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ABSTRACT: Microplastics are an emerging pollutant of concern, with
environmental observations recorded across the world. Identifying the type of
microplastic is challenging due to spectral similarities among the most
common polymers, necessitating methods that can confidently distinguish
plastic identities. In practice, a researcher chooses the reference vibrational
spectrum that is most like the unknown spectrum, where the likeness
between the two spectra is expressed numerically as the hit quality index
(HQI). Despite the widespread use of HQI thresholds in the literature,
acceptance of a spectral label often lacks any associated confidence. To
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address this gap, we apply a machine-learning framework called conformal prediction to output a set of possible labels that contain
the true identity of the unknown spectrum with a user-defined probability (e.g, 90%). Microplastic reference libraries of
environmentally aged and pristine polymeric materials, as well as unknown environmental plastic spectra, were employed to illustrate
the benefits of this approach when used with two similarity metrics to compute HQI. We present an adaptable workflow using our
open-access code to ensure spectral matching confidence for the microplastic community, reducing manual inspection of spectral
matches and enhancing the robustness of quantification in the field.
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B INTRODUCTION

Identifying microplastics (MPs) is essential to address health
and environmental concerns caused by plastic production and
pollution. Microplastics, defined as small pieces of plastic
between 1 and 5000 xm,"” have been found in environmental
matrices such as seawater,” > freshwater,"® soil,”'* and air."'?
The extent of microplastic pollution and major MP sources,
which are hypothesized based on the polymer identity of the
MP,"* must be characterized to develop remediation solutions
and regulations. Researchers have employed techniques such as
Fourier transform-infrared (FT-IR) and Raman spectroscopy to
determine both the concentration and identities of MPs in the
environment."*~"”

Automated spectral matching has prevailed as a practical
solution to time-intensive manual spectral matching of unknown
environmental species to standard reference polymers.'®"’
Commercial software equipped with library-searching modules,
such as Bruker’s OPUS, Thermo Fisher’s OMNIC, and Wiley’s
KnowlItAll, have been employed to produce a similarity score
between an unknown spectrum and a reference spectrum.”’~>*
This score of spectral likeness, which is computed via similarity
metrics, is referred to as hit quality index (HQI)."'” HQI scores
are often reported in the range of 0 to 1, where a value of zero
indicates the spectra are wholly unalike and a score of one
indicates complete similarity."® Researchers commonly use a
threshold HQI value that must be met or exceeded to identify
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unknown spectra with a polymer label.'®'*** However, there is
disagreement regarding the meaning expressed by the HQI
value, occasionally being referenced as a measure of confidence
in a polymer label.”*™*° This assertion of confidence is
misleading, as the HQI does not provide any measure of
statistical certainty. Rather, the score simply reflects a measure-
ment of the similarity between two spectra.

Because many polymers have similar structures (and therefore
spectra),”””® and because vibrational spectra can change due to
environmental aging,”””" labeling unknown spectra based on
HQI scores alone is insufficient. A better approach for robust
MP quantification and source attribution would include a
measure of the statistical uncertainty in spectral matching.
Acceptance of an identity solely due to an HQI score above an
arbitrary threshold may lead to misidentification, as indicated by
the findings of Lopez-Rosales et al. in 2024, wherein a threshold
of 0.85 (on a scale of 0 to 1) led to overestimating MP counts.!
Indeed, voices in the MP community have called for stricter
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Scheme 1. CP Workflow, Where Exemplative Labels Corresponding to the Red Environmental MP Spectrum are Illustrated on
the Bottom Distribution of HQI Scores from True Positive Matches
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assurances of polymer identity through manual assessment of
likeness between unknown spectra and standard references.””’

To answer this call for increased confidence, some researchers
have framed uncertainty in spectral labeling via distributions of
errors between automated spectral match scores and expert
manual assessments,”””? as well as through automated
correlation scores of samples with known composition.’”*
These approaches provide a guaranteed confidence for the
whole sample, but for individual spectra, they are limited to
accepting or rejecting a single spectral label. Moreover, these
methods are asymptotically valid, meaning that the guarantees
hold only when the number of observations (here, spectra) nears
infinity. In contrast to previous methods, a method known as
conformal prediction (CP) presents the advantages of indicating
the uncertainty of individual matches and providing a theoretical
confidence (or probability) guarantee that the identity of the
query spectrum is contained in a set of predicted labels.

Conformal prediction is a framework that provides a
principled approach to understanding uncertainty via model-
generated predictions.”*” This method generates a prediction
set of reference labels that guarantees a specified level of finite
sample confidence,”® meaning the probability that the correct
spectral label is included in the prediction set of an unknown
spectrum is equivalent to the confidence guarantee (given that
the unknown’s identity is reflected in the reference library). CP
has been increasingly popular in machine learning, where it is
able to provide insight into the uncertainty of a given model
without the need for retraining, which is often computationally
intensive.””~*' Our introduction of CP to the MP community
provides a tool for enhanced credibility in spectral matching via a
statistical assurance that the identity of an unknown spectrum
will be returned to the analyst.

Herein, we first evaluate the spectral correlation software,
methods, and thresholds reported in the recent microplastic
literature to establish a baseline of commonly used automated
matching practices in the MP community. We then illustrate
that the HQI scores generated by popular commercial software
lack the clarity needed to confidently count and label
environmental MPs. Further, we demonstrate the advantage of
using CP in tandem with two different similarity metrics to
provide a confidence guarantee and a measurement of

uncertainty at the individual spectrum level. Lastly, we apply
this method to authentic, environmental plastics to illustrate
CP’s utility with real-world samples. Through this work, we aim
to provide a workflow to incorporate statistical assurances in
microplastic spectral matching and establish guidance for HQI
thresholding and label acceptance for more robust environ-
mental MP identification.

B METHODS

Literature Review. To illustrate the microplastic commun-
ity’s recent use of library searching software, metrics, and
thresholds, we conducted a Web of Science search for articles
published within the last eight months at the time of searching
(May 2023 to January 2024) that utilized vibrational spectros-
copy to identify MPs (see Supporting Information section I). To
limit entries, we specifically targeted papers involving MP
identification in an oceanic matrix; as this matrix has received the
greatest attention of all environmental sectors, we expect that
the methods used in these articles will best reflect the current
state of microplastic spectral matching,*>**

Commercial Software Library Searching. The open-
access spectral databases “FT-IR library of plastic particles”
(FLOPP, used as a pristine reference library) and “FT-IR library
of plastic particles sourced from the environment” (FLOPP-e,
used as environmental query spectra) were chosen to evaluate
commercial software due to their accessibility and widespread
use in the microplastic community.**~*” All individual spectra
belonging to the polyethylene (PE) and polypropylene (PP)
labels available in the FLOPP-e library were downloaded as .csv
files and uploaded to Wiley’s KnowItAll Searchlt function.
These polymers were chosen because they had the greatest
number of example spectra in the environmentally aged FLOPP-
e library (49 and 66 for PE and PP, respectively). For each
spectrum, a transmission mode was indicated, and a single
component search was performed using the default settings of a
correlation method and optimized corrections.”® A spectral
inclusion window was drawn from 4000 to 650 cm™ to include
only regions of the spectra where the data had been collected.
Each spectrum was searched for correlation with pristine
polymers in the FLOPP library, and the hit list was documented.
The highest HQI score and label, as well as the number of
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matches and number of polymer labels yielding HQI > 0.7 (a
common literature threshold of HQI),”***** were recorded.

Conformal Prediction. Conformal prediction is used to
generate prediction sets (of polymer labels) for new
observations given a trained prediction model (HQI-based
spectral matching). CP uses a calibration data set and similarity
metric to ensure that the spectral label of a query spectrum will
be returned in a prediction set with a user-specified probability
(e.g., 90%), affording the confidence guarantee (see Supporting
Information section III for information on the mathematical
basis of the method). This confidence guarantee holds when the
distribution of new observations (here, HQI scores) is identical
to those in the calibration set. Unlike many other uncertainty
quantification methods in the literature, CP does not require
specific distributional assumptions (e.g., Gaussianity) nor does it
require a large data set.

Using all spectra from the 11 labels (acrylonitrile butadiene
styrene, cotton [ C], polyamide, polycarbonate, PE, polyethylene
terephthalate [PET], polyethylene vinyl acetate [PEVA], PP,
polystyrene [PS], polyurethane, and polyvinyl chloride [PVC])
that appear in both the FLOPP and FLOPP-e data sets (142 and
189 spectra, respectively), we split the FLOPP-e spectra into
calibration (90%) and test (10%) sets for matching to FLOPP
reference spectra (Scheme 1). We then calculated the HQI
scores of the true positive matches (FLOPP-e spectrum
matching to an FLOPP spectrum of the same polymer label)
of the calibration set and tabulated them in frequency
distributions relating to the two different similarity metrics.
Next, the remaining 10% of FLOPP-e spectra was used as a test
set (meaning that they were treated as spectra of unknown
identity) and the HQI scores for each spectrum’s similarity to all
reference polymers in the FLOPP library were calculated. These
HQI values were compared to the threshold defined by the
corresponding quantile of the calibration set distribution that
resembles the guaranteed confidence (here, 90% [a = 0.1]) for
both similarity metrics. If the HQI of a polymer label was above
the threshold, meaning that only 10% of the calibration data’s
true positive scores were calculated to be less than the HQI, then
the label was added to the prediction set with an associated 90%
confidence. In Scheme 1, this workflow is illustrated using
example labels and HQI scores for the red FLOPP-e spectrum,
which are then compared to the calibration distribution and
added to a prediction set of labels (on the far right of the
graphic) if the scores are greater than the established quantile.

The FLOPP-e spectra were randomly split into calibration
and test data sets 500 times in a cross-validation fashion. We
then calculated the empirical confidence (proportion of
instances where the correct label was observed in the prediction
set) and prediction set size (number of labels included in the
prediction sets) for all of the test data.

When using CP, the analyst chooses the confidence guarantee
that will determine the HQI threshold. While the confidence is
always guaranteed given that the reference library contains
spectra of each unknown’s identity, the magnitude of the
confidence guarantee influences the number of labels returned
in the prediction set.”” With a high confidence guarantee, the
HQI quantile (i.e., threshold) is lower, leading to more polymer
labels in the prediction set. On the other hand, a low guaranteed
confidence may lead to very few, if any, labels in the prediction
set. While this trade-off between confidence and prediction set
size should be noted as inherent to the conformal prediction
workflow, we provide insight into tailoring the confidence
guarantee and leveraging the performance of the chosen

similarity metric to produce the most insightful predictions in
future sections.

Class-Conditional Conformal Prediction. One limitation
of the traditional CP framework is that the confidence guarantee
is marginal, meaning that some labels may be under or
overguaranteed, as only the average theoretical confidence
across all labels is assured.*® To address this issue, we also
employ the class-conditional conformal prediction (CC—CP)
approach.*” The basis of the CP methodology framework (i.e.,
create a calibration set, determine the HQI threshold, compare
test set HQI scores to calibration distribution, and add labels
with HQI scores represented above the quantile to the
prediction set) remains the same. The only difference is that
instead of constructing one distribution from the calibration set,
we created separate distributions for each label to ensure class-
balanced confidence and that the HQI scores per polymer type
were compared to label-specific distributions (Scheme S2).

Because a unique distribution is built for each label, we used
the five labels with 10 or more example spectra in the FLOPP
data set (i.e,, C, PE, PET, PP, and PS) as possible spectral labels,
limiting the pool of FLOPP and FLOPP-e spectra to 76 and 161
examples, respectively. The FLOPP-e calibration and test data
were then randomly split 500 times in a cross-validated fashion.
Although the traditional CP results using these five labels are
presented herein for direct comparison to the class-conditional
results, it should be noted that additional labels can be used with
a CP framework and that this addition of labels will result in
larger average prediction sets (see Supporting Information
section V).

Similarity Metrics Used to Compute Hit Quality Index.
In CP, the choice of the similarity metric used to compute the
HQI is crucial because while the confidence guarantee holds for
any similarity metric, the quality of the similarity metric directly
governs the size of the prediction set. The size of, or number of
labels in, the prediction set can be used to assess uncertainty in
the predictions,”” where prediction sets with few labels indicate a
low uncertainty and prediction sets with many labels indicate a
high uncertainty. Efficient similarity metrics give prediction sets
with fewer labels, therefore providing a more accurate depiction
of the inherent spectral uncertainty in the prediction sets.’’
Thus, exploring different similarity metrics, which rely on
different measures of spectral likeness,"® is necessary to compare
the uncertainty of resultant prediction sets. This aspect of CP led
us to investigate nearest neighbor (NN) % and the more
commonly used Pearson correlation coefficient (PCC), as
similarity metrics to calculate HQI (see Supporting Information
section II).

Application of Conformal Prediction to Real World
Environmental Plastics. Environmental plastics of unknown
identity were sourced from a residential parking lot in Brighton,
Michigan and rinsed with tap water to remove debris (see
Supporting Information section IV). After the plastic was dried
at room temperature, attenuated total reflection FT-IR
measurements of each plastic were collected in percent
transmission using an Agilent Cary 630 FT-IR spectrometer.
Background spectra were collected prior to sample analysis, and
the diamond crystal was cleaned with ethanol between samples.
To best mimic the FLOPP-e library (treated as the calibration
set), the same spectral collection parameters of 32 coadded
scans at 4 cm ™' resolution were used to collect signal between
4000 and 650 cm™". The unidentified spectra were manually
evaluated by one researcher to label each spectrum with a
primary polymeric identity based on labeled spectra in the
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FLOPP and FLOPP-e libraries (see Supporting Information,
section IV). Prior to accessing the manually identified labels, the
CP method was applied to the environmental spectra (treated as
the test set) by a different researcher. The spectral labels
determined by manual evaluation were then used to calculate
empirical confidence once the CP results were obtained.

B RESULTS AND DISCUSSION

Literature Review. Similarity Metrics Used to Label
Unknown Spectra are Not Reported in the Literature. We
reviewed 96 recently published articles using vibrational
spectroscopy to identify environmental MPs (see Supporting
Information, section I). Database matching was the major
routine identified (64%), followed by manual evaluation (8%),
and machine-learning techniques (4%) (Figure S1). Alarmingly,
approximately 24% of the published articles did not indicate how
a spectral match was determined. Of the articles that indicated
spectral database searching as the identification method, 74%
did not report the similarity metric used to determine the match,
which is concerning given that the algorithm chosen to analyze
spectral similarity has a significant impact on the polymer
label.'®**°! Approximately a quarter of the articles reported the
similarity metric used to calculate HQI, with 22% using PCC
(Figure S1). Our 2024 results closely mimic the findings of
Weisser et al. in 2022, where the proportion of articles that failed
to detail the data analysis routine and similarity metric used for
database matching is the same (see Supporting Information
section 1)."® It is concerning that there has been no observed
response to their call for transparent communication of spectral
identification methodologies."® The constant proportion of
researchers who have omitted critical information between these
two evaluations continues to jeopardize the robustness and
validity of published MP identification findings.

There is No Literature Consensus on Software Used for
Spectral Matching nor Threshold of HQI to Distinguish a
Microplastic. Software applications specific to the parent
company of the analysis instrument were reported to perform
automated spectral matching in 51% of publications (Figure 1a).

a. software application b. HQI threshold

open-access

instrument-

specific

Figure 1. Summary of published MP papers regarding a) software
applications used for automated spectral matching and b) HQI
threshold used to accept a match.

KnowlItAll, a commercial software for spectral matching from
Wiley BioRad, was used in 19% of publications, and open access
searchin§ platforms such as PlaMAPP,*’ OpenSpecy,52 and
siMPle> were used in 24% of publications. The default
similarity metrics and preprocessing pipeline differ between
the reported software, which obscures a direct comparison
between HQI scores generated from different applica-
tions.””>">* Despite published approaches on establishing

consistent HQI thresholds,”*™** neither a universal HQI
threshold nor thresholding strategy was observed in the
literature (Figure 1b). While a threshold of 0.7 was reported
by 42% of considered publications, the explanation for this
choice, when reported, was precedent, likely because the seminal
microplastic paper published by Thompson et al. in 2004 used
this value of similarity to accept plastic identification.”
Approximately 31% of articles reported a higher threshold
than 0.7, and about 20% of authors chose thresholds below 0.7.
Considering the ambiguity and diversity of software and
thresholds used to aid spectral matching, it is clear that the
MP community would benefit from a method to directly
compare the performance of similarity metrics and guidance to
determine the HQI threshold with an associated confidence.
Commercial Software Library Searching. Similarity
Metrics Alone Do Not Guarantee Confidence in a Spectral
Match. We searched all polyethylene and polypropylene
FLOPP-e spectra as a substitute for unknown environmental
spectra using the FLOPP reference library in KnowItAll. The
reference spectrum identity with the greatest HQI was recorded
as the label for the unknown spectrum, as is typical for MP
identification workflows.'®*? Overall, the 49 PE and 66 PP
spectra from the FLOPP-e library were matched to four unique
polymer reference labels (e.g., PE was matched with PE and
three other polymers) with the topmost HQI (Figure 2a). Thus,

a 45 b. @
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Figure 2. Results from KnowlItAll searches of PE and PP FLOPP-e
spectra in terms of a) number of reference labels returned and b)
proportion of misidentifications when the greatest HQI > 0.7 is
accepted as a label, where “no ID” is unidentified and “R” is rubber.

if the traditional approach of accepting the label of the reference
spectra with the greatest HQI was followed, numerous spectra
would be mislabeled. This result was similarly reported by
Primpke and co-workers in 2017, where the authors found that
OPUS software misassigned spectral labels to query spectra
using various data analysis routines.”” When expanding the
criteria of a spectral match to include any label returned with
HQI > 0.7, the matches to individual PE and PP spectra
returned 7 and 11 unique labels, respectively (Figure 2a). It
should be noted here that, as the FLOPP reference database
contained 14 possible labels, 50% of available labels were
assigned to PE spectra and 79% to PP spectra. Thus, an HQI
threshold is not accompanied by any measure of certainty, as
multiple reference spectra labels were matched to a single query
spectrum with similar values of likeness. If we were to
theoretically treat the HQI threshold as a measure of confidence
in a match, then that confidence would not be exclusive to the
single classification with the greatest HQI; rather, it would
include all labels above the chosen threshold. Therefore, the
results of this experiment, which replicated libraries and software
similarity methods used in the current MP literature, illustrate
that the identification output by these methods lacks any

https://doi.org/10.1021/acs.est.4c05167
Environ. Sci. Technol. XXXX, XXX, XXX—=XXX


https://pubs.acs.org/doi/suppl/10.1021/acs.est.4c05167/suppl_file/es4c05167_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.4c05167/suppl_file/es4c05167_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.4c05167/suppl_file/es4c05167_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.4c05167/suppl_file/es4c05167_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.4c05167/suppl_file/es4c05167_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.4c05167/suppl_file/es4c05167_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.4c05167/suppl_file/es4c05167_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.4c05167/suppl_file/es4c05167_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.est.4c05167?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.4c05167?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.4c05167?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.4c05167?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.4c05167?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.4c05167?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.4c05167?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.4c05167?fig=fig2&ref=pdf
pubs.acs.org/est?ref=pdf
https://doi.org/10.1021/acs.est.4c05167?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Environmental Science & Technology

pubs.acs.org/est

a- 400 PE:

< A

]

Q

c

£ s0-

£ PEVA:

3 rain m

g M \ro
0 Ll 1 1 -
4000 3000 2000 1000

wavenumber (cm™)

100 PP:
) n
']
o
c
£ s0- R:
= :
g Mra m
® n
=
0 T T L]
4000 3000 2000 1000

wavenumber (cm™)

Figure 3. Average min—max normalized overlaid spectra and chemical structures of a) PE (49 FLOPP-e spectra) and PEVA (10 FLOPP spectra) and

b) PP (66 FLOPP-e spectra) and rubber (R) (15 FLOPP spectra).

associated certainty. In fact, a top match will always be generated
for a query spectrum, regardless of whether a spectrum of the
same identity is even in the reference database.”

KnowltAll Misidentifies ~20% of PE and PP Spectra,
Largely Due to Chemical and Spectral Similarity Between
Polymer Identities. We recorded the proportion of spectral
misidentifications when the reference spectrum identity with the
greatest HQI (above a 0.7 threshold) is accepted as a label,
noting that ~20% of PE and PP spectra within FLOPP-e were
misidentified (Figure 2b). Individual spectra within the FLOPP-
e or FLOPP library may suffer from a low signal-to-noise ratio or
spectral artifacts known to decrease the accuracy of a matching
metric,"”>* which could account for instances of misidentifica-
tion or instances where no labels were returned above the
threshold (indicated as “no ID” in Figure 2b). However, we
noticed that the greatest proportion of misidentifications
seemed to have been caused by chemical, and thus spectral,
likeness between the query and returned spectra. For instance,
70% of PE misidentifications were labeled as polyethylene vinyl
acetate, which features the same hydrocarbon repeat unit as PE
(Figure 3a). The main spectral distinction between these two
species is due to the copolymerized vinyl acetate unit in PEVA,
which exhibits distinct peaks around 1725 cm™ (C=0 stretch)
and 1228 cm™' (C—O stretch).’® Similarly, 62% of PP
misidentifications were labeled as rubber. The chemical
structures of PP and styrene—butadiene rubber likewise share
chemical functionalities (Figure 3b). For instance, styrene—
butadiene rubber FT-IR spectra exhibit methylene bending and
stretching vibrations similar to those observed in PP spectra.”’

Current Approaches to Reducing Misidentification of
Microplastics are Tedious and Lack Any Measure of
Associated Confidence at the Single-Spectrum Level. Addi-
tional occasions of spectral likeness causing challenges in MP
identification have been noted in the work of Schram and
coworkers, where highly weathered PP was misidentified as
chitin, and both PP and chitin were returned as labels with HQI
greater than 0.7 for a less weathered PP sample.29 Further, the
spectral differences of some polyamides and biological materials
such as skin cells and proteins are so slight that these materials
are likely to be mislabeled when using traditional similarity
metrics to output and accept a topmost HQI value.”**" The
prevailing solution to this issue is to include both natural and
synthetic materials in the reference library and to manually
evaluate the matched spectra with HQI values near the greatest
returned similarity value.”"*”%" Unfortunately, this proposed

solution does not impart any guidance on how many labels, or
what lower limit of HQJ, should be further evaluated, nor does it
give the user any sense of confidence in the chosen label. On the
other hand, an analytical workflow involving conformal
prediction would establish a HQI threshold with guaranteed
confidence and provide a prediction set of reference labels for
streamlined manual inspection. When multiple labels are
returned in a prediction set, those including synthetic spectral
labels can be prioritized for visual evaluation against spectra of
other natural or synthetic identities in the prediction set, and
those containing only natural identities can be excluded from
additional analysis. Because the confidence guarantee applies
only to the prediction sets of spectral labels (rather than a
summarized report of MP quantities or identities), visual
evaluation of spectral similarity remains integral to environ-
mental MP identification. Conformal prediction reduces this
manual inspection and enables efficient spectral labeling with a
confidence guarantee at the single-spectrum level.

Conformal Prediction. Nearest Neighbor Produces
Smaller Mean Prediction Set Sizes than Pearson Correlation
Coefficient. Using the five reference labels with 10 or more
spectra in the FLOPP and FLOPP-e libraries, we quantified the
mean empirical confidence and prediction set size of using CP
with PCC and NN similarity metrics (Figure 4). As expected,
the empirical confidence closely aligns with the confidence
guarantee (90%) for both metrics. However, we observed a
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Figure 4. Empirical confidence and mean prediction set size results of
conformal prediction using the Pearson correlation coefficient (PCC)
and nearest neighbor (NN) and class-conditional conformal prediction.
Here, CC-PCC and CC-NN correspond to the use of class-conditional
conformal prediction with PCC and NN, respectively.
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lower average prediction set size using the NN metric compared
to PCC. The fact that PCC is an absolute metric whereas NN is a
relative metric may contribute to this difference in the number of
reference labels in the prediction set, as the criteria for
generating a high HQI with NN are more restrictive than with
PCC (see Supporting Information section II). A further
explanation for this difference in metric efficiency relates to
the distributions of the positive matches (i.e., correctly
identified) and negative matches (i.e,, mismatch of query and
reference labels) between spectra of the same FLOPP-e and
FLOPP identity. In contrast to the NN, the distribution of
positive and negative matches for PCC shows higher overlap,
which indicates that many FLOPP-e spectra have high HQI
scores relative to incorrect labels (Figure $23). Therefore, when
using the more efficient NN, one is less likely to encounter a
mismatched classification returned in the prediction set than
when using PCC.

Class-Conditional Conformal Prediction Leads to an
Increase in Mean Prediction Set Size for Both Similarity
Metrics. Class-conditional CP builds a unique HQI distribution
for each label. CC—CP is particularly useful when the
distributions of positive matches between sample and reference
spectra differ among the spectral labels. In the case of the five
labels used in our analysis, we noted that the HQI distribution of
PP is distinct from the other labels when treated with PCC, as it
exhibits HQI scores of true positive matches down to 0.4 (Figure
$20). We hypothesize that the difference in score distributions
between labels could be due to the impacts of signal-to-noise
ratio, preprocessing steps performed by DeFrond et al. in
creating the library, or a greater degree of environmental aging
when compared to pristine reference spectra.'”*”">® As
mentioned earlier, CC—CP ensures a class-balanced confidence
guarantee rather than an average guaranteed confidence (Figure
S21), which results in more robust predictions at the expense of
slightly larger set sizes (Figure 4). Similar to traditional CP, we
observe an advantage of NN over PCC with respect to the mean
set size, which we relate to the efficiency of the metric.

Conformal Prediction Guarantees Confidence and In-
dicates Uncertainty in Environmental Plastic Spectral
Matches. Despite spectral changes that may have occurred
due to weathering, the manually assigned labels of 28
environmental unknowns were frequently returned in the
prediction sets generated with both PCC (82%) and NN
(79%), approaching the 90% confidence guarantee afforded by
CP (Figure 5). As CP’s guaranteed confidence relies on an
assumption that the HQI distributions of the calibration and test
sets be similar, we can expect the empirical confidence to
fluctuate from the theoretical guarantee when the distributions
differ, perhaps due to different instrumentation used between
this study and that of DeFrond et al. (see Supporting
Information section IV).** On average, PCC returned more
than one label in the prediction set, and NN returned a single
correct label. NN, as the more efficient metric, better describes
the inherent uncertainty in the environmental spectra. In this
vein, the proportion of prediction sets with one or zero labels is
an important indicator of metric efficiency and prediction
quality (see Supporting Information section VII). We further
used the environmental spectra to compare the traditional CP
method’s performance to that of CC—CP and KnowlItAll and
found that traditional CP outperformed both alternative
methods. While the proprietary matching algorithm of
KnowItAll limits our understanding of its performance, we
attribute the lower performance of CC—CP to discrepancies
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Figure S. Empirical confidence and mean prediction set size results of
conformal prediction applied to 28 environmental plastics using PCC
and NN similarity metrics.

between the distributions of label-specific test and calibration
sets (see Supporting Information, section IV).

Comparing the Performance of KnowltAll and the
Conformal Prediction Framework. Conformal Prediction
Reduces the Mean Prediction Set Size and Guarantees
Confidence When Compared to KnowltAll. To showcase the
advantage of using CP in routine environmental microplastic
identification, we compared the matching of FLOPP-e PE and
PP spectra to all labels of FLOPP spectra with both KnowItAll’s
default correlation metric and CP using PCC and NN metrics.
While the analysis pipeline of KnowlItAll's Searchlt function
does not guarantee confidence in spectral identification, we
chose to view the results through a conformal prediction lens.
To do so, we equated the proportion of instances that KnowItAll
returned the correct label above an HQI threshold of 0.7 for a
query spectrum with the empirical confidence associated with a
prediction set generated with CP. Thus, KnowItAll's “empirical
confidence” was defined as the proportion of query spectra per
polymer label (FLOPP-e PE and PP) that were matched to a
FLOPP spectrum of the correct label with an HQI > 0.7. The
empirical confidence of KnowlItAll (~94% for PE and ~82% for
PP) was used to inform the confidence guarantee used to
compare CP methods (94% [a = 0.06] for PE and 82% [a =
0.18] for PP), such that the differences in the mean prediction
set size were highlighted. As opposed to the mean set size for
KnowlItAll, here defined as the average number of spectral labels
returned with HQI > 0.7 per query spectrum, the use of CP with
PCC or NN similarity metrics decreases the number of labels
returned and provides guaranteed confidence in the match
(Figure 6).

The Mean Prediction Set Size is Dependent on the
Similarity Metric, Polymer Identity, and Confidence Guaran-
tee. NN outperforms PCC to give a lower mean prediction set
size due to fewer instances of negative matches above the
defined HQI quantile, as previously described. Between query
spectra identities, the mean set size of predicted labels for PP is
lower than that for PE. The HQI scores to reference polymer
spectra differ between the FLOPP-e PE and PP spectra, with PE
having higher PCC scores to more reference labels than PP
(Figures S24 and S25). This observation may explain why PE
has a larger mean set size than PP, as labels with higher HQI
scores are more likely to be included in the prediction set.
Additionally, as the confidence guarantee for PP was reduced to
reflect KnowItAll's “empirical confidence”, the resultant HQI
threshold is less descriptive of the true positive match score
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Figure 6. Results of comparison between KnowItAll and CP with PCC and NN similarity metrics in terms of empirical confidence and mean

prediction set size for a) PE and b) PP.

distribution. The higher HQI score associated with a lower
guaranteed confidence could limit the number of labels added to
the prediction set. Across both polymer identities and
magnitudes of confidence guarantees, CP methods provided
statistical assurance in the spectral labeling and reduced the
number of labels returned, streamlining manual interpretation of
numerous matches.

Takeaways for the Microplastic Community. The
Threshold Used for Labeling an Unknown Spectrum Relies
on User-Data, Similarity Metric, and Confidence Guarantee.
The performance of the CP is dependent on data quality. While
we use the FLOPP and FLOPP-e libraries herein, it is important
to note that different reference libraries and calibration sets may
be used with the CP workflow, but the similarity metric and data
analysis routine should remain consistent. As previously noted,
the HQI between a reference and query spectrum can be similar
for multiple reference labels (Figures S24 and S25). Therefore, it
is also important that a chosen HQI threshold has a statistical
guarantee of differentiation between spectral signatures. As
shown in Figure 7, when using conformal prediction and PCC
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Figure 7. Hit quality index threshold and mean prediction set size as a
function of the user-defined guaranteed confidence for FLOPP and
FLOPP-e data using conformal prediction and PCC with 11 reference
labels.

with all 11 labels included in both the FLOPP and FLOPP-e
libraries, the confidence guarantee that the user selects has
implications on both the HQI threshold and the mean
prediction set size. If one opts for higher guaranteed confidence
in the generated labels, the HQI quantile will be more
descriptive of the data and outliers (i.e., lower), and there will
be more predicted labels in the set. Therefore, choosing too high

of a confidence guarantee could render the prediction sets
ineffective unless subjected to tedious manual evaluation of the
matches, and it may lead to false positives, causing an
overestimation of MP abundance. On the other hand, choosing
too low of a confidence guarantee is accompanied by a higher
HQI cutoff and fewer labels in the prediction set. Here, false
negatives could occur because the environmental spectra are too
dissimilar from reference spectra, leading to an underestimation
of MP contamination. Given this trade-off, researchers must
decide the confidence guarantee with which they are
comfortable when considering the balance of HQI threshold,
prediction set size, and the possibility of miscounting MP
quantities. Our suggestion is to choose a guaranteed confidence
that is both descriptive of most of the calibration set’s HQI
distribution (e.g, > 70% [a < 0.3]) and returns a mean
prediction set size for manageable manual evaluation (e.g,, 1-3
labels). Using Figure 7 as a guide, we chose a guaranteed
confidence between 70 and 90%. While the results in Figure 7
are specific to the metrics and data discussed herein, it carries
that choosing a single HQI threshold without statistical meaning
and applying it to diverse environmental campaigns, as is
popular in the wider MP literature, may impact the validity of
one’s results.

Using the Open-Access Code Available on GitHub, a
Conformal Prediction Workflow Can be Used to Reduce
Manual Spectral Comparison and Increase Confidence in
Environmental Microplastic Labeling. Herein, we outlined a
flexible framework for statistically guaranteed confidence in
environmental microplastic spectral database searching. Based
on our findings from a literature review of recent microplastic
data analysis routines and evaluating a commercial database
matching software, we illustrated the need for guidance on
similarity metric comparison, hit quality index thresholding, and
confidence in spectral labeling. To fill this gap, we highlighted
that conformal prediction streamlines environmental plastic
identification with an associated statistical uncertainty measure-
ment and guaranteed confidence. To assist other microplastic
researchers in using conformal prediction, we have generated an
open-access code, user-guide, and suggested workflow (see
Supporting Information section VIII) that outlines an adaptable
analytical framework for statistically robust spectral labeling.
With these tools in hand, we urge the microplastic community to
adopt conformal prediction to meet their analytical goals for
confidence in hit quality index thresholding and acceptance of
environmental microplastic spectral matches.
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