − w?‖21
t

+ εadd .

Note that we need obtain an additive approximation in the greedy step only upto the order of the
final precision desired of the optimization problem. In particular, for statistical estimation problems
the desired optimization accuracy need not be lower than thestatisical precision, which is typically
of the order ofs log(p)/

√
n. Indeed, given the connections elucidated above to greedy coordinate

descent, it is an interesting future problem to develop approximate nearest neighbor methods with
additive approximations.

4 Tailored Nearest Neighbor Data Structures
In this section, we show that one could develop approximate nearest neighbor methods tailored to
the statistical estimation setting.
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4.1 Quadtree under Mutual Incoherence
We will show that just a vanilla quadtree yields a good approximation when the covariates satisfy
a technical statistical condition of mutual coherence. A quadtree is a tree data structure which
partitions the space. Each internal nodeu in the quadtree has a representative point, denoted by
rep(u), and a list of children nodes, denoted by children(u), which partition the space underu. For
further details, we refer to Har-Peled [11]. The spreadΦ(D) of the set of pointsD is defined as
Φ(D) =

maxi6=j ‖xi−xj‖
mini6=j ‖xi−xj‖

, and is the ratio between the diameter ofD and the closest pair distance of
points inD. Following Har-Peled [11], we can show that the depth of the quadtree by the standard
construction is bounded byO(log Φ(D) + log n) and can be constructed in timeO(p log(nΦ(D))).

Here, we show that a standard nearest neighbor algorithm using quadtrees Har-Peled [11], Arya
and Mount [2], rewritten below to allow for arbitrary approximation factor(1 + εnn), suffices under
appropriate statistical conditions.

Input: quadtreeT , approx. factor(1 + εnn), queryr.
Initialize: i = 0; A0 = {root(T )}.
while Ai 6= {} do

for each nodev ∈ Ai do
uann = nn(r, {uann} ∪ rep(children(v))).
for each nodeu ∈ children(v) do

if ‖r − rep(u)‖ − diam(u) < ‖r − uann‖/(1 + εnn), thenAi+1 = Ai+1 ∪ {u}.
end for

end for
i← i + 1

end while
Returnuann.

Lemma 5. Let (1 + εnn) be the approximation factor for the approximate nearest neighbor search.
Let nn(r) be the true nearest neighbor tor. Then the outputuann of Algorithm 4.1 satisfies

‖r − uann‖2 ≤ (1 + εnn)‖r − nn(r)‖2.

Proof. Let u be the last node in the quadtree containingnn(r) thrown away by the algorithm. Then,

‖r − nn(r)‖ ≥ ‖r − rep(u)‖ − ‖rep(u)− nn(r)‖ ≥ ‖r − rep(u)‖ − diam(u) ≥ ‖r − uann‖
1 + εnn

,

whence the statement in the theorem follows.

The next lemma shows the time taken by the algorithm. Again, we rewrite the analysis of Har-Peled
[11], Arya and Mount [2] to allow for arbitrary approximation factors.

Lemma 6. The time taken by algorithm 4.1 to compute a(1 + εnn)-nearest neighbor tor from

D = {x1, . . . , xp} is O
(

log(Φ(D)) +
(

1 + 1
εnn

)n)

.

As the next lemma shows, the spread is controlled when the mutual coherence of the covariates is
small. In particular, defineµ(D) = maxi6=j 〈xi, xj〉. We require that the mutual coherenceµ(D) be
small and in particular be bounded away from 1. Such a condition is typically imposed as sufficient
condition for sparse parameter recovery [5, 15]. Intriguingly, this very condition allows us to provide
guarantees for optimization. This thus adds to the burgeoning set of recent papers that are finding
that conditions imposed for strong statistical guaranteesare useful in turn for obtaining faster rates
in the corresponding optimization problems.

Under this condition, the closest pair distance can be bounded as,‖xi − xj‖2 = 2 − 2 〈xi, xj〉 ≥
2(1 − µ), which in turn allows us to control the spread:Φ(D) ≤ 2√

2(1−µ)
=

√

2
1−µ , which thus

yields the corollary:

Lemma 7. Suppose the mutual coherence of the covariatesD = {x1, . . . , xp} is bounded so that
µ(D) < 1. Then the time taken by algorithm 4.1 to compute a(1 + εnn)-nearest neighbor tor from

is O
(

log
(

1
1−µ

)

+
(

1 + 1
εnn

)n)

.
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While this data structure is quite useful in most settings, it requires that the mutual coherence of the
covariates be bounded, and further the time required is exponential (but weakly so) in the number of
samples. However, following [1, 11], we can use random projections to bring the runtime down to
O(pε−2

nn ), and the preprocessing time toO(n p log p ε−2
nn ).

5 Overall Time Complexity
In the previous sections, we saw that the greedy step for generalized linear models is equivalent to
nearest neighbor search: given anyqueryr, we want to find its nearest neighbor among thep points
D = {x1, . . . , xp} each inR

n. Standard data structures include quadtrees which spatially partition
the data, and KD trees which partition the data according to their point mass.

Approximate nearest neighbor search [11] estimates anapproximatenearest neighbor, upto a multi-
plicative approximation sayεnn: so that if the nearest neighbor tor is xj and the algorithm outputs
xk, then it guarantees that‖xk − r‖2 ≤ (1 + εnn)‖xj − r‖. Any such nearest neighbor algorithm,
given a queryr, incurs time depends on the number of pointsp (typically sublinearly), their dimen-
sionn, and the approximation factor(1 + εnn). Let us denote this cost byCt(n, p, εnn).

From our analysis of multiplicative approximate greedy (see Lemma 3 in Supplementary Material),
given a multiplicative approximation factor(1 + εnn) in the approximate nearest neighbor method,
the approximate greedy coordinate descent has the convergence rate: K

εnn
· κ1s2

t for some constant
K > 0. Thus, the number of iterations required to obtain a solution with accuracyεopt is given by,

Tgreedy = Kκ1s2

εnn εopt
. Since each of these greedy steps have costCt(n, p, εnn), the overall costCG is

given as:CG = Ct(n, p, εnn) · Kκ1s2

εnn εopt
. Of course these approximate nearest neighbor methods also

require some pre-processing timeC−(p, n, εnn), but this can typically be amortized across multiple
runs of the optimization problem with the same covariates (for a regularization path for instance). It
could also be reused across different models, and for other forms of data analysis. Examples include:

(a). Locality Sensitive Hashing [12] uses random shifting windows and random projections to hash
the data points such that distant points do not collide with high probability. Letρ = 1/(1 + εnn) <
1. Then here,C−(p, n, εnn) = O

(

n p1+ρ ε−2
nn

)

while Ct(n, p, εnn) = O(npρ). Thus, for sparse
solutionss = o(

√
p), the runtime cost scales asCG = O

(

n pρ ε−1
nn ε−1

opt

)

.

(b). Ailon and Chazelle [1] use multiple lookup tables after random projections to obtain a nearest
neighbor data structure with costs andC−(p, n, εnn) = O(pε−2

nn ), andCt(p, n, εnn) = O(n log n +

ε−3
nn log2 p). Thus the runtime cost here scales asCG = O

(

n log n+ε−3

nn log2 p
εnn εopt

)

.

(c). In Section 4, we show that when the covariates aremutually incoherent, then we can use a
simple quadtree, and random Gaussian projections to obtainC−(p, n, εnn) = O(n p log p ε−2

nn ) and

Ct(p, n, εnn) = O(pε−2

nn ). Thus the runtime cost here scales asCG = O
(

pε−2

nn ε−1
optε

−1
nn

)

.

6 Non-Smooth Objectives
Now we consider the more general composite objective case where the objective is the sum of a
differentiable, and a separable non-differentiable function:

min
w∈Rp

L(w) +R(w), (7)

where we assumeL is convex and differentiable and satisfies the Lipshitz condition in Assump-
tion A1, andR(w) =

∑

j Rj(wj) whereRj : R 7→ R could be non-differentiable. Again, we
assume that Assumption 2 holds. The natural counterpart of the greedy algorithms in the previ-
ous sections would be to pick the coordinate with the maximumabsolute value of thesubgradient.
However, we did not observe good performance for this variant either theoretically or in simula-
tions. Thus, we now study alookaheadvariant that picks the coordinate with the maximum absolute
value of the sum of the gradient of the smooth component and the subgradient of the non-smooth
component at the next iterate.

Denote[∇L(wt)]j by Gt
j , and compute thenext iteratewt+1

j asarg minw gt
j(w − wt

j) + κ1

2 (w −
wt

j)
2 + Rj(w). Let ρj = ∂Rj(w

t+1
j ) denote the subgradient at this next iterate, and let

ηt
j = (−1/κ1)(g

t
j + ρj) = wt+1

j − wt
j . (8)
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Then pick the coordinate asargmaxj∈[p]

∣

∣ηt
j

∣

∣ . The next lemma states that this variant performs
qualitatively similar to its smooth counterpart in Algorithm 1.

Algorithm 2 A Greedy Coordinate Descent Algorithm for Composite Objectives

1: Initialize: w0 ← 0

2: for t = 1, 2, 3, . . . do
3: jt ← argmaxj∈[p]

∣

∣ηt
j

∣

∣ (with ηt
j as defined in (8))

4: wt+1 ← wt + ηt
jt
ejt

,
5: end for

Lemma 8. The greedy coordinate descent iterates of Algorithm 2 satisfy:

L(wt) +R(wt)− L(w∗)−R(w∗) ≤ κ1

2

‖w0 − w∗‖21
t

.

The greedy step for composite objectives in Algorithm 2 at any iterationt entails solving the max-
imization problem:maxj |ηt

j |, whereηj is as defined in (8). Let us focus on the case where the
regularizerR is the `1 norm, so thatR(w) = λ

∑p
j=1 |wj |, for someλ > 0. Using the no-

tation from above, we thus have the following objective:minw
1
n

∑n
i=1 `(wT xi, yi) + λ‖w‖1.

Thenηj from (8) can be written in this case as:ηj = Sλ/κ1
(wt

j − 〈xj , r(w
t)〉 /κ1) − wt

j , where
Sr(u) = sign(u)max{|u| − r, 0} is the soft-thresholding function. So the greedy step reduces
to maximizingmaxj |Sλ/κ1

(wt
j − 〈xj , r(w

t)〉 /κ1) − wt
j over j. The next lemma shows that by

focusing the maximization on the inner products〈xj , r(w)〉 we lose at most a factor ofλ/κ1:

Lemma 9. | 〈xj , r(w
t)〉 /κ1| − |ηt

j | | ≤ λ/κ1.

The Lemma in turn implies that ifj′ ∈ argmaxj∈[p] | 〈xj , r(w
t)〉 /κ1|, then

|ηt
j′ | ≤ |

〈

xj′ , r(w
t)

〉

/κ1|+ λ/κ1 = max
j∈[p]
|
〈

xj , r(w
t)

〉

/κ1|+ λ/κ1 ≤ max
j∈[p]
|ηt

j |+ 2λ/κ1.

Typical setting ofλ for statistical estimation is at the level of the statistical precision of the problem
(and indeed of the order ofO(1/

√
n) even for low-dimensional problems). Thus, as in the previous

section, we estimate the coordinatej that maximizes the inner product| 〈xj , r(w)〉 |, which in turn
can be approximated using approximate nearest neighbor search. So, even for composite objectives,
we can reduce the greedy step to performing a nearest neighbor search. Note however that this can be
performed sublinearly only at the cost of recovering anapproximatenearest neighbor. Note that this
in turn entails that we would be performing each greedy step in coordinate descent approximately.

7 Experimental Results
We conducted speed trials in MATLAB comparing3 algorithms: greedy (Algorithm 2), greedy.LSH
(coordinate to update chosen by LSH) and cyclic on`1-regularized problems:

∑n
i=1 `(wT xi, yi) +

λ‖w‖1 wherè (y, t) was either(y−t)2/2 (squared loss) orlog(1+exp(−ty)) (logistic loss) and we
choseλ = 0.01. All these algorithms, after selecting a coordinate to update, minimize the function
fully along that coordinate. For squared loss, this minimumcan be obtained in closed form while
for logistic we performed6 steps of the (1-dimensional) Newton method. The data was generated
as follows: a matrixX ∈ R

n,p was chosen with i.i.d. standard normal entries and the each column
was normalized tò2-norm1. Then, we setY = Xwtr for a k-sparse vectorwtr ∈ R

p (with non-
zero entries placed randomly). The labelsyi were chosen to be eitherYi or sign(Yi) depending on
whether the squared or logistic loss was being optimized. The rows ofX became the instancesxi.

Figure 1 shows the objective function value versus CPU time plots for the logistic loss withp =
104, 105, 106. As p grows we keepk = 100 constant and scalen as b4k log(p)c. In this case,
greedy.LSH not only speeds up naive greedy significantly butalso beats cyclic coordinate descent.
In fact, cyclic appears to be stalled especially forp = 105, 106. The reason for this is that cyclic,
in the time allotted, was only able to complete52%, 40% and27% of a full sweep through the
p coordinates forp = 104, 105 and106 respectively. Furthermore, cyclic had generated far less
sparse final iterates than greedy.LSH in all3 cases. Figure 2 shows the same plots but for squared
loss. Here, since each coordinate minimization is closed form and thus very quick, greedy.LSH
has a harder time competing with it. Greedy.LSH is still way faster than naive greedy and start
to beat cyclic atp = 106. The trend of greedy.LSH catching up with cyclic asp grows is clearly
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Figure 2:(best viewed in color) Objective vs. CPU time plots for squared loss usingp = 104, 105, 106

demonstrated by these plots. In contrast with the logistic case, here cyclic as able to finish several
full sweeps through thep coordinate, namely13.4, 10.5 and7.9 sweeps forp = 104, 105 and106

respectively. even though cyclic got lower objective values, it was at the expense of sparsity: cylic’s
final iterates were usually10 times denser than those of greedy.LSH.

Figure 3 shows the plots for the objective versus number of coordinate descent steps. We clearly see
that cyclic is wasteful in terms of number of coordinate updates and greedy achieves much greater
descent in the objective per coordinate update. Moreover, greedy.LSH is much closer to greedy in
its per coordinate-update performance (to the extent that it is hard to tell them apart in some of these
plots). This plot thus suggests the improvements possible with better nearest-neighbor implementa-
tions that perform the greedy step even faster than our non-optimized greedy.LSH implementation.

Cyclic coordinate descent is one of the most competitive methods for large scalè1-regularized
problems [9]. We are able to outperform it for large problemsusing a homegrown implementation
that was not optimized for performance. This provides strong reasons to believe that with a careful
well-tuned LSH implementation, and indeed with better datastructures than LSH, nearest neighbor
based greedy methods should be able to scale to problems beyond the reach of current methods.
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Supplementary Material

8 Proof of Lemma 1

The proof follows along the same lines of the either of the twomore general Lemmas proved below:
Lemma 2 which considers the multiplicative approximation case, and Lemma 8 which considers the
regularized case.

9 Proof of Lemma 2

L(wt+1)− L(wt) = − 1

κ1
|[∇L(wt)]jt

|2

≤ − c

κ1
‖∇L(wt)‖2∞

≤ − c

κ1‖w0 − w?‖21
(L(wt)− L(w?))2 , (9)

where we used

L(wt)− L(w?) ≤
〈

∇L(wt), wt − w?
〉

≤ ‖∇L(wt)‖∞ · ‖wt − w?‖1.
The recursion (9) then gives us the result.

10 Proof of Lemma 8

Lemma 10. The greedy coordinate descent iterates of Algorithm 2 satisfy:

L(wt) +R(wt)− L(w∗)−R(w∗) ≤ κ1

2

‖w0 − w∗‖21
t

.

Proof. As shorthand, we usew′, w, j for wt+1, wt, jt. Note that|ηj | = ‖η‖∞ by definition ofjt.
Now,ηj satisfiesgj + κ1ηj + ρj = 0, for someρ ∈ ∂R(w′). So,

R(w′)−R(w) = Rj(w
′
j)−Rj(wj)

≤ 〈ρj , ηj〉 = −〈gj , ηj〉 − κ1η
2
j .

Using this, we have

L(w′) + R(w′) ≤ L(w) + gjηj +
κ1

2
η2

j + R(w′)

≤ L(w) + R(w)− κ1

2
η2

j

= L(w) + R(w)− κ1

2
‖η‖2∞ . (10)

Now letg′ = ∇L(w′) to get,

L(w′)− L(w) ≤ 〈g′, w′ − w〉
= 〈g′ − g, w′ − w〉 + 〈g, w′ − w〉
≤ η2

j κ1 + 〈g, w′ − w〉 ,

where the last inequality is because‖g′ − g‖ ≤ κ1‖w′ − w‖ and‖w′ − w‖ = |ηj |. Combining this
with the fact thatL(w) − L(w?) ≤ 〈g, w − w?〉 gives,

L(w′)− L(w?) ≤ η2
j κ1 + 〈g, w′ − w?〉 .

10



Addding to this the inequality,R(w′)−R(w) ≤ 〈ρ, w′ − w?〉 gives

ε′ := L(w′) + R(w′)− L(w?)−R(w?)

≤ η2
j κ1 + 〈ρ + g, w′ − w?〉

≤ η2
j κ1 + ‖ρ + g‖∞D

= ‖η‖2∞κ1 + κ1‖η‖∞D ,

whereD := ‖w0 − w?‖1. Assuming thatηj ≤ D (note thatD = O(
√

s) is at least lower-bounded
by a constant, and the objective can reduce by such a large magnitudeηj > D atmost finite number
of times), we get the key inequality

ε′ ≤ 2κ1‖η‖∞D .

Plugging this back in (10), we get the recurrence

εt+1 ≤ εt −
(εt+1)

2

8κ1D2
.

This yieldsεt ≤ O(κ1D
2/t) as required.

11 Proof of Lemma 3

Proof. Denoter̄ = r/‖r‖2. Supposēxk is a (1 + εnn) multiplicative factor approximation to the
greedy stepmaxj 〈x̄, r̄〉. Then

‖x̄k − r̄‖22 ≤ (1 + εnn)‖x̄j − r̄‖22,

so that〈x̄j , r̄〉 ≤ εnn
(1+εnn)

+ 1
(1+εnn)

〈x̄k, r̄〉 .
Thus if 〈x̄k, r̄〉 > ε, then

〈x̄j , r̄〉 ≤
εnn

(1 + εnn)

〈x̄k, r̄〉

ε
+

1

(1 + εnn)
〈x̄k, r̄〉

=
εnn(1/ε) + 1

(1 + εnn)
〈x̄k, r̄〉 ,

which completes the proof.
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