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Abstract

The predict-then-optimize framework is fundamental in many practical settings:
predict the unknown parameters of an optimization problem, and then solve the
problem using the predicted values of the parameters. A natural loss function in
this environment is to consider the cost of the decisions induced by the predicted
parameters, in contrast to the prediction error of the parameters. This loss function
was recently introduced [7] and christened Smart Predict-then-Optimize (SPO) loss.
Since the SPO loss is nonconvex and noncontinuous, standard results for deriving
generalization bounds do not apply. In this work, we provide an assortment of
generalization bounds for the SPO loss function. In particular, we derive bounds
based on the Natarajan dimension that, in the case of a polyhedral feasible region,
scale at most logarithmically in the number of extreme points, but, in the case of
a general convex set, have poor dependence on the dimension. By exploiting the
structure of the SPO loss function and an additional strong convexity assumption on
the feasible region, we can dramatically improve the dependence on the dimension
via an analysis and corresponding bounds that are akin to the margin guarantees in
classification problems.

1 Introduction

A common application of machine learning is to predict-then-optimize, i.e., predict unknown parame-
ters of an optimization problem and then solve the optimization problem using the predictions. For
instance, consider a navigation task that requires solving a shortest path problem. The key input
into this problem are the travel times on each edge, typically called edge costs. Although the exact
costs are not known at the time the problem is solved, the edge costs are predicted using a machine
learning model trained on historical data consisting of features (time of day, weather, etc.) and edge
costs (collected from app data). Fundamentally, a good model induces the optimization problem to
find good shortest paths, as measured by the true edge costs. In fact, recent work has been developed
to consider how to solve problems in similar environments [3, 13, 6]. In particular, recent work [7]
developed the Smart Predict-then-Optimize (SPO) loss function which exactly measures the quality
of a prediction by the decision error, in contrast to the prediction error as measured by standard loss
functions such as squared error. In this work, we seek to provide an assortment of generalization
bounds for the SPO loss function.
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Specifically, we shall assume that our optimization task is to minimize a linear objective over a convex
feasible region. In the shortest path example, the feasible region is a polyhedron. We assume the
objective cost vector is not known at the time the optimization problem is solved, but rather predicted
from data. A decision is made with respect to the predicted cost vector, and the SPO loss is computed
by evaluating the decision on the true cost vector and then subtracting the optimal cost assuming
knowledge of the true cost vector. Unfortunately, the SPO loss is nonconvex and non-Lipschitz, and
therefore proving generalization bounds is not immediate.

Our results consider two cases, depending on whether the feasible region is a polyhedron or a strongly
convex body. In all cases, we achieve a dependency of 1√

n
up to logarithmic terms, where n is the

number of samples. In the polyhedral case, our generalization bound is formed by considering the
Rademacher complexity of the class obtained by compositing the SPO loss with our predict-then-
optimize models. This in turn can be bounded by a term on the order of square root of the Natarajan
dimension times the logarithm of the number of extreme points in the feasible region. Since the
number of extreme points is typically exponential in the dimension, this logarithm is essential so that
the bound is at most linear in the dimension. When our cost vector prediction models are restricted
to linear, we show that the Natarajan dimension of the predict-then-optimize hypothesis class is
simply bounded by the product of the two relevant dimensions, the feature dimension and the cost
vector dimension, of the linear hypothesis class. Using this polyhedral approach, we show that a
generalization bound is possible for any convex set by looking at a covering of the feasible region,
although the dependency on the dimension is at least linear.

Fortunately, we show that when the feasible region is strongly convex, tighter generalization bounds
can be obtained using margin-based methods. The proof relies on constructing an upper bound on the
SPO-loss function and showing it is Lipschitz. Our margin based bounds have no explicit dependence
on dimensions of input features and of cost vectors. It is expressed as a function of the multivariate
Rademacher complexity of the vector-valued hypothesis class being used. We show that for suitably
constrained linear hypothesis classes, we get a much improved dependence on problem dimensions.
Since the SPO loss generalizes the 0-1 multiclass loss from multiclass classification (see Example 3),
our work can be seen as extending classic Natarajan-dimension based [20, Ch. 29] and margin-based
generalization bounds [14] to the predict-then-optimize framework.

We note that one can generally construct an instance of a multiclass classification problem from
an instance of an SPO problem by considering the “label” of each observed cost vector to be the
corresponding optimal solution which is without loss of generality an extreme point of the feasible
set of solutions. The number of classes in the resulting multiclass problem is the number of extreme
points of the feasible set. It is therefore important to use those generalization bounds from the multi-
class classification literature that are not too large in the number of classes. For data-independent
worst-case bounds, the dependency is at best square root in the number of classes [9, 4]. In contrast,
we provide data-independent bounds that grow only logarithmically in the number of extreme points.
Using data-dependent (margin-based) approaches, [15, 16] successfully decreased this complexity to
logarithm in the number of classes.

However, the reduction of an SPO problem to multiclass classification throws away potentially
important information, namely the numerical values of the cost vectors. Our margin-based approach
removes any explicit dependency on the number of classes by exploiting the structure of the SPO
loss. In Section 4, we make an important assumption that the feasible set is strongly convex (which
necessarily implies that the number of extreme points is infinite) and also heavily uses the structure
of the SPO loss via the construction of the γ-margin SPO loss. This refined analysis allows us to
circumvent a naive bound that depends on the infinite number of classes, which would be vacuous.

Even though we construct a Lipschitz upper bound on SPO loss in a general norm setting (Theorem 3),
our margin bounds (Theorem 4) are stated in the `2 norm setting. This is because the most general
contraction type lemma for vector valued Lipschitz functions we know of only works for the `2-
norm [17]. Similar results are available in the infinity norm setting [3] but our understanding of
general norms appears limited at present. Our work will hopefully provide the motivation to develop
contraction inequalities for vector valued Lipschitz functions in a general norm setting.
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2 Predict-then-optimize framework and preliminaries

We now describe the predict-then-optimize framework which is central to many applications of
optimization in practice. Specifically, we assume that there is a nominal optimization problem of
interest which models our downstream decision-making task. Furthermore, we assume that the
nominal problem has a linear objective and that the decision variable w ∈ Rd and feasible region
S ⊆ Rd are well-defined and known with certainty. However, the cost vector of the objective, c ∈ Rd,
is not observed directly, and rather an associated feature vector x ∈ Rp is observed. Let D be the
underlying joint distribution of (x, c) and let Dx be the conditional distribution of c given x. Then
the goal for the decision maker is to solve

min
w∈S

Ec∼Dx
[cTw|x] = min

w∈S
Ec∼Dx

[c|x]Tw (1)

The predict-then-optimize framework relies on using a prediction/estimate for Ec∼Dx
[c|x], which we

denote by ĉ, and solving the deterministic version of the optimization problem based on ĉ. We define
P (ĉ) to be the optimization task with objective cost vector ĉ, namely

P (ĉ) : min
w

ĉTw

s.t. w ∈ S.
(2)

We assume S ⊆ Rd is a nonempty, compact, and convex set representing the feasible region. We let
w∗(·) : Rd → S denote any oracle for solving P (·). That is, w∗(·) is a fixed deterministic mapping
such that w∗(c) ∈ arg minw∈S

{
cTw

}
for all c ∈ Rd. For instance, if (2) corresponds to a linear,

conic, or even a particular combinatorial or mixed-integer optimization problem (in which case S
can be implicitly described as a convex set), then a commercial optimization solver or a specialized
algorithm suffices for w∗(c).

In this framework, we assume that predictions are made from a model that is learned on a training
data set. Specifically, the sample training data (x1, c1), . . . , (xn, cn) is drawn i.i.d. from the joint
distribution D, where xi ∈ X is a feature vector representing auxiliary information associated with
the cost vector ci. We denote by H our hypothesis class of cost vector prediction models, thus
for a function f ∈ H, we have that f : X → Rd. Most approaches for learning a model f ∈ H
from the training data are based on specifying a loss function that quantifies the error in making
prediction ĉ when the realized (true) cost vector is actually c. Following prior work [7], our primary
loss function of interest is the “smart predict-then-optimize” loss function that directly takes the
nominal optimization problem P (·) into account when measuring errors in predictions. Namely, we
consider the SPO loss function (relative to the optimization oracle w∗(·)) defined by:

`SPO(ĉ, c) := cT (w∗(ĉ)− w∗(c)) ,

where ĉ ∈ Rd is the predicted cost vector and c ∈ C ⊆ Rd is the true realized cost vector. Notice that
`SPO(ĉ, c) exactly measures the excess cost incurred when making a suboptimal decision due to an
imprecise cost vector prediction. Also, note that the SPO loss is non-negative and bounded above by
ωS(C) for all ĉ ∈ Rd and c ∈ C where ωS(C) is a diameter-like quantity that we will define shortly.
Let us now present several examples to illustrate the applicability and generality of the SPO loss
function and framework.
Example 1. In the shortest path problem, the feature vector x may include features such as weather
and time information that may be used to predict the cost vector c representing the travel times along
each edge of the network. In this case, the network is assumed to be given (e.g., the road network of
a city) and the feasible region S is a network flow polytope that represents flow conservation and
capacity constraints on the underlying network.
Example 2. In portfolio optimization, the returns of potential investments can depend on many
features which typically include historical returns, news, economic factors, social media, and others.
We presume that these auxiliary features may be used to predict the vector of returns r of d different
assets, but that the covariance matrix of the asset returns does not depend on the auxiliary features.
Here we are interested in maximizing returns, so we let the cost vector c be defined by c = −r̃ where
r̃ = r − rRFe, r represents the vector of asset returns, rRF is the risk-free rate, and e is the vector of
all ones. If Σ ∈ Rd×d denotes the (positive semidefinite) covariance matrix of the asset returns and
γ ≥ 0 is a desired bound on the overall variance (risk level) of the portfolio, then we may define the
feasible region by S := {w : wTΣw ≤ γ, eTw ≤ 1, w ≥ 0}.
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Example 3. Our setting also captures multi-class (and binary) classification by the following character-
ization: S is the d-dimensional simplex where d is the number of classes, and C = {−ei|i = 1, . . . , d}
where ei is the ith unit vector in Rd. It is easy to see that each vertex of the simplex corresponds to a
label, and correct/incorrect prediction has a loss of 0/1.

As pointed out before [7], the SPO loss function is generally non-convex, may even be discontinuous,
and is in fact a strict generalization of the 0-1 loss function in binary classification. Thus, optimizing
the SPO loss via empirical risk minimization may be intractable even whenH is a linear hypothesis
class. To circumvent these difficulties, one approach is to optimize a convex surrogate loss [7]. Our
focus is on deriving generalization bounds that hold uniformly over the classH, and thus are valid
for any training approach, including using a surrogate or other loss function within the framework of
empirical risk minimization. Notice that a generalization bound for the SPO loss directly translates to
an upper bound guarantee for problem (1) that holds “on average” over the distribution.

Useful notation. We will make use of a generic given norm ‖ · ‖ on w ∈ Rd, as well as the `q-norm
denoted by ‖ · ‖q for q ∈ [1,∞]. For the given norm ‖ · ‖ on Rd, ‖ · ‖∗ denotes the dual norm defined
by ‖c‖∗ := maxw:‖w‖≤1 c

Tw. Let B(w̄, r) := {w : ‖w − w̄‖ ≤ r} denote the ball of radius r
centered at w̄, and we analogously define Bq(w̄, r) for the `q-norm and B∗(c, r) for the dual norm.
For a set S ⊆ Rd, we define the size of S in the norm ‖ · ‖ by ρ(S) := supw∈S ‖w‖. We analogously
define ρq(·) for the `q-norm and ρ∗(·) for the dual norm. We define the “linear optimization gap” of S
with respect to c by ωS(c) := maxw∈S

{
cTw

}
−minw∈S

{
cTw

}
, and for a set C ⊆ Rd we slightly

abuse notation by defining ωS(C) := supc∈C ωS(c). Define w∗(H) := {x 7→ w∗(f(x)) : f ∈ H}.

Rademacher complexity. Let us now briefly review the notion of Rademacher complexity and its
application in our framework. Recall that H is a hypothesis class of functions mapping from the
feature space X to Rd. Given a fixed sample (x1, c1)...(xn, cn), we define the empirical risk with
respect to the SPO loss of a function f ∈ H as

R̂SPO(f) =
1

n

n∑
i=1

`SPO(f(xi), ci) ,

and the expected risk as RSPO(f) = E(x,c)∼D[`SPO(f(x), c)]. We also define the empirical
Rademacher complexity ofH with respect to the SPO loss, i.e., the empirical Rademacher complexity
of the function class obtained by composing `SPO withH by

R̂n
SPO(H) := Eσ

[
sup
f∈H

1

n

n∑
i=1

σi`SPO(f(xi), ci)

]
,

where σi are i.i.d. Rademacher random variables for i = 1, . . . , n. The expected version of the
Rademacher complexity is defined as Rn

SPO(H) := E
[
R̂n

SPO(H)
]

where the expectation is w.r.t. an
i.i.d. sample drawn from the underlying distribution D. The following theorem is an application of
the classical generalization bounds based on Rademacher complexity due to [1] to our setting.
Theorem 1 (Bartlett and Mendelson [1]). Let H be a family of functions mapping from X to Rd.
Then, for any δ > 0, with probability at least 1− δ over an i.i.d. sample drawn from the distribution
D, each of the following holds for all f ∈ H

RSPO(f) ≤ R̂SPO(f) + 2Rn
SPO(H) + ωS(C)

√
log(1/δ)

2n
, and

RSPO(f) ≤ R̂SPO(f) + 2R̂n
SPO(H) + 3ωS(C)

√
log(2/δ)

2n
.

3 Combinatorial dimension based generalization bounds

In this section, we consider the case where S is a polyhedron and derive generalization bounds
based on bounding the Rademacher complexity of the SPO loss and applying Theorem 1. Since S
is polyhedral, the optimal solution of (2) can be found by considering only the finite set of extreme
points of S, which we denote by the set S. Since the number of extreme points may be exponential
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in d, our goal is to provide bounds that are logarithmic in |S|. At the end of the section, we extend
our analysis to any compact and convex feasible region S by extending the polyhedral analysis with a
covering number argument.

In order to derive a bound on the Rademacher complexity, we will critically rely on the notion of the
Natarajan dimension [19], which is an extension of the VC-dimension to the multiclass classification
setting and is defined in our setting as follows.
Definition 1 (Natarajan dimension). Suppose that S is a polyhedron and S is the set of its extreme
points. Let F ⊆ SX be a hypothesis space of functions mapping from X to S, and let X ⊆ X be
given. We say that F N-shatters X if there exists g1, g2 ∈ F such that

• g1(x) 6= g2(x) for all x ∈ X

• For all T ⊆ X, there exists g ∈ F such that (i) for all x ∈ T , g(x) = g1(x) and (ii) for all
x ∈ X\T , g(x) = g2(x).

The Natarajan dimension of F , denoted dN (F), is the maximal cardinality of a set N-shattered by F .

The Natarajan dimension is a measure for the richness of a hypothesis class. In Theorem 2, we show
that the Rademacher complexity for the SPO loss can be bounded as a function of the Natarajan
dimension of w∗(H) := {x 7→ w∗(f(x)) : f ∈ H}. The proof follows a classical argument and
makes strong use of Massart’s lemma and the Natarajan lemma.
Theorem 2. Suppose that S is a polyhedron and S is the set of its extreme points. LetH be a family
of functions mapping from X to Rd. Then we have that

Rn
SPO(H) ≤ ωS(C)

√
2dN (w∗(H)) log(n|S|2)

n
.

Furthermore, for any δ > 0, with probability at least 1− δ over an i.i.d. sample (x1, c1), . . . , (xn, cn)
drawn from the distribution D, for all f ∈ H we have

RSPO(f) ≤ R̂SPO(f) + 2ωS(C)
√

2dN (w∗(H)) log(n|S|2)

n
+ ωS(C)

√
log(1/δ)

2n
.

Next, we show that whenH is restricted to the linear hypothesis classHlin = {x 7→ Bx : B ∈ Rd×p},
then the Natarajan dimension of w∗(Hlin) can be bounded by dp. The proof relies on translating our
problem to an instance of linear multiclass prediction problem and using a result of [5].
Corollary 1. Suppose that S is a polyhedron and S is the set of its extreme points. LetHlin be the
hypothesis class of all linear functions, i.e.,Hlin = {x 7→ Bx : B ∈ Rd×p}. Then we have

dN (w∗(Hlin)) ≤ dp.
Furthermore, for any δ > 0, with probability at least 1− δ over an i.i.d. sample (x1, c1), . . . , (xn, cn)
drawn from the distribution D, for all f ∈ Hlin we have

RSPO(f) ≤ R̂SPO(f) + 2ωS(C)
√

2dp log(n|S|2)

n
+ ωS(C)

√
log(1/δ)

2n
.

Next, we will build off the previous results to prove generalization bounds in the case where S is a
general compact convex set. The arguments we made earlier made extensive use of the extreme points
of the polyhedron. Nevertheless, this combinatorial argument can be modified in order to derive
similar results for general S. The approach is to approximate S by a grid of points corresponding
to the smallest cardinality ε-covering of S. To optimize over these grid of points, we first find the
optimal solution in S and then round to the nearest point in the grid. Both the grid representation and
the rounding procedure can fortunately both be handled by similar arguments made in Theorems 2
and Corollary 1, yielding a generalization bound below.
Corollary 2. Let S be any compact and convex set, and let Hlin be the hypothesis class of all
linear functions. Then, for any δ > 0, with probability at least 1 − δ over an i.i.d. sample
(x1, c1), . . . , (xn, cn) drawn from the distribution D, for all f ∈ Hlin we have

RSPO(f) ≤ R̂SPO(f) + 4dωS(C)
√

2p log(2nρ2(S)d)

n
+ 3ωS(C)

√
log(2/δ)

2n
+O

(
1

n

)
.
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Although the dependence on the sample size n in the above bound is favorable, the dependence on
the number of features p and the dimension of the feasible region d is relatively weak. Given that the
proofs of Corollary 2 and Theorem 2 are purely combinatorial and hold for worst-case distributions,
this is not surprising. In the next section, we demonstrate how to exploit the structure of the SPO loss
function and additional convexity properties of S in order to develop improved bounds.

4 Margin-based generalization bounds under strong convexity

In this section, we develop improved generalization bounds for the SPO loss function under the
additional assumption that the feasible region S is strongly convex. Our developments are akin to
and in fact are a strict generalization of the margin guarantees for binary classification based on
Rademacher complexity developed in [14]. We adopt the definition of strongly convex sets presented
in [10, 8], which is reviewed in Definition 2 below. Recall that ‖ · ‖ is a generic given norm on Rd
and B(w̄, r) := {w : ‖w − w̄‖ ≤ r} denotes the ball of radius r centered at w̄.

Definition 2. We say that a convex set S ⊆ Rd is µ-strongly convex with respect to the norm ‖ · ‖ if,
for any w1, w2 ∈ S and for any λ ∈ [0, 1], it holds that:

B
(
λw1 + (1− λ)w2,

(
µ
2

)
λ(1− λ)‖w1 − w2‖2

)
⊆ S .

Informally, Definition 2 says that, for every convex combination of points in S, a ball of appropriate
radius also lies in S. Several examples of strongly convex sets are presented in [10, 8], including `q
and Schatten `q balls for q ∈ (1, 2], certain group norm balls, and generally any level set of a smooth
and strongly convex function.

Our analysis herein relies on the following Proposition, which strengthens the first-order general
optimality condition for differentiable convex optimization problems under the additional assumption
of strong convexity. Proposition 1 may be of independent interest and, to the best of our knowledge,
has not appeared previously in the literature.

Proposition 1. Let S ⊆ Rd be a non-empty µ-strongly convex set and let F (·) : Rd → R be a convex
and differentiable function. Consider the convex optimization problem:

min
w

F (w)

s.t. w ∈ S .
(3)

Then, w̄ ∈ S is an optimal solution of (3) if and only if:

∇F (w̄)T (w − w̄) ≥
(
µ
2

)
‖∇F (w̄)‖∗‖w − w̄‖2 for all w ∈ S . (4)

In fact, we prove a slightly more general version of the proposition where the function F need only
be defined on an open set containing S. In the case of linear optimization with F (w) = ĉTw, the
inequality (4) implies that w∗(ĉ) is the unique optimal solution of P (ĉ) whenever ĉ 6= 0 and µ > 0.
Hence, in the context of the SPO loss function with a strongly convex feasible region, ‖ĉ‖∗ provides
a degree of “confidence” regarding the decision w∗(ĉ) implied by the cost vector prediction ĉ. This
intuition motivates us to define the “γ-margin SPO loss”, which places a greater penalty on cost
vector predictions near 0.

Definition 3. For a fixed parameter γ > 0, given a cost vector prediction ĉ and a realized cost vector
c, the γ-margin SPO loss `γSPO(ĉ, c) is defined as:

`γSPO(ĉ, c) :=

{
`SPO(ĉ, c) if ‖ĉ‖∗ > γ(
‖ĉ‖∗
γ

)
`SPO(ĉ, c) +

(
1− ‖ĉ‖∗γ

)
ωS(c) if ‖ĉ‖∗ ≤ γ

Recall that, for any ĉ, c ∈ Rd, it holds that `SPO(ĉ, c) ≤ ωS(c). Hence, we also have that
`SPO(ĉ, c) ≤ `γSPO(ĉ, c), that is the γ-margin SPO loss provides an upper bound on the SPO
loss. Notice that the γ-margin SPO loss interpolates between the SPO loss and the upper bound ωS(c)
whenever ‖ĉ‖∗ ≤ γ. The γ-margin SPO loss also satisfies a simple monotonicity property whereby
`γSPO(ĉ, c) ≤ `γ̄SPO(ĉ, c) for any ĉ, c ∈ Rd and γ̄ ≥ γ > 0. We can also define a “hard γ-margin SPO
loss” that simply returns the upper bound ωS(c) whenever ‖ĉ‖∗ ≤ γ.
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Definition 4. For a fixed parameter γ ≥ 0, given a cost vector prediction ĉ and a realized cost vector
c, the hard γ-margin SPO loss ¯̀γ

SPO(ĉ, c) is defined as:

¯̀γ
SPO(ĉ, c) :=

{
`SPO(ĉ, c) if ‖ĉ‖∗ > γ

ωS(c) if ‖ĉ‖∗ ≤ γ

It is simple to see that `SPO(ĉ, c) ≤ `γSPO(ĉ, c) ≤ ¯̀γ
SPO(ĉ, c) ≤ ωS(c) for all ĉ, c ∈ Rd and γ > 0.

Due to this additional upper bound, in all of the subsequent generalization bound results, the empirical
γ-margin SPO loss can be replaced by its hard margin counterpart.

We are now ready to state a theorem concerning the Lipschitz properties of the optimization oracle
w∗(·) and the γ-margin SPO loss, which will then be used to derive margin-based generalization
bounds. Theorem 3 below first demonstrates that the optimization oracle w∗(·) satisfies a “Lipschitz-
like” property away from zero. Subsequently, this Lipschitz-like property is a key ingredient in
demonstrating that the γ-margin SPO loss is Lipschitz.
Theorem 3. Suppose that feasible region S is µ-strongly convex with µ > 0. Then, the optimization
oracle w∗(·) satisfies the following “Lipschitz-like” property: for any ĉ1, ĉ2 ∈ Rd, it holds that:

‖w∗(ĉ1)− w∗(ĉ2)‖ ≤ 1

µ ·min {‖ĉ1‖∗, ‖ĉ2‖∗}
‖ĉ1 − ĉ2‖∗ . (5)

Moreover, for any fixed c ∈ Rd and γ > 0, the γ-margin SPO loss is (5‖c‖∗/γµ)-Lipschitz with
respect to the dual norm ‖ · ‖∗, i.e., it holds that:

|`γSPO(ĉ1, c)− `γSPO(ĉ2, c)| ≤
5‖c‖∗
γµ
‖ĉ1 − ĉ2‖∗ for all ĉ1, ĉ2 ∈ Rd . (6)

Proof. We present here only the proof of (5) and defer the proof of (6), which relies crucially on (5),
to the supplementary materials. Let τ := min {‖ĉ1‖∗, ‖ĉ2‖∗}. We assume without loss of generality
that τ > 0 (otherwise the right-hand side of (5) is equal to +∞ by convention). Applying Proposition
1 twice yields:

ĉT1 (w∗(ĉ2)− w∗(ĉ1)) ≥
(
µ
2

)
τ‖w∗(ĉ1)− w∗(ĉ2)‖2 ,

and
ĉT2 (w∗(ĉ1)− w∗(ĉ2)) ≥

(
µ
2

)
τ‖w∗(ĉ1)− w∗(ĉ2)‖2 .

Adding the above two inequalities together yields:

µτ‖w∗(ĉ1)− w∗(ĉ2)‖2 ≤ (ĉ2 − ĉ1)T (w∗(ĉ1)− w∗(ĉ2)) ≤ ‖ĉ1 − ĉ2‖∗‖w∗(ĉ1)− w∗(ĉ2)‖ ,
where the second inequality is Hölder’s inequality. Dividing both sides of the above by µτ‖w∗(ĉ1)−
w∗(ĉ2)‖ yields the desired result.

Margin-based generalization bounds. We are now ready to present our main generalization
bounds of interest in the strongly convex case. Our results are based on combining Theorem 3 with
the Lipschitz vector-contraction inequality for Rademacher complexities developed in [17], as well
as the results of [1]. Following [3, 17], given a fixed sample ((x1, c1)...(xn, cn)), we define the
multivariate empirical Rademacher complexity ofH as

R̂n(H) := Eσ

sup
f∈H

1

n

n∑
i=1

d∑
j=1

σijfj(xi)

 = Eσ

[
sup
f∈H

1

n

n∑
i=1

σTi f(xi)

]
, (7)

where σij are i.i.d. Rademacher random variables for i = 1, . . . , n and j = 1, . . . , d, and σi =
(σi1, . . . , σid)

T . The expected version of the multivariate Rademacher complexity is defined as
Rn(H) := E

[
R̂n(H)

]
where the expectation is w.r.t. the i.i.d. sample drawn from the underlying

distribution D.

Let us also define the empirical γ-margin SPO loss and the empirical Rademacher complexity ofH
with respect to the γ-margin SPO loss as follows:

R̂γSPO(f) :=
1

n

n∑
i=1

`γSPO(f(xi), ci) , and R̂n
γSPO(H) := Eσ

[
sup
f∈H

1

n

n∑
i=1

σi`
γ
SPO(f(xi), ci)

]
,
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where f ∈ H on the left side above and σi are i.i.d. Rademacher random variables for i = 1, . . . , n.

In the following two theorems, we focus only on the case of the `2-norm set-up, i.e., the norm on
the space of w variables as well as the norm on the space of cost vectors c are both the `2-norm. To
the best of our knowledge, extending the vector-contraction inequality of [17] to an arbitrary norm
setting (or even the case of general `q-norms) remains an open question that would have interesting
applications to our framework. Theorem 4 below presents our margin based generalization bounds
for a fixed γ > 0. Recall that C denotes the domain of the true cost vectors c, ρ2(C) = supc∈C ‖c‖2,
and ωS(C) := supc∈C ωS(c).
Theorem 4. Suppose that feasible region S is µ-strongly convex with respect to the `2-norm with
µ > 0, and let γ > 0 be fixed. LetH be a family of functions mapping from X to Rd. Then, for any
fixed sample ((x1, c1)...(xn, cn)) we have that

R̂n
γSPO(H) ≤ 5

√
2ρ2(C)R̂n(H)

γµ
.

Furthermore, for any δ > 0, with probability at least 1− δ over an i.i.d. sample Sn drawn from the
distribution D, each of the following holds for all f ∈ H

RSPO(f) ≤ R̂γSPO(f) +
10
√

2ρ2(C)Rn(H)

γµ
+ ωS(C)

√
log(1/δ)

2n
, and

RSPO(f) ≤ R̂γSPO(f) +
10
√

2ρ2(C)R̂n(H)

γµ
+ 3ωS(C)

√
log(2/δ)

2n
.

Proof. The bound on R̂n
γSPO(H) follows simply by combining Theorem 3, particularly (6), with

equation (1) of [17]. The subsequent generalization bounds then simply follow since RSPO(f) ≤
RγSPO(f) for all f ∈ H and by applying the version of Theorem 1 for the γ-margin SPO loss.

It is often the case that the structure of the hypothesis classH naturally leads to a bound on Rn(H)
that can have mild, even logarithmic, dependence on dimensions p and d. For example, let us
consider the general setting of a constrained linear function class, namelyH = HB := {f : f(x) =
Bx for some B ∈ Rd×p, B ∈ B}, whereB ⊆ Rd×p. In Section A.2.4 of the supplementary materials,
we derive a result that extends Theorem 3 of [12] to multivariate Rademacher complexity and provides
a convenient way to bound Rn(HB) in the case when B corresponds to the level set of a strongly
convex function. When B = {B : ‖B‖F ≤ β} (where ‖B‖F denotes the Frobenius norm of B) this
result implies that Rn(HB) ≤ ρ2(X )β

√
2d√

n
, and when B = {B : ‖B‖1 ≤ β} (where ‖B‖1 denotes the

`1-norm of the vectorized matrix B) this result implies that Rn(HB) ≤ ρ∞(X )β
√

6 log(pd)√
n

. Note the
absence of any explicit dependence on p in the first bound and only logarithmic dependence on p, d
in the second. We discuss the details of these and additional examples, including the “group-lasso"
norm, in Section A.2.4.

Theorem 4 may also be extended to bounds that hold uniformly over all values of γ ∈ (0, γ̄], where
γ̄ > 0 is a fixed parameter. This extension is presented below in Theorem 5.
Theorem 5. Suppose that feasible region S is µ-strongly convex with respect to the `2-norm with
µ > 0, and let γ̄ > 0 be fixed. LetH be a family of functions mapping from X to Rd. Then, for any
δ > 0, with probability at least 1− δ over an i.i.d. sample drawn from the distribution D, each of the
following holds for all f ∈ H and for all γ ∈ (0, γ̄]

RSPO(f) ≤ R̂γSPO(f) +
20
√

2ρ2(C)Rn(H)

γµ
+ ωS(C)

(√
log(log2(2γ̄/γ))

n
+

√
log(2/δ)

2n

)
, and

RSPO(f) ≤ R̂γSPO(f) +
20
√

2ρ2(C)R̂n(H)

γµ
+ ωS(C)

(√
log(log2(2γ̄/γ))

n
+ 3

√
log(4/δ)

2n

)
.

Note that a natural choice for γ̄ in Theorem 5 is γ̄ ← supf∈H,x∈X ‖f(x)‖2, presuming that one can
bound this quantity based on the properties ofH and X . Example 4 below discusses how Theorems
4 and 5 relate to known results in binary classification.
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Example 4. In [7], it is shown that the SPO loss corresponds exactly to the 0-1 loss in binary
classification when d = 1, S = [−1/2,+1/2], and C = {−1,+1}. In this case, using our notation,
the margin value of a prediction ĉ is cĉ. It is also easily seen that ωS(C) = ρ2(C) = 1, the γ-margin
SPO loss corresponds exactly to the margin loss (or ramp loss) that interpolates between 1 and 0 when
cĉ ∈ [0, γ], and the hard γ-margin SPO loss corresponds exactly to the margin loss that returns 1
when cĉ ≤ γ and 0 otherwise. Furthermore, note that the interval S = [− 1

2 ,+
1
2 ] is 2-strongly convex

[8]. Thus, except for some worse absolute constants, Theorems 4 and 5 generalize the well-known
results on margin guarantees based on Rademacher complexity for binary classification [14].

As in the case of binary classification, the utility of Theorems 4 and 5 is strengthened when the
underlying distribution D has a “favorable margin property.” Namely, the bounds in Theorems 4 and
5 can be much stronger than those of Corollary 2 when the distribution D and the sample are such
that there exists a relatively large value of γ such that the empirical γ-margin SPO loss is small. One
is thus motivated to choose the value of γ in a data-driven way so that, given a prediction function f̂
trained on the data Sn, the upper bound on R̂SPO(f̂) is minimized. Since Theroem 5 is a uniform
result over γ ∈ (0, γ̄], this data-driven procedure for choosing γ is indeed valid.

5 Conclusions and Future Directions

Our work extends learning theory, as developed for binary and multiclass classification, to predict-
then-optimize problems in two very significant directions: (i) obtaining worst-case generalization
bounds using combinatorial parameters that measure the capacity of function classes, and (ii) ex-
ploiting special structure in data by deriving margin-based generalization bounds that scale more
gracefully w.r.t. problem dimensions. It also motivates several interesting avenues for future work.
Beyond the margin theory, other aspects of the problem that lead to improvements over worst case
rates should be studied. In this respect, developing a theory of local Rademacher complexity for
predict-then-optimize problems would be a promising approach. It will be good to use minimax
constructions to provide matching lower bounds for our upper bounds. Extending the margin theory
for strongly convex sets, where the SPO loss is ill-behaved only near 0, to polyhedral sets, where
it can be much more ill-behaved, is a challenging but fascinating direction. Developing a theory of
surrogate losses, especially convex ones, that are calibrated w.r.t. the non-convex SPO loss will also
be extremely important. Finally, the assumption that the optimization objective is linear could be
relaxed to include non-linear objectives.
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A Supplementary Materials

A.1 Proofs for Section 3

A.1.1 Proof of Theorem 2

Proof. The proof is along the lines of Corollary 3.8 in [18]. Fix a sample of data Sn =
(X,C) ∈ (X , C)n, where X = (x1, . . . , xn) and C = (c1, . . . , cn). Let F|X :=
{(w∗(f(x1)), . . . , w∗(f(xn))) : f ∈ H}. From the definition of empirical Rademacher complexity,
we have that

R̂n
SPO(H) = Eσ

[
sup
f∈H

1

n

n∑
i=1

σi`SPO(f(xi), ci)

]

= Eσ

[
sup
f∈H

1

n

n∑
i=1

σic
T
i (w∗(f(xi))− w∗(ci))

]

= Eσ

[
sup

(w1,...,wn)∈F|X

1

n

n∑
i=1

σic
T
i (wi − w∗(ci))

]

≤ ωS(C)
√

2 log |F|X|
n

≤ ωS(C)
√

2dN (w∗(H)) log(n|S|2)

n

where the first inequality is directly due to Massart’s lemma and the definition of ωS(C) and the
second inequality follows from the Natarajan Lemma (see Lemma 29.4 in [20]). The bound for
the expected version of the Rademacher complexity follows immediately from the bound on the
empirical Rademacher complexity. Applying this bound with Theorem 1 concludes the proof.

A.1.2 Proof of Corollary 1

Proof. We will prove that w∗(Hlin) is an instance of a linear multiclass predictor for a particular
class-sensitive feature mapping Ψ. Recall that |S| is the number of extreme points of S. In our
application of linear multiclass predictors, let Ψ : X ×{1, . . . , |S|} 7→ Rd×p be a function that takes
a feature vector an extreme point and maps it to a matrix and let

HΨ = {x 7→ argmax
i∈{1,...,|S|}

〈B,Ψ(x, i)〉 : B ∈ Rd×p}.

We will show that, for Ψ(x, i) = wix
T , we have that w∗(Hlin) ⊆ HΨ. Consider any f ∈ Hlin and

the associated matrix Bf . Then

w∗(Bfx) ∈ argmin
w∈S

(Bfx)Tw

= argmax
i∈{1,...,|S|}

− (Bfx)Twi

= argmax
i∈{1,...,|S|}

− Tr
(
(Bfx)Twi

)
= argmax
i∈{1,...,|S|}

− Tr
(
BTf wix

T
)

= argmax
i∈{1,...,|S|}

〈−Bf , wixT 〉.

Thus, it is clear that for Ψ(x, i) = wix
T , choosing the function inHΨ corresponding to −Bf yields

exactly the function f . Therefore w∗(Hlin) ⊆ HΨ. Theorem 7 in [5] shows that dN (HΨ)) ≤ dp.
Since w∗(Hlin) ⊆ HΨ, then dN (w∗(Hlin)) ≤ dp. Combining this bound on the Natarajan dimension
with Theorem 2 concludes the proof.
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A.1.3 Proof of Corollary 2

Proof. Consider the smallest cardinality ε-covering of the feasible region S by Euclidean balls of

radius ε. From Example 27.1 in [20], the number of balls needed is at most
(

2ρ2(S)
√
d

ε

)d
. Let the set

S̃ denote the centers of the balls from the smallest cardinality covering. Then it immediately follows
that

|S̃| ≤

(
2ρ2(S)

√
d

ε

)d
. (8)

Finally, let the function w̃ : S 7→ {1, . . . , |S̃|} be the function that takes a feasible solution in S and
maps it to the closest point in in S̃.

We can bound the empirical Rademacher complexity by

R̂n
SPO(H) = Eσ

[
sup
f∈H

1

n

n∑
i=1

σi`SPO(f(xi), ci)

]

= Eσ

[
sup
f∈H

1

n

n∑
i=1

σic
T
i (w∗(f(xi))− w∗(ci))

]

= Eσ

[
sup
f∈H

1

n

n∑
i=1

σic
T
i [w∗(f(xi))− w̃(w∗(f(xi))) + w̃(w∗(f(xi)))− w∗(ci)]

]

≤ Eσ

[
sup
f∈H

1

n

n∑
i=1

σic
T
i [w∗(f(xi))− w̃(w∗(f(xi)))]

]
+ Eσ

[
sup
f∈H

1

n

n∑
i=1

σic
T
i [w̃(w∗(f(xi)))− w∗(ci)]

]

≤ 2ερ2(C) + Eσ

[
sup
f∈H

1

n

n∑
i=1

σic
T
i [w̃(w∗(f(xi)))− w∗(ci)]

]

≤ 2ερ2(C) + (ωS(C) + 2ερ2(C))

√
2dN (w̃(w∗(H))) log(n|S̃|2)

n
(9)

The first inequality follows from the triangle inequality. The second inequality follows from the
fact that w∗(f(xi)) and w̃(w∗(f(xi))) are at most 2ε away by the definition of w̃. In the worst case,
the difference is in the direction of ci, and cTi [w∗(f(xi))− w̃(w∗(f(xi)))] ≤ 2||ci|| ≤ ρ2(C). The
third inequality follows from the same exact argument as that in Theorem 2, with the additional
observation that the maximum value of cTi [w̃(w∗(f(xi)))− w∗(ci)] is ωS(C) + 2ερ2(C) using a
similar reasoning as in the second inequality. Thus, all that remains is to bound dN (w̃(w∗(H))). To
do this, we first observe that dN (w∗(H)) ≤ dp, where the proof follows exactly that of Corollary 1
but we now have an infinite number of labels, i.e., each point in S. Finally, we observe that

dN (w̃(w∗(H))) ≤ dN (w∗(H)) ≤ dp (10)
since w̃ is simply a deterministic function, and thus the number of dichotomies (labelings) that can
be generated by w̃(w∗(H)) is at most that of w∗(H).

Now setting ε = 1
n , and combining Eq. (8), Eq. (9), and Eq. (10) yields

R̂n
SPO(H) ≤ 2ρ2(C)

n

1 +

√
2dp log(n(2nρ2(S)

√
d)2d)

n

+ ωS(C)

√
2dp log(n(2nρ2(S)

√
d)2d)

n

≤ 2ρ2(C)
n

(
1 + 2d

√
2p log(2nρ2(S)d)

n

)
+ 2dωS(C)

√
2p log(2nρ2(S)d)

n
. (11)

Finally, combining Eq. (11) with Theorem 2 yields

RSPO(f) ≤ R̂SPO(f) + 4dωS(C)
√

2p log(2nρ2(S)d)

n
+ 3ωS(C)

√
log(2/δ)

2n
+O

(
1

n

)
.
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A.2 Proofs for Section 4

A.2.1 Proof of Proposition 1

Proof. The well-known optimality condition for differentiable convex optimization problems (see
Proposition 1.1.8 of [2]) states that w̄ ∈ S is an optimal solution of (3) if and only if:

∇F (w̄)T (w − w̄) ≥ 0 for all w ∈ S . (12)

Let us now demonstrate that the conditions (4) and (12) are equivalent when S is µ-strongly convex.

Clearly, (4) implies (12). Now suppose that (12) holds and let w ∈ S be arbitrary. Define ŵ(λ) :=
λw + (1− λ)w̄ and r(λ) :=

(
µ
2

)
λ(1− λ)‖w − w̄‖2 for λ ∈ [0, 1]. By the µ-strong convexity of S,

we have that B(ŵ(λ), r(λ)) ⊆ S. Hence, applying (12) inside B(ŵ(λ), r(λ)) yields:

∇F (w̄)T (w̃ − w̄) ≥ 0 for all w̃ ∈ B(ŵ(λ), r(λ)) .

Clearly the above condition is equivalent to:

−∇F (w̄)T w̄ ≥ max
w̃∈B(ŵ(λ),r(λ))

{
−∇F (w̄)T w̃

}
= −∇F (w̄)T ŵ(λ) + r(λ)‖∇F (w̄)‖∗ ,

where the equality above follows from the definition of the dual norm ‖ · ‖∗. Rearranging the above
and using ŵ(λ)− w̄ = λ(w − w̄) as well as the definition of r(λ) yields:

λ∇F (w̄)T (w − w̄) ≥
(
µ
2

)
λ(1− λ)‖∇F (w̄)‖∗‖w − w̄‖2 for all λ ∈ [0, 1] .

Now suppose that λ > 0. Dividing the above by λ yields:

∇F (w̄)T (w − w̄) ≥
(
µ
2

)
(1− λ)‖∇F (w̄)‖∗‖w − w̄‖2 for all λ ∈ (0, 1] .

Taking the limit as λ→ 0 yields (4).

A.2.2 Proof of Theorem 3

In this section, we complete the proof of Theorem 3 by demonstrating that (6) holds, i.e., that the
γ-margin SPO loss is Lipschitz. Let us first present the following lemma that will be useful in proving
(6). Recall that B∗(c, r) = {ĉ : ‖ĉ− c‖∗ ≤ r} is the dual norm ball centered at c of radius r.

Lemma 1. Consider the function hγ(·, c) : B∗(0, γ)→ R defined by hγ(ĉ, c) :=
(
‖ĉ‖∗
γ

)
`SPO(ĉ, c)

for all ĉ ∈ B∗(0, γ). Then, hγ(·, c) is Lipschitz with respect to the dual norm ‖ · ‖∗ with constant
1
γ

(
‖c‖∗
µ + ωS(c)

)
≤ 3‖c‖∗

γµ .

Proof. Let ĉ1, ĉ2 ∈ B∗(0, γ) be given. Note that if either ĉ1 = 0 or ĉ2 = 0, then the result follows
since `SPO(·, c) ≤ ωS(c). Now suppose without loss of generality that 0 < ‖ĉ1‖∗ ≤ ‖ĉ2‖∗. Let
∆ := |hγ(ĉ1, c)− hγ(ĉ2, c)|. Then, we have that

∆ =

∣∣∣∣(‖ĉ1‖∗γ
)
`SPO(ĉ1, c)−

(
‖ĉ2‖∗
γ

)
`SPO(ĉ2, c)

∣∣∣∣
=

∣∣∣∣(‖ĉ1‖∗γ
)
`SPO(ĉ1, c)−

(
‖ĉ1‖∗
γ

)
`SPO(ĉ2, c) +

(
‖ĉ1‖∗
γ

)
`SPO(ĉ2, c)−

(
‖ĉ2‖∗
γ

)
`SPO(ĉ2, c)

∣∣∣∣
=

∣∣∣∣(‖ĉ1‖∗γ
)

[`SPO(ĉ1, c)− `SPO(ĉ2, c)] +

(
`SPO(ĉ2, c)

γ

)
[‖ĉ1‖∗ − ‖ĉ2‖∗]

∣∣∣∣
≤
(
‖ĉ1‖∗
γ

)(
‖c‖∗
µ‖ĉ1‖∗

)
‖ĉ1 − ĉ2‖∗ +

(
ωS(c)

γ

)
‖ĉ1 − ĉ2‖∗

=
1

γ

(
‖c‖∗
µ

+ ωS(c)

)
‖ĉ1 − ĉ2‖∗ ,

where the inequality above uses (5) and the reverse triangle inequality. Now we also claim that, due
to the strong convexity of S, we have that ωS(c) ≤ 2‖c‖∗

µ . When c = 0, this inequality is trivial.
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Otherwise, let us apply (5) with ĉ1 ← −c and ĉ2 ← c, which yields:

ωS(c) = max
w∈S

{
cTw

}
−min
w∈S

{
cTw

}
= cT (w∗(ĉ1)− w∗(ĉ2))

≤ ‖c‖∗‖w∗(ĉ1)− w∗(ĉ2)‖

≤ 2‖c‖2∗
µ‖c‖∗

=
2‖c‖∗
µ

.

Remainder of the proof of Theorem 3. We are now ready to complete the proof of (6). Without
loss of generality, we consider three cases: (i) ‖ĉ1‖∗ ≤ γ and ‖ĉ2‖∗ ≤ γ, (ii) ‖ĉ1‖∗ > γ and
‖ĉ2‖∗ > γ, and (iii) ‖ĉ1‖∗ ≤ γ and ‖ĉ2‖∗ > γ.

Let us first consider case (i), i.e., we have that ĉ1, ĉ2 ∈ B∗(0, γ). For any ĉ ∈ B∗(0, γ), we have that

`γSPO(ĉ, c) =

(
‖ĉ‖∗
γ

)
`SPO(ĉ, c) +

(
1− ‖ĉ‖∗

γ

)
ωS(c) .

Hence, on the ball B∗(0, γ), the function `γSPO(·, c) decomposes as the sum of three functions. By
Lemma 1, we have that the function in the first term of the right-hand side above is 3‖c‖∗

γµ -Lipschitz

on B∗(0, γ). Clearly, the function in the second term is ωS(c)
γ -Lipschitz. Thus, using ωS(c) ≤ 2‖c‖∗

µ

and adding these two Lipschitz constants together yields the desired result for case (i).

Now, in case (ii), we have that `γSPO(ĉ1, c) = `SPO(ĉ1, c) and `γSPO(ĉ2, c) = `SPO(ĉ2, c). Hence, (5)
yields:

|`γSPO(ĉ1, c)−`γSPO(ĉ2, c)| = |cT (w∗(ĉ1)−w∗(ĉ2))| ≤ ‖c‖∗‖w∗(ĉ1)−w∗(ĉ2)‖ ≤ ‖c‖∗
γµ
‖ĉ1−ĉ2‖∗ ,

and clearly ‖c‖∗γµ ≤
5‖c‖∗
γµ .

Finally, in case (iii), define c̄ := λĉ1 + (1− λ)ĉ2 where λ ∈ (0, 1] is such that ‖c̄‖∗ = γ. Then, we
have that:
|`γSPO(ĉ1, c)− `γSPO(ĉ2, c)| = |(`γSPO(ĉ1, c)− `γSPO(c̄, c)) + (`γSPO(c̄, c)− `γSPO(ĉ2, c))|

≤ |`γSPO(ĉ1, c)− `γSPO(c̄, c)|+ |`γSPO(c̄, c)− `γSPO(ĉ2, c)|

≤ 5‖c‖∗
γµ
‖ĉ1 − c̄‖+

5‖c‖∗
γµ
‖c̄− ĉ2‖

=
5‖c‖∗
γµ

(‖ĉ1 − c̄‖+ ‖c̄− ĉ2‖)

=
5‖c‖∗
γµ
‖ĉ1 − ĉ2‖ ,

where the second inequality follows from cases (i) and (ii), and the final equality follows since c̄
lies on the line segment between ĉ1 and ĉ2, i.e., we have that ‖ĉ1 − c̄‖ = (1 − λ)‖ĉ1 − ĉ2‖ and
‖c̄− ĉ2‖ = λ‖ĉ1 − ĉ2‖.
Finally, it is worth pointing out that the proofs of Lemma 1 and the remainder of the proof of
Theorem 4 imply that the Lipschitz constant of `γSPO can be improved slightly from 5‖c‖∗

γµ to
1
γ

(
‖c‖∗
µ + 2ωS(c)

)
.

A.2.3 Proof of Theorem 5

Proof. We prove the first inequality only; the second inequality can be proven in an identical manner.

The argument here follows closely the proof of Theorem 5.9 of [18]. Define ε := ωS(C)
√

log(2/δ)
2n

and two sequences {γk}∞k=1 and {εk}∞k=1 by

εk := ε+ ωS(C)
√

log(k)

n
, and γk :=

γ̄

2k
, for k ≥ 1 .
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Define the following events:

Ak :=

{
sup
f∈H

{
RSPO(f)− R̂γkSPO(f)− 10

√
2ρ2(C)Rn(H)

γkµ
− εk

}
> 0

}
for k ≥ 1 , Ã :=

∞⋃
k=1

Ak , and

Ǎ :=

{
sup

f∈H,γ∈(0,γ̄]

{
RSPO(f)− R̂γSPO(f)− 20

√
2ρ2(C)Rn(H)

γµ
− ωS(C)

√
log(log2(2γ̄/γ))

n
− ε

}
> 0

}
.

Let us first argue that Ǎ ⊆ Ã. Indeed, suppose that Ǎ occurs. Then, there exists some f ∈ H and
some γ ∈ (0, γ̄] such that:

RSPO(f)− R̂γSPO(f)− 20
√

2ρ2(C)Rn(H)

γµ
− ωS(C)

√
log(log2(2γ̄/γ))

n
− ε > 0 . (13)

By definition of the sequence {γk}, there exists k ≥ 1 such that γk ≤ γ ≤ 2γk. Thus, γk ≤ γ implies
that R̂γkSPO(f) ≤ R̂γSPO(f). Moreover, γ ≤ 2γk implies that −1/γk ≥ −2/γ, k ≤ log2(2γ̄/γ), and
thus

εk = ε+ ωS(C)
√

log(k)

n
≤ ε+ ωS(C)

√
log(log2(2γ̄/γ))

n
.

Now, combining the previous inequalities together with (13) yields:

RSPO(f)− R̂γkSPO(f)− 10
√

2ρ2(C)Rn(H)

γkµ
− εk > 0 ,

which means that the event Ak and correspondingly the event Ã have occurred.

Now, for each k ≥ 1, we apply Theorem 4 using γ ← γk and δ ← exp((−2nε2k)/ωS(C)2), which
yields P(Ak) ≤ exp((−2nε2k)/ωS(C)2). We now apply P(Ǎ) ≤ P(Ã) and the union bound to
obtain:

P(Ǎ) ≤
∞∑
k=1

exp

(
− 2nε2k
ωS(C)2

)

=

∞∑
k=1

exp

−2n

(√
log(2/δ)

2n
+

√
log(k)

n

)2


<

∞∑
k=1

exp (−(log(2/δ) + 2 log(k)))

=
δ

2

∞∑
k=1

1

k2
=
δ

2
· π

2

6
< δ .

Thus, we have completed the proof.

A.2.4 Bounding the multivariate Rademacher complexity for linear classes

Here we use arguments in [17, 12] to bound Rn(HB) where

HB = {f : f(x) = Bx for some B ∈ Rd×p, B ∈ B}
is the class of linear maps with matrix B constrained to lie in some set B. The following result
extends Theorem 3 of [12] to multivariate Rademacher complexity.

Theorem 6. Let S be a closed convex set and let F : S → R be α-strongly convex w.r.t. ‖ · ‖∗ s.t.
infB∈S F (B) = 0. Let X be such that

sup
σ∈{±1}d

sup
x∈X
‖σxT ‖ ≤ X.

Define B = {B ∈ S : F (B) ≤ β2
∗}. Then, we have

Rn(HB) ≤ Xβ∗

√
2

αn
.
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Proof. Define σi = (σi1, . . . , σid)
T . Then, we have

Rn(HB) = E

sup
B∈B

1

n

n∑
i=1

d∑
j=1

σij (Bxi)j

 = E

[
sup
B∈B

1

n

n∑
i=1

σTi Bxi

]

= E

[
sup
B∈B

1

n

n∑
i=1

Tr
(
σTi Bxi

)]
= E

[
sup
B∈B

1

n

n∑
i=1

Tr
(
Bxiσ

T
i

)]

= E

sup
B∈B

Tr

B( 1

n

n∑
i=1

σix
T
i

)T
= E

[
sup
B∈B
〈B, 1

n

n∑
i=1

σix
T
i 〉

]
.

Note that the inner product between matrices B,A ∈ Rd×p is defined as

〈B,A〉 =
∑
i,j

BijAij = Tr
(
BAT

)
Now fix x1, . . . , xn and note that, by our assumption, we have, for all i,

sup
σ∈{±1}d

‖σxTi ‖ ≤ X.

Let Θ be the random matrix 1
n

∑n
i=1 σix

T
i . Choose arbitrary λ > 0. By Fenchel’s inequality,

〈B, λΘ〉 ≤ F (B)

λ
+
F ∗(λΘ)

λ

Since F (B) ≤ β2
∗ for all B ∈ B, we have

sup
B∈B
〈B, λΘ〉 ≤ β2

∗
λ

+
F ∗(λΘ)

λ

Taking expectations (w.r.t. σij) gives

E[ sup
B∈B
〈B, λΘ〉] ≤ β2

∗
λ

+
E[F ∗(λΘ)]

λ

Now let Zi = λ
nσix

T
i so that Sn =

∑n
i=1 Zi = Θ. Note that ‖Zi‖ ≤ λ

nX . So the conditions of
Lemma 4 in [12] are satisfied with V 2 = λ2X2/n. That lemma gives us E[F ∗(λΘ)] ≤ λ2X2/(2αn).
Plugging this above, we have

E[ sup
B∈B
〈B, λΘ〉] ≤ β2

∗
λ

+
λX2

2αn
.

Setting λ =
√

2αnβ2
∗

X2 gives

E[ sup
B∈B
〈B, λΘ〉] ≤ Xβ∗

√
2

αn

which completes the proof.

This theorem can be applied with many different strongly convex functions of matrices [11, Section
2.4]. We give some interesting examples below.
Example 5 (Bounded Frobenius norm). The most basic case is F (B) = 1

2‖B‖
2
F which is 1-strongly

convex on Rd×p w.r.t. ‖ · ‖F . Note that

sup
σ∈{±1}d

sup
x∈X
‖σxT ‖F = sup

σ∈{±1}d
‖σ‖2 · sup

x∈X
‖x‖2 =

√
d sup
x∈X
‖x‖2.

Therefore, if 1
2‖B‖

2
F ≤ β2

∗ and supx∈X ‖x‖2 ≤ X2 we have

Rn(HB) ≤ X2β∗

√
2d

n
.
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Example 6 (Bounded `1 norm of vectorized matrix). Another case is when 1
2‖B‖

2
1 ≤ β2

∗ where
‖B‖q is `q norm of the vectorized matrix B. We set F (B) = 1

2‖B‖
2
q for q = log(pd)

log(pd)−1 which is
1/(3 log(pd))-strongly convex w.r.t. ‖ · ‖1 [11, Corollary 10]. Since ‖B‖q ≤ ‖B‖1, we clearly
have F (B) ≤ β2

∗ . Note that the dual norm is ‖ · ‖p′ for p′ = log(pd) and ‖Θ‖p′ ≤ 3‖Θ‖∞ for any
Θ ∈ Rd×p. Therefore,

sup
σ∈{±1}d

sup
x∈X
‖σxT ‖p′ ≤ 3 sup

σ∈{±1}d
‖σ‖∞ · sup

x∈X
‖x‖∞ = 3 sup

x∈X
‖x‖∞.

The final conclusion is that, if 1
2‖B‖

2
1 ≤ β2

∗ and supx∈X ‖x‖∞ ≤ X∞ we have

Rn(HB) ≤ X∞β∗

√
6 log(pd)

n
.

Example 7 (Bounded group-lasso norm). In case where input dimension p is large, we might want to
encode prior knowledge that only a subset of the p input variables are relevant for making predictions.
The vectorized `1 norm considered in the previous example encourages sparsity but does not result
in shared sparsity structure over the rows of B. That is, it does not cause entire columns to be set
to zero. In multivariate regression, the group-lasso norm [21, Section 4.3] is used to enforce such a
structured from of sparsity. Define the norm

‖B‖2,q =

 p∑
j=1

‖B·j‖q2

1/q

.

The subscripts above remind us that we first take the `2 norms of columns B·j and then take the
`q norm of the p resulting values. The group-lasso norm is simply ‖ · ‖2,1. Let us consider the
case when the matrices B are constrained to have low group-lasso norm, i.e. 1

2‖B‖
2
2,1 ≤ β2

∗ . We
set F (B) = 1

2‖B‖
2
2,q for q = log(p)

log(p)−1 which is 1/(3 log(p))-strongly convex w.r.t. ‖ · ‖2,1 [11,
Corollary 14]. Since ‖B‖2,q ≤ ‖B‖2,1, we clearly have F (B) ≤ β2

∗ . Note that the dual norm is
‖ · ‖2,p′ for p′ = log(p) and ‖Θ‖2,p′ ≤ 3‖Θ‖2,∞ for any Θ ∈ Rd×p. Therefore,

sup
σ∈{±1}d

sup
x∈X
‖σxT ‖2,p′ ≤ 3 sup

σ∈{±1}d
sup
x∈X
‖σxT ‖2,∞

= 3 sup
σ∈{±1}d

‖σ‖2 · sup
x∈X
‖x‖∞

≤ 3
√
d sup
x∈X
‖x‖∞.

The final conclusion is that, if 1
2‖B‖

2
2,1 ≤ β2

∗ and supx∈X ‖x‖∞ ≤ X∞ we have

Rn(HB) ≤ X∞β∗

√
6d log(p)

n
.
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