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Abstract

This paper proposes a computationally
tractable algorithm for learning infinite-
horizon average-reward linear mixture
Markov decision processes (MDPs) under
the Bellman optimality condition. Our
algorithm for linear mixture MDPs achieves
a nearly minimax optimal regret upper
bound of Õ(d

√
sp(v∗)T ) over T time steps

where sp(v∗) is the span of the optimal bias
function v∗ and d is the dimension of the
feature mapping. Our algorithm applies
the recently developed technique of running
value iteration on a discounted-reward MDP
approximation with clipping by the span.
We prove that the value iteration procedure,
even with the clipping operation, converges.
Moreover, we show that the associated
variance term due to random transitions can
be bounded even under clipping. Combined
with the weighted ridge regression-based pa-
rameter estimation scheme, this leads to the
nearly minimax optimal regret guarantee.

1 INTRODUCTION

Reinforcement learning (RL) with function approx-
imation has achieved remarkable success in a wide
range of areas, including video games (Mnih et al.,
2015), Go (Silver et al., 2017), robotics (Kober et al.,
2013), and autonomous driving (Yurtsever et al.,
2020). Such empirical progress has stimulated en-
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deavors to expand our theoretical understanding of RL
with function approximation.

As a first step toward establishing theoretical founda-
tions, linear function approximation frameworks have
received significant attention. The works on lin-
ear function approximation can be categorized based
on how linearity is assumed on the structure of the
underlying Markov decision process (MDP). There
are largely four settings: MDPs with a low Bell-
man rank (Jiang et al., 2017), linear MDPs (Yang
and Wang, 2019; Jin et al., 2020), linear mixture
MDPs (Jia et al., 2020; Ayoub et al., 2020; Zhou et al.,
2021c), and MDPs with a low inherent Bellman er-
ror (Zanette et al., 2020b).

Among them, notable progress has been made for lin-
ear mixture MDPs where the underlying transition
kernel and the reward function are assumed to be
parameterized as a linear function of some given fea-
ture mappings over state-action pairs or state-action-
state triplets. For the finite-horizon setting, Zhou
et al. (2021a) developed a nearly minimax optimal al-
gorithm. For the infinite-horizon discounted-reward
case, Zhou et al. (2021c) established a regret lower
bound. Shortly after this, Zhou et al. (2021b) an-
nounced an algorithm with a regret upper bound
matching the lower bound up to logarithmic factors.
For the infinite-horizon average-reward regime, Wu
et al. (2022) showed a regret lower bound of Ω(d

√
DT )

from a communicating MDP instance with diameter D
where d is the dimension of the feature map and T is
the horizon. Moreover, they designed an algorithm
that achieves a regret upper bound of Õ(d

√
DT ), es-

tablishing near minimax optimality for the class of
communicating MDPs.

For the infinite-horizon average-reward setting, how-
ever, the class of communicating MDPs is perhaps not
the most general set of MDPs for which a learning algo-
rithm can guarantee a sublinear regret (Bartlett and
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Tewari, 2009). Although the diameter captures the
number of steps needed to recover from a bad state to
a good state, the actual regret incurred while recov-
ering is better represented by the span sp(v∗) of the
optimal bias function v∗ (Fruit et al., 2018). While
the diameter is an upper bound on the span, it can be
arbitrarily larger than the span, and in fact, a weakly
communicating MDP can have a finite span but an
infinite diameter (Bartlett and Tewari, 2009).

The recent framework of He et al. (2024), LOOP, can be
applied to infinite-horizon average-reward linear mix-
ture MDPs of bounded span. Although LOOP guaran-
tees a sublinear regret upper bound that depends on
the span, LOOP is hardly practical as it relies on solv-
ing a complex constrained optimization problem. This
motivates the following question.

Does there exist a computationally efficient, nearly
minimax optimal algorithm for learning

infinite-horizon average-reward linear mixture MDPs
of bounded span?

This paper answers the question affirmatively. Let us
summarize our contributions in Table 1 and as follows.

• We propose a computationally efficient algo-
rithm, upper-confidence linear kernel reinforce-
ment learning with clipping (UCLK-C; Algo-
rithm 1) that achieves a regret upper bound of

Õ(d
√
sp(v∗)T ).

• We deduce a regret lower bound of Ω(d
√
sp(v∗)T )

by refining the regret lower bound analysis of Wu
et al. (2022). This shows that UCLK-C is nearly
minimax optimal.

• UCLK-C runs with a novel value iteration scheme
by applying the clipping operation within dis-
counted extended value iteration. The clipping
operation due to Hong et al. (2025) is for con-
trolling the span of intermediate value functions,
which is crucial to provide a bounded regret for
MDPs of bounded span. The clipping opera-
tion is much simpler to implement than con-
strained optimization-based frameworks to con-
trol the span. To run discounted extended value
iteration, we approximate a given average-reward
MDP by a discounted-reward MDP, as in UCLK

due to Zhou et al. (2021c).

• We prove that for linear mixture MDPs, the dis-
counted extended value iteration converges even
with clipping. Moreover, we show that the as-
sociated variance term due to random transi-
tions can be bounded even under the clipping

operation. Combined with the variance-aware
weighted ridge regression-based parameter esti-
mation scheme due to Wu et al. (2022), we deduce
our nearly minimax optimal regret upper bound.

The idea of approximating an average-reward MDP by
a discounted-reward MDP has been adopted for the
tabular case (Wei et al., 2020; Zhang and Xie, 2023)
and used for learning linear MDPs (Hong et al., 2025).
Clipping an optimistic value function estimator to con-
trol its size is already a common practice when design-
ing an algorithm for finite-horizon and infinite-horizon
discounted-reward MDPs. However, the clipping op-
eration in our algorithm sets the threshold in a dif-
ferent way to control the span of value functions, not
their sizes, and it was first introduced by Hong et al.
(2025). For linear MDPs, due to the clipping opera-
tion, convergence of value iteration is not guaranteed.
In contrast, for linear mixture MDPs, we establish con-
vergence of value iteration even with clipping.

2 RELATED WORK

Reinforcement Learning with Linear Function
Approximation Recently, there has been remark-
able progress in reinforcement learning frameworks
with linear function approximation (Jiang et al., 2017;
Yang and Wang, 2019, 2020; Jin et al., 2020; Wang
et al., 2021; Modi et al., 2020; Dann et al., 2018; Du
et al., 2021; Sun et al., 2019; Zanette et al., 2020a,b;
Cai et al., 2020; Jia et al., 2020; Ayoub et al., 2020;
Weisz et al., 2021; Zhou et al., 2021c,a; He et al., 2021;
Zhou and Gu, 2022; Hu et al., 2022; He et al., 2023;
Agarwal et al., 2023; Hong et al., 2025). These works
develop frameworks for MDP classes with certain lin-
ear structures. Among them, the most relevant to this
paper are linear and linear mixture MDPs. Linear and
linear mixture MDPs assume that the transition prob-
ability and the reward function are linear in some fea-
ture mappings over state-action pairs or state-action-
state triplets. Although the two classes are closely re-
lated, one cannot be covered by the other (Zhou et al.,
2021c). For learning infinite-horizon average-reward
linear MDPs, Wei et al. (2021) developed several algo-
rithms, including FOPO. FOPO achieves the best-known
regret upper bound, but it needs to solve a fixed-point
equation at each iteration, making the algorithm in-
tractable. Recently, Hong et al. (2025) proposed a
provably efficient algorithm that achieves the best-
known regret upper bound for the setting. For learning
infinite-horizon average-reward linear mixture MDPs,
Wu et al. (2022) developed an algorithm that is shown
to be minimax optimal for the communicating case.
He et al. (2024) proposed an algorithm for RL with
general function approximation, LOOP, incorporating
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Table 1: Summary of Our Results on Regret Upper and Lower Bounds for Learning Linear Mixture MDPs

Setting Regret Upper Bound Regret Lower Bound

Communicating (bounded diameter) Õ
(
d
√
DT

)
(Wu et al., 2022) Ω

(
d
√
DT

)
(Wu et al., 2022)

Bellman optimality (bounded span) Õ
(
d
√

sp(v∗)T
)

(Theorem 1) Ω
(
d
√

sp(v∗)T
)

(Theorem 2)

linear and linear mixture MDPs as subclasses.

Infinite-Horizon Average-Reward Reinforce-
ment Learning The seminal work by Auer et al.
(2008) pioneered algorithmic frameworks for model-
based online learning of MDPs. They proved a regret
lower bound of Ω(

√
DSAT ) where S is the number of

states and A is the number of actions. Then they
provided UCRL2 that runs with constructing some
optimistic sets for estimating the transition probabil-
ity and guarantees a regret bound of Õ(DS

√
AT ).

Bartlett and Tewari (2009) considered the class of
MDPs of bounded span, for which they proposed
an algorithm that achieves a regret upper bound of
Õ(sp(v∗)S

√
AT ). Since then, there has been a long

line of work toward closing the gap between regret
upper and lower bounds (Filippi et al., 2010; Talebi
and Maillard, 2018; Fruit et al., 2018, 2020; Bourel
et al., 2020; Zhang and Ji, 2019; Agrawal and Jia,
2017; Ouyang et al., 2017a; Abbasi-Yadkori et al.,
2019; Wei et al., 2021; Zhang and Xie, 2023; Boone
and Zhang, 2024). In particular, Fruit et al. (2018)
and Zhang and Ji (2019) refined the regret lower
bound to Ω(

√
sp(v∗)SAT ). The first result with a

regret upper bound matching the lower bound is due
to Zhang and Ji (2019), but their algorithm is not
tractable. Recently, Boone and Zhang (2024) devel-
oped a tractable algorithm that guarantees a regret
bound of Õ(

√
sp(v∗)SAT ).

3 PRELIMINARIES

Notations Given a vector x ∈ Rd and a positive
semidefinite matrix A ∈ Rd×d, ∥x∥2 is the ℓ2-norm,

∥x∥A =
√
x⊤Ax, and ∥A∥2 is the spectral norm. For

any positive integers m,n with m < n, [n] and [m : n]
denote {1, . . . , n} and {m, . . . , n}, respectively.

Infinite-Horizon Average-Reward MDP We
consider an MDP given by M = (S,A,P, r) where S is
the state space, A is the action space, P(· | s, a) speci-
fies the transition probability function for state s with
taking action a, and r(s, a) ∈ [0, 1] is the reward from
action a at state s. A (stochastic) stationary policy is
given as a mapping π : S → ∆(A) where ∆(A) is the
set of probability measures on A, and we use notation

π(a | s) for the probability of taking action a at state
s under policy π. When π is a deterministic policy, we
write that a = π(s) with abuse of notation where a is
the action with π(a | s) = 1. At each time step t, an
algorithm takes action at at given state st, after which
it observes the next state st+1 drawn from distribu-
tion P(· | st, at). Then the cumulative reward over

T steps is
∑T

t=1 r(st, at). Then the (long-term) aver-

age reward is given by lim infT→∞ E[
∑T

t=1 r(st, at)]/T ,
which can be maximized by a deterministic stationary
policy (See Puterman, 2014). We denote by Jπ(s) =

lim infT→∞ E[
∑T

t=1 r(st, at) | s1 = s]/T the average
reward of a stationary policy π starting from initial
state s.

In this paper, we focus on the class of MDPs satisfying
the following form of Bellman optimality condition.
We assume that there exist J∗ ∈ R, v∗ : S → R, and
q∗ : S ×A → R such that for all (s, a) ∈ S ×A,

J∗ + q∗(s, a) = r(s, a) + Es′∼P(·|s,a) [v
∗(s′)] ,

v∗(s) = max
a∈A

q∗(s, a).
(1)

Under the Bellman optimality condition, the opti-
mal average reward J∗(s) := maxπ J

π(s) is invari-
ant with the initial state s, and J∗(s) = J∗ for any
s ∈ S (Bartlett and Tewari, 2009). Moreover, the
class of weakly communicating MDPs satisfies the
condition (See Puterman, 2014). There indeed exist
other general classes of MDPs with which the con-
dition holds (Hernandez-Lerma, 2012, Section 3.3).
For any function h : S → R, we define its span as
sp(h) := maxs∈S h(s) − mins∈S h(s). Then follow-
ing the literature on infinite-horizon average-reward
RL (Auer et al., 2008), we consider the regret func-

tion Regret(T ) = T · J∗ −
∑T

t=1 r(st, at) to assess the
performance of an algorithm.

Discounted-Reward MDP We also consider the
discounted cumulative reward of a stationary policy
π given by V π(s) = E[

∑∞
t=1 γ

t−1r(st, at) | s1 =
s] where s is the initial state and γ ∈ (0, 1) is a
discount factor. Similarly, we consider Qπ(s, a) =
E[
∑∞

t=1 γ
t−1r(st, at) | (s1, a1) = (s, a)]. Then we de-

fine the optimal value function V ∗ and the optimal
action-value function Q∗ as V ∗(s) = maxπ V

π(s) and
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Q∗(s, a) = maxπ Q
π(s, a) for (s, a) ∈ S × A. It is

known that there exists a deterministic stationary pol-
icy that gives rise to V ∗ and Q∗ (See Puterman, 2014;
Agarwal et al., 2021). Moreover, V ∗ and Q∗ satisfy
the following Bellman optimality equation.

Q∗(s, a) = r(s, a) + γEs′∼P(·|s,a) [V
∗(s′)] ,

V ∗(s) = max
a∈A

Q∗(s, a).
(2)

Our approach is to approximate an average-reward
MDP by a discounted-reward MDP. In fact, as the
discount factor gets close to 1, the discounted cumu-
lative reward converges to the average reward for a
stationary policy (See Puterman, 2014).

Linear Mixture MDPs In this work, we focus on
linear mixture MDPs, defined formally as follows.

Assumption 1. (Linear Mixture MDP, Zhou et al.,
2021a; Wu et al., 2022) There is a known feature map
ϕ : S × A × S → Rd such that for any (s, a, s′) ∈
S ×A× S,

P(s′ | s, a) = ⟨ϕ(s, a, s′), θ∗⟩

where θ∗ ∈ Rd is an unknown vector.

We assume that the reward function is deterministic
and known to the decision-maker, but our results eas-
ily extend to the setting where the reward function is
given by r(s, a) = ⟨φ(s, a), θ∗⟩ for some feature map
φ : S × A → Rd. For any function F : S → R, we use
the following shorthand notations.

[PF ](s, a) = Es′∼P(·|s,a)[F (s′)]

[VF ](s, a) = [PF 2](s, a)− ([PF ](s, a))2

Defining ϕF (s, a) =
∫
s′
ϕ(s, a, s′)F (s′)ds′, we have

⟨ϕF (s, a), θ
∗⟩ =

∫
⟨ϕ(s, a, s′), θ∗⟩F (s′)ds′ = [PF ](s, a).

Therefore, we also have

[VF ](s, a) = ⟨ϕF 2(s, a), θ∗⟩ − ⟨ϕF (s, a), θ
∗⟩2 .

Following Wu et al. (2022), we assume that the scales
of the parameters are bounded as follows.

Assumption 2. θ∗ satisfies ∥θ∗∥2 ≤ Bθ for some
Bθ ∈ R. Moreover, for any H > 0, F : S → [0, H],
and (s, a) ∈ S ×A, it holds that ∥ϕF (s, a)∥2 ≤ H.

4 THE PROPOSED ALGORITHM

In this section, we present our algorithm, UCLK-C, de-
scribed in Algorithm 1. As common in algorithms for
learning infinite-horizon average-reward MDPs such as

UCRL2 (Auer et al., 2008) and UCRL2-VTR (Wu et al.,
2022), UCLK-C also proceeds with episodes. Follow-
ing UCRL2-VTR, when to start the next episode is de-
termined based on the Gram matrix (line 14). Each
episode of UCLK-C consists of two phases, the plan-
ning phase (lines 4–13) and the execution phase (lines
14–21). During the planning phase, we run extended
value iteration for a discounted MDP with estimated
parameters. Then, based on value functions deduced
from the planning phase, we take and execute a greedy
deterministic (non-stationary) policy for the execution
phase. What follows provides a more detailed discus-
sion of the components of UCLK-C.

Discounted Value Iteration As in Hong et al.
(2025), we apply value iteration on a discounted-
reward approximation of the underlying MDP. For
each episode k, we take a confidence ellipsoid Ck
(line 4) over which we run extended value iteration
(line 7). We make sure that any θ ∈ Ck induces a
probability distribution, i.e. Ck ⊆ B where

B =

θ ∈ Rd :

〈∫
ϕ(s, a, s′)ds′, θ

〉
= 1,

⟨ϕ(s, a, s′), θ⟩ ≥ 0

∀(s, a, s′)

 .

As a result, we get that Q(n)(s, a) ≤ (1 − γ)−1 for
any (s, a) ∈ S × A and n. Note that we apply multi-
ple rounds of value iteration. We will show that even
with the clipping operation (line 9), the value iteration
procedure stated in lines 6–10 converges.

Clipping Operation In each round of value itera-
tion, UCLK-C applies the clipping operation stated in
line 9. Note that the value function Ṽ (n) from line 8
does not necessarily have a bounded span. After the
clipping operation, it is clear that the span of V (n)

from line 9 becomes bounded above as sp(V (n)) ≤ H.
As a result, the re-centering step in line 12 guarantees
that Wk(s) ∈ [0, H] for any s ∈ S, which is crucial to
parameterize estimation errors as a function of H, not
(1 − γ)−1 which is set as large as O(

√
T ). Note that

the Gram matrix update steps (lines 17–18) are with
respect to Wk, not Vk. We choose any upper bound
H on 2 · sp(v∗) where v∗ is the optimal bias function
from the Bellman optimality condition (1).

Variance-Aware Ridge Regression-Based Pa-
rameter Estimation We closely follow the Bern-
stein inequality-based estimation scheme of Wu et al.
(2022). The idea is to build confidence ellipsoids for
θ∗ based on a Bernstein-type concentration inequality
for linear bandits. To be more precise, we apply the
following lemma for vector-valued martingales.

Lemma 1. (Theorem 4.1, Zhou et al., 2021a) Let
{Gt}∞t=1 be a filtration, {xt, ηt}t≥1 a stochastic process
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Algorithm 1 Upper-Confidence Linear Kernel Reinforcement Learning with Clipping (UCLK-C)

1: Input: upper bound H of 2 · sp(v∗), feature map ϕ : S × A × S → Rd, confidence level δ ∈ (0, 1), discount
factor γ ∈ [0, 1), number of rounds N , and parameters λ,Bθ

2: Initialize: t← 1, Σ̂1, Σ̃1 ← λId, b̂1, b̃1, θ̂1, θ̃1 ← 0, and observe the initial state s1 ∈ S
3: for episodes k = 1, 2, . . . , do
4: Set tk = t and Ck = Ĉtk given in (3)
5: Initialize Q(0)(·, ·)← (1− γ)−1 and V (0)(·)← (1− γ)−1

6: for rounds n = 1, 2, . . . , N do
7: Set Q(n)(·, ·)← r(·, ·) + γ ·maxθ∈Ck

⟨ϕV (n−1)(·, ·), θ⟩
8: Set Ṽ (n)(·)← maxa∈A Q(n)(·, a)
9: Set V (n)(·)← min{Ṽ (n)(·),mins′∈S Ṽ (n)(s′) +H}

10: end for
11: Set Qk(·, ·)← Q(N)(·, ·) and Vk(·)← V (N)(·)
12: Set Wk(·)← Vk(·)−mins′∈S Vk(s

′)
13: Take a deterministic policy πk given by πk(·) ∈ argmaxa∈A Qk(·, a)
14: while det(Σ̂t) ≤ 2 det(Σ̂tk) do
15: Take action at ← πk(st), receive reward r(st, at) and next state st+1 ∼ P(·|st, at)
16: Set σ̄t ←

√
max

{
H2/d, [V̄tWk](st, at) + Et

}
where [V̄tWk](st, at) and Et are given as in (4) and (5)

17: Set Σ̂t+1 ← Σ̂t + σ̄−2
t ϕWk

(st, at)ϕWk
(st, at)

⊤ and b̂t+1 ← b̂t + σ̄−2
t Wk(st+1)ϕWk

(st, at)

18: Set Σ̃t+1 ← Σ̃t + ϕW 2
k
(st, at)ϕW 2

k
(st, at)

⊤ and b̃t+1 ← b̃t +W 2
k (st+1)ϕW 2

k
(st, at)

19: Set θ̂t+1 ← Σ̂−1
t+1b̂t+1 and θ̃t+1 ← Σ̃−1

t+1b̃t+1

20: Set t← t+ 1
21: end while
22: end for

such that xt ∈ Rd is Gt-measurable while ηt ∈ R is
Gt+1-measurable. For t ≥ 1, let yt = ⟨xt, µ

∗⟩ + ηt
where |ηt| ≤ R, E[ηt | Gt] = 0, E[η2t | Gt] ≤ σ2, and
∥xt∥2 ≤ L for some fixed R, L, σ, λ > 0 and µ∗ ∈ Rd.
Then, for any 0 < δ < 1, it holds with probability at
least 1− δ that for every t ≥ 1,

∥µt − µ∗∥Zt
≤ βt +

√
λ∥µ∗∥2

where βt = 8σ
√
d log(1 + tL2/(dλ)) log(4t2/δ) +

4R log(4t2/δ), µt = Z−1
t bt, Zt = λId +

∑t
i=1 xix

⊤
i ,

and bt =
∑t

i=1 yixi.

Note that θ̂t+1 in line 19 corresponds to µt in Lemma 1
by setting (xj , yj) = (σ̄−1

j ϕWi
(sj , aj), σ̄

−1
j Wi(sj+1))

for j ∈ [ti : ti+1 − 1] and i ∈ [k]. Then θ̂tk is the
solution of the following weighted ridge regression.

min
θ∈Rd

λ∥θ∥22 +
k−1∑
i=1

ti+1−1∑
j=ti

(Wi(sj+1)− ⟨ϕWi
(sj , aj), θ⟩)2

σ̄2
j

.

Here, σ̄2
j is an estimator of the (conditional) variance

of Wi(sj+1), given by [VWi](sj , aj).

We will choose the value of σ̄t (line 16) for t ∈
[tk, tk+1 − 1] so that |ηt| ≤

√
d, E[η2t | Gt] ≤ 1,

and |xt| ≤
√
d, where ηt = yt − ⟨xt, θ

∗⟩ and Gt =
σ(s1, . . . , st) is the σ-algebra generated by s1, . . . , st.

Then, based on Lemma 1, we may construct

Ĉt =
{
θ ∈ B : ∥θ − θ̂t∥Σ̂t

≤ β̂t

}
(3)

where we set

β̂t = 8
√
d log(1 + t/λ) log(4t2/δ)

+ 4
√
d log(4t2/δ) +

√
λBθ.

We make sure that σ̄t is strictly positive. Moreover,
to guarantee E[η2t | Gt] ≤ 1, we take the right quantity
for σ̄t so that σ̄2

t is an upper bound on the variance
term given by

[VWk](st, at) = ⟨ϕW 2
k
(st, at), θ

∗⟩ − ⟨ϕWk
(st, at), θ

∗⟩2.

To estimate this, we first take [V̄tWk](st, at) given by

[V̄tWk](st, at) =
[
⟨ϕW 2

k
(st, at), θ̃t⟩

]
[0,H2]

−
[
⟨ϕWk

(st, at), θ̂t⟩
]2
[0,H]

(4)

where [x][a,b] denotes the projection of x onto the in-

terval [a, b] and θ̃t (line 19) corresponds to µt−1 in
Lemma 1 by setting (xj , yj) = (ϕW 2

i
(sj , aj),W

2
i (sj+1))

for j ∈ [ti : ti+1 − 1] and i ∈ [k]. Note that θ̃t is the
solution of the (unweighted) ridge regression problem
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with contexts ϕW 2
i
(sj , aj) and targets W 2

i (sj+1) for
j ∈ [ti : ti+1 − 1] and i ∈ [k].

The last ingredient is to take an upper bound Et on
the error term |[VWk](st, at)−[V̄tWk](st, at)|. We take

Et = min
{
H2, 2Hβ̌t∥ϕWk

(st, at)∥Σ̂−1
t

}
+min

{
H2, β̃t∥ϕW 2

k
(st, at)∥Σ̃−1

t

} (5)

where we set

β̌t = 8d
√
log(1 + t/λ) log(4t2/δ)

+ 4
√
d log(4t2/δ) +

√
λBθ,

β̃t = 8H2
√
d log(1 + tH2/(dλ)) log(4t2/δ)

+ 4H2 log(4t2/δ) +
√
λBθ.

Here, we may observe from Lemma 1 that ∥θ∗−θ̂t∥Σ̂t
≤

β̌t and ∥θ∗ − θ̃t∥Σ̂t
≤ β̃t with high probability, based

on which we prove that Et provides an upper bound
on the error term.

Finally, we set the value of σ̄t as

σ̄t =
√

max
{
H2/d, [V̄tWk](st, at) + Et

}
.

Note that σ̄t is well-defined because the term inside
the square root is strictly positive. Moreover, σ̄2

t is
greater than or equal to [V̄tWk](st, at) + Et which is
an upper bound on the variance term [VWk](st, at).
To formalize this, we prove the following lemma.

Lemma 2. With probability at least 1 − 3δ, it holds
that for every t ∈ [T ],

|[VWk](st, at)− [V̄tWk](st, at)| ≤ Et, θ∗ ∈ Ĉt.

Computational Efficiency Our algorithm UCLK-
C runs in episodes with variable length and the num-
ber of episodes is O(d log T ). In each episode, we run
N = Θ(

√
HT/d log T ) steps of value iterations to ob-

tain a policy to execute in the episode. The compu-
tational bottleneck when running a step of value iter-
ation is computing maxθ∈Ck

⟨ϕV (·, ·), θ⟩ where Ck is of

the form {θ ∈ B : ∥θ − θ̂∥Σ ≤ β} and B = {θ ∈ Rd :
⟨
∫
ϕ(s, a, s′′)ds′′, θ⟩ = 1, ⟨ϕ(s, a, s′), θ⟩ ≥ 0,∀(s, a, s′)}.

This optimization is also used by Zhou et al. (2021a);
Wu et al. (2022), and as they discuss, using the
fact that Ck is convex, we can solve the optimiza-
tion problem efficiently. The bottleneck is computing
ϕV (·, ·) =

∫
ϕ(·, ·, s′)V (s′)ds, which takes O(S) com-

putations where S is the size of the state space, which
is also incurred by Wu et al. (2022). Overall, our algo-
rithm runs in time polynomial in the problem param-
eters d, S,A, T . This is an improvement over the gen-
eral algorithm LOOP (He et al., 2024) reduced to the

linear mixture MDP setting, as they require solving
an intractable max-min problem which requires time
exponential in d when brute-forcing as discussed by
Hong et al. (2025).

5 REGRET ANALYSIS OF UCLK-C

Let us state the following regret bound of UCLK-C for
linear mixture MDPs.

Theorem 1. Set H ≥ 2 · sp(v∗), γ = 1 −
√
d/
√
HT ,

N ≥
√
HT/d log(

√
T/d
√
H), and λ = 1/B2

θ . Then
UCLK-C guarantees with probability at least 1− 5δ that
for any linear mixture MDP with any initial state,

Regret(T ) = Õ
(
d
√
HT +H

√
dT + d7/4HT 1/4

)
where the Õ(·) hides logarithmic factors in THBθ/δ.

By taking H = 2 · sp(v∗), as a corollary of Theorem 1,
we deduce that

Regret(T ) = Õ
(
d
√

sp(v∗)T
)

where Õ(·) hides logarithmic factors in T sp(v∗)Bθ/δ.
The rest of this section gives a proof overview of The-
orem 1.

Remark 1. Our result requires the knowledge of an
upper bound H of 2 · sp(v∗). Such a knowledge of an
upper bound is a commonly made assumption in the
infinite-horizon average-reward setting (Bartlett and
Tewari, 2009). A well-known upper bound of the span
sp(v∗) is the diameter of the MDP, which is defined
to be the expected number of steps needed to transition
between any two states in the worst case. Relaxing
the assumption of the knowledge of sp(v∗) or its upper
bound has only been achieved recently in the tabular
setting (Boone and Zhang, 2024). We leave relaxing
the assumption in the linear mixture MDP setting as
future work.

Let us start by establishing convergence of the dis-
counted extended value iteration procedure with clip-
ping. For episode k, we consider the value functions
Ṽ (n) and V (n) for n ∈ [N ] (lines 7–9 of Algorithm 1).

Recall that V (n) is obtained from Ṽ (n) after applying
the clipping operation. It turns out that the clipping
operation is a contraction map.

Lemma 3. For any n ∈ [N ], it holds that

max
s∈S

(V (n−1)(s)−V (n)(s)) ≤ max
s∈S

(Ṽ (n−1)(s)−Ṽ (n)(s)).

Remark 2. The contraction property, crucial for
achieving minimax regret bound, is possible only be-
cause we use extended value iteration, rather than an
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optimistic value iteration that adds bonus terms at each
iteration. With optimistic value iteration, as in Hong
et al. (2025), the difference in successive value func-
tions is lower bounded by a bonus term, preventing the
contraction argument from holding.

Recall that Qk is the action-value function for the kth
episode and that Vk denotes the value function for the
kth episode, obtained from clipping Ṽk with Ṽk(s) =
maxa∈A Qk(s, a) for s ∈ S (line 11 of Algorithm 1).
Based on Lemma 3, we prove the following lemma.

Lemma 4. Suppose that θ∗ ∈ Ĉt for t ∈ [T ] where
Ct is defined as in (3). Then for each episode k and
tk ≤ t < tk+1 − 1, it holds that

Qk(st, at) ≤ r(st, at) + γmax
θ∈Ck

⟨ϕVk
(st, at), θ⟩+ γN .

With Lemma 4, we may provide a decomposition of
the regret function as follows. Let KT denote the total
number of distinct episodes over the horizon of T time
steps. For simplicity, we assume that the last time
step of the last episode and that time step T + 1 is
the beginning of the (KT +1)th episode, i.e., tKT+1 =
T + 1. Then it follows from Lemma 4 that

Regret(T ) = T · J∗ −
T∑

t=1

r(st, at)

≤ TγN +

KT∑
k=1

tk+1−1∑
t=tk

(J∗ − (1− γ)Vk(st+1))︸ ︷︷ ︸
I1

+

KT∑
k=1

tk+1−1∑
t=tk

(Vk(st+1)−Qk(st, at))︸ ︷︷ ︸
I2

+ γ

KT∑
k=1

tk+1−1∑
t=tk

(⟨ϕVk
(st, at), θ

∗⟩ − Vk(st+1))︸ ︷︷ ︸
I3

+ γ

KT∑
k=1

tk+1−1∑
t=tk

max
θ∈Ck

⟨ϕVk
(st, at), θ − θ∗⟩︸ ︷︷ ︸

I4

.

Regret Term I1 Recall that V ∗ andQ∗ are the opti-
mal value function and the optimal action-value func-
tion for the discounted-reward setting with discount
factor γ. The following lemma proves that Vk and Qk

are optimistic estimators of V ∗ and Q∗, respectively.

Lemma 5. Suppose that θ∗ ∈ Ĉt for t ∈ [T ] where Ĉt is
defined as in (3). Then for each episode k, 1/(1−γ) ≥
Vk(s) ≥ V ∗(s) and 1/(1− γ) ≥ Qk(s, a) ≥ Q∗(s, a).

Lemma 5 implies that J∗ − (1 − γ)Vk(st+1) ≤ J∗ −
(1 − γ)V ∗(st+1). This can be further bounded above
based on the following lemma.

Lemma 6. (Lemma 2, Wei et al., 2020) Let J∗ and
v∗ be the optimal average reward and the optimal bias
function given in (1), and let V ∗ be the optimal dis-
counted value function given in (2) with discount fac-
tor γ ∈ [0, 1). Then it holds that

max
s∈S
|J∗ − (1− γ)V ∗(s)| ≤ (1− γ)sp(v∗),

sp(V ∗) ≤ 2 · sp(v∗).

Lemma 6 offers a tool to bridge an infinite-horizon
average-reward MDP and its discounted-reward MDP
approximation. In particular, we deduce that I1 ≤
T (1− γ)sp(v∗) ≤ d

√
sp(v∗)T .

Regret Term I2 Note that Vk(st+1) ≤ Ṽk(st+1) =
Qk(st+1, at+1) for t ∈ [tk : tk+1 − 2], which leads to a
telescoping structure. To be precise, we have

I2 ≤
KT∑
k=1

tk+1−2∑
t=tk

(Qk(st+1, at+1)−Qk(st, at))

+

KT∑
k=1

(
1

1− γ
−Qk(stk+1−1, atk+1−1)

)

= −
KT∑
k=1

Qk(stk , atk) +
KT

1− γ
.

The following lemma gives an upper bound on the
number of episodes KT .

Lemma 7. If λ = 1/B2
θ , then K(T ) ≤ 1 + d log(1 +

TH2B2
θ/d).

Then it follows form Lemma 7 that I2 = Õ(d
√
HT )

where Õ(·) hides a logarithmic factor in THBθ.

Regret Term I3 We first observe that

⟨ϕVk
(st, at), θ

∗⟩ − min
s′∈S

Vk(s
′) = ⟨ϕWk

(st, at), θ
∗⟩

since ⟨ϕVk
(st, at), θ

∗⟩ = [PVk](st, at). This implies that

I3 = γ

KT∑
k=1

tk+1−1∑
t=tk

(⟨ϕWk
(st, at), θ

∗⟩ −Wk(st+1))︸ ︷︷ ︸
ηt

.

Then {ηt}Tt=1 is a martingale difference sequence.
Moreover, |ηt| ≤ H as Wk(s) ∈ [0, H] for any s ∈ S.
Therefore, applying the Azuma-Hoeffding inequality,
we deduce the following upper bound on I3.

Lemma 8. It holds with probability at least 1− δ that
I3 ≤ H

√
2T log(1/δ).
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Regret Term I4 Let us sketch the idea of how
the term I4 can be bounded while a more rigorous
proof is given in the appendix. Any θ ∈ Ck in-
duces a probability distribution, which implies that
⟨ϕVk

(st, at), θ − θ∗⟩ = ⟨ϕWk
(st, at), θ − θ∗⟩ ∈ [−H,H].

Moreover, assuming that θ∗ ∈ Ck based on Lemma 2,

⟨ϕWk
(st, at), θ − θ∗⟩

≤ ∥ϕWk
(st, at)∥Σ̂−1

t

(
∥θ − θ̂tk∥Σ̂t

+ ∥θ̂tk − θ∗∥Σ̂t

)
≤ 2 ∥ϕWk

(st, at)∥Σ̂−1
t

(
∥θ − θ̂tk∥Σ̂tk

+ ∥θ̂tk − θ∗∥Σ̂tk

)
≤ 4β̂T σ̄t

∥∥σ̄−1
t ϕWk

(st, at)
∥∥
Σ̂−1

t

where the first inequality is from the Cauchy-Schwarz
inequality, the second one holds because time step t is
in episode k and thus det(Σ̂t) ≤ 2 det(Σ̂tk), and the

third one follows from θ∗, θ ∈ Ck and β̂tk ≤ β̂T . Then
we may argue that I4 is less than or equal to

KT∑
k=1

tk+1−1∑
t=tk

min
{
H, 4β̂T σ̄t

∥∥σ̄−1
t ϕWk

(st, at)
∥∥
Σ̂−1

t

}

≤ 4β̂T

KT∑
k=1

tk+1−1∑
t=tk

σ̄t min
{
1,
∥∥σ̄−1

t ϕWk
(st, at)

∥∥
Σ̂−1

t

}
≤ 4β̂T×√√√√ T∑

t=1

σ̄2
t︸ ︷︷ ︸

J1

√√√√KT∑
k=1

tk+1−1∑
t=tk

min
{
1,
∥∥σ̄−1

t ϕWk
(st, at)

∥∥2
Σ̂−1

t

}
︸ ︷︷ ︸

J2

where the first inequality holds because H ≤ 4β̂T σ̄t

and the second one is by the Cauchy-Schwarz inequal-
ity. Here, we deduce from (Lemma 11, Abbasi-yadkori
et al., 2011) that J2 ≤

√
2d log(1 + T/λ). To get an

upper bound on J1, we show the following two lemmas.

Lemma 9. Suppose that the event of Lemma 2 holds
and that

∑KT

k=1

∑tk+1−1
t=tk

(
[PW 2

k ](st, at)−W 2
k (st+1)

)
≤

H2
√
2T log(1/δ). Then it holds that

KT∑
k=1

tk+1−1∑
t=tk

[VWk](st, at) = Õ
(
HT +H2d

√
T
)

where Õ(·) hides logarithmic factors in T/(δλ).

Lemma 9 gives an upper bound on the variance term
due to random transitions. We remark that the bound
holds true even under our extended value iteration
scheme with discounting and clipping.

Lemma 10. Suppose that the event of Lemma 2 holds.
Then it holds that

T∑
t=1

Et = Õ
(
d3/2H2

√
T
)

where Õ(·) hides logarithmic factors in TH/λ.

Combining the above results, it holds that

I4 = Õ
(
d
√
HT +H

√
dT + d7/4HT 1/4

)
where Õ(·) hides logarithmic factors in THBθ/δ.

6 REGRET LOWER BOUND

We deduce our regret lower bound based on the same
hard-to-learn MDP instance due to Wu et al. (2022),
illustrated in Figure 1. We derive the result based on
the observation that for the MDP instance, the span
of the underlying optimal bias function coincides with
the diameter up to a constant multiplicative factor.

Remark 3. In Wu et al. (2022), the authors estab-
lish a lower bound in terms of the diameter D for the
linear mixture MDP setting and the linear MDP set-
ting, noting that their approach can be adapted to yield
a lower bound in terms of the span sp(v∗). Here, we
provide a direct proof for such a lower bound in terms
of the span sp(v∗).

There are two states x0 and x1 as in Figure 1. The ac-
tion space is given by A = {−1, 1}d−1, and the reward
function is given by r(x0, a) = 0 and r(x1, a) = 1 for
any a ∈ A. We set the transition core θ̄ as

θ̄ =

(
θ

α
,
1

β

)
where θ ∈

{
− ∆

d− 1
,

∆

d− 1

}d−1

,

with

∆ =
(d− 1)

45
√
(2T log 2)/(5δ)

,

α =
√
∆/((d− 1)(1 + ∆)), and β =

√
1/(1 + ∆).

The feature vector is given by ϕ(x0, a, x0) =
(−αa, β(1− δ)), ϕ(x0, a, x1) = (αa, βδ), ϕ(x1, a, x0) =
(0, βδ), and ϕ(x1, a, x1) = (0, β(1− δ)).

As a higher stationary probability at state x1 means a
larger average reward, choosing the action a that sat-
isfies ⟨a, θ⟩ = ∆ is optimal. Hence, under the optimal
policy, the stationary distribution is given by

(µ∗(x0), µ
∗(x1)) =

(
δ

2δ +∆
,
δ +∆

2δ +∆

)
,

and therefore, the optimal average reward is given by

J∗ =
δ +∆

2δ +∆
.

Moreover, we may observe that

(v∗(x0), v
∗(x1)) =

(
0,

1

2δ +∆

)
,

(q∗(x0, a), q
∗(x1, a)) =

(
⟨a, θ⟩ −∆

2δ +∆
,

1

2δ +∆

)
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x0 x1 x0 x1

δ + ⟨a, θ⟩ δ
1− δ − ⟨a, θ⟩ 1− δ

Figure 1: Illustration of the Hard-to-Learn Infinite-Horizon MDP Instance

satisfy the Bellman optimality condition (1). In par-
ticular, we have

sp(v∗) =
1

2δ +∆
.

When T ≥ 16(d − 1)2δ−1/2025, we have ∆ ≤ δ/3.
Therefore, under this construction, we have

1

3δ
≤ sp(v∗) ≤ 1

2δ
.

For this MDP instance, based on (Theorem 5.5, Wu
et al., 2022), we may deduce the following regret lower
bound.

Theorem 2. Suppose that d ≥ 2 and T ≥
16(d − 1)2δ−1/2025. Then ∥θ̄∥2 ≤ 1 + δ/3
for any θ ∈ {−∆/(d − 1),∆/(d − 1)}d−1 and
∥ϕF (x0, a)∥2, ∥ϕF (x1, a)∥2 ≤ L for any F : S → [0, L].
Moreover, the span, sp(v∗), of the optimal bias func-
tion for the MDP instance satisfies

1

3δ
≤ sp(v∗) ≤ 1

2δ
.

Furthermore, for any algorithm, there exists θ ∈
{−∆/(d− 1),∆/(d− 1)}d−1 under which

E [Regret(T )] ≥ 1

2025

√
T

δ
= Ω

(
d
√
sp(v∗)T

)
.

As pointed out in (Remark C.1, Wu et al., 2022),
the regret lower bound in Theorem 2 also translates
to a regret lower bound for learning infinite-horizon
average-reward linear MDPs of bounded span.

7 CONCLUSION

This paper develops a provably efficient algorithm,
UCLK-C for learning infinite-horizon average-reward
linear mixture MDPs under the Bellman optimality
condition. UCLK-C is the first algorithm that guar-
antees a nearly minimax optimal regret upper bound
under the Bellman optimality condition. We estab-
lish this result based on our finding that discounted
extended value iteration converges even with the ad-
ditional clipping operation. We expect that this will
be useful for infinite-horizon average-reward reinforce-
ment under the Bellman optimality condition. We
present some numerical results to test the computa-
tional performance of UCLK-C in the appendix.

Although we provide a nearly minimax optimal algo-
rithm for linear mixture MDPs, there still exists a
gap between the best-known regret upper and lower
bounds for linear MDPs. To close the gap, one may at-
tempt to extend the framework of this paper and other
variance-aware parameter estimation schemes (e.g., He
et al., 2023) to the linear MDP setting. We propose
this as an open problem.
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Improved algorithms for linear stochastic bandits. In
Shawe-Taylor, J., Zemel, R., Bartlett, P., Pereira,
F., and Weinberger, K., editors, Advances in Neural
Information Processing Systems, volume 24. Curran
Associates, Inc.

Agarwal, A., Jiang, N., Kakade, S. M., and Sun, W.
(2021). Reinforcement learning: Theory and algo-
rithms.

Agarwal, A., Jin, Y., and Zhang, T. (2023). Voql: To-
wards optimal regret in model-free rl with nonlinear
function approximation. In Neu, G. and Rosasco, L.,
editors, Proceedings of Thirty Sixth Conference on
Learning Theory, volume 195 of Proceedings of Ma-
chine Learning Research, pages 987–1063. PMLR.

Agrawal, S. and Jia, R. (2017). Optimistic posterior
sampling for reinforcement learning: worst-case re-
gret bounds. In Guyon, I., Luxburg, U. V., Bengio,
S., Wallach, H., Fergus, R., Vishwanathan, S., and
Garnett, R., editors, Advances in Neural Informa-



Learning Infinite-Horizon Average-Reward Linear Mixture MDPs of Bounded Span

tion Processing Systems, volume 30. Curran Asso-
ciates, Inc.

Auer, P., Jaksch, T., and Ortner, R. (2008). Near-
optimal regret bounds for reinforcement learning. In
Koller, D., Schuurmans, D., Bengio, Y., and Bottou,
L., editors, Advances in Neural Information Process-
ing Systems, volume 21. Curran Associates, Inc.

Ayoub, A., Jia, Z., Szepesvari, C., Wang, M., and
Yang, L. (2020). Model-based reinforcement learn-
ing with value-targeted regression. In III, H. D. and
Singh, A., editors, Proceedings of the 37th Interna-
tional Conference on Machine Learning, volume 119
of Proceedings of Machine Learning Research, pages
463–474. PMLR.

Bartlett, P. L. and Tewari, A. (2009). Regal: a regular-
ization based algorithm for reinforcement learning
in weakly communicating mdps. In Proceedings of
the Twenty-Fifth Conference on Uncertainty in Ar-
tificial Intelligence, UAI ’09, page 35–42, Arlington,
Virginia, USA. AUAI Press.

Boone, V. and Zhang, Z. (2024). Achieving tractable
minimax optimal regret in average reward mdps.

Bourel, H., Maillard, O., and Talebi, M. S. (2020).
Tightening exploration in upper confidence rein-
forcement learning. In III, H. D. and Singh, A.,
editors, Proceedings of the 37th International Con-
ference on Machine Learning, volume 119 of Pro-
ceedings of Machine Learning Research, pages 1056–
1066. PMLR.

Cai, Q., Yang, Z., Jin, C., and Wang, Z. (2020). Prov-
ably efficient exploration in policy optimization. In
III, H. D. and Singh, A., editors, Proceedings of the
37th International Conference on Machine Learn-
ing, volume 119 of Proceedings of Machine Learning
Research, pages 1283–1294. PMLR.

Dann, C., Jiang, N., Krishnamurthy, A., Agarwal, A.,
Langford, J., and Schapire, R. E. (2018). On oracle-
efficient pac rl with rich observations. In Bengio,
S., Wallach, H., Larochelle, H., Grauman, K., Cesa-
Bianchi, N., and Garnett, R., editors, Advances in
Neural Information Processing Systems, volume 31.
Curran Associates, Inc.

Du, S., Kakade, S., Lee, J., Lovett, S., Mahajan, G.,
Sun, W., and Wang, R. (2021). Bilinear classes: A
structural framework for provable generalization in
rl. In Meila, M. and Zhang, T., editors, Proceed-
ings of the 38th International Conference on Ma-
chine Learning, volume 139 of Proceedings of Ma-
chine Learning Research, pages 2826–2836. PMLR.
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A CONFIDENCE ELLIPSOIDS

In this section, we prove Lemma 2. We start by analyzing the error term∣∣[V̄tWk](st, at)− [VWk](st, at)
∣∣ .

Note that∣∣[V̄tWk](st, at)− [VWk](st, at)
∣∣

=

∣∣∣∣[⟨ϕW 2
k
(st, at), θ̃t⟩

]
[0,H2]

− ⟨ϕW 2
k
(st, at), θ

∗⟩+ ⟨ϕWk
(st, at), θ

∗⟩2 −
[
⟨ϕWk

(st, at), θ̂t⟩
]2
[0,H]

∣∣∣∣
≤
∣∣∣∣[⟨ϕW 2

k
(st, at), θ̃t⟩

]
[0,H2]

− ⟨ϕW 2
k
(st, at), θ

∗⟩
∣∣∣∣︸ ︷︷ ︸

(a)

+

∣∣∣∣⟨ϕWk
(st, at), θ

∗⟩2 −
[
⟨ϕWk

(st, at), θ̂t⟩
]2
[0,H]

∣∣∣∣︸ ︷︷ ︸
(b)

.

Let us consider term (a) first. Since ⟨ϕW 2
k
(st, at), θ

∗⟩ ∈ [0, H2], it follows that

(a) ≤ min
{
H2,

∣∣∣⟨ϕW 2
k
(st, at), θ̃t⟩ − ⟨ϕW 2

k
(st, at), θ

∗⟩
∣∣∣} .

Moreover, we may apply the Cauchy-Schwarz inequality to the right-hand side, and we obtain

(a) ≤ min

{
H2,

∥∥∥ϕW 2
k
(st, at)

∥∥∥
Σ̃−1

t

∥∥∥θ̃t − θ∗
∥∥∥
Σ̃t

}
.

Next we consider term (b). Again, since ⟨ϕWk
(st, at), θ

∗⟩ ∈ [0, H], we have that (b) ≤ H2. Furthermore,

(b) =

∣∣∣∣⟨ϕWk
(st, at), θ

∗⟩+
[
⟨ϕWk

(st, at), θ̂t⟩
]
[0,H]

∣∣∣∣ · ∣∣∣∣⟨ϕWk
(st, at), θ

∗⟩ −
[
⟨ϕWk

(st, at), θ̂t⟩
]
[0,H]

∣∣∣∣
≤ 2H

∣∣∣∣⟨ϕWk
(st, at), θ

∗⟩ −
[
⟨ϕWk

(st, at), θ̂t⟩
]
[0,H]

∣∣∣∣
≤ 2H

∣∣∣⟨ϕWk
(st, at), θ

∗⟩ − ⟨ϕWk
(st, at), θ̂t⟩

∣∣∣
≤ 2H ∥ϕWk

(st, at)∥Σ̂−1
t

∥∥∥θ̂t − θ∗
∥∥∥
Σ̂t

where the first and second inequalities hold because ⟨ϕWk
(st, at), θ

∗⟩ ∈ [0, H] while the third inequality is due to
the Cauchy-Schwarz inequality. Then we deduce that

(b) ≤ min

{
H2, 2H ∥ϕWk

(st, at)∥Σ̂−1
t

∥∥∥θ̂t − θ∗
∥∥∥
Σ̂t

}
.

Therefore, we deduce that∣∣[V̄tWk](st, at)− [VWk](st, at)
∣∣ ≤ min

{
H2,

∥∥∥ϕW 2
k
(st, at)

∥∥∥
Σ̃−1

t

∥∥∥θ̃t − θ∗
∥∥∥
Σ̃t

}
+min

{
H2, 2H ∥ϕWk

(st, at)∥Σ̂−1
t

∥∥∥θ̂t − θ∗
∥∥∥
Σ̂t

}
.

(6)

Let us consider the following two confidence ellipsoids for θ∗:

Čt =
{
θ ∈ B :

∥∥∥θ − θ̂t

∥∥∥
Σ̂t

≤ β̌t

}
, C̃t =

{
θ ∈ B :

∥∥∥θ − θ̃t

∥∥∥
Σ̃t

≤ β̃t

}
where

β̌t = 8d
√
log(1 + t/λ) log(4t2/δ) + 4

√
d log(4t2/δ) +

√
λBθ,

β̃t = 8H2
√
d log(1 + tH2/(dλ)) log(4t2/δ) + 4H2 log(4t2/δ) +

√
λBθ.
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First, we apply Lemma 1 to the linear bandit instance defined with

(xt, yt) = (σ̄−1
t ϕWk

(st, at), σ̄
−1
t Wk(st+1)), ηt = yt − ⟨xt, θ

∗⟩ (7)

for t ∈ [tk : tk+1 − 1] and k ∈ [KT ]. Then we deduce that

Σ̂t+1 = Zt := λId +

t∑
i=1

xix
⊤
i , b̂t+1 = bt :=

t∑
i=1

yixi, θ̂t+1 = µt := Z−1
t bt.

As Gt = σ(s1, . . . , st) is the σ-algebra generated by s1, . . . , st, we have E [ηt | Gt] = 0. Moreover, we deduce that

|ηt| ≤
√
d

H
|Wk(st+1)− ⟨ϕWk

(st, at), θ
∗⟩| ≤

√
d

because σ̄2
t ≥ H2/d and it follows from Wk(s) ∈ [0, H] for any s ∈ S that

−H ≤ −⟨ϕWk
(st, at), θ

∗⟩ ≤Wk(st+1)− ⟨ϕWk
(st, at), θ

∗⟩ ≤Wk(st+1) ≤ H.

This also implies that E
[
η2 | Gt

]
≤ d and that

∥xt∥2 ≤
√
d

H
∥ϕWk

(st, at)∥2 ≤
√
d.

Then it follows from Lemma 1 that with probability at least 1− δ, θ∗ ∈ Čt for all t ∈ [T ].

Next, we apply again Lemma 1 to the linear bandit instance defined with

(xt, yt) = (ϕW 2
k
(st, at),W

2
k (st+1)), ηt = yt − ⟨xt, θ

∗⟩ (8)

for t ∈ [tk : tk+1 − 1] and k ∈ [KT ]. Then we deduce that

Σ̃t+1 = Zt := λId +

t∑
i=1

xix
⊤
i , b̃t+1 = bt :=

t∑
i=1

yixi, θ̃t+1 = µt := Z−1
t bt.

As Gt = σ(s1, . . . , st) is the σ-algebra generated by s1, . . . , st, we have E [ηt | Gt] = 0. Since W 2
k (s) ∈ [0, H2] for

any s ∈ S, we have |ηt| ≤ H2 and thus E
[
η2t | Gt

]
≤ H2. Moreover, ∥xt∥2 = ∥ϕW 2

k
(st, at)∥2 ≤ H2. Then, by

Lemma 1, it hold with probability at least 1− δ that θ∗ ∈ Ĉt for all t ∈ [T ].

Lastly, we apply Lemma 1 to the linear bandit instance defined with

xt = σ̄−1
t ϕWk

(st, at),

ηt = σ̄−1
t 1

{
θ∗ ∈ Čt ∩ C̃t

}
(Wk(st+1)− ⟨ϕWk

(st, at), θ
∗⟩) ,

yt = ηt + ⟨xt, θ
∗⟩

(9)

where 1 {E} denote the indicator function for a given event E . Note that we still have E [ηt | Gt] = 0 where

Gt = σ(s1, . . . , st) is the σ-algebra generated by s1, . . . , st because 1
{
θ∗ ∈ Čt ∩ C̃t

}
is Gt-measurable. Moreover,

as 1 {·} ≤ 1, we have |ηt| ≤
√
d and ∥xt∥2 ≤

√
d as before. Let us consider E

[
η2t | Gt

]
. We obtain that

E
[
η2t | Gt

]
= σ̄−2

t 1
{
θ∗ ∈ Čt ∩ C̃t

}
[VWk](st, at)

≤ σ̄−2
t 1

{
θ∗ ∈ Čt ∩ C̃t

}(
[V̄tWk](st, at) + min

{
H2,

∥∥∥ϕW 2
k
(st, at)

∥∥∥
Σ̃−1

t

∥∥∥θ̃t − θ∗
∥∥∥
Σ̃t

})
+ σ̄−2

t 1
{
θ∗ ∈ Čt ∩ C̃t

}
min

{
H2, 2H ∥ϕWk

(st, at)∥Σ̂−1
t

∥∥∥θ̂t − θ∗
∥∥∥
Σ̂t

}
≤ σ̄−2

t

(
[V̄tWk](st, at) + min

{
H2, β̃t

∥∥∥ϕW 2
k
(st, at)

∥∥∥
Σ̃−1

t

}
+min

{
H2, 2Hβ̌t ∥ϕWk

(st, at)∥Σ̂−1
t

})
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where the equality holds because 1
{
θ∗ ∈ Čt ∩ C̃t

}
is Gt-measurable, the first inequality follows from (6), and the

second inequality holds due to our construction of Čt and C̃t. Hence, we deduce that

E
[
η2t | Gt

]
≤ σ̄−2

t

(
[V̄tWk](st, at) + Et

)
≤ 1

where the first inequality is due to our choice of Et and the second inequality holds because σ̄2
t ≥

[V̄tWk](st, at) + Et.

Taking the union bound, with probability at least 1− 3δ, the statement of Lemma 1 holds for each of the three
linear bandit instances given by (7), (8), and (9). We denote by E0 this event. Note that under event E0, we
have θ∗ ∈ Čt ∩ C̃t. In this case, we have that

|[VWk](st, at)− [V̄tWk](st, at)| ≤ Et.

Moreover, the outcome of Lemma 1 for the bandit instance (9) translates to the event that

θ∗ ∈ Ĉt =
{
θ ∈ B : ∥θ − θ̂t∥Σ̂t

≤ β̂t

}
where

β̂t = 8
√

d log(1 + t/λ) log(4t2/δ) + 4
√
d log(4t2/δ) +

√
λBθ,

as required.

B CONVERGENCE OF VALUE ITERATION WITH CLIPPING

In this section, we provide the proofs of Lemmas 3 and 4.

B.1 Proof of Lemma 3: Clipping as a Contraction Map

Let n ∈ [N ], and let s ∈ S. Then it is sufficient to argue that

V (n−1)(s)− V (n)(s) ≤ max
s′∈S

(
Ṽ (n−1)(s′)− Ṽ (n)(s′)

)
.

Recall that V (i)(s) = min{Ṽ (i)(s),mins′∈S Ṽ (i)(s′)+H} for i ∈ {n− 1, n}. Then there are two cases to consider
depending on the value of V (n)(s).

Case I: V (n)(s) = Ṽ (n)(s). Note that V (n−1)(s) ≤ Ṽ (n−1)(s). This in turn implies that

V (n−1)(s)− V (n)(s) ≤ Ṽ (n−1)(s)− Ṽ (n)(s) ≤ max
s′∈S

(
Ṽ (n−1)(s′)− Ṽ (n)(s′)

)
.

Case II: V (n)(s) = mins′∈S Ṽ (n)(s′)+H. Note that V (n−1)(s) ≤ mins′∈S Ṽ (n−1)(s′)+H. Then it follows that

V (n−1)(s)− V (n)(s) ≤ min
s′∈S

Ṽ (n−1)(s′) +H − min
s′∈S

Ṽ (n)(s′)−H = min
s′∈S

Ṽ (n−1)(s′)− min
s′∈S

Ṽ (n)(s′).

Note that the right-most side satisfies

min
s′∈S

Ṽ (n−1)(s′)− min
s′∈S

Ṽ (n)(s′)

= −max
s′∈S

(
−Ṽ (n−1)(s′)

)
+max

s′∈S

(
−Ṽ (n)(s′)

)
≤ −max

s′∈S

(
−Ṽ (n−1)(s′)

)
+max

s′∈S

(
−Ṽ (n−1)(s′)

)
+max

s′∈S

(
Ṽ (n−1)(s′)− Ṽ (n)(s′)

)
= max

s′∈S

(
Ṽ (n−1)(s′)− Ṽ (n)(s′)

)
where the inequality holds because maxp{f(p) + g(p)} ≤ maxp{f(p)}+maxp{g(p)}, as required.
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B.2 Proof of Lemma 4: Convergence of Discounted Extended Value Iteration with Clipping

We will first show the following lemma.

Lemma 11. Let N be the number of rounds for discounted extended value iteration with clipping. Then for any
episode k, it holds that Q(N−1)(s, a)−Q(N)(s, a) ≤ γN−1 for any (s, a) ∈ S ×A.

Proof. We consider the discounted extended value iteration procedure with clipping for a fixed episode k. Note
that for n ≥ 2, we have

Q(n)(s, a) = r(s, a) + γmax
θ∈Ck

⟨ϕV (n−1)(s, a), θ⟩,

Q(n−1)(s, a) = r(s, a) + γmax
θ∈Ck

⟨ϕV (n−2)(s, a), θ⟩.

This implies that for any (s, a) ∈ S ×A,

Q(n−1)(s, a)−Q(n)(s, a) = γ

(
max
θ∈Ck

⟨ϕV (n−2)(s, a), θ⟩ −max
θ∈Ck

⟨ϕV (n−1)(s, a), θ⟩
)

≤ γmax
θ∈Ck

(⟨ϕV (n−2)(s, a), θ⟩ − ⟨ϕV (n−1)(s, a), θ⟩)

= γmax
θ∈Ck

⟨ϕV (n−2)−V (n−1)(s, a), θ⟩

(10)

where the inequality holds because maxp{f(p) + g(p)} ≤ maxp{f(p)}+maxp{g(p)}. Recall that for any θ ∈ Ck
induces a probability distribution with ϕ(s, a, s′) given by Pθ(s

′ | s, a) = ⟨ϕ(s, a, s′), θ⟩. Then it follows that

γ⟨ϕV (n−2)−V (n−1)(s, a), θ⟩ = γEs′∼Pθ(·|s,a)

[
V (n−2)(s′)− V (n−1)(s′)

]
≤ γmax

s′∈S

(
V (n−2)(s′)− V (n−1)(s′)

)
≤ γmax

s′∈S

(
Ṽ (n−2)(s′)− Ṽ (n−1)(s′)

) (11)

where the second inequality is due to Lemma 3. Combining (10) and (11), we have

max
(s,a)∈S×A

(
Q(n−1)(s, a)−Q(n)(s, a)

)
≤ γmax

s∈S

(
Ṽ (n−2)(s)− Ṽ (n−1)(s)

)
. (12)

Here, the right-hand side of (12) can be further bounded as follows.

γmax
s∈S

(
Ṽ (n−2)(s)− Ṽ (n−1)(s)

)
= γmax

s∈S

(
max
a∈A

Q(n−2)(s, a)−max
a∈A

Q(n−1)(s, a)

)
≤ γ max

(s,a)∈S×A

(
Q(n−2)(s, a)−Q(n−1)(s, a)

) (13)

where the inequality is due to maxa′{f(a′) + g(a′)} ≤ maxa′{f(a′)} + maxa′{g(a′)} as before. Therefore, it
follows that for any n ≥ 2,

max
(s,a)∈S×A

(
Q(n−1)(s, a)−Q(n)(s, a)

)
≤ γ max

(s,a)∈S×A

(
Q(n−2)(s, a)−Q(n−1)(s, a)

)
.

In particular, this implies that

max
(s,a)∈S×A

(
Q(N−1)(s, a)−Q(N)(s, a)

)
≤ γN−1 max

(s,a)∈S×A

(
Q(0)(s, a)−Q(1)(s, a)

)
= γN−1 max

(s,a)∈S×A

(
1

1− γ
− r(s, a)− γ

1− γ

)
≤ γN−1

where the last inequality holds because 0 ≤ r(s, a) ≤ 1.
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Based on Lemma 11, we complete the proof of Lemma 4. Note that

Q(N)(st, at) = r(st, at) + γmax
θ∈Ck

⟨ϕV (N−1)(st, at), θ⟩

≤ r(st, at) + γmax
θ∈Ck

⟨ϕV (N)(st, at), θ⟩+ γmax
θ∈Ck

⟨ϕV (N−1)−V (N)(st, at), θ⟩

≤ r(st, at) + γmax
θ∈Ck

⟨ϕV (N)(st, at), θ⟩+ γmax
s∈S

(
Ṽ (N−1)(s)− Ṽ (N)(s)

)
≤ r(st, at) + γmax

θ∈Ck

⟨ϕV (N)(st, at), θ⟩+ γ max
(s,a)∈S×A

(
Q(N−1)(s, a)−Q(N)(s, a)

)
≤ r(st, at) + γmax

θ∈Ck

⟨ϕV (N)(st, at), θ⟩+ γN

where the first inequality applies the same argument as in (11), the second inequality follows the same argument
as in (13), and the third inequality is due to Lemma 11. Since Q(N) equals Qk and V (N) equals Vk, we have

Qk(st, at) ≤ r(st, at) + γmax
θ∈Ck

⟨ϕVk
(st, at), θ⟩+ γN ,

as required.

C REGRET ANALYSIS AND PROOFS

In this section, we prove Lemma 5 and Lemmas 7 to 10. Based on these results, in Appendix C.6, we complete
the proof of Theorem 1.

C.1 Proof of Lemma 5: Optimistic Estimators for Value Functions

For a fixed episode k, we prove by induction on n that for any (s, a) ∈ S ×A,

1

1− γ
≥ V (n)(s) ≥ V ∗(s),

1

1− γ
≥ Q(n)(s, a) ≥ Q∗(s, a).

by induction on n. For n = 0, it is trivial that

V (0) =
1

1− γ
≥ V ∗(s), Q(0)(s, a) =

1

1− γ
≥ Q∗(s, a)

for every (s, a) ∈ S ×A. Next, we assume that for some n ≥ 0, the inequalities

1

1− γ
≥ V (n)(s) ≥ V ∗(s) and

1

1− γ
≥ Q(n)(s, a) ≥ Q∗(s, a)

hold for all (s, a) ∈ S ×A. First of all, since any θ ∈ Ck induces a probability distribution, we get

Q(n+1)(s, a) = r(s, a) + γmax
θ∈Ck

⟨ϕV (n)(s, a), θ⟩ ≤ 1 +
γ

1− γ
=

1

1− γ

because r(s, a) ≤ 1 and V (n)(s′) ≤ (1− γ)−1 for any s′ ∈ S. Then

V (n+1) ≤ Ṽ (n+1)(s) = max
a∈A

Q(n+1)(s, a) ≤ 1

1− γ
.

Next, we show that Q(n+1)(s, a) ≥ Q∗(s, a) for any (s, a) ∈ S ×A. Note that

Q(n+1)(s, a) = r(s, a) + γmax
θ∈Ck

⟨ϕV (n)(s, a), θ⟩

≥ r(s, a) + γ⟨ϕV (n)(s, a), θ∗⟩
= r(s, a) + γ[PV (n)](s, a)

≥ r(s, a) + γ[PV ∗](s, a)

= Q∗(s, a)



Chae, Hong, Zhang, Tewari, Lee

where the first inequality holds because θ∗ ∈ Ck = Ĉtk , the second inequality is by the induction hypothesis, and
the last equality is by the Bellman optimality condition (2).

Let us also consider V (n+1). Note that

Ṽ (n+1)(s)− V ∗(s) = max
a∈A

Q(n+1)(s, a)−max
a∈A

Q∗(s, a)

≥ max
a∈A

Q∗(s, a)−max
a∈A

Q∗(s, a)

= 0,

where the inequality holds because Q(n+1)(s, a) ≥ Q∗(s, a) for any (s, a) ∈ S × A. This in turn implies that

Ṽ (n+1)(s) ≥ V ∗(s) for any s ∈ S. This further implies that

V (n+1)(s) = min

{
Ṽ (n+1)(s),min

s′∈S
Ṽ (n+1)(s′) +H

}
≥ min

{
V ∗(s),min

s′∈S
V ∗(s′) +H

}
= V ∗(s),

where the first inequality comes from our observation that Ṽ (n+1)(s) ≥ V ∗(s) for any s ∈ S while the second
equality holds because sp(V ∗) ≤ 2 · sp(v∗) ≤ H, as supported by Lemma 6.

Since k was chosen arbitrarily, we conclude that in every episode, for all n ∈ [N ] and for all (s, a) ∈ S ×A,

V (n)(s) ≥ V ∗(s), Q(n)(s, a) ≥ Q∗(s, a),

as required.

C.2 Proof of Lemma 7: Upper Bound on the Number of Episodes

Note that det(Σ̂1) = λd because Σ̂1 = λId. To upper bound det(Σ̂T+1), we apply the following lemma.

Lemma 12. (Lemma 10, Abbasi-yadkori et al., 2011) For any x1, . . . , xT ∈ Rd such that ∥xt∥2 ≤ L, let A1 = λId
and At+1 = λId +

∑t
i=1 xix

⊤
i for t ≥ 1. Then

det(Σ̂T+1) ≤
(
λ+

TL2

d

)d

.

Recall that

Σ̂T+1 = λId +

KT∑
k=1

tk+1−1∑
t=tk

ϕWk
(st, at)ϕWk

(st, at)
⊤.

Here, we have ∥ϕWk
(st, at)∥2 ≤ H as Wk(s) ∈ [0, H] for any s ∈ S. By applying Lemma 12, we get

det(Σ̂T+1) ≤
(
λ+

TH2

d

)d

.

As λ = 1/B2
θ , it follows that

det(Σ̂T+1)

det(Σ̂1)
≤
(
1 +

TH2

dλ

)d

=

(
1 +

TH2B2
θ

d

)d

.

Moreover, note that
det(Σ̂T+1) ≥ det(Σ̂T ) ≥ det(Σ̂tKT

) ≥ · · · ≥ 2KT−1 det(Σ̂t1),

implying in turn that

KT ≤ 1 + log2(det(Σ̂T+1)/ det(Σ̂t1)) ≤ 1 + d log2(1 + TH2B2
θ/d),

as required.
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C.3 Proof of Lemma 8: Martingale Difference Sequence

The term I3 is a sum of martingale difference sequence {ηt}∞t=1 with regard to a filtration {Gt}∞t=0, where

ηt = ⟨ϕVk
(st, at), θ

∗⟩ − Vk(st+1)

and Gt = σ(s1, . . . , st) is the σ-algebra generated by s1, . . . , st. for t ∈ [tk : tk+1 − 1]. This is because ηt is
Gt+1-measurable, E[|ηt|] <∞, and E[ηt|Gt] = 0, which we will show in the following paragraphs. In fact, we have

ηt = ⟨ϕVk
(st, at), θ

∗⟩ − Vk(st+1) = ⟨ϕWk
(st, at), θ

∗⟩ −Wk(st+1),

which implies that
|ηt| ≤ sp(Wk) ≤ H.

Lemma 13. (Azuma-Hoeffding inequality) Let {Xk}∞k=0 be a discrete-parameter real-valued martingale sequence
such that for every k ∈ N, the condition |Xk − Xk−1| ≤ µ holds for some non-negative constant µ. Then with
probability at least 1− δ, we have

Xn −X0 ≤ µ
√

2n log(1/δ).

Since Xt =
∑t

n=1 ηt for t ≥ 1 and X0 give rise to a martingale sequence with |ηt| ≤ H, it follows from Lemma 13
that

I3 ≤ H
√
2T log(1/δ)

holds with probability at least 1− δ.

C.4 Proof of Lemma 9: Variance Term

Note that

KT∑
k=1

tk+1−1∑
t=tk

[VWk](st, at)

=

KT∑
k=1

tk+1−1∑
t=tk

(
[PW 2

k ](st, at)− ([PWk](st, at))
2
)

=

KT∑
k=1

tk+1−1∑
t=tk

(
[PW 2

k ](st, at)−W 2
k (st+1)

)
+

KT∑
k=1

tk+1−1∑
t=tk

(
W 2

k (st+1)−W 2
k (st)

)
+

KT∑
k=1

tk+1−1∑
t=tk

(
W 2

k (st)− ([PWk](st, at))
2
)

=

KT∑
k=1

tk+1−1∑
t=tk

(
[PW 2

k ](st, at)−W 2
k (st+1)

)
+

KT∑
k=1

tk+1−1∑
t=tk

(
W 2

k (st)− ([PWk](st, at))
2
)

+

KT∑
k=1

(
W 2

k (stk+1
)−W 2

k (stk)
)

≤
KT∑
k=1

tk+1−1∑
t=tk

(
[PW 2

k ](st, at)−W 2
k (st+1)

)
︸ ︷︷ ︸

(i)

+

KT∑
k=1

tk+1−1∑
t=tk

(
W 2

k (st)− ([PWk](st, at))
2
)

︸ ︷︷ ︸
(ii)

+H2KT .

By the condition of the lemma, we have

(i) ≤ H2
√
2T log(1/δ).

Let us consider the term (ii). Note that

(ii) =

KT∑
k=1

tk+1−1∑
t=tk

(Wk(st)− [PWk](st, at)) (Wk(st) + [PWk](st, at)) .
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Here, we have

Wk(st) = Vk(st)− min
s′∈S

Vk(s
′)

≤ Ṽk(st)− min
s′∈S

Vk(s
′)

= Qk(st, at)− min
s′∈S

Vk(s
′)

≤ 1 + γN +max
θ∈Ck

⟨ϕVk
(st, at), θ⟩ − min

s′∈S
Vk(s

′)

≤ 2 + max
θ∈Ck

⟨ϕWk
(st, at), θ⟩

where the second inequality holds because γ ≤ 1 and r(st, at) ≤ 1 and the third inequality holds because γ ≤ 1
and any θ ∈ Ck induces a probability distribution. Then it follows that

(ii) ≤ 2

KT∑
k=1

tk+1−1∑
t=tk

(Wk(st) + [PWk](st, at)) +

KT∑
k=1

tk+1−1∑
t=tk

(
max
θ∈Ck

⟨ϕWk
(st, at), θ − θ∗⟩

)
(Wk(st) + [PWk](st, at))

≤ 4HT + 2H

KT∑
k=1

tk+1−1∑
t=tk

∣∣∣∣max
θ∈Ck

⟨ϕWk
(st, at), θ − θ∗⟩

∣∣∣∣ .
Note that ∣∣∣∣max

θ∈Ck

⟨ϕWk
(st, at), θ − θ∗⟩

∣∣∣∣ ≤ max
θ∈Ck

|⟨ϕWk
(st, at), θ − θ∗⟩| ≤ max

θ∈Ck

∥ϕWk
(st, at)∥Σ̂−1

t
∥θ − θ∗∥Σ̂t

.

To bound the right-most side, we need the following lemma.

Lemma 14. (Abbasi-yadkori et al., 2011, Lemma 12) Let A,B ∈ Rd×d be positive semidefinite matrices such
that A ⪰ B. Then for any x ∈ Rd, we have ∥x∥A ≤ ∥x∥B

√
det(A)/ det(B).

By Lemma 14, we have ∥θ − θ∗∥Σ̂t
≤ 2∥θ − θ∗∥Σ̂tk

. Therefore,∣∣∣∣max
θ∈Ck

⟨ϕWk
(st, at), θ − θ∗⟩

∣∣∣∣ ≤ √2max
θ∈Ck

∥ϕWk
(st, at)∥Σ̂−1

t

(
∥θ − θ̂tk∥Σ̂tk

+ ∥θ̂tk − θ∗∥Σ̂tk

)
≤ 2
√
2β̂T ∥ϕWk

(st, at)∥Σ̂−1
t

where the second inequality holds because θ, θ∗ ∈ Ck. Meanwhile, we already know that |⟨ϕWk
(st, at), θ − θ∗⟩| ≤

H for any θ that induces a probability distribution. Then it follows that

KT∑
k=1

tk+1−1∑
t=tk

∣∣∣∣max
θ∈Ck

⟨ϕWk
(st, at), θ − θ∗⟩

∣∣∣∣ ≤ KT∑
k=1

tk+1−1∑
t=tk

min
{
H, 2
√
2β̂T ∥ϕWk

(st, at)∥Σ̂−1
t

}

≤
KT∑
k=1

tk+1−1∑
t=tk

2
√
2β̂T σ̄t min

{
1,
∥∥σ̄−1

t ϕWk
(st, at)

∥∥
Σ̂−1

t

}

≤ 4
√
2Hβ̂T

KT∑
k=1

tk+1−1∑
t=tk

min
{
1,
∥∥σ̄−1

t ϕWk
(st, at)

∥∥
Σ̂−1

t

}

≤ 4
√
2Hβ̂T

√
T

√√√√KT∑
k=1

tk+1−1∑
t=tk

min
{
1,
∥∥σ̄−1

t ϕWk
(st, at)

∥∥2
Σ̂−1

t

}
where the second inequality is from H ≤ 4β̂T σ̄t, the third inequality holds because we have [V̄tWk](st, at) ≤ H2

and Et ≤ 2H2, which implies that σ̄t ≤
√
max{H2/d, 3H2} ≤ 2H, and the last inequality is implied by the

Cauchy-Schwarz inequality. To bound the right-most side, we need the following lemma.

Lemma 15. (Lemma 11, Abbasi-yadkori et al., 2011). Suppose x1, . . . , xt ∈ Rd and ∥xs∥2 ≤ L for any 1 ≤ s ≤ t.
Let Vt = λId +

∑t
i=1 xix

⊤
i for some λ > 0. Then

t∑
i=1

min
{
1, ∥xi∥2V −1

i−1

}
≤ 2d log

(
1 +

tL2

dλ

)
.
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Since
∥∥σ̄−1

t ϕWk
(st, at)

∥∥
2
≤
√
d, Lemma 15 implies that

KT∑
k=1

tk+1−1∑
t=tk

min
{
1,
∥∥σ̄−1

t ϕWk
(st, at)

∥∥2
Σ̂−1

t

}
≤ 2d log(1 + T/λ), (14)

implying in turn that
(ii) ≤ 4HT + 16H2β̂T

√
dT log(1 + T/λ).

Consequently,

KT∑
k=1

tk+1−1∑
t=tk

[VWk](st, at) ≤ (i) + (ii) +H2KT ≤ 4HT + 16H2β̂T

√
dT log(1 + T/λ) +H2KT .

Then it follows from our choice of β̂T and Lemma 7 that

KT∑
k=1

tk+1−1∑
t=tk

[VWk](st, at) = Õ
(
HT +H2d

√
T
)

where Õ(·) hides logarithmic factors in T/(δλ).

C.5 Proof of Lemma 10: Cumulative Error in Estimating the Variance

Note that

T∑
t=1

Et =

KT∑
k=1

tk+1−1∑
t=tk

min
{
H2, 2Hβ̌t∥ϕWk

(st, at)∥Σ̂−1
t

}
︸ ︷︷ ︸

(I)

+

KT∑
k=1

tk+1−1∑
t=tk

min
{
H2, β̃t∥ϕW 2

k
(st, at)∥Σ̃−1

t

}
︸ ︷︷ ︸

(II)

.

Term (I) can be bounded as follows:

(I) ≤
KT∑
k=1

tk+1−1∑
t=tk

2Hβ̌tσ̄t min
{
1, ∥σ̄−1

t ϕWk
(st, at)∥Σ̂−1

t

}

≤ 4H2β̌T

KT∑
k=1

tk+1−1∑
t=tk

min
{
1, ∥σ̄−1

t ϕWk
(st, at)∥Σ̂−1

t

}

≤ 4H2β̌T

√
T

√√√√KT∑
k=1

tk+1−1∑
t=tk

min
{
1,
∥∥σ̄−1

t ϕWk
(st, at)

∥∥2
Σ̂−1

t

}
≤ 8H2β̌T

√
dT log(1 + T/λ)

where the first inequality is due to H ≤ 2β̌tσ̄t, the second inequality holds because we have [V̄tWk](st, at) ≤ H2

and Et ≤ 2H2, which implies that σ̄t ≤
√
max{H2/d, 3H2} ≤ 2H, the third inequality is due to the Cauchy-

Schwarz inequality, and the last one follows from (14).

Term (II) can be bounded as follows:

(II) ≤ β̃T

KT∑
k=1

tk+1−1∑
t=tk

min
{
1, ∥ϕW 2

k
(st, at)∥Σ̃−1

t

}

≤ β̃T

√
T

√√√√KT∑
k=1

tk+1−1∑
t=tk

min
{
1, ∥ϕW 2

k
(st, at)∥2Σ̃−1

t

}
≤ 2β̃T

√
dT log(1 + TH2/λ)
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where the first inequality holds becauseH2 ≤ β̃t ≤ β̃T , the second inequality is by the Cauchy-Schwarz inequality,
and the third one follows from Lemma 15.

Therefore, it holds that

T∑
t=1

Et ≤ 8H2β̌T

√
dT log(1 + T/λ) + 2β̃T

√
dT log(1 + TH2/λ).

Due to our choice of β̌T and β̃T , we have

T∑
t=1

Et = Õ
(
d3/2H2

√
T
)

where Õ(·) hides logarithmic factors in TH/λ, as required.

C.6 Completing the Proof of Theorem 1: Regret Upper Bound of UCLK-C

We first provide an upper bound on I4. Let θ ∈ Ck. Since θ induces a probability distribution Pθ, we have

⟨ϕVk
(st, at), θ − θ∗⟩ = Es′∼Pθ(·|st,at)[Vk(s

′)]− Es′∼P(·|st,at)[Vk(s
′)]

= Es′∼Pθ(·|st,at)[Vk(s
′)]− min

s′∈S
Vk(s

′)− Es′∼P(·|st,at)[Vk(s
′)] + min

s′∈S
Vk(s

′)

= Es′∼Pθ(·|st,at)[Wk(s
′)]− Es′∼P(·|st,at)[Wk(s

′)]

= ⟨ϕWk
(st, at), θ − θ∗⟩.

Moreover, assuming that θ∗ ∈ Ck based on Lemma 2, we have

⟨ϕWk
(st, at), θ − θ∗⟩ ≤ ∥ϕWk

(st, at)∥Σ̂−1
t

(
∥θ − θ̂tk∥Σ̂t

+ ∥θ̂tk − θ∗∥Σ̂t

)
≤ 2 ∥ϕWk

(st, at)∥Σ̂−1
t

(
∥θ − θ̂tk∥Σ̂tk

+ ∥θ̂tk − θ∗∥Σ̂tk

)
≤ 4β̂T σ̄t

∥∥σ̄−1
t ϕWk

(st, at)
∥∥
Σ̂−1

t

where the first inequality is from the Cauchy-Schwarz inequality, the second one holds by Lemma 14, and the
third one follows from θ∗, θ ∈ Ck and β̂tk ≤ β̂T . We also know that

⟨ϕWk
(st, at), θ − θ∗⟩ = Es′∼Pθ(·|st,at)[Wk(s

′)]− Es′∼P(·|st,at)[Wk(s
′)] ∈ [−H,H]

because Wk(s) ∈ [0, H] for any s ∈ S. Then it follows that

I4 ≤
KT∑
k=1

tk+1−1∑
t=tk

min
{
H, 4β̂T σ̄t

∥∥σ̄−1
t ϕWk

(st, at)
∥∥
Σ̂−1

t

}

≤ 4β̂T

KT∑
k=1

tk+1−1∑
t=tk

σ̄t min
{
1,
∥∥σ̄−1

t ϕWk
(st, at)

∥∥
Σ̂−1

t

}

≤ 4β̂T

√√√√ T∑
t=1

σ̄2
t︸ ︷︷ ︸

J1

√√√√KT∑
k=1

tk+1−1∑
t=tk

min
{
1,
∥∥σ̄−1

t ϕWk
(st, at)

∥∥2
Σ̂−1

t

}
︸ ︷︷ ︸

J2

where the second inequality holds because H ≤ 4βT σ̄t and the third one is by the Cauchy-Schwarz inequality.

Note that by the Azuma-Hoeffding inequality (Lemma 13),

KT∑
k=1

tk+1−1∑
t=tk

(
[PW 2

k ](st, at)−W 2
k (st+1)

)
≤ H2

√
2T log(1/δ) (15)



Learning Infinite-Horizon Average-Reward Linear Mixture MDPs of Bounded Span

holds with probability at least 1−δ. By taking the union bound, all of the statement of Lemma 2, the statement
of Lemma 8, and (15) hold with probability at least 1− 5δ.

Now we suppose that all of the statement of Lemma 2, the statement of Lemma 8, and (15) hold. For the term
J1, note that

T∑
t=1

σ̄2
t =

KT∑
k=1

tk+1−1∑
t=tk

max
{
H2/d, [V̄tWk](st, at) + Et

}
≤

KT∑
k=1

tk+1−1∑
t=tk

max
{
H2/d, [VWk](st, at) + 2Et

}
≤ TH2/d+

KT∑
k=1

tk+1−1∑
t=tk

[VWk](st, at) + 2

T∑
t=1

Et

where the first inequality is from Lemma 2 and the second inequality holds because bothH2/d and [VWk](st, at)+
2Et are nonnegative. Then we obtain from Lemmas 9 and 10 that

T∑
t=1

σ̄2
t = Õ

(
H2T/d+HT +H2d

√
T + d3/2H2

√
T
)

where Õ(·) hides logarithmic factors in TH/(δλ). Moreover, we know that J2 ≤
√
2d log(1 + T/λ) by (14).

Therefore, we finally deduce that

I4 = Õ
(√

d ·
√
H2T/d+HT +H2d

√
T + d3/2H2

√
T ·
√
d

)
= Õ

(
H
√
dT + d

√
HT + d7/4HT 1/4

)
where Õ(·) hides logarithmic factors in TH/(δλ).

Recall that when λ = 1/B2
θ we have

I1 ≤ d
√

sp(v∗)T = d
√
HT,

I2 = Õ
(
d
√
HT

)
,

I3 ≤ H
√
2d log(1/δ).

Lastly, setting γ and N as

γ = 1−
√

d

HT
and N =

1

1− γ
log

( √
T

d
√
H

)
=

√
HT

d
log

( √
T

d
√
H

)
,

we have

N ≥
log
(√

T/d
√
H
)

log(1/γ)
,

in which case we get TγN ≤ d
√
HT .

Therefore, we conclude that with probability at least 1− 5δ

Regret(T ) = Õ
(
H
√
dT + d

√
HT + d7/4HT 1/4

)
where Õ(·) hides logarithmic factors in THBθ/δ.

D Experiments

In this section, we numerically compare the performance of UCLK-C with UCRL2-VTR (Bernstein-type exploration,
Wu et al. (2022)), TSDE (Ouyang et al., 2017b), and UCRL2 (Auer et al., 2008), given random policy as a baseline.



Chae, Hong, Zhang, Tewari, Lee

We conduct experiments with the MDP instance introduced in Section 6. Given that UCLK-C and UCRL2-VTR are
minimax optimal on this MDP instance, our comparison provides an intuitive understanding of how controlling
the span of the value function can improve regret performance. In addition, it enables the comparison of RL
algorithms with linear function approximation (UCLK-C, UCRL2-VTR) and tabular RL algorithms (TSDE, UCRL2),
when deployed on the linearly structured MDP. The next paragraph details the experimental setup and results.

Figure 2: Regret comparison of UCLK-C, UCRL2-VTR (Bernstein-type), TSDE, UCRL2, and random policy

We choose d = 8 and δ = 1/120, thereby the resulting MDP consists of two states (|S| = 2) and 128 actions
(|A| = 2d−1 = 128) with diameter 120 (D = 1/δ = 120). Under this setting, we compared the algorithms based
on the average regret with respect to the best action, evaluated over 40 realizations for each time horizon in
units of thousands. The average regret and its deviation are plotted in Figure 2.

The numerical experiment supports the theoretical result that our proposed algorithm UCLK-C, outperforms
UCRL2-VTR, demonstrating the effectiveness of controlling the span for improving regret performance. In addition,
UCLK-C outperforms the other tabular RL algorithms, TSDE and UCRL2, due to the linear structure of the MDP,
which we expect may be even clearer in a larger state, action space.
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