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Abstract. Statistical learning theory under independent and identically distributed
(iid) sampling and online learning theory for worst case individual sequences are two
of the best developed branches of learning theory. Statistical learning under general non-
iid stochastic processes is less mature. We provide two natural notions of learnability of
a function class under a general stochastic process. We show that both notions are in
fact equivalent to online learnability. Our results hold for both binary classification and
regression.
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Media Summary

This article is a contribution to “Learning Theory”, which has largely developed within the Com-
puter Science community, but has much potential for cross-fertilisation with Theoretical Statistics.
The basic framework is as follows. At successive time points we observe a signal, and wish to
predict an associated outcome, using one from a given class of possible functions. Performance is
measured by a specified loss, measuring the discrepancy between prediction and outcome. Learning
theory aims to characterise conditions that allow us to make provably good predictions by analysing
past data to determine a suitable prediction function. Two approaches have emerged, largely in
isolation from each other. In the first, (iid) statistical learning theory, we assume all past and fu-
ture signal-outcome pairs have the same probabilistic structure, independently. The second, online
learning theory, makes no probabilistic assumptions, and aims to track the best predictor from
those available, no matter what data are observed. In this work we introduce two natural ways of
merging these approaches, assuming arbitrary probabilistic dependence across time. We show that
both approaches are equivalent to online learnability. Our results hold for binary classification as
well as regression.



1. Introduction

One of the most beautiful and best developed branches of machine learning theory is classical
statistical learning theory (see the article by von Luxburg and Schölkopf (2011) for a non-technical
overview and for more extensive references). However, it deals primarily with independent and
identically distributed (iid) sampling of examples. There have been several attempts to deal with
both dependence and non-stationarity: we discuss some of these extensions in Section 1.1. However
in general the non-iid case is not as well developed as the classical iid case.

Another well developed branch of learning theory that has its own share of elegant mathematical
ideas is online learning theory (the book by Cesa-Bianchi and Lugosi (2006) is an excellent if
somewhat dated introduction). With roots in game theory and the area of information theory
known as universal prediction of individual sequences, online learning theory, unlike statistical
learning theory, does not use probabilistic foundations. It is therefore quite surprising that there
are uncanny parallels between iid learning theory and online learning theory. The reader is invited
to compare the statements of the fundamental theorems in these two areas (restated in this paper
as Theorem 1 and Theorem 2).

Our main goal in this paper is to study learnability of a function class in the statistical setting
under extremely general assumptions that do not require independence or stationarity. We first
summarize the key theorems of iid and online learning in Section 3 and Section 4. Although this
material is not new, we feel that the broader data science community might not be very familiar
with results in online learning since it is a younger field compared to statistical learning theory.
Also, presenting both iid learning and online learning results in a unified way allows us to draw
parallels between the two theories and to motivate the need for novel theories that connect these
two.

We propose a definition of learnability under general stochastic processes in Section 5. We show
that learning under this general definition is equivalent to online learnability (Theorem 6). We give
a prequential version of our main definition in Section 6. In the prequential version, as in online
learning, the function output by the learning algorithm at any given time cannot peek into the
future. We show that learnability under the prequential version of our general learning setting is
also equivalent to online learnability (Theorem 9). We focus on the problem of binary classification
for simplicity. But we also provide extensions of our equivalence results to the problem of real
valued prediction (i.e., regression) in Section 7 (see Theorem 13 and Theorem 14).

1.1. Related Work. The iid assumption of statistical learning theory has been relaxed and re-
placed with various types of mixing assumptions, especially β-mixing (Mohri & Rostamizadeh, 2009;
Vidyasagar, 2002). However, in this line of investigation, the stationary assumption is kept and the
theory resembles the iid theory to a large extent since mixing implies approximate independence
of random variables that are sufficiently separated in time. Mixing assumptions can be shown to
hold for some interesting classes of processes, including some Markov and hidden Markov processes.
Markov sampling has also been considered on its own as a generalization of iid sampling (Aldous
& Vazirani, 1995; Gamarnik, 2003; Smale & Zhou, 2009).

There has been work on performance guarantees of specific algorithms like boosting (Lozano et
al., 2006) and SVMs (Steinwart & Anghel, 2009; Steinwart et al., 2009) under non-iid assumptions.
However, our focus here is not on any specific learning methodology. We would like to point out
that, while we focus on learnability of functions in a fixed class, the question of universal consistency
has also been studied in the context of general stochastic processes (Hanneke, 2017; Nobel, 1999).
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There are a handful of papers that focus, as we do, on conditional risk given a sequence of
observation drawn from a general non-iid stochastic processes (Pestov, 2010; Shalizi & Kontorovich,
2013; Zimin & Lampert, 2017). These papers focus on process decompositions: expressing a complex
stochastic process as a mixture of simpler stochastic processes. For example, de Finetti’s theorem
shows that exchangeable distributions are mixtures of iid distributions. The basic idea is to output
a function with small expected loss one step beyond the observed sample where the expectation
is also conditioned on the observed sample. While closely related, our performance measures are
cumulative in nature and are inspired more by regret analysis in online learning than PAC bounds
in computational learning theory.

The use of tools from online learning theory (e.g., sequential Rademacher complexity) for de-
veloping learning theory for dependent, non-stationary process was pioneered by Kuznetsov and
Mohri (Kuznetsov & Mohri, 2015, 2017). However, their focus is on time series forecasting appli-
cations and therefore their performance measures always involve the expected loss of the function
chosen by the learning algorithm some steps into the future (i.e., the part not seen by the learning
algorithm) of the process. In contrast, our definition uses conditional distributions of the stochastic
process on the realized path to define our performance measure. We also point out that there are
earlier papers that apply learning theory tools to understand time series prediction (Alquier &
Wintenberger, 2012; Meir, 2000; Modha & Masry, 1998). Some very recent work has also begun to
extend some of the work on time series to processes with spatial structure and dependence such as
those occurring on a network (Dagan et al., 2019).

A direct inspiration for this paper is the work of Skouras and Dawid (2000) on estimation in semi-
parametric statistical models under misspecification. They highlighted that, under misspecification,
M-estimators, including maximum likelihood estimators, may not converge to a deterministic limit
even asymptotically. Instead, the limit can be stochastic. This is because, under misspecification,
the “best” model can depend on the observed sequence of data. They gave examples showing that
this can happen for non-ergodic processes or processes with long range dependencies that do not
decay fast enough. Our work can be seen as a direct extension of their ideas to the learning theory
setting where the focus is not on parameter estimation but on loss minimization over potentially
massive function spaces.

2. Preliminaries

We consider a supervised learning setting where we want to learn a mapping from an input
space X to an output space Y. Two output spaces of interest to us in this paper are Y = {−1,+1}
(binary classification) and Y = [−1,+1] (regression). Instead of talking about the difficulty of
learning individual functions, we will define learnability for a class of functions that we will denote
by F ⊆ YX . Let Z = X × Y and let ℓ : Z × F → R+ be a loss function mapping an input-output
pair (x, y) and a function f to a non-negative loss. The set {1, . . . , n} will be denoted by [n] and
we use 1 [C] to denote an indicator function that is 1 if the condition C is true and 0 otherwise.
Two important loss functions are the 0-1 loss ℓ((x, y), f) = 1 [y ̸= f(x)] (in binary classification)
and the absolute loss ℓ((x, y), f) = |y − f(x)| (in regression).

We often denote an input-output pair (x, y) by z. When the input-output pair is random, we
will denote it by Z = (X,Y ), perhaps with additional time indices such as Zt = (Xt, Yt). We will
use the abbreviation Z1:t to denote the sequence Z1, . . . , Zt. A learning rule f̂n is a map from Zn

to F . We will abuse notation a bit and refer to the learning rule and the function output by the
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learning rule both by f̂n. An important learning rule is empirical risk minimization (ERM): given
a sequence z1:t of input-output pairs, it outputs the function,

(2.1) f̂ERM
n = argmin

f∈F

1

n

n∑
t=1

ℓ(zt, f).

Note that, for infinite function classes, the minimum may not be achieved. In that case, one
can work with functions achieving empirical risks that are arbitrarily close to the infimum of the
empirical risk over the class F .

Given a distribution P on Z, the loss function can be extended as follows:

ℓ(P, f) = Ez∼P [ℓ(z, f)] .

The function minimizing the expectation above is

f⋆
P = argmin

f∈F
ℓ(P, f).

The P -regret of a function f ∈ F is defined as

ρ(P, f) = ℓ(P, f)− inf
f ′∈F

ℓ(P, f ′)

= ℓ(P, f)− ℓ(P, f⋆
P ).

Note that the P -regret depends on the class F but we hide this dependence when the function class
is clear from the context.

3. Learnability in the IID Setting

In this section we review some basic results of statistical learning theory under iid sampling.
For more details the reader can consult standard texts in this area (Anthony & Bartlett, 1999;
Shalev-Shwartz & Ben-David, 2014; Vidyasagar, 2002). In the standard formulation of statistical
learning theory, we draw a sequence Z1:n of iid examples from a distribution P . That is, the joint
distribution of Z1:n is a product distribution P = P⊗P⊗. . .⊗P . We adopt the minimax framework
to define learnability of a class F of functions with respect to a loss function ℓ. Define the worst
case performance of a learning rule f̂n by

V iid
n (f̂n,F) = sup

P
E
[
ρ(P, f̂n)

]
and the minimax value by

V iid
n (F) = inf

f̂n

V iid
n (f̂n,F).

For the sake of conciseness, the notation above hides the fact that f̂n depends on the sequence Z1:n.
The expectation above is taken over the randomness in these samples.

Definition 1. We say that F is learnable in the iid learning setting if

lim sup
n→∞

V iid
n (F) = 0.

Furthermore, we say that F is learnable via a sequence f̂n of learning rules if

lim sup
n→∞

V iid
n (f̂n,F) = 0.
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One of the major achievements of statistical learning theory was the determination of necessary
and sufficient conditions for learnability of a class F . Learnability in both binary classification with
0-1 loss and regression with absolute loss is known to be equivalent to a probabilistic condition,
namely the uniform law of large numbers (ULLN) for the class F :

(3.1) lim sup
n→∞

sup
P

E

[
sup
f∈F

∣∣∣∣∣ 1n
n∑

t=1

f(Xt)− Pf

∣∣∣∣∣
]
= 0.

Here X1:n are drawn iid from P and Pf = EX∼P [f(X)]. Whether or not ULLN holds for a
class F depends on the finiteness of different combinatorial parameters, depending on whether we
are in the binary classification or regression setting. We will discuss the binary classification case
here, leaving the regression case to Section 7.

The VC dimension of F , denoted by VCdim(F), is the length n of the longest sequence x1:n

shattered by F . We say that a sequence x1:n is shattered by F if

∀ϵ1:n ∈ {±1}n,∃f ∈ F , s.t. ∀t ∈ [n], f(xt) = ϵt.

Finally, we recall the definition of the (expected) Rademacher complexity of a function class with
respect to a distribution P :

Rn(P,F) = E

[
sup
f∈F

1

n

n∑
t=1

ϵtf(Xt)

]
Note that the expectation above is with respect to both X1:n and ϵ1:t. The former are drawn
iid from P whereas the latter are iid {±1}-valued Rademacher (also called symmetric Bernoulli)
random variables. The worst case, over P , Rademacher complexity is denoted by

Rn(F) = sup
P

Rn(P,F).

Theorem 1. Consider binary classification with 0-1 loss in the iid setting. Then, the following are
equivalent:

(1) F is learnable.
(2) F is learnable via ERM.
(3) The ULLN condition (3.1) holds for F .
(4) VCdim(F) < ∞.
(5) lim supn→∞ Rn(F) = 0.

A similar result holds for regression with absolute loss with the VC dimension condition (i.e.,
condition number 4 above) replaced with a similar one involving its scale-sensitive counterpart,
called the fat shattering dimension (see Section 7.1 for details).

4. Learnability in the Online Setting

A second learning setting with a well-developed theory is the online learning setting, where
no probabilistic assumptions are placed on the data-generating process. Compared to statistical
learning theory under iid sampling, online learning theory is a younger field. The main combinatorial
parameter in this area, the Littlestone dimension, was defined by Littlestone (1988). It was given
the name “Littlestone dimension” by Ben-David et al. (2009), where it was also shown that it fully
characterizes learnability in the binary classification setting. Scale-sensitive analogues of Littlestone
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dimension for regression problems and the sequential version of Rademacher complexity were studied
in Rakhlin et al. (2015a, 2015b).

The online learning setting takes an individual sequence approach, where results are sought that
hold for every possible sequence z1:n ∈ Zn that might be encountered by the learning rule.

We consider a sequence f̂0:n−1 of learning rules, where f̂t takes in as input the sequence z1:t and
outputs a (possibly random) function in F . Define the expected (normalized) regret of f̂0:n−1 on
sequence z1:n:

ρonline(f̂0:n−1, z1:n) = E

[
1

n

(
n∑

t=1

ℓ(zt, f̂t−1)− inf
f∈F

n∑
t=1

ℓ(zt, f)

)]
.

This is similar in flavor to, but distinct from, the regret function ρ used in the iid setting. It
obeys the prequential principle (Dawid, 1984): performance of f̂t−1, which is learned using z1:t−1,
is judged using loss evaluated on zt with no overlap between data used for learning and for per-
formance evaluation. The expectation is needed because the learning rules f̂0:n−1 may use internal
randomization to achieve robustness to adversarial data. The regret nomenclature comes from the
fact that f̂0:n−1 cannot peek into the future to lower its loss but its cumulative performance is
compared with lowest possible loss, in hindsight, over the entire sequence z1:n. However, the com-
parator term has its own restriction: it uses the best fixed function f in hindsight, as opposed to
the best sequence of functions.

The object of interest is now the following minimax value:

V online
n (F) = inf

f̂0:n−1

V online(f̂0:n−1,F),

where
V online(f̂0:n−1,F) = sup

z1:n∈Zn

ρonline(f̂0:n−1, z1:n)

is the worst-case performance of the sequence f̂0:n−1 of learning rules, with f̂t taking in as input
the sequence z1:t and outputting a function in F . The infimum is then taken over all such learning
rule sequences.

Definition 2. We say that F is learnable in the online learning setting if

lim sup
n→∞

V online
n (F) = 0.

As in statistical learning, we have necessary and sufficient conditions for learnability that almost
mirror those in Theorem 1. The ULLN condition gets replaced by the Uniform Martingale Law of
Large Numbers (UMLLN). We say that UMLLN holds for F if

(4.1) lim sup
n→∞

sup
P,A

E

[
sup
f∈F

∣∣∣∣∣ 1n
n∑

t=1

(f(Xt)− E [f(Xt)|At−1])

∣∣∣∣∣
]
= 0.

The crucial difference between the UMLLN condition and the ULLN condition is that here the
supremum is taken over all joint distributions P of X1:n. In particular X1:n need not be iid. Also,
to obtain a martingale structure, we use an arbitrary filtration A = (At)

n−1
t=0 such that Xt is At-

measurable. It is easy to see that UMLLN is a stronger condition than ULLN: simply restrict P

to be a product distribution and let A be the natural filtration of Xt. Then the UMLLN condition
reduces to the ULLN condition.

The VC dimension of F is replaced by another combinatorial parameter, called the Littlestone
dimension of F , denoted by Ldim(F). Before we present the definition of Littestone dimension, we
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need some notation to handle complete binary trees labeled with examples drawn from the input
space X . We think of a complete binary tree x of depth n as defining a sequence xt, 1 ≤ t ≤ n,
of maps. The map xt gives us the examples sitting at level t of the tree. For example, x1 is the
root, x2(−1) is the left child of the root, x2(+1) is the right child of the root, and so on. In general
xt(ϵ1:t−1) is the node at level t that we reach by following the path given by the sign sequence
ϵ1:t−1 ∈ {±1}t−1, where −1 means “go left” and +1 means “go right”. The Littlestone dimension
of F is the depth n of the largest complete binary tree x shattered by F . We say that a complete
binary tree x is shattered by F if

∀ϵ1:n ∈ {±1}n,∃f ∈ F , s.t. ∀t ∈ [n], f(xt(ϵ1:t−1)) = ϵt.

Finally, Rademacher complexity gets replaced with its sequential analogue, called the sequential
Rademacher complexity. We first define the sequential Rademacher complexity of F given a tree x

of depth n as:

Rseq
n (x,F) = E

[
sup
f∈F

1

n

n∑
t=1

ϵtf(xt(ϵ1:t−1))

]
.

Note that the expectation above is only with respect to the Rademacher random variables ϵ1:t as
x is a fixed tree. Taking the worst case over all complete binary trees x of depth n gives us the
sequential Rademacher complexity of F :

Rseq
n (F) = sup

x
Rseq

n (x,F).

Theorem 2. Consider binary classification with 0-1 loss in the online (individual sequence) setting.
Then, the following are equivalent:

(1) F is learnable.
(2) The UMLLN condition (4.1) holds for F .
(3) Ldim(F) < ∞.
(4) lim supn→∞ Rseq

n (F) = 0.

As in the iid setting, a similar result holds for online regression with absolute loss, with the
Littlestone dimension condition (i.e., condition number 3 above) replaced by a similar one involving
its scale-sensitive counterpart, called the sequential fat shattering dimension (see Section 7.2 for
details).

It is well known that online learnability is harder than iid learnability. That is, VCdim(F) ≤
Ldim(F) for any F , and the gap in this inequality can be arbitrarily large. For example, the set of
threshold functions on R:

(4.2) Fthreshold = {x 7→ 1 [x > θ] : θ ∈ R}

has VCdim(Fthreshold) = 1 but Ldim(Fthreshold) = ∞.
A conspicuous difference between Theorem 1 and Theorem 2 is the absence of the condition

involving ERM. Indeed, ERM is not necessarily a good learning rule in the online setting: there
exist classes learnable in the online setting that are not learnable via ERM. Unfortunately, the
learning rules that learn a class F in the online setting are quite complex (Ben-David et al., 2009).
It is not known if there exists a rule as simple as ERM that will learn a class F whenever F is
online learnable. In any case, ERM does not play as central a role in online learning as it does in
learning in the iid setting.
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5. Learnability under General Stochastic Processes

In this section we move beyond the iid setting to cover all distributions, not just product distri-
butions. For a general stochastic process P, we still have an analogue of P at time t, namely

Pt(·; z1:t−1) = P(·|Z1:t−1 = z1:t−1).

This is the conditional distribution of Zt given Z1:t−1. Just like P , this is unknown to the learning
rule. However, unlike P in the iid case, Pt is data-dependent. Therefore the Pt-regret of a function
ρ(Pt, f) is data-dependent. We will often hide the dependence of Pt on past data Z1:t−1. We can
use the average of the Pt-regrets,

Rn(Z1:n, f) =
1

n

n∑
t=1

ρ(Pt, f)

as a performance measure. Note that the minimizer of this performance measure is data-dependent,
unlike in the iid case. As in the iid setting a learning rule f̂n is a map from Zn to F . To reduce
clutter in our notation, we will continue to hide the dependence of f̂n on the realized sample Z1:n.
The value of a learning rule f̂n is now defined as

V gen
n (f̂n,F) = sup

P
E
[
Rn(Z1:n, f̂n)− inf

f∈F
Rn(Z1:n, f)

]
= sup

P
E

[
1

n

n∑
t=1

ℓ(Pt, f̂n)− inf
f∈F

1

n

n∑
t=1

ℓ(Pt, f)

]
,

where the supremum is now taken over all joint distributions P over Z1:n. This leads to consideration
of the following minimax value to define learnability:

V gen
n (F) = inf

f̂n

V gen
n (f̂n,F).

Definition 3. We say that F is process learnable if

lim sup
n→∞

V gen
n (F) = 0.

Furthermore, we say that F is process learnable via a sequence f̂n of learning rules if

lim sup
n→∞

V gen
n (f̂n,F) = 0.

Note that in the iid case, when P is a product distribution with marginal P , we have Pt = P for
all t and therefore, for any f ,

1

n

n∑
t=1

ℓ(Pt, f) = ℓ(P, f).

We have the following result as an immediate consequence.

Lemma 3. Fix any loss function ℓ and function class F . For any learning rule f̂n, V gen(f̂n,F) ≥
V iid(f̂n,F). This also means that V gen

n (F) ≥ V iid
n (F).

The result above is not surprising: process learnability has to be harder than iid learnability.
However, somewhat surprisingly, we can show that process learnability is at least as hard as online
learnability.
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Theorem 4. Consider binary classification with 0-1 loss in the general stochastic process setting.
Suppose the class F is not online learnable, i.e., Ldim(F) = ∞. Then for any n ≥ 1, V gen

n (F) ≥
1/8. Therefore, the class F is not process learnable.

To complement the lower bound above, we will now give a performance guarantee for ERM in
the general stochastic process setting. Given a loss ℓ and function class F , define the loss class ℓ◦F
as

ℓ ◦ F = {z 7→ ℓ(z, f) : f ∈ F}.

We define the sequential Rademacher complexity of a loss class ℓ ◦ F as

Rseq
n (z, ℓ ◦ F) = E

[
sup
f∈F

1

n

n∑
t=1

ϵtℓ(zt(ϵ1:t−1), f)

]
,

Rseq
n (ℓ ◦ F) = sup

z
Rseq

n (z, ℓ ◦ F).

Note that the supremum here is over Z-valued trees that are labeled with input-output pairs. It is
easy for us to connect the complexity to the loss class to the complexity of the underlying function
class for a simple loss function like the 0-1 loss (see Appendix A for details.)

Theorem 5. Fix any loss function ℓ and function class F . Let f̂ERM denote the ERM learning
rule defined in (2.1). Then we have

V gen
n (F) ≤ V gen

n (f̂ERM
n ,F) ≤ 4Rseq

n (ℓ ◦ F).

Proof. The first inequality is true by definition of V gen
n (F). So we just have to prove the second

one.
Note, by definition of f̂ERM,

1

n

n∑
t=1

ℓ(Zt, f̂
ERM
n ) = inf

f∈F

1

n

n∑
t=1

ℓ(Zt, f).

Therefore, we have

Rn(Z1:n, f̂
ERM
n )− inf

f∈F
Rn(Z1:n, f)

=
1

n

n∑
t=1

ℓ(Pt, f̂
ERM
n )− inf

f∈F

1

n

n∑
t=1

ℓ(Pt, f)

=
1

n

n∑
t=1

ℓ(Pt, f̂
ERM
n )− 1

n

n∑
t=1

ℓ(Zt, f̂
ERM
n ) + inf

f∈F

1

n

n∑
t=1

ℓ(Zt, f)− inf
f∈F

1

n

n∑
t=1

ℓ(Pt, f)

≤ sup
f∈F

1

n

(
n∑

t=1

ℓ(Pt, f)− ℓ(Zt, f)

)
+ sup

f∈F

1

n

(
n∑

t=1

ℓ(Zt, f)− ℓ(Pt, f)

)
.(5.1)
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The justification for the last inequality is as follows. First, we know that f̂ERM
n ∈ F . Second, when

inff∈F
1
n

∑n
t=1 ℓ(Pt, f) is achieved, at f⋆ say, we have,

inf
f∈F

1

n

n∑
t=1

ℓ(Zt, f)− inf
f∈F

1

n

n∑
t=1

ℓ(Pt, f)

≤ 1

n

n∑
t=1

ℓ(Zt, f
⋆)− 1

n

n∑
t=1

ℓ(Pt, f
⋆)

≤ sup
f

1

n

(
n∑

t=1

ℓ(Zt, f)−
1

n

n∑
t=1

ℓ(Zt, f)

)
.

Taking expectations on both sides of (5.1) gives us

E
[
Rn(Z1:n, f̂

ERM
n )− inf

f∈F
Rn(Z1:n, f)

]
≤ E

[
sup
f∈F

1

n

(
n∑

t=1

ℓ(Pt, f)− ℓ(Zt, f)

)]

+ E

[
sup
f∈F

1

n

(
n∑

t=1

ℓ(Zt, f)− ℓ(Pt, f)

)]
≤ 4Rseq

n (ℓ ◦ F).

Note that the last inequality follows from Theorem 2 of Rakhlin et al. (2015b). Since the last
quantity above does not depend on P, we can take supremum over P on both sides to finish the
proof. □

We now have everything in place to be able to show the equivalence of process learnability and
online learnability. A similar result can also be shown in the regression case (see Section 7.3).

Theorem 6. Consider binary classification with 0-1 loss. Then all of the equivalent conditions in
Theorem 2 are also equivalent to:

• F is process learnable.

Proof. Theorem 4 established that learnability in the general stochastic process setting implies
online learnability. For the other direction, note that according to Theorem 5 we have

V gen
n (F) ≤ 4Rseq

n (ℓ ◦ F) ≤ 2Rseq
n (F) ,

where the second inequality follows from Theorem 16 in Appendix A. Taking lim sup of both sides
as n tends to infinity shows that online learnability implies process learnability. □

Although online learnability turns out to be equivalent to process learnability, there is an im-
portant difference between the two settings which has to do with the importance of ERM. In the
former ERM is not a good learning rule whereas in the latter a learnable class is learnable via ERM.
Therefore ERM continues to play a special role in the general stochastic process setting just like
the iid setting.

Also note that Theorem 6 is stated in terms of learnability which is an asymptotic concept.
However, the proof clearly shows that the rate of convergence is determined by the sequential
Rademacher complexity of F which scales as O

(√
Ldim(F)/n

)
(Alon et al., 2021)
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5.1. Examples. We end this section with some examples showing that our definition of process
learnability is natural, interesting and worth studying.

IID Sampling. Let us note once again that if P = P ⊗ P ⊗ . . .⊗ P is a product measure then
ℓ(Pt, f) is just ℓ(P, f) and therefore not random. In this special but important case, our definition
of learnability reduces to the standard definition of learnability under iid sampling.

Asymptotically Stationary Process. Suppose that P is not a product measure but the pro-
cess is asymptotically stationary in the sense that the random probability measure P̄n = 1

n

∑n
t=1 Pt

converges to some fixed deterministic P ⋆ in total variation ∥ · ∥TV as n → ∞. For a class F that is
learnable in the general stochastic process setting and for loss function bounded by 1, we have

E
[
ℓ(P ⋆, f̂ERM

n )
]
− inf

f∈F
ℓ(P ⋆, f)

= E
[
ℓ(P ⋆, f̂ERM

n )− ℓ(P ⋆, fP⋆)
]

≤ 2E

[
sup
f∈F

|ℓ(P ⋆, f)− ℓ(P̄n, f)|

]
+ E

[
ℓ(P̄n, f̂

ERM
n )− ℓ(P̄n, fP⋆)

]
≤ 2E

[
∥P ⋆ − P̄n∥TV

]
+ E

[
ℓ(P̄n, f̂

ERM
n )− inf

f∈F
ℓ(P̄n, f)

]
.

By the stationarity assumption, the first term on the right in the last inequality goes to zero.
Moreover, the rate of convergence can often be characterized in terms of the mixing coefficients of
the stochastic process (Vidyasagar, 2002). By learnability of F via ERM in the general stochastic
process setting, the last term goes to zero. Note that ℓ(P, f) is linear in P and therefore ℓ(P̄n, f) =
1
n

∑n
t=1 ℓ(Pt, f). So, under stationarity, our learnability condition implies that ERM does well when

its performance is measured under the (asymptotic) stationary distribution P ⋆.
Mixture of IID. Consider a simple mixture of product distributions

P = λP ⊗ P ⊗ . . .⊗ P + (1− λ)Q⊗Q⊗ . . .⊗Q

where, for simplicity, assume that P and Q have disjoint supports. Then with probability λ we
have ∀t > 1 Pt = P , and with probability 1− λ we have ∀t > 1 Pt = Q. Therefore, the minimizer
of

1

n

n∑
t=1

ℓ(Pt, f)(5.2)

is f⋆
P with probability λ and f⋆

Q with probability 1 − λ (assuming, again for simplicity, that the
minimizers f⋆

P , f
⋆
Q are unique). Here, unlike the iid and stationary examples, the “best” function,

even with infinite data, is not deterministic but is random depending on which mixture component
was selected. Still, if learnability in our general sense holds, then ERM will do well according to
the performance measure (5.2). Note that this example can be easily generalized to a mixture of
more than two iid processes. It can also be generalized, with additional technical conditions, to the
case when P ̸= Q. The main difference from the disjoint support case that we consider here will be
that with probability λ, Pt will converge to P (in a suitable sense) and to Q otherwise. Similarly,
the minimizer of (5.2) would not equal f⋆

P or f⋆
Q but it would converge (again, in some appropriate

11



sense determined by technical conditions) to one of them with probability λ and 1−λ respectively.

Random Level. Fix the squared loss ℓ(z, f) = (y − f(x))2 and consider a class F that is iid
learnable and closed under translations by a constant, i.e., if f ∈ F then f + c ∈ F for any constant
c ∈ R. Let X1:n be iid drawn from some distribution PX on X ⊆ Rd that has a density with respect
to Lebesgue measure on Rd. Let Yt = f⋆(Xt)+ξt+ξ0 for some f⋆ ∈ F and 1 ≤ t ≤ n where (ξt)

n
t=0

are iid standard normal. Note that the process Zt = (Xt, Yt), 1 ≤ t ≤ n is not iid. It is not even
mixing in any sense due to long range dependence in Yt caused by ξ0. Now ERM over F is given
by:

f̂ERM
n (Z1:n) = argmin

f∈F

1

n

n∑
t=1

(f⋆(Xt) + ξ0 + ξt − f(Xt))
2

= argmin
f∈F

1

n

n∑
t=1

(f⋆(Xt) + ξt − (f(Xt)− ξ0))
2

= ξ0 + argmin
g∈F−ξ0

1

n

n∑
t=1

(f⋆(Xt) + ξt − g(Xt))
2

= ξ0 + argmin
g∈F

1

n

n∑
t=1

(f⋆(Xt) + ξt − g(Xt))
2,

where the last equality holds because F−ξ0 = F and we have assumed that all empirical minimizers
are unique with probability 1. Thus, we have shown that

f̂ERM
n (Z1:n) = f̂ERM

n ((Xt, f
⋆(Xt) + ξt)

n
t=1) + ξ0.

Since F is iid learnable, f̂ERM
n ((Xt, f

⋆(Xt) + ξt)
n
t=1) converges (in L2(PX) sense) to the function

f⋆ which means the ERM on Z1:n converges to the random function f⋆ + ξ0.
Next we compute ℓ(Pt, f), as follows. Let P ′

t be the conditional distribution of Zt given X1:t−1

and ξ0:t−1. Then we have

ℓ(P ′
t , f) = E

[
(Yt − f(Xt))

2|X1:t−1, ξ0:t−1

]
= E

[
(f⋆(Xt) + ξt + ξ0 − f(Xt))

2|X1:t−1, ξ0:t−1

]
= E

[
(f⋆(Xt) + ξt + ξ0 − f(Xt))

2|ξ0
]

= 1 + ∥f⋆ − f + ξ0∥2L2(PX)

(with ξ0 regarded as fixed). Then ℓ(Pt, f) = E [ℓ(P ′
t )|Z1:t−1] = 1 + E

[
∥f⋆ − f + ξ0∥2L2(PX)|Z1:t−1

]
,

where now ξ0 (only) is regarded as random. It is easy to show that the distribution of ξ0, given
Z1:t−1, is normal with variance 1/t and mean

Ut−1 =

∑t−1
i=1(Yi − f∗(Xi))

t
.

Consequently

ℓ(Pt, f) = 1 +
1

t
+ ∥f⋆ − f + Ut−1∥2L2(PX) .

In particular,

inf
f∈F

1

n

n∑
t=1

ℓ(Pt, f) ≥ 1.

12



Now, with f̂ERM
n = f̂ERM(Z1:n), consider ℓ(Pt, f̂

ERM
n ). We have shown f∗ − f̂ERM

n → −ξ0 in
mean square. Also,

Ut−1 = ξ0 +
1

t

(
t−1∑
i=1

ξi − ξ0

)
→ ξ0

in mean square. So 1
n

∑n
t=1 ℓ(Pt, f̂

ERM
n ) → 1, the smallest possible value. That is, asymptotically

the minimiser of 1
T

∑T
t=1 ℓ(Pt, f) over F is f̂ERM

T (which converges, not to f⋆, but to the random
function f⋆ + ξ0).

6. A Prequential Definition of Learnability

The previous section generalized the statistical setting to include non-product distributions and
extended the definition of learnability to a more general setting. In this section we will generalize
the online learnability definition to obtain a prequential version of learnability, while still keeping
the level of generality of the previous section. As in the online setting, consider a sequence of
learning rules f̂0:n−1, where f̂t is a function only of Z1:t−1, i.e. it cannot peek ahead to access Zt:n.
Unlike the online learning setting, Z1:t is a random sequence drawn from some general distribution
P over Zn. Now, define the minimax value

V preq
n (F) = inf

f̂0:n−1

V preq
n (f̂0:n−1,F),

where

V preq
n (f̂0:n−1,F) = sup

P
E

[
1

n

n∑
t=1

ℓ(Pt, f̂t−1)− inf
f∈F

1

n

n∑
t=1

ℓ(Pt, f)

]
.

Note that the expectation above is with respect to both P and any internal randomness used by the
rules f̂0:n−1. As before, the definition of the minimax value leads to the definition of learnability.

Definition 4. We say that F is prequentially learnable if

lim sup
n→∞

V preq
n (F) = 0.

The definition of V preq
n (F) can be obtained from the definition of V gen

n (F) by replacing f̂n, which
depends on the entire sequence Z1:n, by f̂t−1, which depends only on Z1:t−1, in the loss term that
involves Pt. It can also be thought as a generalization of V online because of the following. When
the distribution P degenerates to a point mass at a specific sequence z1:n then Pt becomes a point
mass at zt and the difference of cumulative losses above reduces to the individual sequence regret
of f̂0:n−1 on z1:n. This observation immediately gives us the following result.

Lemma 7. Fix any loss function ℓ and function class F . Then we have V preq
n (F) ≥ V online

n (F).

The lemma above says that prequential learnability is at least as hard as online learnability. Our
next lemma provides a converse result.

Lemma 8. Fix any loss function and function class F . Then for any sequence f̂0:n−1 of learning
rules we have

V preq
n (f̂0:n−1,F) ≤ V online

n (f̂0:n−1,F) + 2Rseq
n (ℓ ◦ F).

This also means that
V preq
n (F) ≤ V online

n (F) + 2Rseq
n (ℓ ◦ F).

13



Proof. Let P be an arbitrary distribution. We have the following three term decomposition:

1

n

n∑
t=1

ℓ(Pt, f̂t−1)− inf
f∈F

1

n

n∑
t=1

ℓ(Pt, f)

=
1

n

n∑
t=1

ℓ(Pt, f̂t−1)−
1

n

n∑
t=1

ℓ(Zt, f̂t−1)︸ ︷︷ ︸
(I)

+
1

n

n∑
t=1

ℓ(Zt, f̂t−1)− inf
f∈F

1

n

n∑
t=1

ℓ(Zt, f)︸ ︷︷ ︸
(II)

+ inf
f∈F

1

n

n∑
t=1

ℓ(Zt, f)− inf
f∈F

1

n

n∑
t=1

ℓ(Pt, f)︸ ︷︷ ︸
(III)

.

The term (I) involves a martingale difference sequence ℓ(Pt, f̂t−1) − ℓ(Zt, f̂t−1) and hence has
expectation zero under P. Term (II) is the individual sequence regret of f̂0:n−1 on the sequence
Z1:n and hence is bounded, in expectation, by V online

n (f̂0:n−1,F). Term (III), in expectation, is at
most,

E

[
sup
f∈F

1

n

n∑
t=1

(ℓ(Zt, f)− ℓ(Pt, f))

]
≤ 2Rseq

n (ℓ ◦ F),

where the inequality again follows from Theorem 2 of Rakhlin et al. (2015b).
The lemma now follows by taking expectations on both sides of the three term decomposition

above and plugging in the upper bounds for each term’s expected value. □

We now have all the ingredients to characterize prequential learnability for binary classification.

Theorem 9. Consider binary classification with 0-1 loss. Then all of the conditions in Theorem 2
are also equivalent to:

• F is prequentially learnable.

Proof. From Lemma 7, we know that if a class is prequentially learnable then it is online learnable.
In the other direction, using Lemma 8, we have

V preq
n (F) ≤ V online

n (F) + 2Rseq
n (ℓ ◦ F)

≤ V online
n (F) +Rseq

n (F),

where the second inequality follows from Theorem 16 in Appendix A. Under any of the equivalent
conditions in Theorem 2, the lim sup of both of the quantities on the right goes to zero as n tends
to infinity. □

A similar result for the regression setting can be found in Section 7.4.
14



7. The Regression Setting

In this section, we provide analogues of most of the binary classification results for the regression
setting with absolute loss. Note that rates of convergence can depend on the loss function but
learnability is quite robust to changes in the loss function. For example, we can also use squared
loss ℓ((x, y), f) = (y − f(x))2. But we will keep our focus on the absolute loss in this section.

Our organization in this section is similar to the organization of results for binary classification.
Section 7.1 and Section 7.2 review known results in iid and online learning, but give them a unified
presentation. Section 7.3 and Section 7.4 present new results.

7.1. Statistical Learning. The fat shattering dimension of F is a scale-sensitive parameter that
takes a scale γ > 0 as an argument. The fat shattering dimension of F at scale γ, denoted by
fatγ(F), is the length n of the longest sequence x1:n that is γ-shattered by F . We say that a
sequence x1:n is γ-shattered by F if there exists a witness sequence s1:n of real numbers such that

∀ϵ1:n ∈ {±1}n,∃f ∈ F , s.t. ∀t ∈ [n], ϵt(f(xt)− st) ≥ γ.

Theorem 10. Consider regression with absolute loss in the iid statistical setting. Then, the fol-
lowing are equivalent:

(1) F is learnable.
(2) F is learnable via ERM.
(3) The ULLN condition (3.1) holds for F .
(4) ∀γ > 0, fatγ(F) < ∞.
(5) lim supn→∞ Rn(F) = 0.

The first four conditions are proved to be equivalent by Alon et al. (1997). For connections
between fat shattering dimension and Rademacher complexity see the work of Mendelson (2002).

7.2. Online Setting. The fat shattering dimension of F is replaced by its sequential analogue,
just as VC dimension gets replaced by Littlestone dimension in the case of binary classification.
The sequential fat shattering dimension of F at scale γ, denoted by sfatγ(F), is the depth n of the
deepest tree x that is γ-shattered by F . We say that a complete binary tree x is γ-shattered by F
if there exists a complete binary real valued witness tree s such that

∀ϵ1:n ∈ {±1}n,∃f ∈ F , s.t. ∀t ∈ [n], ϵt(f(xt(ϵ1:t−1)− st(ϵ1:t−1)) ≥ γ.

Theorem 11. Consider regression with absolute loss in the online (individual sequence) setting.
Then, the following are equivalent:

(1) F is learnable.
(2) The UMLLN condition (4.1) holds for F .
(3) ∀γ > 0, sfatγ(F) < ∞.
(4) lim supn→∞ Rseq

n (F) = 0.

The last three conditions are shown to be equivalent in Rakhlin et al., 2015b and the connection
with learnability was established in Rakhlin et al., 2015a.

As in the binary classification setting, online learnability is harder than iid statistical learnability.
That is, for any F and any γ > 0, fatγ(F) ≤ sfatγ(F) and the gap in this inequality can be
arbitrarily large. For example, the set Fbv of bounded variation functions from [0, 1] to [0, 1] with
total variation at most V , has fatγ(Fbv) < 1 + V/γ for all γ > 0 but sfatγ(Fbv) = ∞ for all γ > 0.
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7.3. Learnability under General Stochastic Processes. We first state an analogue of Theo-
rem 4 for the regression setting.

Theorem 12. Consider regression with absolute loss in the general stochastic process setting. Sup-
pose the class F is not online learnable, i.e., there exists γ > 0 such that sfatγ(F) = ∞. Then for
any n ≥ 1, V gen

n (F) ≥ γ/500. Therefore, the class F is not process learnable.

The result above allows us to extend Theorem 6 to the regression setting.

Theorem 13. Consider regression with absolute loss with a class F . Then all of the equivalent
conditions in Theorem 11 are also equivalent to:

• F is process learnable.

Proof. Theorem 12 shows that process learnability implies online learnability. For the other direc-
tion, note that according to Theorem 5 we have

V gen
n (F) ≤ 4Rseq

n (ℓ ◦ F).

Taking lim sup of both sides as n tends to infinity and using Theorem 17 in Appendix A to bound
the right hand side gives the desired implication. □

7.4. Learnability under the Prequential Version.

Theorem 14. Consider regression with absolute loss with a class F . Then all of the equivalent
condition in Theorem 11 are also equivalent to:

• F is prequentially learnable.

Proof. From Lemma 7, we know that if a class is prequentially learnable then it is online learnable.
For the other direction, using Lemma 8, we have

V preq
n (F) ≤ V online

n (F) + 2Rseq
n (ℓ ◦ F) .

From online learnability of F and Theorem 17 in Appendix A, we know that the lim sup of both
the quantities on the right is at most zero as n tends to infinity, giving the desired result. □

8. Conclusion

In this paper we have proposed two new definitions of learnability of a class of functions under
general non-iid stochastic processes. For the first definition, we showed that learnability is equivalent
to online learnability. This equivalence also holds for the second definition, which is a prequential
version of the first. We also showed how to extend our results from binary classification to the
regression setting.

Our work poses several interesting questions for further investigation. First, we defined learn-
ability using expectations. It will be good to derive high probability results. Second, we ignored
the issue of convergence rates for simplicity. It should be possible to extend our analysis to extract
information about rates of convergence. This is because the tools from iid and online learning that
we use are powerful enough to give us information about rates. Third, instead of using a normalizing
factor of n, the sample size, other data dependent normalizing factors could be of interest in appli-
cations. In this context, the theory of self-normalized processes comes to mind (Peña et al., 2008).
Fourth, iid learning theory has been extended to deal with privacy constraints. Starting from the
seminal work of Kasiviswanathan et al. (2011) these efforts have looked at a formalization of user
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privacy known as differential privacy. Surprisingly, recent work (Alon et al., 2019; Bun et al., 2020)
has shown that iid learnability under the additional constraint of approximate differential privacy is
equivalent to online learnability! It will be interesting to study learnability under general stochastic
processes with additional privacy constraints on the learning algorithm. Last, but certainly not
least, there is a need to connect various strands of learning theory research on non-iid processes. It
is unlikely that there is a single definition of learnability that is satisfactory for all purposes. We
hope we have proposed two interesting and useful ones. Comparing and contrasting various existing
definitions and approaches is an important goal for future work in this area.
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Appendix A. Relating the complexity of the loss class to the function class

We first consider the 0-1 loss function and then give a result for the absolute loss.

A.1. Zero-One Loss. The result below is essentially already known. The main ideas are present
in published work (Rakhlin et al., 2011). We just present the result in a form that is immediately
useful to us. But before we do that, we need a useful lemma.

Lemma 15. For any sequence ϵ1:n of iid Rademacher random variables and any fixed {±1}-valued
tree s, the sequence (ϵtst(ϵ1:t−1))

n
t=1 is also iid Rademacher.

Proof. It is easy to see that the sequence of random variables we have constructed takes values in
{±1}. We just need to check that the distribution of ϵtst(ϵ1:t−1) conditioned on ϵ1:t−1 is a fixed
distribution independent of the past. This is readily verified since

E [ϵtst(ϵ1:t−1)|ϵ1:t−1] = st(ϵ1:t−1)E [ϵt|ϵ1:t−1] = 0.

Therefore, we have shown that the distribution of ϵtst(ϵ1:t−1) conditioned on ϵ1:t−1 is always
Rademacher (symmetric Bernoulli). □

Now we are ready to state and prove the main result of this subsection.

Theorem 16. Let F be a binary valued function class and let ℓ be the 0-1 loss function. Then we
have,

Rseq
n (ℓ ◦ F) =

1

2
Rseq

n (F).

Proof. Instead of using Z-valued trees to define Rseq
n (ℓ ◦ F), we will use a pair x,y of X - and

Y-valued trees. The equality we are trying to prove can then be written as:

2 sup
x,y

E

[
sup
f∈F

1

n

n∑
t=1

ϵt1 [yt(ϵ1:t−1) ̸= f(xt(ϵ1:t−1))]

]
= sup

x
E

[
sup
f∈F

1

n

n∑
t=1

ϵtf(xt(ϵ1:t−1))

]
.
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For y1, y2 ∈ {±1}, we can write 21 [y1 ̸= y2] as 1 − y1y2. Note that sequential Rademacher com-
plexity is not affected if the entire function classes is shifted by a constant. Therefore, the left hand
side is equal to

sup
x,y

E

[
sup
f∈F

1

n

n∑
t=1

−ϵtyt(ϵ1:t−1)f(xt(ϵ1:t−1))

]
.

Now consider the {±1}-valued tree s = −y. From Lemma 15, we know the above is equal to

sup
x,s

E

[
sup
f∈F

1

n

n∑
t=1

ϵtf(xt(ϵ1:t−1 · s1:t−1(ϵ)))

]
,

where ϵ1:t−1 · s1:t−1(ϵ) denotes the sequence

ϵ1 · s1, ϵ2 · s2(ϵ1), . . . , ϵt−1 · st−1(ϵ1:t−2).

Define the tree x′ as x′(ϵ1:t) = xt(ϵ1:t−1 · s1:t−1(ϵ)) and note that as x ranges over all X -valued
trees and s ranges over all {±1}-valued trees, x′ ranges over all X -valued trees. Therefore, the
supremum over the pair x, s above can simply be written as

sup
x′

E

[
sup
f∈F

1

n

n∑
t=1

ϵtf(x
′
t(ϵ1:t−1))

]
.

As we noted, x′ ranges over all X -valued trees making the above quantity the same as Rseq
n (F)

which finishes the proof. □

A.2. Absolute Loss. We now consider the absolute loss case. The only property of the absolute
loss used in the proof below is that it is 1-Lipschitz (in either argument provided the other one is
fixed).

Theorem 17. Let F be a bounded real valued function class such that sfatγ(F) < ∞ for all γ > 0.
Let ℓ be the absolute loss. Then we have

lim sup
n→∞

Rseq
n (ℓ ◦ F) ≤ 0 .

Proof. In this proof c, C will denote universal constants that can change from line to line. From
Corollary 10 of Block et al. (2021), we have

(A.1) Rseq
n (ℓ ◦ F) ≤ C · inf

α≥0

(
α+

1√
n

∫ 1

α

√
logN ′(ℓ ◦ F , δ)dδ

)
.

Here N ′(ℓ ◦ F , δ) refers to the fractional covering number of the class ℓ ◦ F as defined in Definition
6 of Block et al. (2021). From the definition of the fractional covering number and the fact that the
absolute loss is 1-Lipschitz, we have N ′(ℓ ◦ F , δ) ≤ N ′(F , δ). Moreover, by Theorem 13 of Block
et al. (2021), we have

N ′(F , δ) ≤
(
C

δ

)3 sfatcδ(F)

.

Fix some α > 0. Plugging the bound above into (A.1) gives us,

Rseq
n (ℓ ◦ F) ≤ C ·

(
α+

1√
n

∫ 1

α

√
sfatcδ(F) · log(1/δ)dδ

)
.

Now since sfatcδ(F) < ∞ for all δ > 0, taking limits with respect to n on both sides gives us

lim sup
n→∞

Rseq
n (ℓ ◦ F) ≤ C · α .
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Since α > 0 was arbitrary this proves the result. □

Appendix B. Proofs of Lower Bounds

Proof of Theorem 4. Since the Littlestone dimension of F is infinite, by Theorem 3 of Alon et al.
(2019) it contains N = 22

n+1 thresholds. This means that there are N functions f1, . . . , fN ∈ F
and N examples x1, . . . , xN ∈ X such that for all i, j ≤ N ,

fj(xi) = 1 if and only if i ≤ j.

Without loss of generality identify these m examples with integers 1 through N written in binary
notation (with enough zero padding to the left to make the binary encoding a bit vector of length
exactly 2n + 1) and the functions with threshold functions

x 7→ 1 [x ≤ b]

for bit vectors b of length 2n + 1.
We will now define a stochastic process (Xt, Yt), 1 ≤ t ≤ n indexed by bit vectors b of length 2n.

The labels Yt will be deterministic given Xt chosen as Yt = 1 [Xt ≤ b1] where b1 has a 1 added at
the end and is therefore of length 2n + 1. So we only need to define a process X1, . . . , Xn. This is
defined as follows. Let ϵ1:n be iid Rademacher random variables.

• ℓ0 = 0

• For t = 1 to n

– If ϵt = +1: ℓt = ℓt−1 + 2n−t else: ℓt = ℓt−1

– bt = (2n +1)-length bit vector with same ℓt-length prefix as b, (ℓt +1)st bit equal to
1, and rest padded with zeros

– Output Xt = bt

If all ϵt’s turn out to be +1 (an event with probability 2−n), ℓn can become as large as

2n−1 + 2n−2 + . . .+ 2 + 1 = 2n − 1

which still leaves two bits to add a “10” at the end. So we do have enough bits available for all
possible increases of resolution. Note that the true function is a threshold at an odd integer whereas
the sampled Xt’s are always even integers. Finally, note that by construction Yt = 1 [Xt ≤ b1] =

1 [bt ≤ b1] = b[ℓt + 1] where b[ℓ] is the ℓth bit of b.
Denote the stochastic process defined above by Pb. Our proof will follow the probabilistic

method replacing the supremum over P in the definition of V gen
n (F) with an expectation over P

with P chosen to be Pb with the bit vector b chosen uniformly at random. That is,

V gen
n (f̂n,F) = sup

P
E

[
1

n

n∑
t=1

ℓ(Pt, f̂n)− inf
f∈F

1

n

n∑
t=1

ℓ(Pt, f)

]

≥ Eb

[
EPb

[
1

n

n∑
t=1

ℓ(Pt, f̂n)− inf
f∈F

1

n

n∑
t=1

ℓ(Pt, f)

]]
.

Note that for every b, Yt = fb(Xt) for some fb ∈ F which means that the infimum above is zero
for every b. Therefore, we have

V gen
n (f̂n,F) ≥ Eb

[
EPb

[
1

n

n∑
t=1

ℓ(Pt, f̂n)

]]
.
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Now we want to argue that ∀t ∈ {1, . . . , n},

E
[
ℓ(Pt, f̂n)

]
≥ 1

8
.(B.1)

Note the two sources of randomness in this expectation: the random bit vector b and the Rademacher
random variables ϵ1:n. Also, note that f̂n does not have access to b but only to the observed sample

(X1, Y1), . . . , (Xn, Yn) = (b1,b[ℓ1 + 1]), . . . , (bn,b[ℓn + 1])

Note that Pt puts probability 1/2 each on a “high resolution” value b+
t (corresponding to ϵt = +1)

and a “low resolution” value b−
t (corresponding to ϵt = −1). Therefore, we have,

ℓ(Pt, f̂n) =
1

2
1

[
f̂n(b

−
t ) ̸= fb(b

−
t )
]
+

1

2
1

[
f̂n(b

+
t ) ̸= fb(b

+
t )
]
.

The expectation of the quantity above can be lower bounded as,

E
[
ℓ(Pt, f̂n)

]
≥ 1

2
E
[
1

[
f̂n(b

+
t ) ̸= fb(b

+
t )
]]

≥ 1

2
P (ϵt = −1)E

[
1

[
f̂n(b

+
t ) ̸= fb(b

+
t )
∣∣∣ϵt = −1

]]
=

1

4
E
[
1

[
f̂n(b

+
t ) ̸= fb(b

+
t )
∣∣∣ϵt = −1

]]
.(B.2)

Now note that fb(b
+
t ) is simply equal to b[ℓt−1 + 2n−t + 1]. Further note that when ϵt = −1, the

largest that ℓn can become is

ℓt−1 + 2n−t−1 + 2n−t−2 + . . .+ 1 = ℓt−1 + 2n−t − 1 .

This means that, conditioned on ϵt = −1, the entire sample is measurable w.r.t. b[1 : ℓt−1 + 2n−t].
Since b+

t is measurable w.r.t. b[1 : ℓt−1+2n−t], we can conclude that fb(b+
t ) is independent of the

sample and b+
t conditioned on ϵt = −1. Since the unconditional distribution of b[ℓt−1 + 2n−t + 1]

is uniform on {0, 1}, this implies that

(B.3) E
[
1

[
f̂n(b

+
t ) ̸= fb(b

+
t )
∣∣∣ϵt = −1

]]
≥ 1

2

which along with (B.2) gives (B.1). □

Proof of Theorem 12. Since sfatγ(F) = ∞, by Theorem 8 of Jung et al. (2020), F contains N =

22
n+1 thresholds with margin γ/5. This means that there are N functions f̃1, . . . , f̃N ∈ F , N

examples x1, . . . , xN ∈ X and u, u′ ∈ [−1,+1] such that |u − u′| ≥ γ/5, |f̃j(xi) − u| ≤ γ/100 if
i ≤ j, and |f̃j(xi)− u′| ≤ γ/100 if i > j.

Without loss of generality assume that u > u′. Suppose F is learnable to accuracy ϵ. We want
to show that by choosing ϵ to be sufficiently small, e.g., ϵ = γ/500, we can get a contradiction with
the lower bound established in proof of Theorem 4 above. Consider the stochastic process Xt, Yt

constructed in the proof above. We transform it into the regression setting by converting the binary
labels Yt into real values Ỹt as follows:

Ỹt =

{
u if Yt = 1 ,

u′ if Yt = 0 .
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The transformed data consisting of pairs (Xt, Ỹt) is fed into the ϵ-accurate learner f̂n for which we
have the guarantee that

E

[
1

n

n∑
t=1

ℓ(P̃t, f̂n)− inf
f∈F

1

n

n∑
t=1

ℓ(P̃t, f)

]
≤ ϵ

where ℓ is the absolute loss and P̃t is the conditional distribution defined with respect to the
transformed process Xt, Ỹt. Note that the labels Yt were generated using a binary threshold function
fj which can be approximated to an error within γ/100 (in supremum norm) by some f̃j . This
means that

inf
f∈F

1

n

n∑
t=1

ℓ(P̃t, f) ≤ γ/100.

Therefore, for some t,
E
[
ℓ(P̃t, f̂n)

]
≤ ϵ+ γ/100

Now consider the binary classifier f̂ ′
n obtained from the real valued function f̂n as follows:

f̂ ′
n(x) =

{
1 if f̂n(x) > (u+ u′)/2 ,

0 otherwise .

We know from (B.2) and (B.3) that f̂ ′
n will predict the label of b+

t incorrectly with probability at
least 1/4. Because of the γ/5 gap between u and u′ this means that f̂n incurs an absolute loss of
at least γ/10 on b+

t and its real valued label (which is either u or u′) with probability at least 1/4.
Recalling that P̃t puts probability mass 1/2 on b+

t , we therefore have

E
[
ℓ(P̃t, f̂n)

]
≥ 1

2
· 1
4
· γ

10
=

γ

80

which means
γ

80
≤ ϵ+

γ

100
.

In order for this to give us a contradiction we just need to ensure that ϵ < γ/400. The choice
ϵ = γ/500 does that. □
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