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ABSTRACT
We consider the problem of link prediction in signed net-
works. Such networks arise on the web in a variety of ways
when users can implicitly or explicitly tag their relationship
with other users as positive or negative. The signed links
thus created reflect social attitudes of the users towards each
other in terms of friendship or trust. Our first contribution
is to show how any quantitative measure of social imbalance
in a network can be used to derive a link prediction algo-
rithm. Our framework allows us to reinterpret some existing
algorithms as well as derive new ones. Second, we extend the
approach of [6], by presenting a supervised machine learning
based link prediction method that uses features derived from
longer cycles in the network. The supervised method out-
performs all previous approaches on 3 networks drawn from
sources such as Epinions, Slashdot and Wikipedia. The su-
pervised approach easily scales to these networks, the largest
of which has 132k nodes and 841k edges. Most real-world
networks have an overwhelmingly large proportion of posi-
tive edges and it is therefore easy to get a high overall ac-
curacy at the cost of a high false positive rate. We see that
our supervised method not only achieves good accuracy for
sign prediction but is also especially effective in lowering the
false positive rate.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous
; J.4 [Computer Applications]: Social and Behavioral
Sciences—Sociology

General Terms
Algorithms, Experimentation
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1. INTRODUCTION
Many research problems in the analysis of networks, social

or otherwise, have been tackled by modeling the presence
or absence of relationships between pairs of entities using a
graph where a relationship is simply indicated by a positively
weighted edge. Recently, real-world networks have appeared
that do not fit this simple description. In e-commerce sites
such as Ebay, users of the network develop trust and distrust
in agents in the network; websites such as Amazon let mem-
bers express their likes and dislikes toward the purchased
products; online review and news websites such as Epinions
and Slashdot allow readers to approve or denounce reviews
and articles; certain nodes in a computer network may be
detected as byzantine by a sub-network, and communica-
tion through a byzantine node is considered unreliable. In
all such cases, it is helpful to think of the edges between
entities as being signed either positively or negatively.

The study of signed networks dates back to the early
1950s [1] where dislikes and distrusts were modeled as nega-
tive weight edges in a graph. A formal model encompassing
different types of interpersonal relationships was proposed
and notion of balance in signed graphs was defined.

We note that the nature and complexity of many graph
problems change once negative edges are introduced. For
example, the shortest-path problem in the presence of cy-
cles with negative edges is known to be NP-hard. Conse-
quently, solutions to problems in unsigned social networks
are usually not immediately applicable to signed networks.
In particular, signed link prediction has connections to so-
cial balance theory while no such connection exists for the
standard (unsigned) link prediction task.

The proliferation of online signed networks, and the recent
advances in social network analysis, including the problem of
link prediction in particular, naturally led researchers to the
problem of predicting the sign of a link in signed networks[3,
6]. We follow this line of work and consider the problem of
predicting signs in a signed network. Our proposed meth-
ods for the problem are motivated by the general theory of
social balance[1]. We build on the work of Leskovec et al.[6],
driven by the realization that higher order cycles in a signed
graph yield a “measure of imbalance” suggested by the gen-
eral theory of social balance. We show how these measures



can be successfully exploited for sign prediction. We also go
beyond these simple measures of imbalance and propose a
supervised machine learning approach that achieves state-
of-the-art performance on datasets drawn from sources as
diverse as Epinions, Slashdot and Wikipedia. Our largest
network has more than 100k nodes and 800k edges. Our
main contributions can be summarized as follows. First,
we show how any quantitative measure of imbalance in a
network can be used to derive a link prediction algorithm.
We discuss different measures of imbalance that are derived
from social balance theory and signed graph theory. In par-
ticular, we show that the Katz measure on a signed graph is
quite naturally connected to a measure of imbalance. Sec-
ond, we show that using measures of imbalance that depend
on higher order cycles can improve the quality of sign pre-
diction. The effect is more pronounced in the case of edges
with zero embeddedness. The nodes of such edges, by defi-
nition, do not share any common neighbors. Third, our su-
pervised learning approach to sign prediction uses features
derived from longer cycles and achieves state-of-the-art per-
formance. In particular, our method has smaller false pos-
itive rate, compared to the methods in [6]. Moreover, the
performance improvement is consistent across diverse net-
works (in the sense of formation and composition of signed
edges) such as Epinions, Slashdot and Wikipedia.

Our experiments with real-world networks show that not
all relationships formed in a social network conform to the
intuitions underlying social balance theory. Indeed, we find
that real-world networks are too complex to be described
by a simple formalism. Given the complexity of these net-
works, longer cycles seem to contain in them more useful
information for predicting signs of links.

2. RELATED WORK
Signed networks have received attention in the last decade

in the context of clustering and link prediction. The problem
of predicting edge signs in a social network was first consid-
ered by Guha et al.[3], albeit in a slightly different setting.
They develop a trust propagation framework to predict the
trust (or distrust) between pairs of nodes. First, a combined
matrix is derived from the adjacency matrix which captures
all one-step propagations (corresponding to cases k = 2 and
k = 3 in our k-cycle method). The propagated trusts and
distrusts are then computed as a linear combination of pow-
ers of the combined matrix. They apply variants of their
method on the Epinions network and find that higher iter-
ations of propagation tend to have a beneficial effect on the
accuracy of prediction.

Kunegis et al.[5] study the spectral properties of signed
networks and use kernels derived from a signed variant of
the graph Laplacian for link prediction. They also consider
power sum of the adjacency matrix (up to degree 4) for link
prediction. However, they do not propose any supervised
learning approach that learns the coefficients in their models.

Leskovec et al.[6] first considered an explicit formulation
of the sign prediction problem. Their prediction methods are
based on the theory of social balance and status[7]. The idea
is that the sign of an edge (i, j) should minimize the number
of unbalanced triangles involving the edge (i, j), i.e. triangles
with an odd number of negative edges (see Section 4). They
also propose a supervised machine-learning formulation of
the problem, and show that the features derived from dif-
ferent types of triangles, combined with first-order features

of a node like the number of incoming positive edges, make
better predictors of the edge sign. The prediction model is
also shown to generalize fairly well across different online so-
cial networks. Their model, however, does not look beyond
such local structures as triangles. These local features lead
to impressive accuracies in the networks that they consider.
Nevertheless, it is natural to ask if the acccuracy can be
further boosted by considering higher order features.

3. PRELIMINARIES
For us, a graph will mean a signed graph unless other-

wise stated. This formally means that G = (V, E, Σ) where
V = {1, 2, . . . , |V |} is a finite set of nodes or vertices of the
graph. The set E consists of edges of the form {i, j} or (i, j),
for i, j ∈ V , depending on whether the graph is undirected or
directed (we assume there are no self-loops). The third com-
ponent of a graph is a mapping Σ : E → {+1,−1} giving a
sign to each edge. We will assume that our graphs are con-
nected (weakly connected if directed). We will use the terms
‘network’ and ‘graph’ interchangeably. An undirected graph
has an associated adjacency matrix A ∈ {−1, 0, +1}|V |×|V |.
For undirected graphs, A is symmetric, i.e. A = AT , while
for directed graphs it will not be symmetric in general. It
will also be convenient to define the positive part A+ and
negative part A− as: A+ := max(A, 0), A− := min(A, 0)
where max/min are applied entry-wise. With these defini-
tions, we have A = A+ + A−.

A path (of length or order k) in an undirected graph is
a sequence i1, i2, . . . , ik+1 of vertices such that {ij , ij+1} is
an edge for 1 ≤ j ≤ k. A simple path is a path with no
repeated vertices. A cycle is a path with i1 = ik+1. A
simple cycle is a cycle with no repeated vertices (except the
first one). Similar definitions yield paths, simple paths, cycle
and simple cycles in directed graphs. Denote the set of all
order k cycles and simple cycles of a graph G by Ck(G) and
SCk(G) respectively. The indicator 1 [P ] is 1 if predicate P
is true and 0 otherwise. We let power take precedence over
subscript, i.e. Ak

i,j denotes (Ak)i,j .

3.1 Problem set-up
We adopt the framework [3, 6] of predicting the sign of

a single edge that has been suppressed, using the rest of
the network. Formally, given a graph G = (V, E, Σ), and
a test edge etest ∈ E, we want to predict Σ(etest), using
only the edges in E − {etest}. When using a supervised
machine learning approach it is convenient to think of {e′ ∈
E−{etest} : Σ(e′) = +1} and {e′ ∈ E−{etest} : Σ(e′) = −1}
as the set of positive and negative examples respectively.

3.2 Basics of Social Balance Theory
We briefly review the rudiments of the theory of social bal-

ance. This theory rests on the premise that certain config-
urations of positive (‘is a friend of’ or ‘trusts’) and negative
(‘is an enemy of’ or ‘distrusts’) edges between individuals
are socially more plausible than others. A more detailed
treatment can be found in [2, Chapter 5]. For example, in
the case of three individuals a, b and c, the left two config-
urations below are more likely than the right two:

a
+

b

+
c

+
a
−

b

−
c

+
a
−

b

−
c

−
a
+

b

+
c

−



on the basis of sayings such as ‘a friend of a friend is a friend’
and ‘an enemy of an enemy is a friend’. Accordingly, the first
two triangles are called balanced while the latter two are said
to be unbalanced. Formally, a complete undirected signed
graph is called balanced iff all triangles in it are balanced. Of
course, real world networks are not complete by any means.
Hence, the notion of balance can be extended by using the
idea of filling in missing entries. An undirected signed graph
is called balanced iff it is possible to add signed edges to
make it a balanced and complete graph. It turns out that
this ‘local’ definition based on looking at triangles only is
equivalent to a ‘global’ definition where we say that a graph
is balanced if and only if its vertices can be divided into two
mutually exclusive and exhaustive sets X and Y (with one
of them possibly empty) such that all edges within X and
within Y are positive while all edges with one end in X and
the other in Y are negative.

The following theorem relates balance to the existence of
simple cycles with an odd number of negative edges.

Theorem 1. ([4, 1]) A signed graph is balanced iff there
are no simple cycles with odd number of negative edges.

Motivated by this theorem, we call a cycle (simple or oth-
erwise) balanced if it has an even number of negative edges
and unbalanced otherwise.

4. METHODS BASED ON MEASURES OF
SOCIAL IMBALANCE

The main idea developed in this section is that any quan-
titative measure of social imbalance in a graph can be used
to design a link prediction algorithm. The sign prediction
for a given edge is the one that minimizes the social imbal-
ance in the resulting graph (once the signed edge has been
added to the network).

In a complete graph, perfect balance, by definition, implies
the absence of any unbalanced triangles. This motivates a
simple measure of imbalance, namely the total number of
unbalanced triangles in a graph. Thus, we define,

µtri(G) :=
X

σ̃∈SC3(G)

1 [σ̃ is unbalanced] . (1)

A definition essentially similar to the one above appears in
the recent work of van de Rijt [10, p. 103] who observes that
the equivalence between µtri(G) = 0 and G being balanced
holds only for complete graphs.

For an incomplete graph, imbalance might manifest itself
only if we look at longer simple cycles. Accordingly, we
define a higher-order analogue of (1),

µs
k(G) :=

k
X

i=3

βi

X

σ̃∈SCi(G)

1 [σ̃ is unbalanced] . (2)

where k ≥ 3 and βi’s are coefficients weighting the rela-
tive contributions of unbalanced simple cycles of different
lengths. If we choose a decaying choice of βi, like βi = βi

for some β ∈ (0, 1), then we can even define an infinite-
order version µs

∞(G) by setting k = ∞ above. It is clear
that µ∞(·) is a genuine measure of imbalance in the sense
formalized by the following theorem which follows directly
from Theorem 1).

Theorem 2. Fix a (possibly incomplete) graph G. Let
βi > 0 be any sequence such that µs

∞(G) is well-defined.
Then, µ∞(G) > 0 iff G is unbalanced.

This suggests that we could use µ∞(·) as a measure of
imbalance to derive link prediction algorithms. However,
enumerating simple cycles of a graph is a hard problem. In
particular, if we could count simple cycles of length n in
a graph with n vertices in polynomial time, we would solve
the NP-complete Hamiltonian cycle problem. To get around
this computational issue, we slightly change the definition of
µk(·) to the following.

µk(G) :=
k
X

i=3

βi

X

σ∈Ci(G)

1 [σ is unbalanced] . (3)

As before, we allow k = ∞ provided the βi’s decay suffi-
ciently rapidly. The only difference between these definitions
and the previous one is that here we sum over all cycles, not
just simple ones. However, we still get a valid notion of im-
balance as stated by the following result (proof will be given
in a longer version of the paper).

Theorem 3. Fix a (possibly incomplete) graph G. Let
βi > 0 be any sequence such that µ∞(G) is well-defined.
Then, µ∞(G) > 0 iff G is unbalanced.

The basic idea of using a measure of imbalance for pre-
dicting the sign of a given query link i, j, such that i 6= j and
{i, j} 6∈ E is as follows. Given a graph G and query {i, j} for

i, j ∈ V, i 6= j, we construct two graphs: G+(i,j) and G−(i,j).
These are obtained from G by augmenting its edge-set with
{i, j} and attaching a +1 and −1 sign to it respectively.
Given a measure of imbalance, µ (·), the predicted sign of
{i, j} is then simply:

sign
“

µ
“

G−(i,j)
”

− µ
“

G+(i,j)
””

. (4)

Note that, to be able to this quickly, we should use a µ (·)
for which the quantity (4) is efficiently computable. We now
consider the measures mentioned in the previous subsection
to ensure that this is indeed the case for them.

Somewhat surprisingly, for µ (·) = µ3(·), the prediction (4)
simply amounts to computing the (i, j) entry in the matrix
A2 where A is the (signed) adjacency matrix of G. In fact,
a more general result is true (proof will be given in a longer
version of the paper).

Theorem 4. Let G = (V, E,Σ) be an undirected signed

graph and let i 6= j be such that {i, j} /∈ E. Let G+(i,j) and

G−(i,j) be the augmented graphs as defined above. Then, for
any k ≥ 2,

X

σ∈Ck(G−(i,j))

1 [σ]−
X

σ∈Ck(G+(i,j))

1 [σ] = Ak−1
i,j

where A ∈ {−1, 0, +1}|V |×|V | is the adjacency matrix of G.

Using Theorem 4, it is easy to see that

sign
“

µk

“

G−(i,j)
”

− µk

“

G+(i,j)
””

= sign

 

k
X

t=3

βtA
t−1
i,j

!

and that the above is true even for k = ∞. In the spe-
cial case βk = βk−1 with β < 1/‖A‖2, we can sum the
above infinite series to get the Katz prediction rule for edge

sign prediction: sign
“

`

(I − βA)−1 − I − βA
´

i,j

”

. Katz has

been successfully used as a link prediction method for un-
signed networks [8] but here we see it reappearing for link



prediction in signed networks from a social balance point of
view. We find this connection between Katz and social bal-
ance intriguing and believe, to the best of our knowledge,
that it has not been made before.

5. SUPERVISED METHOD BASED ON
LONGER CYCLES

The methods derived from the measures of imbalance in
the previous section rely on social balance theory for link
prediction in signed networks. However, real world networks
may not conform to the prediction of social balance theory
or may do so only to a certain extent. To deal with this sit-
uation, we use measures such as Katz to derive features that
can then be fed to a supervised machine learning algorithm
along with the signs of the known edges in the network. We
draw upon research in unsigned link prediction where the
Katz measure has been empirically demonstrated to produce
competitive results [8]. However, recent research [9] shows
that learning the weights βi based on supervised machine
learning approaches tends to increase link prediction accu-
racy. It is thus natural to expect that the relative weights for
cycles of various lengths may be better estimated by taking
into account the evidence in the training data corresponding
to the given network.

We pose the problem of predicting the sign of an observed
link as a standard (binary) classification problem in machine
learning, using positive and negative examples. Our training
set consists of pairs (e, Σ(e)) where e ranges over edges whose
signs are given to us and Σ(e)’s are the given signs. Given
the dataset, we wish to learn a classifier that can predict
the sign of a given test edge etest that was not part of the
training set.

We now extend the supervised learning approach of [6]
by introducing features derived from longer cycles. In the
process, we obtain supervised variants of the cycle-based
sign prediction methods introduced in the previous section.

5.1 Features from Longer Cycles
Let us now describe the features of a directed edge e =

(i, j). Note that, unlike methods presented in Section 4,
we here consider directed signed networks. Social balance
theory has mostly been concerned with undirected network
and hence the methods in Section 4 deal with undirected
networks only. Here, we are weakening our reliance on so-
cial balance theory and can therefore naturally deal with
directed graphs as well.

To motivate our longer cycle based features, let us first
recall the feature construction used in Leskovec et al [6]. Fix
an edge e = (i, j). Consider an arbitary common neighbor
(in an undirected sense) k of i and j. The link between i and

k can be in 4 possible configurations: i
+
→ k, i

+
← k i

−
→ k,

or i
−
← k. Similarly, there are 4 possible configurations for

the link between k and j. Thus, we can get a total of 16
features for the edge e by considering the number of common
neighbors k in each of the 4× 4 = 16 configurations.

This corresponds to a supervised variant of k-cycle method
for k = 3. In terms of matrix powers, these sixteen fea-
tures are nothing but the (i, j) entry in the sixteen matrices:
(Ab1)t1 · (Ab2)t3 where b1, b2 ∈ {±} and ti ∈ {T, 1}. A criti-
cism against using only these triangle-based features is that
there could be many people in the social network who do
not share friends. In fact, this is the case in most of the net-

Table 1: Network Statistics
Epinions Slashdot Wikipedia

No. of nodes 131, 828 82, 144 7, 065
No. of edges 840, 799 549, 202 103, 561
Fraction of + edges 0.8529 0.7740 0.7884
Fraction of − edges 0.1471 0.2260 0.2116
Normalized MOI-3 0.0950 0.1335 0.2165

works that are used in [6]. The reason their method is able
to predict well on such pairs is that they additionally use
7 “degree-type” features like in-degree and out-degree (and
their signed variants). Thus, the prediction for edge with
zero emdeddedness (embeddedness refers to the number of
common neighbors of the vertices of an edge) relies com-
pletely on such degree based features. These degree features
tend to introduce a bias in learning. For example, a node
that is predisposed to make positive relationships, biases the
classifier to predict positive relationships.

This criticism thus necessitates incorporating features from
higher-order cycles. Generalizing the construction for k = 3
case, for the edge (i, j), the features can be obtained as the
(i, j) entries in the 4k−1 matrices

“

Ab1

”t1
·
“

Ab2

”t2
. . . ·

“

Abk−1

”tk−1

, (5)

with bi ∈ {±}, ti ∈ {T, 1}.
Note that the number of features is exponential in k, and

therefore it is not feasible to obtain features from arbitrarily
long cycles. We use supervised higher order cycle (HOC)
methods for k ≤ 5 in the experiments.

The number of features can quickly become unmanage-
able, and computationally infeasible, as soon as k is beyond
5. While dimensionality of the feature space may be the pri-
mary concern, the combinatorial nature of the features also
raises the following intuitive concern: the interpretability
of features rendered by high-order cycles, say when k = 6,
composed of different signs and directions, is a challenge.
For example, it is intuitively hard to appreciate the differ-

ence between two walks i
+
→ k1

+
→ k2

−
→ k3

+
→ k4

+
→ j and

i
+
→ k1

+
→ k2

−
← k3

+
→ k4

+
→ j.

With this realization, one way to reduce the number of
features yet retain the information in longer cycles, is to
consider the underlying undirected graph, ignoring the di-
rections. In particular, the kth order features will be from
the matrices Ab1 · Ab2 . . . · Abk−1 with bi ∈ {±}. Since we
are considering the undirected graph, we ensure that the fea-
tures are symmetric by summing features of the form Ab1Ab2

and Ab2Ab1 . Thus the number of k-th order features to com-
pute is reduced to O(2k) from O(4k). Though the number of
features is still exponential in k, the construction of features
becomes much easier for small values of k.

We use a simple logistic regression where the imbalance
of an edge is modeled as a linear combination of the fea-
tures, which are imbalances in cycles of various lengths and
characteristics themselves. Let Φ : V × V → R

p denote
the feature map. We have, P (Σ(u, v) = +1) = 1/(1 +
exp

`

−w0 −
Pp

i=1 wiΦi(u, v)
´

). The prediction for edge (u, v)
is given by sign(〈w, Φ(u, v)〉).

6. EXPERIMENTS
We consider three online social networks — Epinions, Slash-

dot and Wikipedia[6] (downloaded from snap.stanford.



Table 2: Accuracy of HOC Methods
Epinions Slashdot Wikipedia

HOC-3 0.9014 0.8303 0.8424
HOC-5 0.9080 0.8469 0.8605

Table 3: False Positive Rate of HOC Methods
Epinions Slashdot Wikipedia

HOC-3 0.4756 0.5575 0.5488
HOC-5 0.4441 0.5070 0.4817

edu). All the networks have explicit sign labels on the links.
Refer to Table 1 for the statistics of the networks. Note that
MOI-3 is normalized by the total number of triangles. Refer
to [6] for description of the networks. We have 2 families of
methods: one based on measures of imbalance (MOI) from
Section 4 and the other based on the supervised machine
learning approach involving higher order cycles (HOC) de-
scribed in Section 5. Both families depend on a parameter
k ≥ 3 that denotes the order of the cycles that the method
is based on. For MOI, we consider k up to 10 and for HOC
we consider k = 3, 4, 5. Note that the set of features used
by HOC-(k + 1) is a strict superset of the features used by
HOC-k. We also remind the reader that MOI-3 and HOC-3
are the methods considered in [6].

We evaluate and compare MOI methods using a leave-
one-out type methodology: each edge in the network is suc-
cessively removed and the method tries to predict the sign
of that edge using the rest of the network. For HOC meth-
ods, we resort to 10-fold cross-validation. We (randomly)
created 10 disjoint test folds each consisting of 10% of the
total number of edges in the network. For each test fold, the
remaining 90% of the edges serve as the training set. For
a given test fold, the feature extraction and logistic model
training happens on a graph with the test edges removed.
We report accuracies and false-positive rates by averaging
them over the 10 folds.

6.1 Results
Our experiments on the three online social networks show

that higher order cycles benefit the accuracy of sign pre-
diction and lower the false positive rate. Furthermore, the
results are consistent across the three diverse networks. Fig-
ure 2 shows the accuracy of MOI based methods. Note
that the accuracy is shown for edges with embeddedness
under certain threshold. Firstly, we see that accuracy is
non-decreasing in embeddedness threshold. Next, it is clear
that higher-order methods perform significantly better than
MOI-3 (triangles) method. Finally, the performance boost is
large for edges with low embeddedness. This is expected as
edges of low embeddedness by definition do not have many
common neighbors for their end-points, and higher-order cy-
cles have relatively better information for such edges than
others. We also observe from our experiments that beyond
k = 5, the performance gain is not very significant.

Figure 1 shows the distribution of edge embeddedness in
the data sets. Observe that a significant fraction of the edges
have low embeddedness in all the networks. Thus, for a good
fraction of edges, we observe a large increase in accuracy of
higher-order MOI based methods, in all the data sets.

The results for the supervised HOC methods are shown
in Tables 2 & 3 and Figure 3. In all the data sets, there
is a small improvement in accuracy by using higher order

cycles (HOC-5), as shown in Table 2. The false positive rate,
however, reveals a more interesting phenomenon in Table 3.
Indeed, higher order methods (such as HOC-5) significantly
reduce the false positive rate as compared to that of HOC-3.
However Figure 3 shows that, unlike MOI based methods,
edge embeddedness does not seem to affect the decrease in
false positive rate for HOC methods. We see this trend
across all the data sets.

7. CONCLUSION
We see that longer cycles significantly benefit sign pre-

diction, and do so consistently across many real-world net-
works. We presented a framework to obtain a link predic-
tion algorithm, using any quantitative measure of imbalance.
Higher order cycles came as a natural generalization of lo-
cal triangles, and furthermore, the generalization is well-
founded by the general theory of social balance. Finally,
we observe that the edges appearing in real-world signed
networks do not necessarily conform to the intuitions un-
derlying the social balance theory, and longer cycles contain
more useful information for predicting edge signs.
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Figure 1: Cumulative Probability Distribution of Edge Embeddedness. These plots show the fraction of edges
with embeddedness no more than T for various thresholds T . We see that these networks have a significant fraction of low
embeddedness edges. For example, the fraction of edges with zero embeddedness (edges whose end-points do not share any
common neighbor) is about 20%, 50% and 10% for Epinions, Slashdot and Wikipedia respectively.
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Figure 2: Accuracy of Measures of Imbalance (MOI) Based Methods for k = 3, 4, 5, 10. These plots show the
accuracy of MOI-k methods for edges with embeddedness at least T for various thresholds T . We see that the difference in
the performance of MOI-3 and higher order methods is larger when edges with lower embeddedness are considered. We also
see that the improvement obtained by going beyond order 5 is not very significant.
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Figure 3: False Positive Rates of Higher Order Cycle (HOC) Methods for k = 3, 5. These plots show the false
positive rate of HOC-k methods for edges with embeddedness at least T for various thresholds T . We see that considering
higher order cycles has the benefit of significantly reducing false-positives while simultaneously achieving slightly better overall
accuracy (see Table 2). However, unlike what we see for MOI methods, here the improvement does not seem to depend strongly
on edge embeddedness. The false positive rates for HOC-4 are very similar to that of HOC-5 and hence are not shown.


