
Phased Exploration with Greedy Exploitation in
Stochastic Combinatorial Partial Monitoring Games

Sougata Chaudhuri
Department of Statistics

University of Michigan Ann Arbor
sougata@umich.edu

Ambuj Tewari
Department of Statistics and Department of EECS

University of Michigan Ann Arbor
tewaria@umich.edu

Abstract

Partial monitoring games are repeated games where the learner receives feedback
that might be different from adversary’s move or even the reward gained by the
learner. Recently, a general model of combinatorial partial monitoring (CPM)
games was proposed [1], where the learner’s action space can be exponentially
large and adversary samples its moves from a bounded, continuous space, according
to a fixed distribution. The paper gave a confidence bound based algorithm (GCB)
that achieves O(T 2/3 log T ) distribution independent and O(log T ) distribution
dependent regret bounds. The implementation of their algorithm depends on
two separate offline oracles and the distribution dependent regret additionally
requires existence of a unique optimal action for the learner. Adopting their CPM
model, our first contribution is a Phased Exploration with Greedy Exploitation
(PEGE) algorithmic framework for the problem. Different algorithms within
the framework achieve O(T 2/3

√
log T ) distribution independent and O(log2 T )

distribution dependent regret respectively. Crucially, our framework needs only the
simpler “argmax” oracle from GCB and the distribution dependent regret does not
require existence of a unique optimal action. Our second contribution is another
algorithm, PEGE2, which combines gap estimation with a PEGE algorithm, to
achieve an O(log T ) regret bound, matching the GCB guarantee but removing the
dependence on size of the learner’s action space. However, like GCB, PEGE2
requires access to both offline oracles and the existence of a unique optimal action.
Finally, we discuss how our algorithm can be efficiently applied to a CPM problem
of practical interest: namely, online ranking with feedback at the top.

1 Introduction

Partial monitoring (PM) games are repeated games played between a learner and an adversary over
discrete time points. At every time point, the learner and adversary each simultaneously select an
action, from their respective action sets, and the learner gains a reward, which is a function of the two
actions. In PM games, the learner receives limited feedback, which might neither be adversary’s move
(full information games) nor the reward gained (bandit games). In stochastic PM games, adversary
generates actions which are independent and identically distributed according to a distribution fixed
before the start of the game and unknown to the learner. The learner’s objective is to develop a
learning strategy that incurs low regret over time, based on the feedback received during the course of
the game. Regret is defined as the difference between cumulative reward of the learner’s strategy and
the best fixed learner’s action in hindsight. The usual learning strategies in online games combine
some form of exploration (getting feedback on certain learner’s actions) and exploitation (playing the
perceived optimal action based on current estimates).

29th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.



Starting with early work in the 2000s [2, 3], the study of finite PM games reached a culmination
point with a comprehensive and complete classification [4]. We refer the reader to these works for
more references and also note that newer results continue to appear [5]. Finite PM games restrict
both the learner’s and adversary’s action spaces to be finite, with a very general feedback model. All
finite partial monitoring games can be classified into one of four categories, with minimax regret
Θ(T ), Θ(T 2/3), Θ(T 1/2) and Θ(1). The classification is governed by global and local observability
properties pertaining to a game [4]. Another line of work has extended traditional multi-armed
bandit problem (MAB) [6] to include combinatorial action spaces for learner (CMAB) [7, 8]. The
combinatorial action space can be exponentially large, rendering traditional MAB algorithms designed
for small finite action spaces, impractical with regret bounds scaling with size of action space. The
CMAB algorithms exploit a finite subset of base actions, which are specific to the structure of problem
at hand, leading to practical algorithms and regret bounds that do not scale with, or scale very mildly
with, the size of the learner’s action space.

While finite PM and CMAB problems have witnessed a lot of activity, there is only one paper [1]
on combinatorial partial monitoring (CPM) games, to the best of our knowledge. In that paper, the
authors combined the combinatorial aspect of CMAB with the limited feedback aspect of finite
PM games, to develop a CPM model. The model extended PM games to include combinatorial
action spaces for learner, which might be exponentially large, and infinite action spaces for the
adversary. Neither of these situations can be handled by generic algorithms for finite PM games.
Specifically, the model considered an action space X for the learner, that has a small subset of actions
defining a global observable set (see Assumption 2 in Section 2). The adversary’s action space is
a continuous, bounded vector space with the adversary sampling moves from a fixed distribution
over the vector space. The reward function considered is a general non-linear function of learner’s
and adversary’s actions, with some restrictions (see Assumptions 1 & 3 in Section 2). The model
incorporated a linear feedback mechanism where the feedback received is a linear transformation of
adversary’s move. Inspired by the classic confidence bound algorithms for MABs, such as UCB [6],
the authors proposed a Global Confidence Bound (GCB) algorithm that enjoyed two types of regret
bound. The first one was a distribution independent O(T 2/3 log T ) regret bound and the second
one was a distribution dependent O(log T ) regret bound. A distribution dependent regret bound
involves factors specific to the adversary’s fixed distribution, while distribution independent means
the regret bound holds over all possible distributions in a broad class of distributions. Both bounds
also had a logarithmic dependence on |X |. The algorithm combined online estimation with two
offline computational oracles. The first oracle finds the action(s) achieving maximum value of reward
function over X , for a particular adversary action (argmax oracle), and the second oracle finds the
action(s) achieving second maximum value of reward function over X , for a particular adversary
action (arg-secondmax oracle). Moreover, the distribution dependent regret bound requires existence
of a unique optimal learner action. The inspiration for the CPM model came from various applications
like crowdsourcing and matching problems like matching products with customers.

Our Contributions. We adopt the CPM model proposed earlier [1]. However, instead of using
upper confidence bound techniques, our work is motivated by another classic technique developed
for MABs, namely that of forced exploration. This technique was already used in the classic paper
of Robbins [9] and has also been called “forcing with certainty equivalence” in the control theory
literature [10]. We develop a Phased Exploration with Greedy Exploitation (PEGE) algorithmic
framework (Section 3) borrowing the PEGE terminology from work on linearly parameterized bandits
[11]. When the framework is instantiated with different parameters, it achieves O(T 2/3

√
log T )

distribution independent and O(log2 T ) distribution dependent regret. Significantly, the framework
combines online estimation with only the argmax oracle from GCB, which is a practical advantage
over requiring an additional arg-secondmax oracle. Moreover, the distribution dependent regret does
not require existence of unique optimal action. Uniqueness of optimal action can be an unreasonable
assumption, especially in the presence of a combinatorial action space. Our second contribution
is another algorithm PEGE2 (Section 4) that combines a PEGE algorithm with Gap estimation, to
achieve a distribution dependent O(log T ) regret bound, thus matching the GCB regret guarantee
in terms of T and gap. Here, gap refers to the difference between expected reward of optimal
and second optimal learner’s actions. However, like GCB, PEGE2 does require access to both the
oracles, existence of unique optimal action for O(log T ) regret and its regret is never larger than
O(T 2/3 log T ) when there is no unique optimal action. A crucial advantage of PEGE and PEGE2
over GCB is that all our regret bounds are independent of |X |, only depending on the size of the

2



small global observable set. Thus, though we have adopted the CPM model [1], our regret bounds
are meaningful for countably infinite or even continuous learner’s action space, whereas GCB regret
bound has an explicit logarithmic dependence on |X |. We provide a detailed comparison of our
work with the GCB algorithm in Section 5. Finally, we discuss how our algorithms can be efficiently
applied in the CPM problem of online ranking with feedback restricted to top ranked items (Section 6),
a problem already considered [12] but analyzed in a non-stochastic setting.

2 Preliminaries and Assumptions

The online game is played between a learner and an adversary, over discrete rounds indexed by
t = 1, 2, . . .. The learner’s action set is denoted as X which can be exponentially large. The
adversary’s action set is the infinite set [0, 1]n. The adversary fixes a distribution p on [0, 1]n before
start of the game (adversary’s strategy), with p unknown to the learner. At each round of the game,
adversary samples θ(t) ∈ [0, 1]n according to p, with Eθ(t)∼p[θ(t)] = θ∗p. The learner chooses
x(t) ∈ X and gets reward r(x(t), θ(t)). However, the learner might not get to know either θ(t) (as
in a full information game) or r(x(t), θ(t)) (as in a bandit game). In fact, the learner receives, as
feedback, a linear transformation of θ(t).That is, every action x ∈ X has an associated transformation
matrix Mx ∈ Rmx×n. On playing action x(t), the learner receives a feedback Mx(t) · θ(t) ∈ Rmx .
Note that the game with the defined feedback mechanism subsumes full information and bandit
games. Mx = In×n, ∀x makes it a full information game since Mx · θ = θ. If r(x, θ) = x · θ, then
Mx = x ∈ Rn makes it a bandit game. The dimension n, action space X , reward function r(·, ·) and
transformation matrices Mx, ∀x ∈ X are known to the learner. The goal of the learner is to minimize
the expected regret, which, for a given time horizon T , is:

R(T ) = T ·max
x∈X

E[r(x, θ)]−
T∑
t=1

E[r(x(t), θ(t))] (1)

where the expectation in the first term is taken over θ, w.r.t. distribution p, and the second expectation
is taken over θ and possible randomness in the learner’s algorithm.

Assumption 1. (Restriction on Reward Function) The first assumption is that Eθ∼p[r(x, θ)] =
r̄(x, θ∗p), for some function r̄(·, ·). That is, the expected reward is a function of x and θ∗p, which is
always satisfied if r(x, θ) is a linear function of θ, or if distribution p happens to be any distribution
with support [0, 1]n and fully parameterized by its mean θ∗p . With this assumption, the expected regret
becomes:

R(T ) = T · r̄(x∗, θ∗p)−
T∑
t=1

E[r̄(x(t), θ∗p)]. (2)

For distribution dependent regret bounds, we define gaps in expected rewards: Let x∗ ∈ S(θ∗p) =
argmaxx∈X r̄(x, θ

∗
p). Then ∆x = r̄(x∗, θ∗p) − r̄(x, θ∗p) , ∆max = max{∆x : x ∈ X} and ∆ =

min{∆x : x ∈ X ,∆x > 0}.
Assumption 2. (Existence of Global Observable Set) The second assumption is on the existence
of a global observable set, which is a subset of learner’s action set and is required for estimating
an adversary’s move θ. The global observable set is defined as follows: for a set of actions σ =
{x1, x2, . . . , x|σ|} ⊆ X , let their transformation matrices be stacked in a top down fashion to obtain

a R
∑|σ|
i=1 mxi×n dimensional matrix Mσ . σ is said to be a global observable set if Mσ has full column

rank, i.e., rank(Mσ) = n. Then, the Moore-Penrose pseudoinverse M+
σ satisfies M+

σ Mσ = In×n.
Without the assumption on the existence of global observable set, it might be the case that even
if the learner plays all actions in X on same θ, the learner might not be able to recover θ (as
M+
σ Mσ = In×n will not hold without full rank assumption). In that case, learner might not be

able to distinguish between θ∗p1
and θ∗p2

, corresponding to two different adversary’s strategies. Then,
with non-zero probability, the learner can suffer Ω(T ) regret and no learner strategy can guarantee a
sub-linear in T regret (the intuition forms the base of the global observability condition in [2]). Note
that the size of the global observable set is small, i.e., |σ| ≤ n. A global observable set can be found
by including an action x in σ if it strictly increases the rank of Mσ , till the rank reaches n. There can,
of course, be more than one global observable set.

3



Assumption 3. (Lipschitz Continuity of Expected Reward Function) The third assumption is on
the Lipschitz continuity of expected reward function in its second argument. More precisely, it is
assumed that ∃ R > 0 such that ∀ x ∈ X , for any θ1 and θ2, |r̄(x, θ1)− r̄(x, θ2)| ≤ R‖θ1 − θ2‖2.
This assumption is reasonable since otherwise, a small error in estimation of mean reward vector
θ∗p can introduce a large change in expected reward, leading to difficulty in controlling regret over
time. The Lipschitz condition holds trivially for expected reward functions which are linear in second
argument. The continuity assumption, along with the fact that adversary’s moves are in [0, 1]n,
implies boundedness of expected reward for any learner’s action and any adversary’s action. We
denote Rmax = maxx∈X ,θ∈[0,1]n r̄(x, θ).

The three assumptions above will be made throughout. However, the fourth assumption will only be
made in a subset of our results.

Assumption 4. (Unique Optimal Action) The optimal action x∗ = argmaxx∈X r̄(x, θ
∗
p) is unique.

Denote a second best action (which may not be unique) by x∗− = argmaxx∈X ,x 6=x∗ r̄(x, θ
∗
p). Note

that ∆ = r̄(x∗, θ∗p)− r̄(x∗−, θ∗p).

3 Phased Exploration with Greedy Exploitation

Algorithm 1 (PEGE) uses the classic idea of doing exploration in phases that are successively further
apart from each other. In between exploration phases, we select action greedily by completely trusting
the current estimates. The constant β controls how much we explore in a given phase and the constant
α along with the function C(·) determines how much we exploit. This idea is classic in the bandit
literature [9–11] but has not been applied to the CPM framework to the best of our knowledge.

Algorithm 1 The PEGE Algorithmic Framework
1: Inputs: α, β and function C(·) (to determine amount of exploration/exploitation in each phase).

2: For b = 1, 2, . . . ,
3: Exploration
4: For i = 1 to |σ| (σ is global observable set)
5: For j = 1 to bβ
6: Let tj,i = t and θ(tj,i, b) = θ(t) where t is current time point
7: Play xi ∈ σ and get feedback Mxi · θ(tj,i, b) ∈ Rmxi .
8: End For
9: End For
10: Estimation
11: θ̃j,i = M+

σ (Mx1
· θ(tj,1, i), . . . ,Mx|σ| · θ(tj,|σ|, i)) ∈ Rn.

12: θ̂(b) =

∑b
i=1

∑iβ

j=1 θ̃j,i∑b
j=1 j

β
∈ Rn.

13: x(b) ∈ argmaxx∈X r̄(x, θ̂(b)).
14: Exploitation
15: For i = 1 to exp(C(bα))
16: Play x(b).
17: End For
18: End For

It is easy to see that the estimators in Algorithm 1 have the following properties: Ep[θ̃j,i] =

M+
σ (Mx1

· θ∗p, . . . ,Mx|σ| · θ∗p) = M+
σ Mσ · θ∗p = θ∗p and hence Ep[θ̂] = θ∗p. Using the fact that

M+
σ = (M>σ Mσ)−1M>σ , we also have the following bound on estimation error of θ∗p:

‖θ̃j,i − θ∗p‖2 ≤ ‖M+
σ (Mx1

· θ(tj,1, i), . . . ,Mx|σ| · θ(tj,|σ|, i))−M
+
σ Mσθ

∗
p‖2

= ‖(M>σ Mσ)−1

|σ|∑
k=1

M>xkMxk · (θ(tj,k, i)− θ∗p)‖2 ≤
√
n

|σ|∑
k=1

‖(M>σ Mσ)−1M>xkMxk‖2 =: βσ

(3)

4



where the constant βσ defined above depends only on the structure of the linear transformation
matrices of the global observer set and not on adversary strategy p.

Our first result is about the regret of Algorithm 1 when within phase number b, the exploration part
spends |σ| rounds (constant w.r.t. b) and the exploitation part grows polynomially with b.
Theorem 1. (Distribution Independent Regret) When Algorithm 1 is initialized with the param-
eters C(a) = log a, α = 1/2 and β = 0, and the online game is played over T rounds, we get the
following bound on expected regret:

R(T ) ≤ Rmax|σ|T 2/3 + 2RβσT
2/3
√

log 2e2 + 2 log T +Rmax (4)

where βσ is the constant as defined in Eq. 3.

Our next result is about the regret of Algorithm 1 when within phase number b, the exploration part
spends |σ| · b rounds (linearly increasing with b) and the exploitation part grows exponentially with b.
Theorem 2. (Distribution Dependent Regret) When Algorithm 1 is initialized with the parameters
C(a) = h · a, for a tuning parameter h > 0, α = 1 and β = 1, and the online game is played over T
rounds, we get the following bound on expected regret:

R(T ) ≤
∑
x∈σ

∆x

(
log T

h

)2

+
4
√

2πe2R∆maxβσ
∆

e
h2(2R2β2

σ)

∆2 . (5)

Such an explicit bound for a PEGE algorithm that is polylogarithmic in T and explicitly states the
multiplicative and additive constants involved in not known, to the best of our knowledge, even in
the bandit literature (e.g., earlier bounds [10] are asymptotic) whereas here we prove it in the CPM
setting. Note that the additive constant above, though finite, blows up exponentially fast as ∆→ 0
for a fixed h. It is well behaved however, if the tuning parameter h is on the same scale as ∆. This
line of thought motivates us to estimate the gap to within constant factors and then feed that estimate
into a PEGE algorithm. This is what we will do in the next section.

4 Combining Gap Estimation with PEGE

Algorithm 2 tries to estimate the gap ∆ to within a constant multiplicative factor. However, if there is
no unique optimal action or when the true gap is small, gap estimation can take a very large amount
of time. To prevent that from happening, the algorithm also takes in a threshold T0 as input and
definitely stops if the threshold is reached. The result below assures us that, with high probability,
the algorithm behaves as expected. That is, if there is a unique optimal action and the gap is large
enough to be estimated with a given confidence before the threshold T0 kicks in, it will output an
estimate ∆̂ in the range [0.5∆, 1.5∆]. On the other hand, if there is no unique optimal action, it does
not generate an estimate of ∆ and instead runs out of the exploration budget T0.
Theorem 3. (Gap Estimation within Constant Factors) Let T0 ≥ 1 and δ ∈ (0, 1) and define
T1(δ) =

256R2β2
σ

∆2 log
512e2R2β2

σ

∆2δ , T2(δ) =
16R2β2

σ

∆2 log 4e2

δ . Consider Algorithm 2 run with

w(b) =

√
R2β2

σ log( 4e2b2

δ )

b
. (6)

Then, the following 3 claims hold.

1. Suppose Assumption 4 holds and T1(δ) < T0. Then with probability at least 1 − δ,
Algorithm 2 stops in T1(δ) episodes and outputs an estimate ∆̂ that satisfies 1

2∆ ≤ ∆̂ ≤ 3
2∆.

2. Suppose Assumption 4 holds and T0 ≤ T1(δ). Then with probability at least 1 − δ, the
algorithm either outputs “threshold exceeded” or outputs an estimate ∆̂ that satisfies
1
2∆ ≤ ∆̂ ≤ 3

2∆. Furthermore, if it outputs ∆̂, it must be the case that the algorithm stopped
at an episode b such that T2(δ) < b < T0.

3. Suppose Assumption 4 fails. Then, with probability at least 1− δ, Algorithm 2 stops in T0

episodes and outputs “threshold exceeded”.

5



Algorithm 2 Algorithm for Gap Estimation
1: Inputs: T0 (exploration threshold) and δ (confidence parameter)

2: For b = 1, 2, . . . ,
3: Exploration
4: For i = 1 to |σ|
5: (Denote) ti = t and θ(ti, b) = θ(t) (t is current time point).
6: Play xi ∈ σ and get feedback Mxi · θ(ti, b) ∈ Rmxi .
7: End For
8: Estimation
9: θ̃b = M+

σ (Mx1 · θ(t1, b), . . . ,Mx|σ| · θ(t|σ|, b)) ∈ Rn.

10: θ̂(b) =

∑b
i=1 θ̃i
b

∈ Rn.

11: Stopping Rule (w(b) is defined as in Eq. (6))
12: If argmaxx∈X r̄(x, θ̂(b)) is unique:
13: x̂(b) = argmaxx∈X r̄(x, θ̂(b))

14: x̂−(b) = argmaxx∈X ,x 6=x̂(b) r̄(x, θ̂(b)) (need not be unique)
15: If r̄(x̂(b), θ̂(b))− r̄(x̂−(b), θ̂(b)) > 6w(b):
16: STOP and output ∆̂ = r̄(x̂(b), θ̂(b))− r̄(x̂−(b), θ̂(b))
17: End If
18: End If
19: If b > T0:
20: STOP and output “threshold exceeded”
21: End If
22: End For

Equipped with Theorem 3, we are now ready to combine Algorithm 2 with Algorithm 1 to give
Algorithm 3. Algorithm 3 first calls Algorithm 2. If Algorithm 2 outputs an estimate ∆̂ it is fed into
Algorithm 1. If the threshold T0 is exceeded, then the remaining time is spent in pure exploitation.
Note that by choosing T0 to be of order T 2/3 we can guarantee a worst case regret of the same order
even when unique optimality assumption fails. For PM games that are globally observable but not
locally observable, such a distribution independent O(T 2/3) bound is known to be optimal [4].
Theorem 4. (Regret Bound for PEGE2) Consider Algorithm 3 run with knowledge of the number
T of rounds. Consider the distribution independent bound

B1(T ) = 2(2Rβσ|σ|2R2
maxT )2/3

√
log(4e2T 3) +Rmax,

and the distribution dependent bound

B2(T ) =
256R2β2

σ

∆2
log

512e2R2β2
σT

∆2
Rmax|σ|+

∑
x∈σ

∆x
36R2β2

σ log T

∆2
+

8e2R2β2
σ

∆2
+Rmax.

If Assumption 4 fails, then the expected regret of Algorithm 3 is bounded as R(T ) ≤ B1(T ). If
Assumption 4 holds, then the expected regret of Algorithm 3 is bounded as

R(T ) ≤
{
B2(T ) if T1(δ) < T0

O(T 2/3 log T ) if T0 ≤ T1(δ)
, (7)

where T1(δ) is as defined in Theorem 3 and δ, T0 are as defined in Algorithm 3.

In the above theorem, note that T1(δ) scales as Θ( 1
∆2 log T

∆2 ) and T0 as Θ(T 2/3). Thus, the two
cases in Eq. (7) correspond to large gap and small gap situations respectively.

5 Comparison with GCB Algorithm

We provide a detailed comparison of our results with those obtained for GCB [1]. (a) While we
use the same CPM model, our solution is inspired by the forced exploration technique while GCB

6



Algorithm 3 Algorithm Combining PEGE with Gap Estimation (PEGE2)
1: Input: T (total number of rounds)

2: Call Algorithm 2 with inputs T0 =
(

2RβσT
|σ|Rmax

)2/3

and δ = 1/T

3: If Algorithm 2 returns “threshold exceeded”:
4: Let θ̂(T0) be the latest estimate of θ∗p maintained by Algorithm 2
5: Play x̂(T0) = argmaxx∈X r̄(x, θ̂) for the remaining T − T0|σ| rounds
6: Else:
7: Let ∆̂ be the gap estimate produced by Algorithm 2
8: For all remaining time steps, run Algorithm 1 with parameters C(a) = ha with

h = ∆̂2

9R2β2
σ

, α = 1, β = 0

9: End If

is inspired by the confidence bound technique, both of which are classic in the bandit literature.
(b) One instantiation of our PEGE framework gives an O(T 2/3

√
log T ) distribution independent

regret bound (Theorem 1), which does not require call to arg-secondmax oracle. This is of substantial
practical advantage over GCB since even for linear optimization problems over polyhedra, standard
routines usually do not have option of computing action(s) that achieve second maximum value
for the objective function. (c) Another instantiation of the PEGE framework gives an O(log2 T )
distribution dependent regret bound (Theorem 2), which neither requires call to arg-secondmax oracle
nor the assumption of existence of unique optimal action for learner. This is once again important,
since the assumption of existence of unique optimal action might be impractical, especially for
exponentially large action space. However, the caveat is that improper setting of the tuning parameter
h in Theorem 2 can lead to an exponentially large additive component in the regret. (d) A crucial
point, which we had highlighted in the beginning, is that the regret bounds achieved by PEGE and
PEGE2 do not have dependence on size of learner’s action space, i.e., |X |. The dependence is only on
the size of global observable set σ, which is guaranteed to be not more than dimension of adversary’s
action space. Thus, though we have adopted the CPM model [1], our algorithms achieve meaningful
regret bounds for countably infinite or even continuous learner’s action space. In contrast, the GCB
regret bounds have explicit, logarithmic dependence on size of learner’s action space. Thus, their
results cannot be extended to problems with infinite learner’s action space (see Section 6 for an
example), and are restricted to large, but finite action spaces. (e) The PEGE2 algorithm is a true
analogue of the GCB algorithm, matching the regret bounds of GCB in terms of T and gap ∆ with
the advantage that it has no dependence on |X |. The disadvantage, however, is that PEGE2 requires
knowledge of time horizon T , while GCB is an anytime algorithm. It remains an open problem to
design an algorithm that combines the strengths of PEGE2 and GCB.

6 Application to Online Ranking

A recent paper studied the problem of online ranking with feedback restricted to top ranked items
[12]. The problem was studied in a non-stochastic setting, i.e., it was assumed that an oblivious
adversary generates reward vectors. Moreover, the learner’s action space was exponentially large in
number of items to be ranked. The paper made the connection of the problem setting to PM games
(but not combinatorial PM games) and proposed an efficient algorithm for the specific problem at
hand. However, a careful reading of the paper shows that their algorithmic techniques can handle the
CPM model we have discussed so far, but in the non-stochastic setting. The reward function is linear
in both learner’s and adversary’s moves, adversary’s move is restricted to a finite space of vectors and
feedback is a linear transformation of adversary’s move. In this section, we give a brief description
of the problem setting and show how our algorithms can be used to efficiently solve the problem of
online ranking with feedback on top ranked items in the stochastic setting. We also give an example
of how the ranking problem setting can be somewhat naturally extended to one which has continuous
action space for learner, instead of large but finite action space.

The paper considered an online ranking problem, where a learner repeatedly re-ranks a set of n, fixed
items, to satisfy diverse users’ preferences, who visit the system sequentially. Each learner action x

7



is a permutation of the n items. Each user has like/dislike preference for each item, varying between
users, with each user’s preferences encoded as an n length binary relevance vector θ. Once the ranked
list of items is presented to the user, the user scans through the items, but gives relevance feedback
only on top ranked item. However, the performance of the learner is judged based on full ranked list
and unrevealed, full relevance vector. Thus, we have a PM game, where neither adversary generated
relevance vector nor reward is revealed to learner. The paper showed how a number of practical
ranking measures, like Discounted Cumulative Gain (DCG), can be expressed as a linear function,
i.e., r(x, θ) = f(x) · θ. The practical motivation of the work was based on learning a ranking strategy
to satisfy diverse user preferences, but with limited feedback received due to user burden constraints
and privacy concerns.

Online Ranking with Feedback at Top as a Stochastic CPM Game. We show how our algorithms
can be applied in online ranking with feedback for top ranked items by showing how it is a specific
instance of the CPM model and how our key assumptions are satisfied. The learner’s action space
is the finite but exponentially large space of X = n! permutations. Adversary’s move is an n
dimensional relevance vector, and thus, is restricted to {0, 1}n (finite space of size 2n) contained
in [0, 1]n. In the stochastic setting, we can assume that adversary samples θ ∈ {0, 1}n from a fixed
distribution on the space. Since the feedback on playing a permutation is the relevance of top ranked
item, each move x has an associated transformation matrix (vector) Mx ∈ {0, 1}n, with 1 in the place
of the item which is ranked at the top by x and 0 everywhere else. Thus, Mx · θ gives the relevance
of item ranked at the top by x. The global observable set σ is the set of any n actions, where each
action, in turn, puts a distinct item on top. Hence, Mσ is the n× n dimensional permutation matrix.
Assumption 1 is satisfied because the reward function is linear in θ and r̄(x, θ∗p) = f(x) · θ∗p , where
Ep[θ] = θ∗p ∈ [0, 1]n. Assumption 2 is satisfied since there will always be a global observable set
of size n and can be found easily. In fact, there will be multiple global observable sets, with the
freedom to choose any one of them. Assumption 3 is satisfied due to the expected reward function
being linear in second argument. The Lipschitz constant is maxx∈X ‖f(x)‖2, which is always less
than some small polynomial factor of n, depending on specific f(·). The value of βσ can be easily
seen to be n3/2. The argmax oracle returns the permutation which simply sorts items according to
their corresponding θ values. The arg-secondmax oracle is more complicated, though feasible. It
requires first sorting the items according to θ and then compare each pair of consecutive items to see
where least drop in reward value occurs and switch the corresponding items.

Likely Failure of Unique Optimal Action Assumption. Assumption 4 is unlikely to hold in this
problem setting (though of course theoretically possible). The mean relevance vector θ∗p effectively
reflects the average preference of all users for each of the n items. It is very likely that at least a
few items will not be liked by anyone and which will ultimately be always ranked at the bottom.
Equally possible is that two items will have same user preference on average, and can be exchanged
without hurting the optimal ranking. Thus, existence of an unique optimal ranking, which indicates
that each item will have different average user preference than every other item, is unlikely. Thus,
PEGE algorithm can still be applied to get poly-logarithmic regret (Theorem 2), but GCB will only
achieve O(T 2/3 log T ) regret.

A PM Game with Infinite Learner Action Space. We give a simple modification of the ranking
problem above to show how the learner can have continuous action space. The learner now ranks the
items by producing an n dimensional score vector x ∈ [0, 1]n and sorting items according to their
scores. Thus the learner’s action space is now an uncountably infinite continuous space. As before,
the user gets to see the ranked list and gives relevance feedback on top ranked item. The learner’s
performance will now be judged by a continuous loss function, instead of a discrete-valued ranking
measure, since its moves are in a continuous space. Consider the simplest loss, viz., the squared
“loss” r(x, θ) = −‖x− θ‖22 (note -ve sign to keep reward interpetation). It can be easily seen that
r̄(x, θ∗p) = Eθ∼p[r(x, θ)] = −‖x‖22 + 2x · θ∗p −1 · θ∗p , if the relevance vectors θ are in {0, 1}n. Thus,
the Lipschitz condition is satisfied. The global observable set is still of size n, with the n actions
being any n score vectors, whose sorted orders place each of the n items, in turn, on top. βσ remains
same as before, with argmaxx Eθ∼pr(x, θ) = Eθ∼p[θ] = θ∗p. Both PEGE and PEGE2 can achieve
meaningful regret bound for this problem, while GCB cannot.

Acknowledgements

We acknowledge the support of NSF via grants IIS 1452099 and CCF 1422157.

8



References
[1] Tian Lin, Bruno Abrahao, Robert Kleinberg, John Lui, and Wei Chen. Combinatorial par-

tial monitoring game with linear feedback and its applications. In Proceedings of the 31th
International Conference on Machine Learning, pages 901–909. ACM, 2014.

[2] Antonio Piccolboni and Christian Schindelhauer. Discrete prediction games with arbitrary
feedback and loss. In Proceedings of the 14th Annual Conference on Computational Learning
Theory, pages 208–223. Springer, 2001.

[3] Nicolo Cesa-Bianchi, Gábor Lugosi, and Gilles Stoltz. Regret minimization under partial
monitoring. Mathematics of Operations Research, pages 562–580, 2006.

[4] Gabor Bartok et al. Partial monitoring–classification, regret bounds, and algorithms. Mathemat-
ics of Operations Research, 39(4):967–997, 2014.

[5] Junpei Komiyama, Junya Honda, and Hiroshi Nakagawa. Regret lower bound and optimal
algorithm in finite stochastic partial monitoring. In Advances in Neural Information Processing
Systems, pages 1783–1791, 2015.

[6] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed
bandit problem. Machine Learning, 47(2-3):235–256, 2002.

[7] Wei Chen, Yajun Wang, and Yang Yuan. Combinatorial multi-armed bandit: General framework
and applications. In Proceedings of the 30th International Conference on Machine Learning,
pages 151–159, 2013.

[8] Branislav Kveton, Zheng Wen, Azin Ashkan, and Csaba Szepesvari. Tight regret bounds
for stochastic combinatorial semi-bandits. In Proceedings of the Eighteenth International
Conference on Artificial Intelligence and Statistics, pages 535–543, 2015.

[9] Herbert Robbins. Some aspects of the sequential design of experiments. In Herbert Robbins
Selected Papers, pages 169–177. Springer, 1985.

[10] Rajeev Agrawal and Demosthenis Teneketzis. Certainty equivalence control with forcing:
revisited. Systems & Control Letters, 13(5):405–412, 1989.

[11] Paat Rusmevichientong and John N Tsitsiklis. Linearly parameterized bandits. Mathematics of
Operations Research, 35(2):395–411, 2010.

[12] Sougata Chaudhuri and Ambuj Tewari. Online ranking with top-1 feedback. In Proceedings
of the 18th International Conference on Artificial Intelligence and Statistics, pages 129–137.
ACM, 2015.

[13] Thomas P Hayes. A large-deviation inequality for vector-valued martingales. Combinatorics,
Probability and Computing, 2005.

9



7 Appendix

We first state the large deviation inequality for vector-valued martingales, which is the generalization
of Azuma-Hoeffding inequality for scalar valued martingales.

Theorem 1.8 of [13]: LetX0, X1, . . . , Xm be a weak martingale sequence taking values in euclidean
space Rd, with E[Xi|Xi−1] = Xi−1. Let X0 = 0 and ‖Xi − Xi−1‖2 ≤ 1, for i = 1, 2, . . . ,m.
Then, for every ε > 0,

Pr[‖Xm‖2 ≥ ε] < 2e2e
−ε2
m (8)

We use the concentration inequality to get a uniform confidence bound, over the space of learner’s
action, on the deviation of estimated reward from true reward, after each estimate of mean reward
vector is produced.
Lemma 5. At the end of exploration phase within phase b, b = 1, 2, . . ., of Algorithm PEGE, the

estimator of reward vector θ∗p is θ̂(b) =

∑b
i=1

∑iβ

j=1 θ̃j,i∑b
j=1 j

β
. Then, ∀ η > 0,

Pr[∀ x ∈ X : |r̄(x, θ̂(b))− r̄(x, θ∗p)| ≤ η] ≥ 1− 2e2e
−(

∑bβ
i=1 i

β)η2

R2β2
σ (9)

where βσ is the constant as defined in Eq. 3 and R is the Lipschitz constant defined in Assumption 3.

Proof. Let {Xi,j}j=1,...,iβ
i=1,...,b

be a sequence of random vectors, defined as follows:

Xi,j =

∑i−1
i′=1

∑i′β

j′=1 θ
∗
p +

∑j
k=1 θ

∗
p − (

∑i−1
i′=1

∑i′β

j′=1 θ̃j′,i′ +
∑j
k=1 θ̃k,i)∑b

i′′=1

∑(i′′)β

j′′=1 βσ
(10)

It can be checked that the `2 norm of the difference between any two consecutive random vectors

is bounded by a constant. That is, ‖Xi,j − Xi,j−1‖2 =
‖θ∗p − θ̃j,i‖2∑b
i′′=1

∑(i′′)β

j′′=1 βσ
≤ 1∑b

i′′=1(i′′)β
and

‖Xi+1,1 −Xi,iβ‖2
‖θ∗p − θ̃1,i+1‖2∑b
i′′=1

∑(i′′)β

j′′=1 βσ
≤ 1∑b

i′′=1(i′′)β
.

Also, θ̃j,i is independent of all estimators formed before θ̃j,i in Algorithm PEGE. Thus,

E[Xi,j −Xi,j−1|Xi,j−1] = E

[
θ∗p − θ̃j,i∑b

i′′=1

∑(i′′)β

j′′=1 βσ
|Xi,j−1

]

= E

[
θ∗p − θ̃j,i∑b

i′′=1

∑(i′′)β

j′′=1 βσ

]
= 0

(11)

Thus, {Xi,j}j=1,...,iβ
i=1,...,b

satisfy the criteria of weak martingale sequence and hence, by the large

deviation inequality of vector valued martingales, we have,

∀ ε > 0, Pr[‖Xb,bβ‖2 ≥ ε] < 2e2e

 −ε2∑b
i=1

∑iβ
j=1

1

(
∑b
i=1

iβ)2


= 2e2e−ε

2 ∑b
i=1 i

β

.

Now, it can be clearly seen that ‖θ∗p − θ̂(b)‖2 = βσ‖Xb,bβ‖2 and let η = βσε. Then, ∀ η > 0, we get

Pr[‖θ∗p − θ̂(b)‖2 ≥ η] ≤ 2e2e
−(

∑bβ
i=1 i

β)η2

β2
σ .

Using the Lipschitz property of expected reward function (Assumption 3), we have

10



Pr(∃ x ∈ X : |r̄(x, θ̂(b))− r̄(x, θ∗p)| ≥ η) ≤ Pr(R · ‖θ∗p − θ̂(b)‖2 ≥ η)

≤ 2e2e
−(

∑bβ
i=1 i

β)η2

R2β2
σ

(12)

Taking complement of the event completes the proof.

7.1 Proof of Results in Section 3

7.1.1 Proof of Theorem 1

We first restate the theorem.

Distribution Independent Regret: When Algorithm PEGE is initialized with the parameters
C(a) = log a, α = 1/2 and β = 0, and the online game is played over T rounds, we get the
following bound on expected regret:

R(T ) ≤ Rmax|σ|T 2/3 + 2RβσT
2/3
√

log 2e2 + 2 log T +Rmax (13)

where βσ is the constant as defined in Eq. 3.

Proof. Let Algorithm PEGE run for K phases, with parameters initialized as C(a) = log a, α = 1/2
and β = 0.

Exploration regret: During every exploration phase, the expected regret is bounded by |σ|Rmax,
whereRmax is as given in Assumption 3. Thus, total expected regret due to exploration isK|σ|Rmax.

Exploitation regret: Let x∗ ∈ argmaxx∈X r̄(x, θ
∗
p) and x(b) ∈ argmaxx∈X r̄(x, θ̂(b)). During

every exploitation round within phase b of Algorithm PEGE, the expected regret is |r̄(x(b), θ∗p)−
r̄(x∗, θ∗p)| .
Now, from Lemma 5, with β = 0, the following holds w.p. ≥ 1− δb,

∀ x, |r̄(x, θ∗p)− r̄(x, θ̂(b)| ≤

√
R2β2

σ log( 2e2

δb
)

b︸ ︷︷ ︸
ηb

(14)

Then, w.p. ≥ 1− δb, the following event holds true: |r̄(x∗, θ∗p)− r̄(x(b), θ∗p)| ≤ 2ηb, as explained:

r̄(x∗, θ∗p) ≤ r̄(x∗, θ̂(b)) + ηb from Eq. 14

≤ r̄(x(b), θ̂(b)) + ηb
≤ r̄(x(b), θ∗p) + 2ηb from Eq. 14

Thus, the event |r̄(x∗, θ∗p) − r̄(x(b), θ∗p)| ≤ 2ηb holds true w.p. ≥ 1 − δb, for every fixed phase b.
Then, w.p. ≥ 1−

∑K
i=1 δi, the following holds true:

∀ b, |r̄(x∗, θ∗p)− r̄(x(b), θ∗p)| ≤ 2ηb

Note that the expected regret per round is always bounded byRmax (since expected reward is bounded
by Rmax) .

The number of rounds of exploitation in phase b is bα. Hence, the total expected regret due to
exploitation, over K phases is:

K∑
i=1

(1−
K∑
j=1

δj)
2Rβσ

√
log(2e2/δi)√
i

+ (

K∑
j=1

δj)Rmax︸ ︷︷ ︸
expected regret per exploitation round

 iα

11



Taking δ1 = δ2 = . . . = δK = δ, and summing over exploration and exploitation regret over K
phases, we get

R(T ) ≤ K|σ|Rmax +

K∑
i=1

(
(1−Kδ)

2Rβσ
√

log(2e2/δ)√
i

+ (Kδ)Rmax

)
iα (15)

Using the inequality
∑K
i=1 i

y ≤
∫K

0
iydy ≤ Ky+1, we get expected regret:

R(T ) ≤ K|σ|Rmax + (1−Kδ)2Rβσ
√

log(2e2/δ)Kα+1/2 +KδRmaxK
α+1 (16)

Now, we relate K to total time T as: T = |σ|K +
∑K
i=1 i

α ∼ Kα+1, for large K.

Hence K ∼ T
1

1+α . Substituting value of K in Eq 16, and taking α = 1/2 and δ = 1
KT gives us the

required bound on expected regret.

Our next lemma shows that as the number of phases b grows in Algorithm PEGE, the probability of
selecting a sub-optimal arm for greedy exploitation shrinks.

Lemma 6. At the end of exploration phase within phase b, b = 1, 2, . . ., the estimator constructed is

θ̂(b) =

∑b
i=1

∑iβ

j=1 θ̃j,i∑b
j=1 j

β
. Then the following holds,

Pr(argmax
x∈X

r̄(x, θ̂(b)) 6⊆ argmax
x∈X

r̄(x, θ∗p)) ≤ 2e2e
−(

∑bβ
i=1 i

β)∆2

4R2β2
σ (17)

Proof. Let us assume x′ ∈ argmaxx∈X r̄(x, θ̂(b)) such that x′ /∈ argmaxx∈X r̄(x, θ
∗
p). Let x∗ ∈

argmaxx∈X r̄(x, θ
∗
p). Then, by our assumption, r̄(x′, θ̂(b)) ≥ r̄(x∗, θ̂(b)). By definition of gap ∆,

we also have r̄(x∗, θ∗p)− r̄(x′, θ∗p) ≥ ∆. The two inequalities imply that at least one of the following
two inequalities has to hold: either |r̄(x∗, θ∗p)− r̄(x∗, θ̂(b))| ≥ ∆

2 or |r̄(x′, θ̂(b))− r̄(x′, θ∗p)| ≥ ∆
2 .

Thus, argmaxx∈X r̄(x, θ̂(b)) 6⊆ argmaxx∈X r̄(x, θ
∗
p) =⇒ ∃ x ∈ X : |r̄(x, θ∗p)− r̄(x, θ̂(b))| ≥ ∆

2 .
By using Lemma 5, and substituting η = ∆

2 , we get our result.

7.1.2 Proof of Theorem 2

We restate the theorem before proving:

Distribution Dependent Regret: When Algorithm PEGE is initialized with the parameters C(a) =
h · a, for a tuning parameter h > 0, α = 1 and β = 1, and the online game is played over T rounds,
we get the following bound on expected regret:

R(T ) ≤
∑
x∈σ

∆x

(
log T

h

)2

+
4
√

2πe2R∆maxβσ
∆

e
h2(2R2β2

σ)

∆2 . (18)

Proof. Let total number of phases that the algorithm runs for be K. We relate K to total time T as
(after substituting parameters C(a) = h · a, α = 1 and β = 1 in Algorithm PEGE):

T =
∑K
i=1 |σ|i+

∑K
i=1 e

hi ≥ ehK =⇒ K ≤ log T

h
.

Exploration regret: Since we are in distribution dependent setting now, expected exploration regret
in each exploration phase is

∑
x∈σ ∆x. Hence, total expected exploration regret is upper bounded by:∑K

i=1(
∑
x∈σ ∆x)i =

∑
x∈σ ∆x

K(K+1)
2 ≤ (

∑
x∈σ ∆x)

log2 T

h2
.

12



Exploitation regret: When a sub-optimal arm is picked in an exploitation round, the expected regret
in that round is: ≤ ∆max. Using Lemma 6 with β = 1, the total expected regret due to exploitation
over K phases is upper bounded by:

K∑
i=1

2e2∆max e
hi− i(i+1)

2
∆2

4R2β2
σ︸ ︷︷ ︸

expected exploitation regret upper bound in phase i

≤ 2e2∆max

∞∑
i=1

e
hi− i(i+1)

2
∆2

4R2β2
σ

≤ 2e2∆max

∞∑
i=1

e
hi− i22

∆2

4R2β2
σ

≤ 2e2∆max

∫ ∞
−∞

e
hy− y

2

2
∆2

4R2β2
σ dy

(19)

The integral is the moment generating function (adjusting for normalization constant) of a gaussian

random variable Y ∈ N (0,
4R2β2

σ

∆2 ). Thus, the integral is E[ehY ] = e
2h2R2β2

σ
∆2 and total expected

regret due to exploitation is upper bounded by:
4e2∆max

√
2πRβσ

∆
e

2h2R2β2
σ

∆2 .

Summing over exploration and exploitation regrets completes the proof.

7.2 Proof of Results in Section 4

The following theorem is about the version of PEGE that Algorithm 3 calls on line 8. It will be
needed in the proof of Theorem 4.
Theorem 7. (Distribution Dependent Regret, version 2) When Algorithm 1 is initialized with the
parameters C(a) = h · a, for a tuning parameter 0 < h < ∆2

4R2β2
σ

, α = 1 and β = 0, and the online
game is played over T rounds, we get the following bound on expected regret:

R(T ) ≤
∑
x∈σ

∆x
log T

h
+

2e2∆max

∆2

4R2β2
σ
− h

(20)

Note: Compared to Theorem 2, the regret bound has better dependence on T — O(log T ) instead
of O(log2 T ) — but it also has a disadvantage. If the tuning parameter h is incorrectly set, say
h ≥ ∆2

4R2β2
σ

, then the bound does not even apply.

Proof. The proof is similar to proof of Theorem 2. We highlight the key steps:

Let total number of phases that the algorithm runs for be K. First: T =
∑K
i=1 |σ|+

∑K
i=1 e

hi ≥ ehK

=⇒ K ≤ log T

h
.

Expected regret due to exploration:
∑K
i=1(

∑
x∈σ ∆x) =

∑
x∈σ ∆xK ≤ (

∑
x∈σ ∆x)

log T

h
.

Expected regret due to exploitation: When a sub-optimal arm is picked, expected regret ≤ ∆max.
Using Lemma 6 with β = 0, and tuning parameter h < ∆2

4R2β2
σ

, we get total expected regret due to
exploitation

2e2∆max

K∑
i=1

e
hi−i ∆2

4R2β2
σ ≤ 2e2∆max

∞∑
i=1

e
hi−i ∆2

4R2β2
σ

= 2e2∆max

∞∑
i=1

e
−i( ∆2

4R2β2
σ
−h)

≤ 2e2∆max

∫ ∞
0

e
−y( ∆2

4R2β2
σ
−h)

dy

=
2e2∆max

∆2

4R2β2
σ
− h

(21)

13



7.2.1 Proof of Theorem 3

Proof. Note that Assumption 1 through Assumption 3 hold. Therefore, from Lemma 5, with β = 0
we get, with probability at least 1− δb,

∀x, |r̄(x, θ∗p)− r̄(x, θ̂(b)| ≤

√
R2β2

σ log( 2e2

δb
)

b

Let δb = δ/2b2 which implies
∑
b≥1 δb = π2δ/12 < δ. Thus, setting w(b) =

√
R2β2

σ log( 4e2b2

δ )

b
,

the event E defined as

∀b ≥ 1,∀x ∈ X , |r̄(x, θ̂(b))− r̄(x, θ∗p)| ≤ w(b). (22)

holds with probability at least 1− δ.

1. Note that b ≥ T1(δ) implies 8w(b) < ∆. This is because the latter has the form eLb > Mb
with M = 2e/δ and L = ∆2/(128R2β2

σ). Setting b ≥ 2/L log(2M/L) guarantees that
eLb/2 ≥ 2M/L which implies that eLb ≥Mb since eLb/2 ≥ 1 + Lb/2 ≥ Lb/2.

If 8w(b) < ∆ then clearly 2w(b) < ∆. Let x 6= x∗ be arbitrary. We have the following
chain of implications:

2w(b) < ∆

⇒ 2w(b) < r̄(x∗, θ∗p)− r̄(x∗−, θ∗p) (def. of ∆)

⇒ 2w(b) < r̄(x∗, θ∗p)− r̄(x, θ∗p) (Assumption 4)

⇒ 0 < r̄(x∗, θ̂(b))− r̄(x, θ̂(b)). (∵ E holds)

This means that the If condition on line 12 will evaluate to true and x̂(b) on line 13 will be
set to x∗.

We also have the following chain of implications:

8w(b) < ∆

⇒ 8w(b) < r̄(x∗, θ∗p)− r̄(x∗−, θ∗p) (def. of ∆)

⇒ 8w(b) < r̄(x∗, θ∗p)− r̄(x̂−(b), θ∗p) (∵ r̄(x̂−(b), θ∗p) ≤ r̄(x∗−, θ∗p))

⇒ 8w(b) < r̄(x̂(b), θ∗p)− r̄(x̂−(b), θ∗p) (∵ x̂(b) = x∗)

⇒ 6w(b) < r̄(x̂(b), θ̂(b))− r̄(x̂−(b), θ̂(b)). (∵ E holds)

This means that the If condition on line 15 will evaluate to true and the algorithm will stop
and output an estimate ∆̂.

Now suppose the algorithm stops and does not output “threshold exceeded” which means
that the If conditions on line 12 and line 15 were both true at some episode b. Let x 6= x̂(b)
be arbitrary. We have the following chain of implications:

6w(b) < r̄(x̂(b), θ̂(b))− r̄(x̂−(b), θ̂(b)) (line 15)

⇒ 6w(b) < r̄(x̂(b), θ̂(b))− r̄(x, θ̂(b)) (x̂(b) unique maximizer by line 12)
⇒ 4w(b) < r̄(x̂(b), θ∗p)− r̄(x, θ∗p). (∵ E holds)

This means, along with Assumption 4, that x̂(b) = x∗. We also have,

6w(b) < r̄(x̂(b), θ̂(b))− r̄(x̂−(b), θ̂(b)) (line 15)

⇒ 6w(b) < r̄(x̂(b), θ̂(b))− r̄(x∗−, θ̂(b)) (∵ r̄(x̂−(b), θ̂(b)) ≥ r̄(x∗−, θ̂(b)))
⇒ 4w(b) < r̄(x̂(b), θ∗p)− r̄(x∗−, θ∗p) (∵ E holds)

⇒ 4w(b) < r̄(x∗, θ∗p)− r̄(x∗−, θ∗p) (∵ x̂(b) = x∗)

⇒ 4w(b) < ∆. (def. of ∆)

14



Now we prove that the output ∆̂ lies in the right range. We have

∆̂ = r̄(x̂(b), θ̂(b))− r̄(x̂−(b), θ̂(b)) (line 16)
≥ r̄(x̂(b), θ∗p)− r̄(x̂−(b), θ∗p)− 2w(b) (∵ E holds)

= r̄(x∗, θ∗p)− r̄(x̂−(b), θ∗p)− 2w(b) (∵ x̂(b) = x∗)

≥ r̄(x∗, θ∗p)− r̄(x∗−, θ∗p)− 2w(b) (∵ r̄(x̂−(b), θ∗p) ≤ r̄(x∗−, θ∗p))

≥ ∆− 2w(b) (def. of ∆)

≥ ∆

2
. (∵ w(b) < ∆/4)

Similarly,

∆̂ = r̄(x̂(b), θ̂(b))− r̄(x̂−(b), θ̂(b)) (line 16)

≤ r̄(x̂(b), θ̂(b))− r̄(x∗−, θ̂(b)) (∵ r̄(x̂−(b), θ̂(b)) ≥ r̄(x∗−, θ̂(b)))
= r̄(x∗, θ̂(b))− r̄(x∗−, θ̂(b)) (∵ x̂(b) = x∗)

≤ r̄(x∗, θ∗p)− r̄(x∗−, θ∗p) + 2w(b) (∵ E holds)

≤ ∆ + 2w(b) (def. of ∆)

≤ 3∆

2
. (∵ w(b) < ∆/4)

2. In this case T0 ≤ T1(δ) but it could still be that the algorithm stops not because the threshold
is exceeded but because line 12 and line 15 were true at some episode b. Clearly b < T0,
otherwise we would have output “threshold exceeded” and not produced an estimate ∆̂.
Under the event E, the previous part shows that if stopping occurs with an estimate ∆̂, it
must be that 4w(b) < ∆, i.e.

4

√
R2β2

σ log( 4e2b2

δ )

b
< ∆ ⇒ b >

16R2β2
σ

∆2
log

4e2

δ
= T2(δ).

This means T0 > b > T2(δ).

3. Finally, suppose Assumptions 1 through 3 hold but Assumption 4 fails. Event E still holds
with probability at least 1− δ. However, if there are at least two optimal actions then, under
E, their confidence intervals will always overlap and If condition on line 15 will never be
true. That means that the algorithm can only stop when the threshold T0 is exceeded.

7.2.2 Proof of Theorem 4

Proof. We break the proof into the two cases mentioned in the theorem statement.

Part 1: Assumption 4 fails. From Theorem 3 we know, that with probability at least 1 − δ,
Algorithm 2 outputs “threshold exceeded” in this case. Because of Eq. (22), we also have, for an
optimal action x∗:

|r̄(x̂(T0), θ∗p)− r̄(x∗, θ∗p)| ≤ 2w(T0)

which implies a total regret of

2w(T0)(T − T0|σ|) ≤ 2w(T0)T

in the remaining T −T0|σ| rounds since we execute line 5. The regret when Algorithm 2 was running
is bounded by RmaxT0|σ|. On the bad event, which occurs with probability at most 1− δ, the regret
is at most TRmax giving us a total expected regret of

2w(T0)T + T0|σ|Rmax + δTRmax = 2

√
R2β2

σ log(
4e2T 2

0

δ )

T0
T + T0|σ|Rmax + δTRmax

15



which is upper bounded by

2(2Rβσ|σ|2R2
maxT )2/3

√
log(4e2T 3) +Rmax

for T0 =
(

2RβσT
|σ|Rmax

)2/3

and δ = 1/T .

Part 2: Assumption 4 holds. Case A: T1(δ) < T0. In this case, according to Theorem 3, with
probability at least 1 − δ, Algorithm 2 finishes in T1(δ) episodes and outputs 0.5∆ ≤ ∆ ≤ 1.5∆.
This means ∆/36R2β2

σ ≤ h ≤ ∆2/4R2β2
σ. Therefore, by Theorem 7, we have, regret due to

Algorithm 1 is at most: ∑
x∈σ

∆x
36R2β2

σ log T

∆2
+

8e2R2β2
σ

∆2
.

Overall, the expected regret is bounded by

T1(δ)Rmax|σ|+
∑
x∈σ

∆x
36R2β2

σ log T

∆2
+

8e2R2β2
σ

∆2
+RmaxTδ.

For δ = 1/T , this becomes

256R2β2
σ

∆2
log

512e2R2β2
σT

∆2
Rmax|σ|+

∑
x∈σ

∆x
36R2β2

σ log T

∆2
+

8e2R2β2
σ

∆2
+Rmax.

Case B: T2(δ) ≤ T0 ≤ T1(δ). In this regime, Algorithm 2 can stop and output “threshold exceeded”,
in which case, expected regret is bounded, as in Part 1, by

2(2Rβσ|σ|2R2
maxT )2/3

√
log(4e2T 3) +Rmax.

However, it can also happen that Algorithm 2 stops and outputs 0.5∆ ≤ ∆ ≤ 1.5∆ with probability
at least 1− δ. In that case, total expected regret is bounded, as in Part 2, Case A, by

256R2β2
σ

∆2
log

512e2R2β2
σT

∆2
Rmax|σ|+

∑
x∈σ

∆x
36R2β2

σ log T

∆2
+

8e2R2β2
σ

∆2
+Rmax.

Note that the above bound scales as O(T1(δ)) for δ = 1/T , which is upper bounded by
O(T2(δ) log T2(δ)). But we know that T2(δ) ≤ T0 which means the bound is no larger
than O(T0 log T0) = O(T 2/3 log T ). So no matter what happens, regret is upper bounded by
O(T 2/3 log T ) in this case.

Case C: T0 ≤ T2(δ). With probability at least 1− δ, by Theorem 3, in this case, Algorithm cannot
stop and output ∆̂. Instead, it outputs “threshold exceeded”. When this happens, Algorithm 1 never
gets called and only exploitation rounds follow (line 5). Regret is bounded, just as in Part 1, by

2(2Rβσ|σ|2R2
maxT )2/3

√
log(4e2T 3) +Rmax.

16


