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Abstract
One of the nice properties of kernel classifiers such as SVMs is that they often produce sparse so-
lutions. However, the decision functions of these classifiers cannot always be used to estimate the
conditional probability of the class label. We investigate the relationship between these two prop-
erties and show that these are intimately related: sparseness does not occur when the conditional
probabilities can be unambiguously estimated. We consider a family of convex loss functions and
derive sharp asymptotic results for the fraction of data that becomes support vectors. This enables
us to characterize the exact trade-off between sparseness and the ability to estimate conditional
probabilities for these loss functions.
Keywords: kernel methods, support vector machines, sparseness, estimating conditional proba-
bilities

1. Introduction

Consider the following familiar setting of a binary classification problem. A sequence T = ((x1,y1),
. . . ,(xn,yn)) of i.i.d. pairs is drawn from a probability distribution over X ×Y where X ⊆R

d and Y
is the set of labels (which we assume is {+1,−1} for convenience). The goal is to use the training
set T to predict the label of a new observation x ∈ X . A common way to approach the problem is
to use the training set to construct a decision function fT : X → R and output sign( fT (x)) as the
predicted label of x.

In this paper, we consider classifiers based on an optimization problem of the form:

fT,λ = argmin
f∈H

λ‖ f‖2
H +

1
n

n

∑
i=1

φ(yi f (xi)). (1)

Here, H is a reproducing kernel Hilbert space (RKHS) of some kernel k, λ > 0 is a regularization
parameter and φ : R → [0,∞) is a convex loss function. Since optimization problems based on the
non-convex function 0-1 loss t 7→ I(t≤0) (where I(·) is the indicator function) are computationally
intractable, use of convex loss functions is often seen as using upper bounds on the 0-1 loss to make
the problem computationally easier. Although computational tractability is one of the goals we have
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in mind while designing classifiers, it is not the only one. We would like to compare different convex
loss functions based on their statistical and other useful properties. Conditions ensuring Bayes-risk
consistency of classifiers using convex loss functions have already been established (Bartlett et al.,
2004; Lugosi and Vayatis, 2004; Steinwart, 2005; Zhang, 2004). It has been observed that different
cost functions have different properties and it is important to choose a loss function judiciously
(e.g., see Wahba, 2002). In order to understand the relative merits of different loss functions, it is
important to consider these properties and investigate the extent to which different loss functions
exhibit them. It may turn out (as it does below) that different properties are in conflict with each
other. In that case, knowing the trade-off allows one to make an informed choice while choosing a
loss function for the classification task at hand.

One of the properties we focus on is the ability to estimate the conditional probability of the
class label η(x) = P(Y = +1|X = x). Under some conditions on the loss function and the sequence
of regularization parameters λn, the solutions of (1) converge (in probability) to a function F ∗

φ (η(x))
which is set valued in general (Steinwart, 2003). As long as we can uniquely identify η(x) based
on a value in F∗

φ (η(x)), we can hope to estimate conditional probabilities using fT,λn
(x), at least

asymptotically. Choice of the loss function is crucial to this property. For example, the L2-SVM
(which uses the loss function t 7→ (max{0,1− t})2) is much better than L1-SVM (which uses t 7→
max{0,1− t}) in terms of asymptotically estimating conditional probabilities.

Another criterion is the sparseness of solutions of (1). It is well known that any solution fT,λ of
(1) can be represented as

fT,λ(x) =
n

∑
i=1

α∗
i k(x,xi) . (2)

The observations xi for which the coefficients α∗
i are non-zero are called support vectors. The rest of

the observations have no effect on the value of the decision function. Having fewer support vectors
leads to faster evaluation of the decision function. Bounds on the number of support vectors are
therefore useful to know. Steinwart’s recent work (Steinwart, 2004) has shown that for the L1-SVM
and a suitable kernel, the asymptotic fraction of support vectors is twice the Bayes-risk. Thus, L1-
SVMs can be expected to produce sparse solutions. It was also shown that L2-SVMs will typically
not produce sparse solutions.

We are interested in how sparseness relates to the ability to estimate conditional probabilities.
What we mentioned about L1 and L2-SVMs leads to several questions. Do we always lose sparse-
ness by being able to estimate conditional probabilities? Is it possible to characterize the exact
trade-off between the asymptotic fraction of support vectors and the ability to estimate conditional
probabilities? If sparseness is indeed lost when we are able to fully estimate conditional probabili-
ties, we may want to estimate conditional probabilities only in an interval, say (0.05,0.95), if that
helps recover sparseness. Estimating η for x’s that have η(x) ≥ 0.95 may not be too crucial for
our prediction task. How can we design loss functions which enable us to estimate probabilities in
sub-intervals of [0,1] while preserving as much sparseness as possible?

This paper attempts to answer these questions. We show that if one wants to estimate conditional
probabilities in an interval (1− γ0,γ0) for some γ0 ∈ (1/2,1), then sparseness is lost on that interval
in the sense that the asymptotic fraction of data that become support vectors is lower bounded by
ExG(η(x)) where G(η) = 1 throughout the interval (1 − γ0,γ0). Moreover, one cannot recover
sparseness by giving up the ability to estimate conditional probabilities in some sub-interval of
(1−γ0,γ0). The only way to do that is to decrease γ0 thereby shortening the interval (1−γ0,γ0). We
also derive sharp bounds on the asymptotic number of support vectors for a family of loss functions
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Figure 1: Plots of F∗
φ (left) and G (right) for a loss function which is a convex combination of the

L1 and L2-SVM loss functions. Dashed lines represent the corresponding plots for the
original loss functions.

of the form:
φ(t) = h((t0 − t)+), t0 > 0

where t+ denotes max{0, t} and h is a continuously differentiable convex function such that h′(0)≥
0. Each loss function in the family allows one to estimate probabilities in the interval (1−γ0,γ0) for
some value of γ0. The asymptotic fraction of support vectors is then ExG(η(x)), where η 7→ G(η)
is a function that increases linearly from 0 to 1 as η goes from 0 to 1− γ0. For example, if φ(t) =
1
3((1− t)+)2 + 2

3(1− t)+ then conditional probabilities can be estimated in (1/4,3/4) and G(η) = 1
for η ∈ (1/4,3/4) (see Fig. 1).

2. Notation and Known Results

Let P be the probability distribution over X ×Y and let T ∈ (X ×Y )n be a training set. Let EP(·)
denote expectations taken with respect to the distribution P. Similarly, let Ex(·) denote expectations
taken with respect to the marginal distribution on X . Let η(x) be P(Y = +1|X = x). For a decision
function f : X → R, define its risk as

RP( f ) = EPI(y f (x)≤0) .

The Bayes-risk RP = inf{RP( f ) : f measurable} is the least possible risk. Given a loss function φ,
define the φ-risk of f by

Rφ,P( f ) = EPφ(y f (x)) .

The optimal φ-risk Rφ,P = inf{Rφ,P( f ) : f measurable} is the least achievable φ-risk. When the
expectations in the definitions of RP( f ) and Rφ,P( f ) are taken with respect to the empirical measure
corresponding to T , we get the empirical risk RT ( f ) and the empirical φ-risk Rφ,T ( f ) respectively.
Conditioning on x, we can write the φ-risk as

Rφ,P( f ) = Ex[E(φ(y f (x)|x)]
= Ex[η(x)φ( f (x))+(1−η(x))φ(− f (x))]

= Ex[C(η(x), f (x))] .
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Here, we have defined C(η, t) = ηφ(t)+(1−η)φ(−t). To minimize the φ-risk, we have to minimize
C(η, ·) for each η ∈ [0,1]. So, define the set valued function F ∗

φ by

F∗
φ (η) = {t : C(η, t) = min

s∈R̄

C(η,s)}

where R̄ is the set of extended reals R∪ {−∞,∞}. Any measurable selection f ∗ of F∗
φ actually

minimizes the φ-risk. The function F∗
φ is plotted for three choices of φ in Fig. 1. From the definitions

of C(η, t) and F∗
φ (η), it is easy to see that F∗

φ (η) = −F∗
φ (1−η). Steinwart (2003) also proves that

η 7→ F∗
φ (η) is a monotone operator. This means that if η1 > η2, t1 ∈ F∗

φ (η1) and t2 ∈ F∗
φ (η2) then

t1 ≥ t2.
A convex loss function is called classification calibrated if the following two conditions hold:

η <
1
2
⇒ F∗

φ (η) ⊂ [−∞,0) and η >
1
2
⇒ F∗

φ (η) ⊂ (0,+∞] .

A necessary and sufficient condition for a convex φ to be classification calibrated is that φ′(0) exists
and is negative (Bartlett et al., 2004). If φ is classification calibrated then it is guaranteed that for
any sequence fn such that Rφ,P( fn) → Rφ,P, we have RP( fn) → RP. Thus, classification calibrated
loss functions are good in the sense that minimizing the φ-risk leads to classifiers that have risks
approaching the Bayes-risk. Note, however, that in the optimization problem (1), we are minimizing
the regularized φ-risk

Rreg
φ,T,λ = λ‖ f‖2

H +Rφ,T .

Steinwart (2005) has shown that if one uses a classification calibrated convex loss function, a
universal kernel (one whose RKHS is dense in the space of continuous functions over X ) and a
sequence of regularization parameters such that λn → 0 sufficiently slowly, then Rφ,P( fT,λn

)→ Rφ,P.
In another paper (Steinwart, 2003), he proves that this is sufficient to ensure the convergence in
probability of fT,λn

to F∗
φ (η(·)). That is, for all ε > 0

Px({x ∈ X : ρ( fT,λn
(x),F∗

φ (η(x))) ≥ ε}) → 0. (3)

The function ρ(t,B) is just the distance from t to the point in B which is closest to t. The definition
given by Steinwart (2003) is more complicated because one has to handle the case when B∩R = /0.
We will ensure in our proofs that F∗

φ is not a singleton set just containing +∞ or −∞.
Since fT,λn

converges to F∗
φ (η(·)), the plots in Fig. 1 suggest that the L2-SVM decision func-

tion can be used to estimate conditional probabilities in the whole range [0,1] while it not possible
to use the L1-SVM decision function to estimate conditional probabilities in any interval. How-
ever, the L1-SVM is better if one considers the asymptotic fraction of support vectors. Under
some conditions on the kernel and the regularization sequence, Steinwart proved that the fraction
is Ex[2min(η(x),1−η(x))], which also happens to be the optimal φ-risk for the hinge loss func-
tion. For L2-SVM, he showed that the asymptotic fraction is Px({x ∈ X : 0 < η(x) < 1}), which
is the probability of the set where noise occurs. Observe that we can write the fraction of support
vectors as Ex[G(η(x))] where G(η) = 2min{η,1−η} for the hinge loss and G(η) = I(η/∈{0,1}) for
the squared hinge loss. We will see below that these two are extreme cases. In general, there are
loss functions which allow one to estimate probabilities in an interval centered at 1/2 and for which
G(η) = 1 only on that interval.
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Steinwart (2003) also derived a general lower bound on the asymptotic number of support vec-
tors in terms of the probability of the set

S = {(x,y) ∈ Xcont ×Y : 0 /∈ ∂φ(yF∗
φ (η(x)))} .

Here, Xcont = {x ∈ X : Px({x}) = 0} and ∂φ denotes the subdifferential of φ. In the simple case
of a function of one variable ∂φ(x) = [φ′

−(x),φ′
+(x)], where φ′

− and φ′
+ are the left and right hand

derivatives of φ (which always exist for convex functions). If Xcont = X , one can write P(S) as

P(S) = EP[I(0/∈∂φ(yF∗
φ (η(x)))]

= Ex[η(x)I(0/∈∂φ(F∗
φ (η(x)))) +(1−η(x))I(0/∈∂φ(−F∗

φ (η(x))))]

= ExG(η(x)) .

(4)

For the last step, we simply defined

G(η) = ηI(0/∈∂φ(F∗
φ (η))) +(1−η)I(0/∈∂φ(−F∗

φ (η))) . (5)

3. Preliminary Results

We will consider only classification calibrated convex loss functions. Since φ is classification cali-
brated we know that φ′(0) < 0. Define t0 as

t0 = inf{t : 0 ∈ ∂φ(t)}

with the convention that inf /0 = ∞. Because φ′(0) < 0 and subdifferentials of a convex function are
monotonically decreasing, we must have t0 > 0. However, it may be that t0 = ∞. The following
lemma says that sparse solutions cannot be expected if that is the case.

Lemma 1 If t0 = ∞, then G(η) = 1 for η ∈ [0,1].

Proof t0 = ∞ implies that for all t, 0 /∈ ∂φ(t). Using (5), we get G(η) = η.1+(1−η).1 = 1.

Thus, for losses like the exponential loss t 7→ exp(−t), the bound (4) says that the fraction of support
vectors approaches 1 asymptotically. Since we are interested in loss functions that lead to sparse
solutions, let us assume that

(A1) t0 < ∞ .

Although not immediate from the definition, a continuity argument involving the one-sided deriva-
tives gives us 0 ∈ ∂φ(t0).

We now proceed to investigate the general form of the function η 7→ F ∗
φ (η). Before we begin,

we make another assumption about the number of points in the interval (−t0, t0) where the function
φ fails to be differentiable. Define the set

D = {t ∈ (0, t0) : either φ′(t) or φ′(−t) does not exist } .

We assume that
(A2) |D| < ∞ .
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Note that, since φ is convex, we know that D can be at most countably infinite. Let t1 > t2 > .. . > tL
be the set D sorted in decreasing order. We have t0 > t1 and tL > 0. Set β0 = 1 and define

βl =
1

1+
φ′+(tl)

φ′−(−tl)

, 1 ≤ l ≤ L ,

γl =
1

1+
φ′−(tl)

φ′+(−tl)

, 0 ≤ l ≤ L .

With the possible exception of φ′
−(t0) (which can be zero), all one-sided derivatives appearing in the

definitions above are negative. For s < t, we have φ′
−(s) ≤ φ′

+(s) ≤ φ′
−(t) ≤ φ′

+(t). Using this fact,
we get

1
2
≤ γL ≤ βL ≤ . . . ≤ γ1 ≤ β1 ≤ γ0 ≤ β0 = 1 .

Since tl ∈ D for 1 ≤ l ≤ L, at least one of the inequalities, φ′
−(tl) < φ′

+(tl) or φ′
−(−tl) < φ′

+(−tl), is
strict. So γl < βl for 1 ≤ l ≤ L and we get

1
2
≤ γL < βL ≤ . . . ≤ γ1 < β1 ≤ γ0 ≤ β0 = 1 .

Using the observation that F∗
φ (1−η) = −F∗

φ (η), we restrict ourselves to examining the behavior of
F∗

φ (η) on an interval containing [1/2,1].

Theorem 2 Let φ be a classification calibrated convex loss function satisfying assumptions (A1)
and (A2). Then the following statements hold true.

1. For 0 ≤ l ≤ L and for η ∈ (γl,βl), F∗
φ (η) = {tl}.

2. If I is one of the (possibly degenerate) intervals [βl,γl−1], 1 ≤ l ≤ L, then there exists a
continuous non-decreasing function gI mapping [tl, tl−1] onto I such that, for η ∈ I,

F∗
φ (η) = g−1

I (η) ,

where g−1
I (η) = {t : gI(t) = η}.

3. The above also holds for the (possibly degenerate) interval I = [1− γL,γL] but here the func-
tion gI maps [−tL, tL] onto I.

4. F∗
φ (1) is either [t0, t ′], for some t ′ ≥ t0, or [t0,∞).

Proof (Part 1) Denoting the subdifferential with respect to the second argument by ∂2, we have

∂2C(η, tl) = η∂φ(tl)− (1−η)∂φ(−tl)

= [ηφ′
−(tl)− (1−η)φ′

+(−tl),ηφ′
+(tl)− (1−η)φ′

−(−tl)] .

For γl < η < βl , we have

ηφ′
−(tl)− (1−η)φ′

+(−tl) < 0 < ηφ′
+(tl)− (1−η)φ′

−(−tl) ,
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and so tl is the unique minimizer of C(η, ·).
(Part 2) Let I = [βl,γl−1]. Note that for t ∈ (tl, tl−1), both φ′(t) and φ′(−t) are defined. Being

derivatives of a convex function, they are continuous. So we define, for t ∈ (tl, tl−1),

gI(t) =
1

1+ φ′(t)
φ′(−t)

.

Convexity also implies that gI(t) is monotonically increasing. In fact, it will be strictly increasing
if one of φ(t) and φ(−t) is strictly convex. However, if both φ(t) and φ(−t) are linear on some
open interval, gI(t) will be constant over that interval. Define gI(tl) = βl and gI(tl−1) = γl−1. Since
limt↓tl φ′(t) = φ′

+(tl) and limt↓tl φ′(−t) = φ′
−(−tl) (e.g., see Rockafellar, 1970, Chap. 24), we have

limt↓tl gI(t) = βl = gI(tl). Similarly, limt↑tl−1 gI(t) = γl−1 = gI(tl−1). So, we have defined a con-
tinuous monotonically increasing function on [βl,γl−1] onto [tl, tl−1]. If t ∈ (tl, tl−1) then, for any
η,

t ∈ F∗
φ (η) iff ηφ′(t)+(1−η)φ′(−t) = 0

iff
1

1+ φ′(t)
φ′(−t)

= η

iff gI(t) = η

iff t ∈ g−1
I (η) .

It remains to handle tl and tl−1. For η ∈ I, tl ∈ F∗
φ (η) iff η = βl . Since gI(tl) = βl , we also have

tl ∈ g−1
I (η) iff η = βl . Arguing similarly for tl−1, for η ∈ I, tl ∈ F∗

φ (η) iff η = γl−1. Since gI(tl−1) =

γl−1, we also have tl−1 ∈ g−1
I (η) iff η = γl−1.

(Part 3) Once we observe that both φ′(t) and φ′(−t) exist for t ∈ (−tL, tL), the proof proceeds as
in part 2.

(Part 4) Let t ′ = sup{t : 0 ∈ ∂φ(t)}. If the set in question is unbounded, then 0 ∈ ∂φ(t) for all
t ≥ t0 and so F∗

φ (1) = [t,∞). If the set is bounded above then the supremum t ′ is well defined. The
t’s which minimize C(1, ·) = φ(t) are then precisely those in the interval [t0, t ′].

The above theorem says a couple of interesting things about the relationship between φ and F ∗
φ .

Points of non-differentiability of φ lead to the function F ∗
φ being constant on certain intervals. On

an interval I where F∗
φ is not constant, there exists a function gI such that given t ∈ F∗

φ (η), one
can recover η by the relation η = gI(t). We can express this by saying that F∗

φ (η) is invertible on
intervals that correspond to differentiable portions of φ(t) and φ(−t) (see Fig. 2 for an example).

Theorem 3 Let φ be an classification calibrated convex loss function satisfying assumptions (A1)
and (A2). Then, for G(η) as defined in (5), we have

G(η) =

{

1 η ∈ (1− γ0,γ0) ,

min{η,1−η} η ∈ [0,1− γ0]∪ [γ0,1] ,
(6)

where γ0 = φ′
+(−t0)/(φ′

+(−t0)+φ′
−(t0)).
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Figure 2: The loss function (left) is composed of two linear parts (I & III) and a quadratic part (II).
The function F∗

φ (right) is constant on the regions marked B and D correponding to the 2
points of non-differentiability, viz. t0, t1. The vertical part C is due to φ being linear on
the intervals [−t0,−t1] and [t1, t0]. Region A arises due to the quadratic part of the loss
function.

Proof If η ∈ [γ0,1], Theorem 2 tells us that t0 ∈ F∗
φ (η) and hence 0 ∈ ∂φ(F∗

φ (η)). If η < 1− γ0,
monotonicity of F∗

φ (η) implies that F∗
φ (η) ⊆ (−∞, t0). Since t0 = inf{t : 0 ∈ ∂φ(t)}, 0 /∈ ∂φ(F∗

φ (η))
for η ∈ [0,γ0). Thus, we can write I(0/∈∂φ(F∗

φ (η))) as I(η/∈[γ0,1]). Also I(0/∈∂φ(−F∗
φ (η)) = I(0/∈∂φ(F∗

φ (1−η)).
Plugging this in (5), we get

G(η) = ηI(η/∈[γ0,1]) +(1−η)I(1−η/∈[γ0,1])

= ηI(η/∈[γ0,1]) +(1−η)I(η/∈[0,1−γ0]) .

Since γ0 ≥ 1/2, we can write G(η) in the form given above.

Corollary 4 If η1 ∈ (0,1) is such that F∗
φ (η1)∩F∗

φ (η) = /0 for η 6= η1, then G(η) = 1 on [min{η1,1−
η1},max{η1,1−η1}].

Proof Theorem 1, part 1 tells us that such an η1 cannot lie in [0,1− γ0]∪ [γ0,1]. Rest follows from
Theorem 3.

The preceding theorem and corollary have important implications. First, we can hope to have sparse-
ness only for values of η ∈ [0,1− γ0]∪ [γ0,1]. Second, we cannot estimate conditional probabilities
in these two intervals because F∗

φ (·) is not invertible there. Third, any loss function for which F ∗
φ (·)

is invertible, say at η1 < 1/2, will necessarily not have sparseness on the interval [η1,1−η1].
Note that for the case of L1 and L2-SVM, γ0 is 1/2 and 1 respectively. For these two classifiers,

the lower bounds ExG(η(x)) obtained after plugging in γ0 in (6) are the ones proved initially (Stein-
wart, 2003). For the L1-SVM, the bound was later significantly improved (Steinwart, 2004). This
suggests that ExG(η(x)) might be a loose lower bound in general. In the next section we will show,
by deriving a sharp asymptotic result, that the bound is indeed loose for a family of loss functions.

4. Asymptotic Fraction of Support Vectors

We will consider convex loss functions of the form

φ(t) = h((t0 − t)+) . (7)
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The function h is assumed to be continuously differentiable and convex. We also assume h′(0) > 0.
The convexity of φ requires that h′(0) be non-negative. The reason we rule out h′(0) = 0 is that
γ0 = 1 in that case and Theorem 3 already tells us we will not have any sparseness. So, in this
section we are not interested in loss functions that are differentiable everywhere. In other words,
our assumption is that the loss function is constant for all t ≥ t0 and is continuously differentiable to
the left of t0. Further, the only discontinuity in the derivative is at t0. Without loss of generality, we
may assume that h(0) = 0 because the solutions to (1) do not change if we add or subtract a constant
from φ. Note that we obtain the hinge loss if we set h(t) = t. We now derive the dual of (1) for our
choice of the loss function.

4.1 Dual Formulation

For a convex loss function φ(t) = h((t0 − t)+), consider the optimization problem:

argmin
w

λ‖w‖2 +
1
n

n

∑
i=1

φ(yiw
T xi) .

Make the substitution ξi = t0 − yiwT xi to get

argmin
w

λ‖w‖2 +
1
n

n

∑
i=1

φ(t0 −ξi) (8)

subject to ξi = t0 − yiw
T xi for all i .

Introducing Lagrange multipliers, we get the Lagrangian:

L (w,ξ,α) = λ‖w‖2 +
1
n

n

∑
i=1

φ(t0 −ξi)+
n

∑
i=1

αi(t0 − yiw
T xi −ξi) .

Minimizing this with respect to the primal variables w and ξi’s, gives us

w =
1

2λ

n

∑
i=1

αiyixi ,

αi ∈ −∂φ(t0 −ξi)/n .

For the specific form of φ that we are working with, we have

−∂φ(t0 −ξi)/n =











{h′(ξi)/n} ξi > 0 ,

[0,h′(0)/n] ξi = 0 ,

{0} ξi < 0 .

(9)

Let (w∗,ξ∗i ) be a solution of (8). Then we have

λ‖w∗‖2 = λ(w∗)T

(

1
2λ

n

∑
i=1

α∗
i yixi

)

=
1
2

n

∑
i=1

α∗
i yi(w

∗)T xi =
1
2

n

∑
i=1

α∗
i (t0 −ξ∗i ) .

(10)
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4.2 Result About Asymptotic Fraction of Support Vectors and Its Proof

Recall that a kernel is called universal if its RKHS is dense in the space of continuous functions
over X . Suppose the kernel k is universal and analytic. This ensures that any function in the RKHS
H of k is analytic. Following Steinwart (2004), we call a probability distribution P non-trivial (with
respect to φ) if

Rφ,P < inf
b∈R

Rφ,P(b) .

We also define the P-version of the optimization problem (1):

fP,λ = argmin
f∈H

λ‖ f‖2
H +EPφ(y f (x)) .

Further, suppose that K = sup{
√

k(x,x) : x ∈ X } is finite. Fix a loss function of the form (7). Let G
be the function defined as

G(η) =











η/(1− γ0) 0 ≤ η ≤ 1− γ0 ,

1 1− γ0 < η < γ0 ,

(1−η)/(1− γ0) γ0 ≤ η ≤ 1 ,

where γ0 = h′(2t0)/(h′(0)+h′(2t0)). Note that this definition is different from the one given in (5).
Since φ is differentiable on (−t0, t0), Theorem 2, part 2 implies that F∗

φ is invertible on (1−
γ0,γ0). Thus, one can estimate conditional probabilities in the interval (1− γ0,γ0). Let #SV ( fT,λ)
denote the number of support vectors in the solution (2):

#SV ( fT,λ) = |{i : α∗
i 6= 0}| .

The next theorem says that the fraction of support vectors converges to the expectation ExG(η(x))
in probability.

Theorem 5 Let H be the RKHS of an analytic and universal kernel on R
d . Further, let X ⊂ R

d be
a closed ball and P be a probability measure on X ×{±1} such that Px has a density with respect
to the Lebesgue measure on X and P is non-trivial. Suppose sup{

√

k(x,x) : x ∈ X } < ∞. Then for
a classifier based on (1), which uses a loss function of the form (7), and a regularization sequence
which tends to 0 sufficiently slowly, we have

#SV ( fT,λn
)

n
→ ExG(η(x))

in probability.

Proof Let us fix an ε > 0. The proof will proceed in four steps of which the last two simply involve
relating empirical averages to expectations.

Step 1. In this step we show that fP,λn
(x) is not too close to ±t0 for most values of x. We also

ensure that fT,λn
(x) is sufficiently close to fP,λn

(x) provided λn → 0 slowly. Since fP,λ is an analytic
function, for any constant c, we have

Px({x ∈ X : fP,λ(x) = c}) > 0 ⇒ f (x) = c Px-a.s. (11)
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Assume that Px({x ∈ X : fP,λ(x) = t0}) > 0. By (11), we get Px({x ∈ X : fP,λ(x) = t0}) = 1. But
for small enough λ, fP,λ 6= t0 since Rφ,P( fP,λ) → Rφ,P and Rφ,P(t0) 6= Rφ,P by the non-triviality of P.
Therefore, assume that for all sufficiently large n, we have

Px({x ∈ X : fP,λn
(x) = t0}) = 0 .

Repeating the reasoning for −t0 gives us

Px({x ∈ X :
∣

∣ fP,λn
(x)− t0

∣

∣≤ δ}) ↓ 0 as δ ↓ 0 ,

Px({x ∈ X :
∣

∣ fP,λn
(x)+ t0

∣

∣≤ δ}) ↓ 0 as δ ↓ 0 .

Define the set Aδ(λ) = {x ∈ X :
∣

∣ fP,λ(x)− t0
∣

∣≤ δ or
∣

∣ fP,λ(x)+ t0
∣

∣≤ δ}. For small enough λ and for
all ε′ > 0, there exists δ > 0 such that Px(Aδ(λ)) ≤ ε′. Therefore, we can define

δ(λ) =
1
2

sup{δ > 0 : Px(Aδ(λ)) ≤ ε} .

Let m(λ) = inf{δ(λ′) : λ′ ≥ λ} be a decreasing version of δ(λ). Using Proposition 33 from Stein-
wart (2003) with ε = m(λn)/K, we conclude that for a sequence λn → 0 sufficiently slowly, the
probability of a training set T such that

‖ fT,λn
− fP,λn

‖ < m(λn)/K (12)

converges to 1 as n → ∞. It is important to note that we can draw this conclusion because m(λ) > 0
for λ > 0 (See proof of Theorem 3.5 in Steinwart, 2004). We now relate the ∞-norm of an f to its
2-norm.

f (x) = 〈k(x, ·), f (·)〉 ≤ ‖k(x, ·)‖‖ f‖
=
√

〈k(x, ·),k(x, ·)〉‖ f‖
=
√

k(x,x)‖ f‖ ≤ K‖ f‖ .

(13)

Thus, (12) gives us
‖ fT,λn

− fP,λn
‖∞ < m(λn) . (14)

Step 2. In the second step, we relate the fraction of support vectors to an empirical average.
Suppose that, in addition to (14), our training set T satisfies

λn‖ fT,λn
‖2 +Rφ,P( fT,λn

) ≤ Rφ,P + ε , (15)

∣

∣{i : xi ∈ Aδ(λn)}
∣

∣≤ 2εn . (16)

The probability of such a T also converges to 1. For (15), see the proof of Theorem 3.5 in Steinwart
(2005). Since Px(Aδ(λn)) ≤ ε, (16) follows from Hoeffding’s inequality. By definition of Rφ,P, we
have Rφ,P ≤ Rφ,P( fT,λn

). Thus, (15) gives us λn‖ fT,λn
‖2 ≤ ε. Now we use (10) to get

∣

∣

∣

∣

∣

n

∑
i=1

α∗
i t0 −

n

∑
i=1

α∗
i ξ∗i

∣

∣

∣

∣

∣

≤ 2ε . (17)
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Define three disjoint sets: A = {i : ξ∗i < 0}, B = {i : ξ∗i = 0} and C = {i : ξ∗i > 0}. We now show that B
contains few elements. If xi is such that i ∈ B then ξ∗i = 0 and we have yi fT,λn

(xi) = t0 ⇒ fT,λn
(xi) =

±t0. On the other hand, if xi /∈ Aδ(λn) then min{| fP,λn
(xi)− t0|, | fP,λn

(xi) + t0|} > δ(λn) ≥ m(λn),
and hence, by (14), fT,λn

(xi) 6= ±t0. Thus we can have at most 2εn elements in the set B by (16).
Equation (9) gives us a bound on α∗

i for i ∈ B and therefore

∣

∣

∣

∣

∣

∑
i∈B

α∗
i t0

∣

∣

∣

∣

∣

≤ 2εn×h′(0)t0/n = 2h′(0)t0ε . (18)

Using (9), we get αi = 0 for i ∈ A. By definition of B, ξ∗i = 0 for i ∈ B. Therefore, (17) and (18)
give us

∣

∣

∣

∣

∣

∑
i∈C

α∗
i t0 −∑

i∈C

α∗
i ξ∗i

∣

∣

∣

∣

∣

≤ 2(1+h′(0)t0)ε = c1ε .

where c1 = 2(1+h′(0)t0) is just a constant. We use (9) once again to write α∗
i as h′(ξ∗i )/n for i ∈C:

∣

∣

∣

∣

∣

1
n ∑

i∈C

h′(ξ∗i )t0 −
1
n ∑

i∈C

h′(ξ∗i )ξ
∗
i

∣

∣

∣

∣

∣

< c1ε . (19)

Denote the cardinality of the sets B and C by NB and NC respectively. Then we have NC ≤ #SV ( fT,λn
)≤

NC +NB. But we showed that NB ≤ 2εn and therefore

NC

n
≤ #SV ( fT,λn

)

n
≤ NC

n
+2ε . (20)

Observe that (ξ∗i )+ = 0 for i ∈ A∪B and (ξ∗i )+ = ξ∗i for i ∈C. Thus, we can extend the sums in (19)
to the whole training set.

∣

∣

∣

∣

∣

1
n

n

∑
i=1

h′((ξ∗i )+)t0 − (n−NC)
h′(0)t0

n
− 1

n

n

∑
i=1

h′((ξ∗i )+)(ξ∗i )+

∣

∣

∣

∣

∣

< c1ε .

Now let c2 = c1/h′(0)t0 and rearrange the above sum to get

∣

∣

∣

∣

∣

NC

n
− 1

n

n

∑
i=1

(

1− h′((ξ∗i )+)t0 −h′((ξ∗i )+)(ξ∗i )+

h′(0)t0

)

∣

∣

∣

∣

∣

≤ c2ε . (21)

Define g(t) as

g(t) = 1− h′((t0 − t)+)t0 −h′((t0 − t)+)(t0 − t)+

h′(0)t0
.

Now (21) can be written as
∣

∣

∣

∣

NC

n
−ET g(y fT,λn

(x))

∣

∣

∣

∣

≤ c2ε . (22)
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Step 3. We will now show that the empirical average of g(y fT,λn
(x)) is close to its expectation.

We can bound the norm of fT,λn
as follows. The optimum value for the objective function in (1) is

upper bounded by the value it attains at f = 0. Therefore,

λn‖ fT,λn
‖2 +Rφ,T ( fT,λn

) ≤ λn.0
2 +Rφ,T (0) = φ(0) = h(t0)

which, together with (13), implies that

‖ fT,λn
‖ ≤

√

h(t0)
λn

, (23)

‖ fT,λn
‖∞ ≤ K

√

h(t0)
λn

.

Let Fλn
be the class of functions with norm bounded by

√

h(t0)/λn. The covering number in 2-norm
of the class satisfies (see, for example, Definition 1 and Corollary 3 in Zhang (2002)):

N2(Fλn
,ε,n) ≤ e

Kh(t0)

λnε2 log(2n+1)
. (24)

Define Lg(λn) as

Lg(λn) = sup







|g(t)−g(t ′)|
|t − t ′| : t, t ′ ∈



−K

√

h(t0)
λn

,+K

√

h(t0)
λn



 , t 6= t ′







. (25)

Let Gλn
= {(x,y) 7→ g(y f (x)) : f ∈ Fλn

}. We can express the covering numbers of this class in terms
of those of Fλn

(see, for example, Lemma 14.13 on p. 206 in Anthony and Bartlett (1999)):

N2(Gλn
,ε,n) ≤ N2(Fλn

,ε/Lg(λn),n) . (26)

Now, using a result of Pollard (see Pollard, 1984, Section II.6, p. 30) and the fact that 1-norm
covering numbers are bounded above by 2-norm covering numbers, we get

Pn

(

T ∈ (X ×Y )n : sup
g̃∈Gλn

|ET g̃(x,y)−EPg̃(x,y)| > ε

)

≤ 8N2(Gλn
,ε/8,n)e−nε2λn/512L2

g(λn)K2h(t0) .

The estimates (24) and (26) imply that if

nλ2
n

L4
g(λn) log(2n+1)

→ ∞ as n → ∞

then the probability of a training set which satisfies
∣

∣ET g(y fT,λn
(x))−EPg(y fT,λn

(x))
∣

∣≤ ε (27)

tends to 1 as n → ∞.
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Step 4. The last step in the proof is to show that EPg(y fT,λn
(x)) is close to ExG(η(x)) for large

enough n. Write EPg(y fT,λn
(x)) as

EPg(y fT,λn
(x)) = Ex[η(x)g( fT,λn

(x))+(1−η(x))g(− fT,λn
(x))] .

Note that if t∗ ∈ F∗
φ (η) then

ηg(t∗)+(1−η)g(−t∗) = G(η) . (28)

Let us verify this for three separate cases. First, when η∈ (0,1−γ0]∪ [γ0,1) the only possible values
for t∗ are t0 or −t0 (by Theorem 2, Part 1). Since, g(t0) = 0 and g(−t0) = 1/(1− γ0) the equality
holds. Second, when η = 1 (the argument for η = 0 is similar), the left hand side is g(t ∗). In this
case t∗ ≥ t0, but the definition of g implies that g(t) = 0 for all t ≥ t0. Since G(1) = 0, the equality
holds in this case too. Lastly, for η ∈ (γ0,1− γ0) we have

ηg(t∗)+(1−η)g(−t∗) = 1− t∗

t0h′(0)

(

ηh′(t0 − t∗)− (1−η)h′(t0 + t∗)
)

.

Since t∗ minimizes ηh(t0 − t)+(1−η)h(t0 + t) and h is differentiable, we have ηh′(t0 − t∗)− (1−
η)h′(t0 + t∗) = 0. Thus, we have verified (28) for all η ∈ [0,1].

Define the sets En = {x ∈ X : ρ( fT,λn
(x),F∗

φ (η(x)) ≥ ε}. We have Px(En) → 0 by (3). We now
bound the difference between the two quantities of interest.

∣

∣EPg(y fT,λn
(x))−ExG(η(x))

∣

∣

=
∣

∣Ex[η(x)g( fT,λn
(x))+(1−η(x))g(− fT,λn

(x))]−ExG(η(x))
∣

∣

≤ Ex
∣

∣η(x)g( fT,λn
(x))+(1−η(x))g(− fT,λn

(x))−G(η(x))
∣

∣

= I1 + I2 ≤ |I1|+ |I2|

(29)

where the integrals I1 and I2 are

I1 =
Z

En

η(x)g( fT,λn
(x))+(1−η(x))g(− fT,λn

(x))−G(η(x))dPx ,

I2 =
Z

X \En

η(x)g( fT,λn
(x))+(1−η(x))g(− fT,λn

(x))−G(η(x))dPx .

Using (23) and (25) we bound |g(± fT,λn
(x))| by g(0)+ Lg(λn)K

√

h′(t0)/λn. Since g(0) = 1 and
|G(η)| ≤ 1, we have

|I1| ≤



1+g(0)+Lg(λn)K

√

h′(t0)
λn



Px(En) .

If λn → 0 slowly enough so that Lg(λn)Px(En)/
√

λn → 0, then for large n, |I1| ≤ ε. To bound |I2|,
observe that for x ∈ X \En, we can find a t∗ ∈ F∗

φ (η(x)), such that | fT,λn
(x)− t∗| ≤ ε. Therefore,

η(x)g( fT,λn
(x))+(1−η(x))g(− fT,λn

(x)) = η(x)g(t∗)+(1−η(x))g(−t∗)+∆ .

where |∆| ≤ c3ε and the constant c3 does not depend on λn. Using (28), we can now bound |I2|:
|I2| ≤ c3ε(1−Px(En)) ≤ c3ε .

We now use (29) to get
∣

∣EPg(y fT,λn
(x))−ExG(η(x))

∣

∣≤ (c3 +1)ε . (30)

Finally, combining (20), (22), (27) and (30) proves the theorem.
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5. Conclusion

We saw that the decision functions obtained using minimization of regularized empirical φ-risk
approach F∗

φ (η(·)). It is not possible to preserve sparseness on intervals where F ∗
φ (·) is invertible.

For the regions outside that interval, sparseness is maintained to some extent. For many convex loss
functions, the general lower bounds known previously turned out to be quite loose.

But that leaves open the possibility that the previously known lower bounds are actually achiev-
able by some loss function lying outside the class of loss functions we considered. However, we
conjecture that it is not possible. Note that the right hand side of Theorem 5 only depends on the
left derivative of the loss function at t0 and the right derivative at −t0. The derivatives at other points
do not affect the asymptotic number of support vectors. This suggests that the assumption of the
differentiability of φ before the point where it attains its minimum can be relaxed. It may be that
results on the continuity of solution sets of convex optimization problems can be applied here (e.g.,
see Fiacco, 1983).
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