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Abstract

In this paper, we use differential privacy as a lens to examine online learning in
both full and partial information settings. The differential privacy framework is, at
heart, less about privacy and more about algorithmic stability, and thus has found
application in domains well beyond those where information security is central.
Here we develop an algorithmic property called one-step differential stability which
facilitates a more refined regret analysis for online learning methods. We show
that tools from the differential privacy literature can yield regret bounds for many
interesting online learning problems including online convex optimization and on-
line linear optimization. Our stability notion is particularly well-suited for deriving
first-order regret bounds for follow-the-perturbed-leader algorithms, something that
all previous analyses have struggled to achieve. We also generalize the standard
max-divergence to obtain a broader class called Tsallis max-divergences. These
define stronger notions of stability that are useful in deriving bounds in partial
information settings such as multi-armed bandits and bandits with experts.

1 Introduction

Stability of output in presence of small changes to input is a desirable feature of methods in statistics
and machine learning [11, 19, 31, 42]. Another area of research for which stability is a core
component is differential privacy (DP). As Dwork and Roth [15] observed, “differential privacy is
enabled by stability and ensures stability.” They argue that the “differential privacy lens” offers a fresh
perspective to examine areas other than privacy. For example, the DP lens has been used successfully
in designing coalition-proof mechanisms [25] and preventing false discovery in statistical analysis
[10, 13, 17, 28].

In this paper, we use the DP lens to design and analyze randomized online learning algorithms in a
variety of canonical online learning problems. The DP lens allows us to analyze a broad class of online
learning problems, spanning both full information (online convex optimization (OCO), online linear
optimization (OLO), experts problem) and partial information settings (multi-armed bandits, bandits
with experts) using a unified framework. We are able to analyze follow-the-perturbed-leader (FTPL)
as well as follow-the-regularized leader (FTRL) based algorithms resulting in both zero-order and
∗Author order is alphabetical denoting equal contributions.
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first-order regret bounds; see Section 2 for definitions of these bounds. However, our techniques are
especially well-suited to proving first-order bounds for perturbation based methods. Historically, the
understanding of the regularization based algorithms has been more advanced thanks to connections
with ideas from optimization such as duality and Bregman divergences. There has been recent work
[1] on developing a general framework to analyze FTPL algorithms, but it only yields zero-order
bounds. A general framework that can yield first-order bounds for FTPL algorithms has been lacking
so far, but we believe that the framework outlined in this paper may fill this gap in the literature. Our
rich set of examples suggests that our framework will be useful in translating results from the DP
literature to study a much larger variety of online learning problems in the future. This means that we
immediately benefit from research advances in the DP community.

We emphasize that our aim is not to design low-regret algorithms that satisfy the privacy condition–
there is already substantial existing work along these lines [4, 21, 39, 40]. Our goal is instead to show
that, in and of itself, a DP-inspired stability-based methodology is quite well-suited to designing
online learning algorithms with excellent guarantees. In fact, there are theoretical reasons to believe
this should be possible. Alon et al. [7] have shown that if a class of functions is privately learnable,
then it has finite Littlestone dimension (a parameter that characterizes learnability for online binary
classification) via non-constructive arguments. Our results can be interpreted as proving analogous
claims in a constructive fashion albeit for different, more tractable online learning problems.

In many of our problem settings, we are able to show new algorithms that achieve optimal or near-
optimal regret. Although many of these regret bounds have already appeared in the literature, we
note that they were previously possible only via specialized algorithms and analyses. In some cases
(such as OLO), the regret bound itself is new. Our main technical contributions are as follows:

• We define one-step differential stability (Definitions 2.1 and 2.2) and derive a key lemma showing
how it can yield first-order regret bounds (Lemma 3.1).

• New algorithms with first-order bounds for both OCO (Theorem 3.2) and OLO problems (Corol-
lary 3.3) based on the objective perturbation method from the DP literature [23]. The OLO
first-order bound is the first of its kind to the best of our knowledge.

• We introduce a novel family of Tsallis γ-max-divergences (see (2)) as a way to ensure tighter
stability as compared to the standard max-divergence. Having tighter control on stability is crucial
in partial information settings where loss estimates can take large values.

• We provide optimal first-order bounds for the experts problem via new FTPL algorithms using a
variety of perturbations (Theorem 3.6).
• Our unified analysis of multi-armed bandit algorithms (Theorem 4.2) not only unifies the treatment

of a large number of perturbations and regularizers that have been used in the past but also reveals
the exact type of differential stability induced by them.

• New perturbation-based algorithms for the bandits with experts problem that achieve the same
zero-order and first-order bounds (Theorem 4.3) as the celebrated EXP4 algorithm [9].

2 Preliminaries

The `∞, `2, and `1 norms are denoted by ‖ · ‖∞, ‖ · ‖2, and ‖ · ‖1 respectively. The vector ei denotes
the ith standard basis vector. The norm of a set X is defined as ‖X‖ = supx∈X ‖x‖. A sequence
(a1, . . . , at) is abbreviated a1:t, and a set {1, . . . , N} is abbreviated [N ]. For a symmetric matrix S,
λmax(S) denotes its largest eigenvalue. The probability simplex in RN is denoted by ∆N−1. Full
versions of omitted/sketched proofs can be found in the appendix.

2.1 Online learning

We adopt the common perspective of viewing online learning as a repeated game between a learner
and an adversary. We consider an oblivious adversary that chooses a sequence of loss functions
`t ∈ Y before the game begins. At every round t, the learner chooses a move xt ∈ X and suffers
loss `t(xt). The action spaces X and Y will characterize the online learning problem. For example,
in multi-armed bandits, X = [N ] for some N and Y = [0, 1]N . Note that the learner is allowed to
access a private source of randomness in selecting xt. The learner’s goal is to minimize the expected
regret after T rounds:

E[RegretT ] = E
[∑T

t=1 `t(xt)
]
−minx∈X

∑T
t=1 `t(x),
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where the expectations are over all of the learner’s randomness, and we recall that here the `t’s are
non-random. The minimax regret is given by minAmax`1:T E[RegretT ] where A ranges over all
learning algorithms. If an algorithm achieves expected regret within a constant factor of the minimax
regret, we call it minimax optimal (or simply optimal). If the factor involved is not constant but
logarithmic in T and other relevant problem parameters, we call the algorithm minimax near-optimal
(or simply near-optimal).

In the loss/gain setting, losses can be positive or negative. In the loss-only setting, losses are always
positive: minx∈X `t(x) ≥ 0 for all t. Zero-order regret bounds involve T , the total duration of the
game. In the loss-only setting, a natural notion of the hardness of the adversary sequence is the
cumulative loss of the best action in hindsight, L∗T = minx∈X

∑T
t=1 `t(x). Note that L∗T is uniquely

defined even though the best action in hindsight (denoted by x∗T ) may not be unique. Bounds that
depend on L∗T instead of T adapt to the hardness of the actual losses encountered and are called
first-order regret bounds. We will ignore factors logarithmic in T when calling a bound first-order.

There are some special cases of online learning that arise frequently enough to have received names.
In online convex (resp. linear) optimization, the functions `t are convex (resp. linear) and the learner’s
action set X is a subset of some Euclidean space. In the linear setting, we identify a linear function
with its vector representation and write `t(x) = 〈`t, x〉. In the experts problem, we have X = [N ]
and we use it instead of xt to denote the learner’s moves. Also we write `t(i) = `t,i for i ∈ [N ].

We consider both full and partial information settings. In the full information setting, the learner
observes the loss function `t at the end of each round. In the partial information setting, learners
receive less feedback. A common partial information feedback is bandit feedback, i.e., the learner
only observes its own loss `t(xt). Due to less amount of information available to the learner, deriving
regret bounds, especially first-order bounds, is more challenging in partial information settings.

Note that, in settings where the losses are linear, we will often use Lt =
∑t
s=1 `s to denote the

cumulative loss vector. In these settings, we caution the reader to distinguish between LT , the final
cumulative loss vector and the scalar quantity L∗T .

2.2 Stability notions motivated by differential privacy

There is a substantial literature on stability-based analysis of statistical learning algorithms. However,
there is less work on identifying stability conditions that lead to low regret online algorithms. A few
papers that attempt to connect stability and online learning are interestingly all unpublished and only
available as preprints [32, 35, 36]. To the best of our knowledge no existing work provides a stability
condition which has an explicit connection to differential privacy and which is strong enough to use
in both full information and partial information settings.

Differential privacy (DP) was introduced to study data analysis mechanism that do not reveal too
much information about any single instance in a database. In this paper, we will use DP primarily as
a stability notion [15, Sec. 13.2]. DP uses the following divergence to quantify stability. Let P,Q be
distributions over some probability space. The δ-approximate max-divergence between P and Q is

Dδ
∞(P,Q) = sup

P (B)>δ

log
P (B)− δ
Q(B)

, (1)

where the supremum is taken over measurable sets B. When δ = 0, we drop the superscript δ. If Y
and Z are random variables, then Dδ

∞(Y,Z) is defined to be Dδ
∞(PY , PZ) where PY and PZ are the

distributions of Y and Z. We want to point out that the max-divergence is not a metric, because it is
asymmetric and does not satisfy the triangle inequality.

A randomized online learning algorithm maps the loss sequence `1:t−1 ∈ Yt−1 to a distribution over
X . We now define a stability notion for online learning algorithms that quantifies how much does the
distribution of the algorithm change when a new loss function is seen.
Definition 2.1 (One-step differential stability w.r.t. a divergence). An online learning algorithm A is
one-step differentially stable w.r.t. a divergence D (abbreviated DiffStable(D)) at level ε iff for any t
and any `1:t ∈ Yt, we have D(A(`1:t−1),A(`1:t)) ≤ ε.
Remark. The classical definition of DP [4] says a randomized algorithm A is (ε, δ)-DP if
Dδ
∞(A(`1:t),A(`′1:t) ≤ ε whenever `1:t and `′1:t differ by at most one item. We can consider

`1:t−1 as `′1:t by adding a uninformative loss (e.g., zero loss for any action) in the last item.
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In the case when `t is a vector, it will be useful to define a similar notion where the stability level
depends on the norm of the last loss vector.
Definition 2.2 (One-step differential stability w.r.t. a norm and a divergence). An online learning
algorithm A is one-step differentially stable w.r.t. a norm ‖ · ‖ and a divergence D (abbreviated
DiffStable(D,‖ · ‖)) at level ε iff for any t and any `1:t ∈ Yt, we have D(A(`1:t−1),A(`1:t)) ≤ ε‖`t‖.

As we will discuss later, in the partial information setting, the estimated loss vectors can have very
large norms. In such cases, it will be helpful to consider divergences that give a tighter control
compared to the max-divergence. Define a new divergence (we call it Tsallis γ-max-divergence)

D∞,γ(P,Q) = sup
B

logγ(P (B))− logγ(Q(B)), (2)

where the generalized logarithm logγ , which we call Tsallis γ-logarithm2 is defined for x ≥ 0 as

logγ(x) =

{
log(x) if γ = 1
x1−γ−1

1−γ if γ 6= 1
.

For given P and Q, D∞,γ(P,Q) is a non-decreasing function of γ for γ ∈ [1, 2] (see Appendix A).
Therefore, γ > 1 gives notions stronger than standard differential privacy. We will only consider the
case γ ∈ [1, 2] in this paper. For the full information setting γ = 1 (i.e., the standard max divergence)
suffices. Higher values of γ are used only in the partial information settings. While our work shows
the importance of the Tsallis max-divergences in the analysis of online learning algorithms, whether
they lead to interesting notions of privacy is less clear. Along these lines, note that the definition of
these divergences ensures that they enjoy post-processing inequality under deterministic functions
just like the standard max-divergence (see Appendix A). Our generalization of the max-divergence
does not rest on the use of an approximation parameter δ; hence we will either use Dδ

∞ or D∞,γ , but
never Dδ

∞,γ . Note that we often omit δ and γ in cases where the former is 0 and the latter is 1.

3 Full information setting

In this section, we state a key lemma connecting the differential stability to first-order bounds. The
lemma is then applied to obtain first-order bounds for OCO and OLO. In Section 3.3, we consider
the Gradient Based Prediction Algorithm (GBPA) for the experts problem. There we show how the
Tsallis max-divergence arises in GBPA analysis: a differentially consistent potential leads to a one-
step differentially stable algorithm w.r.t. the Tsallis max-divergence (Proposition 3.5). Differential
consistency was introduced as a smoothness notion for GBPA potentials by Abernethy et al. [2].
Skipped proofs appear in Appendix B.

3.1 Key lemma

The following lemma is a key tool to derive first-order bounds. There are two reasons why this simple
lemma is so powerful. First, it makes the substantial body of algorithmic work in DP available for the
purpose of deriving regret bounds. The parameters ε, δ below then come directly from whichever
algorithm from the DP literature we decide to use. Second, DP algorithms often add perturbations to
achieve privacy. In that case, the fictitious algorithm A+ becomes the so-called “be-the-perturbed-
leader” (BTPL) algorithm [22] whose regret is usually independent of T (but does scale with ε, δ).
One can generally set δ to be very small, such as O(1/(BT )), without significantly sacrificing the
stability level ε.

In the following lemma we consider taking an algorithmA and modifying it into a fictitious algorithm
A+. This new algorithm has the benefit of one-step lookahead: at time t A+ plays the distribution
A(`1:t), whereas A would play A(`1:t−1). It is convenient to consider the regret of A+ for the
purpose of analysis.
Lemma 3.1. Consider the loss-only setting with loss functions bounded by B. Let A be
DiffStable(Dδ

∞) at level ε ≤ 1. Then we have

E[Regret(A)T ] ≤ 2εL∗T + 3E[Regret(A+)T ] + δBT.

2This quantity is often called the Tsallis q-logarithm, e.g., see [8, Chap. 4]
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Algorithm 1 Online convex optimization using Obj-Pert by Kifer et al. [23]
1: Parameters Privacy parameters (ε, δ), upper bound β on norm of loss gradient, upper bound γ on eigenval-

ues of loss Hessian, perturbation distribution either Gamma or Gaussian
2: for t = 1, · · · , T do
3: if using the Gamma distribution then
4: Sample b ∈ Rd from a distribution with density f(b) ∝ exp(− ε||b||2

2β
)

5: else if using the Gaussian distribution then
6: Sample b ∈ Rd from the multivariate GaussianN (0,Σ) where Σ =

β2 log 2
δ
+4ε

ε2
I

7: end if
8: Play xt = arg minx∈X

∑t−1
s=1 `s(x) + γ

ε
‖x‖22 + 〈b, x〉

9: end for

3.2 Online optimization: convex and linear loss functions

We now consider online convex optimization, a canonical problem in online learning, and show how
to apply a privacy-inspired stability argument to effortlessly convert differential privacy guarantees
into online regret bounds. In the theorem below, we build on the privacy guarantees provided by
Kifer et al. [23] for (batch) convex loss minimization, and therefore Algorithm 1 uses their Obj-Pert
(objective perturbation) method to select moves.

Theorem 3.2 (First-order regret in OCO). Suppose we are in the loss-only OCO setting. Let X ⊂ Rd,
‖X‖2 ≤ D and let all loss functions be bounded by B. Further assume that ‖∇`t(x)‖2 ≤ β,
λmax(∇2`t(x)) ≤ γ and that the Hessian matrix ∇2`t(x) has rank at most one, for every t
and x ∈ X . Then, the expected regret of Algorithm 1 is at most O(

√
L∗T (γD2 + βdD)) and

O

(√
L∗T (γD2 +D

√
d(β2 log(BT )))

)
with Gamma and Gaussian perturbations, respectively.

Proof Sketch. From the DP result by Kifer et al. [23, Theorem 2], we can infer that Dδ
∞(xt, xt+1) ≤

ε, where δ becomes zero when using the Gamma distribution. This means that Algorithm 1 enjoys the
one-step differential stability w.r.t. D∞ (resp. Dδ

∞) in the Gamma (resp. Gaussian) case. The regret
of the fictitious A+ algorithm can be shown to be bounded by γ

εD
2 + 2DE‖b‖2. Using Lemma 3.1,

we can deduce that the expected regret of Algorithm 1 is at most

2εL∗T +
3γ

ε
D2 + 6DE‖b‖2 + δBT, (3)

where δ becomes zero when using the Gamma distribution. We have E‖b‖2 = 2dβ
ε in the Gamma

case and E‖b‖2 ≤
√
d(β2 log 2

δ+4ε)

ε in the Gaussian case. Plugging these results in (3) and optimizing
ε (setting δ = 1

BT for the Gaussian case) prove the desired bound.

The rank-one restriction on the Hessian of `t, which allows loss curvature in one dimension, is a
strong assumption but indeed holds in many common scenarios, e.g., `t(x) = φt(〈x, zt〉) for some
scalar loss function φt and vector zt ∈ Rd. This is a common situation in online classification and
online regression with linear predictors. Moreover, it seems likely that the rank restriction can be
removed in the results of Kifer et al. [23] at the cost of a higher ε. A key strength of our approach
is that we will immediately inherit any future improvements to existing privacy results. Note that
first-order bounds for smooth convex functions have been shown by Srebro et al. [37]. However, their
analysis relies on the self bounding property, i.e., the norm of the loss gradient is bounded by the loss
itself, which does not hold for linear functions. Even logarithmic rates in L∗T are available [29] but
they rely on extra properties such as exp-concavity. When the functions are linear, `t(x) = 〈`t, x〉,
the restrictions on the Hessian are automatically met. The gradient condition reduces to ‖`t‖2 ≤ β
which gives us the following corollary.

Corollary 3.3 (First-order regret in OLO). Suppose we are in the loss-only OLO setting. Let X ⊂ Rd,
‖X‖2 ≤ D. Further assume that ‖`t‖2 ≤ β, for every t. Then, the expected regret of Algorithm

1 with no `2-regularization (i.e., γ = 0) is at most O(
√
L∗T dβD) and O(

√
L∗TβD

√
d log(βDT ))

with Gamma and Gaussian perturbations, respectively.
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Algorithm 2 Gradient-Based Prediction Algorithm (GBPA) for experts problem
1: Input: Concave potential Φ̃ : RN → R with∇Φ̃ ∈ ∆N−1

2: Set L0 = 0 ∈ RN
3: for t = 1 to T do
4: Sampling: Choose it ∈ [N ] according to distribution pt = ∇Φ̃(Lt−1) ∈ ∆N−1

5: Loss: Incur loss `t,it and observe the entire vector `t
6: Update: Lt = Lt−1 + `t
7: end for

Abernethy et al. [1] showed that FTPL with Gaussian perturbations is an algorithm applicable to
general OLO problems with regretO(βD 4

√
d
√
T ). However, their analysis technique based on convex

duality does not lead to first-order bounds in the loss-only setting. To the best of our knowledge, the
result above provides a novel first-order bound for OLO when both the learner and adversary sets are
measured in `2 norm (the classic FTPL analysis of Kalai and Vempala [22] for OLO uses `1 norm).
Note that L∗T can be significantly less than its maximum value βDT . We also emphasize that the
bound in Corollary 3.3 depends on the dimension d, which can lead to a loose bound. There are
different algorithms such as online gradient descent or online mirror descent (e.g., see [20]) whose
regret bound is dimension-free. It remains as an open question to prove such a dimension-free bound
for any FTPL algorithm for OLO.

3.3 Experts problem

We will now turn our attention to another classical online learning setting of prediction with expert
advice [12, 18, 24]. In the experts problem, X = [N ], Y = [0, 1]N and a randomized algorithm plays
a distribution over the N experts. In the remainder of this paper, we will consider discrete sets for the
players moves and so we will use it instead of xt to denote the learner’s move and pt ∈ ∆N−1 to
denote the distribution from which it is sampled.

The GBPA family of algorithms is important for the experts problem and for the related problem
of adversarial bandits (discussed in the next section). It includes as subfamilies FTPL and FTRL
algorithms. The main ingredient in GBPA is a potential function Φ̃ whose gradient is used to generate
probability distributions for the moves. This potential function can be thought of as a smoothed
version of the baseline potential Φ(L) = mini Li for L ∈ RN . The baseline potential is non-smooth
and using it in GBPA would result in the follow-the-leader (FTL) algorithm which is known to
be unstable. FTRL and FTPL can be viewed as two distinct ways of smoothing the underlying
non-smooth potential. In particular, FTPL uses stochastic smoothing by considering Φ̃ of the form
Φ̃D(L) = E[mini(Li − Zi)] where Zi’s are N i.i.d. draws from the distribution D. FTRL uses
smoothed potentials of the form Φ̃F (L) = minp (〈p, L〉+ F (p)) for some strictly convex F .

3.3.1 From differential consistency to one-step differential stability

Abernethy et al. [2] analyzed the GBPA by introducing differential consistency defined below. The
definition differs slightly from the original because it is formulated here with losses instead of gains.
The notations ∇2

ii and ∇i are used to refer to specific entries in the Hessian and gradient respectively.

Definition 3.4 (Differential consistency). We say that a function f : RN → R is (γ, ε)-differentially
consistent if f is twice-differentiable and −∇2

iif ≤ ε (∇if)
γ for all i ∈ [N ].

This functions as a new measure of the potential’s smoothness. Their main idea is to decompose
the regret into three penalties [2, Lemma 2.1] and bound one of them when the potential function
is differentially consistent. In fact, it can be shown that the potentials in many FTPL and FTRL
algorithms are differentially consistent, and this observation leads to regret bounds of such algorithms.

Quite surprisingly, we can establish the one-step stability when the algorithm is the GBPA with a
differentially consistent potential function. To state the proposition, we need to introduce a technical
definition. We say that a matrix is positive off-diagonal (POD) if its off-diagonal entries are non-
negative and its diagonal entries are non-positive. In the FTPL case where F (p, Z) = −〈p, Z〉, it
was already shown by Abernethy et al. [1] that −∇2Φ̃(L) is POD. It is easy to show that if F (p) =

6



∑
i f(pi) for a strictly convex and smooth f , then −∇2Φ̃(L) is always POD (see Appendix B). The

next proposition connects differential consistency to the one-step differential stability.

Proposition 3.5 (Differential consistency implies one-step differential stability). Suppose Φ̃(L) is of
the form E[minp〈L, p〉+ F (p, Z)] and γ ≥ 1. If Φ̃ is (γ, ε)-differentially consistent and −∇2Φ̃ is
always POD, the GBPA using Φ̃ as potential is DiffStable(D∞,γ ,‖ · ‖∞) at level 2ε.

3.3.2 Optimal family of FTPL algorithms

We leverage our result from the previous section to prove that FTPL algorithms with a variety of
perturbations have the minimax optimal first-order regret bound in the experts problem.
Theorem 3.6 (First-order bound for experts via FTPL). For the loss-only experts setting, FTPL with
Gamma, Gumbel, Fréchet , Weibull, and Pareto perturbations, with a proper choice of distribution
parameters, all achieve the optimal O(

√
L∗T logN + logN) expected regret.

Although the result above is not the first optimal first-order bound for the experts problem, such
a bound for FTPL with the wide variety of distributions mentioned above is not found in the
literature. Previous FTPL analysis achieving first-order regret bounds all relied on specific choices
such as exponential [22] and dropout [41] perturbations. There are results that consider Gaussian
pertubations [1], random-walk perturbations [14], and a large family of symmetric distributions [34],
but they only provide zero-order bounds.

4 Partial information setting

In this section, we provide stability based analyses of extensions of the GBPA framework to N -armed
bandits and K-armed bandits with N experts. All omitted proofs can be found in Appendix C.

4.1 GBPA for multi-armed bandits

In the multi-armed bandit setting, only the loss `t,it of the algorithm’s chosen action is revealed.
The GBPA for this setting is almost same as Algorithm 2 but with an extra step of loss estimation.
The algorithm uses importance weighting to produce estimates ˆ̀

t =
`t,it
pt,it

eit of the actual loss
vectors—these are unbiased as long as pt has full support—and feeds these estimates to the standard
GBPA using a (smooth) potential Φ̃. Algorithm 4 in Appendix C summarizes these steps.

The losses fed to the full information GBPA are scaled by 1/pt,it which can be very large. On the
other hand, there is a special structure in ˆ̀

t: it has at most one non-zero entry. The following lemma
is a replacement for the key lemma (Lemma 3.1) that exploits this special structure. The first term
in the bound is the analogue of the 2εL∗T term in the key lemma. This term shows that using D∞,γ
instead of using D∞ to measure stability can be useful in the bandit setting: the larger γ is, the less
problem we have from the inverse probability weighting inherent in ˆ̀

t,it . The second term in the
bound is the analogue of the loss of the fictitious algorithm which now depends on the (expected)
range of values attained by the (possibly random) function F (p, Z).

Lemma 4.1. Suppose the full information GBPA uses a potential of the form Φ̃(L) = E[minp〈L, p〉+
F (p, Z)] and γ ∈ [1, 2]. If the full information GBPA is DiffStable(D∞,γ ,‖ · ‖∞) at level ε, then the
expected regret of Algorithm 4 (in Appendix C) can be bounded as

E

[
T∑
t=1

`t,it

]
− L∗T ≤ εE

[
T∑
t=1

ˆ̀2
t,itp

γ
t,it

]
+ E

[
max
p

F (p, Z)−min
p
F (p, Z)

]
.

We will now use this lemma to analyze a variety of FTPL and FTRL algorithms. Recall that an algo-
rithm is in the FTPL family when F (p, Z) = −〈p, Z〉, and is in the FTRL family when F (p, Z) =
F (p) for some deterministic regularization function F (·). There is a slight complication in the FTPL
case: for a given L computing the probability pt,i = ∇iΦ̃D(L) = P (i = arg mini′(Li′ − Zi′)) is
intractable even though we can easily draw samples from this probability distribution. A method
called Geometric Resampling [27] solves this problem by computing a Monte-Carlo estimate of
1/pt,i (which is all that is needed to run Algorithm 4). They show that the extra error due to this
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Algorithm 3 GBPA for bandits with experts problem
1: Input: Concave potential Φ̃ : RN → R, with∇Φ̃ ∈ ∆N−1, clipping threshold 0 ≤ ρ < 1/K

2: Set φ0 = 0 ∈ RN
3: for t = 1 to T do
4: Probabilities over experts via gradient: pt = ∇Φ̃(φt−1) ∈ ∆N−1

5: Convert probabilities from experts to actions: qt = ψt(pt) =
∑K
j=1

∑
i:Ei,t=j

pt,iej ∈ ∆K−1

6: Clipping (optional): q̃t = Cρ(qt) where Cρ is defined in (4)
7: Sampling: Choose jt ∈ [K] according to distribution qt (or q̃t if clipping)
8: Loss: Incur loss `t,jt and observe this value
9: Estimation: Compute an estimate of loss vector ˆ̀

t =
`t,jt
qt,jt

ejt ∈ RK (or
`t,jt
q̃t,jt

ejt if clipping)

10: Convert estimate from actions to experts: φt(ˆ̀
t) =

∑K
j=1

∑
i:Ei,t=j

ˆ̀
t,jei ∈ RN

11: Update: φt = φt−1 + φt(ˆ̀
t)

12: end for

estimation is at most KT/M , where M is the maximal number of samples per round that we use
for the Monte-Carlo simulation. This implies that having M = Θ(

√
T ) for the zero-order bound or

M = Θ(T ) for the first-order bound would not affect the order of our bounds. Furthermore, they
also prove that the expected number of samples to run the Geometric Resampling is constant per
round (see [27, Theorem 2]). For simplicity, we will ignore this estimation step and assume the exact
value of pt,it is available to the learner.
Theorem 4.2 (Zero-order and first-order regret bounds for multi-armed bandits). Algorithm 4 (in
Appendix C) enjoys the following bounds when used with different perturbations/regularizers:

1. FTPL with Gamma, Gumbel, Fréchet , Weibull, and Pareto pertubations (with a proper choice of
distribution parameters) all achieve near-optimal expected regret of O(

√
NT logN).

2. FTRL with Tsallis neg-entropy F (p) = −η
∑N
i=1 pi logα(1/pi) for 0 < α < 1 (with a proper

choice of η) achieves optimal expected regret of O(
√
NT ).

3. FTRL with log-barrier regularizer F (p) = −η
∑N
i=1 log pi (with a proper choice of η) achieves

expected regret of O(
√
NL∗T log(NT ) +N log(NT )).

The proofs of the above results use the one-step differential stability as the unifying theme: in Part
1 we establish stability w.r.t. D∞, in Part 2, w.r.t. D∞,2−α, and in Part 3, w.r.t. D∞,2. Parts 1-2
essentially rederive the results of Abernethy et al. [2] in the differential stability framework. Part
3 is quite interesting since it uses the strongest stability notion used in this paper (w.r.t. D∞,2).
First-order regret bounds for multi-armed bandits have been obtained via specialized analysis several
times [6, 26, 33, 38]. Such is the obscure nature of these analyses that in one case the authors
claimed novelty without realizing that earlier first-order bounds existed! The intuition behind such
analyses remained a bit unclear. Our analysis of the log-barrier regularizer clearly indicates why it
enjoys first-order bounds (ignoring log(NT ) term): the resulting full information algorithm enjoys a
particularly strong form of one-step differential stability.

4.2 GBPA for bandits with experts

We believe that our unified differential stability based analysis of adversarial bandits can be extended
to more complex partial information settings. We provide evidence for this by considering the
problem of adversarial bandits with experts. In this more general problem, which was introduced in
the same seminal work that introduced the adversarial bandits problem [9], there are K actions and N
experts, E1, . . . , EN , that at each round t, give advice on which of K actions to take. The algorithm
is supposed to combine their advice to pick a distribution qt ∈ ∆K−1 and chooses an action jt ∼ qt.
Denote the suggestion of the ith expert at time t as Ei,t ∈ [K]. Expected regret in this problem is

defined as E
[∑T

t=1 `t,jt

]
− L∗T , where L∗T is now defined as L∗T = minNi=1

∑T
t=1 `t,Ei,t .

The GBPA for this setting has a few more ingredients in it compared to the one for the multi-armed
bandits. First, a transformation ψt to convert pt ∈ ∆N−1, a distribution over experts, to qt ∈ ∆K−1,
a distribution over actions: ψt(pt) =

∑K
j=1

∑
i:Ei,t=j

pt,iej , where ej is the jth basis vector in RK .
Note that the probability assigned to each action is the sum of the probabilities of all the experts that
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recommended that action. Second, a transformation φt to convert the loss estimate ˆ̀
t ∈ RK defined by

ˆ̀
t,jt = `t,jt/qt,jt (and zero for j 6= jt) into a loss estimate in RN : φt(ˆ̀

t) =
∑K
j=1

∑
i:Ei,t=j

ˆ̀
t,jei,

where ei is the ith basis vector in RN . At time t, the full information algorithm’s output pt is used to
select the action distribution qt = ψt(pt) and the full information algorithm is fed φt(ˆ̀

t) to update pt.
Note that ψt and φt are defined such that 〈ψt(p), ˆ̀〉 = 〈p, φt(ˆ̀)〉 for any p ∈ ∆N−1 and any ˆ̀∈ RK+ .
Lastly, the clipping function Cρ : ∆K−1 → ∆K−1 is defined as:

[Cρ(q)]j =

{ qj
1−

∑
j′:q′

j
<ρ qj′

if qj ≥ ρ

0 if qj < ρ
. (4)

It sets the probability weights that are less than ρ to 0 and scales the rest to make it a distribution.

The clipping step (step 6) is optional. In fact, we can prove the zero-order bound without clipping,
but this step becomes crucial to show the first-order bound. The main intuition is to bound the size of
the loss estimate ˆ̀

t. With clipping, we can ensure ‖ˆ̀t‖∞ ≤ 1/ρ for all t, which provides a better
control on the one-step stability. The regret bounds in bandits with experts setting appear below.
Theorem 4.3 (Zero-order and first-order regret bounds for bandits with experts). Algorithm 3 enjoys
the following bounds when used with different perturbations such as Gamma, Gumbel, Fréchet ,
Weibull, and Pareto (with a proper choice of parameters).

1. With no clipping, it achieves near-optimal expected regret of O(
√
KT logN).

2. With clipping, it achieves expected regret of O
(

(K logN)
1/3

(L∗T )2/3
)

.

The zero-order bound in Part 1 above was already shown for the celebrated EXP4 algorithm by Auer
et al. [9]. Furthermore, Agarwal et al. [3] proved that, with clipping, EXP4 also enjoys a first-order
bound with O((L∗T )2/3) dependence. Our theorem shows that EXP4 is not special in enjoying these
bounds. The same bounds continue to hold for a variety of perturbation based algorithms. Such a
result does not appear in the literature to the best of our knowledge. We note here that achieving
O(
√
L∗T ) bounds in this setting was posed as on open problem by Agarwal et al. [3]. This problem

was recently solved by the algorithm MYGA [5]. MYGA does achieve the optimal first-order bound,
but the algorithm is not simple in that it has to maintain Θ(T ) auxiliary experts in every round. In
contrast, our algorithms are simple as they are all instances of GBPA along with the clipping idea.
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A Proofs for Section 2

We provide the proofs of the claims made in Section 2.

A.1 Tsallis γ-max-divergence gives tighter stability for larger γ

Proposition A.1. Fix a distribution pair P and Q. Then the function D∞,γ(P,Q) is non-decreasing
in γ for γ > 0.

Proof. Since D∞,γ(P,Q) ≥ 0 (obvious by setting B to be the entire space in (2)), we can fix a set
B with P (B) ≥ Q(B) and simply show that, for 0 < γ ≤ γ′,

logγ P (B)− logγ Q(B) ≤ logγ′ P (B)− logγ′ Q(B).

This is equivalent to

logγ P (B)− logγ′ P (B) ≤ logγ Q(B)− logγ′ Q(B).

Since 0 ≤ Q(B) ≤ P (B) ≤ 1, the above inequality will follow if we establish that the function

f(p) = logγ p− logγ′ p

is non-increasing for p ∈ (0, 1]. We can indeed verify this by taking the derivative

f ′(p) = p−γ − p−γ
′
,

which is non-positive since p ≤ 1 and γ′ ≥ γ > 0.

A.2 Post-processing inequality under deterministic mappings

Proposition A.2. Let X,Y be random variables taking values in some space B and let f : B → B′
be a measurable function. Then D∞,γ(f(X), f(Y )) ≤ D∞,γ(X,Y ).

Proof. Fix an arbitrary set B ⊆ B′. We have

logγ P(f(X) ∈ B))− logγ P(f(Y ) ∈ B)) = logγ P(X ∈ f−1(B))− logγ P(Y ∈ f−1(B))

≤ D∞,γ(X,Y ).

B Proofs for Section 3

This section contains full proofs that are either skipped or simplified in Section 3.

B.1 Key Lemma

We first record as a lemma the following characterization of δ-approximate max-divergence provided
by Dwork et al. [16].

Lemma B.1. [16, Lemma 2.1.1] Let Y,Z be random variables over B. Then, Dδ
∞(Y,Z) ≤ ε, if and

only if there exits a random variable Y ′ such that

(i) supB⊆B |P[Y ∈ B]− P[Y ′ ∈ B]| ≤ δ and
(ii) D∞(Y ′, Z) ≤ ε.

In short, we can alter Y into Y ′ by moving no more than δ probability mass from {b ∈ B : P[Y =
b] > eεP[Z = b]} to {b ∈ B : P[Y = b] ≤ eεP[Z = b]} such that D∞(Y ′, Z) is bounded. Then
in the following lemma, we can show that closeness in max-divergence means that expectations of
bounded functions are close. In the result below, when δ = 0, we are allowed to have F =∞.

Lemma B.2. Let Y and Z be random variables taking values in B such that Dδ
∞(Y,Z) ≤ ε. Then

for any non-negative function f : B → [0, F ], we have

E[f(Y )] ≤ eεE[f(Z)] + δF.
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Proof. Let Y ′ be the random variable satisfying the conditions of Lemma B.1. Then we can write

E[f(Y )] =

∫
B
f(b)P[Y = b]db

=

∫
B
f(b)P[Y ′ = b]db+

∫
B
f(b)(P[Y = b]− P[Y ′ = b])db

≤
∫
B
f(b)eεP[Z = b]db+ F |P[Y ∈ B]− P[Y ′ ∈ B]|

≤ eεE[f(Z)] + δF,

where B = {b ∈ B | P[Y = b] ≥ P[Y ′ = b])}. Here we applied Lemma B.1.(ii) for the first
inequality and (i) for the second.

Now we are ready to prove our key lemma.
Lemma 3.1. Consider the loss-only setting with loss functions bounded by B. Let A be
DiffStable(Dδ

∞) at level ε ≤ 1. Then the expected regret of A is at most

2εL∗T + 3E[Regret(A+)T ] + δBT,

where A+ is a fictitious algorithm plays the distribution A(`1:t) at time t (i.e., A+ plays at time t
what A would play at time t+ 1).

Proof. Let xt denote the random variable distributed as A(`1:t−1). Using Lemma B.2, we have for
every t, E[`t(xt)] ≤ eεE[`t(xt+1)] + δB. By summing over t, we have

E

[
T∑
t=1

`t(xt)

]
≤ eεE

[
T∑
t=1

`t(xt+1)

]
+ δBT ≤ eε(L∗T + E[Regret(A+)T ]) + δBT.

To bound the expected regret of A, we subtract L∗T from each side, which gives us the bound

(eε − 1)L∗T + eεE[Regret(A+)T ] + δBT.

Then we complete the proof using the upper bounds eε ≤ 1 + 2ε ≤ 3, which hold for ε ≤ 1.

B.2 Online convex optimization

Theorem 3.2 (First-order regret in OCO). Suppose we are in the loss-only OCO setting. Let X ⊂ Rd,
‖X‖2 ≤ D and let all loss functions be bounded by B. Further assume that ‖∇`t(x)‖2 ≤ β,
λmax(∇2`t(x)) ≤ γ and that the Hessian matrix ∇2`t(x) has rank at most one, for every t
and x ∈ X . Then, the expected regret of Algorithm 1 is at most O(

√
L∗T (γD2 + βdD)) and

O

(√
L∗T (γD2 +D

√
d(β2 log(BT )))

)
with Gamma and Gaussian perturbations, respectively.

Proof. When analyzing the expected regret against an oblivious adversary, we may assume that the
random vector b is just drawn once and reused every round. By definition of xt and induction on t,
we get for any x ∈ X ,

γ

ε
‖x2‖22 + 〈b, x2〉+

t∑
s=1

`s(xs+1) ≤ γ

ε
‖x‖22 + 〈b, x〉+

t∑
s=1

`s(x).

From the case when t = T , we obtain
T∑
t=1

`t(xt+1) ≤ min
x∈X

T∑
t=1

`t(x) +
γ

ε
‖x‖22 + 〈b, x− x2〉 ≤ L∗T +

γ

ε
‖x∗T ‖22 + 〈b, x∗T − x2〉.

This result is often referred to as the “be-the-leader lemma.” Then by taking expectation and applying
the Cauchy-Schwartz inequality, we get

E

[
T∑
t=1

`t(xt+1)

]
≤ L∗T +

γ

ε
D2 + 2DE‖b‖2.
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From the DP result by Kifer et al. [23, Theorem 2], we can infer that D∞(xt, xt+1) ≤ ε when using
the Gamma distribution and Dδ

∞(xt, xt+1) ≤ ε when using the Gaussian distribution. This means
that Algorithm 1 enjoys the one-step differential stability w.r.t. D∞ (resp. Dδ

∞) in the Gamma (resp.
Gaussian) case. Using Lemma 3.1, we can deduce that the expected regret of Algorithm 1 is at most

2εL∗T +
3γ

ε
D2 + 6DE‖b‖2 + δBT, (5)

where δ becomes zero when using the Gamma distribution. We have ‖b‖2 ∼ Gamma(d, ε
2β ) when

using the Gamma distribution, which gives E‖b‖2 = 2βd
ε . In the case of the Gaussian distribution, we

have E‖b‖2 ≤
√
E‖b‖22 =

√
d(β2 log 2

δ+4ε)

ε . Plugging these results in (5) and optimizing ε (setting
δ = 1

BT for the Gaussian case) prove the desired bound.

B.3 Differential consistency and one-step differential stability

We first prove the claim that we made in Section 3.3.1.

Proposition B.3. Suppose Φ̃(L) is of the form minp〈L, p〉 + F (p) for a separable F (p) =∑N
i=1 f(pi) with f : (0,∞)→ R differentiable and strictly convex. Then, the matrix −∇2Φ̃(L) is

POD for any L.

Proof. We have the gradient formula

g(L) = ∇Φ̃(L) = arg min
p∈∆N−1

N∑
i=1

piLi +

N∑
i=1

f(pi).

Let λ = λ(L) be the Lagrange multiplier for the constraint
∑
i pi = 1. We do not have to worry

about the constraint pi ≥ 0 since we have assumed that the domain of f is (0,∞). Setting the
derivative of the Lagrangian ∑

i

piLi +
∑
i

f(pi) + λ(
∑
i

pi − 1)

w.r.t. pi to zero gives us
Li + f ′(pi) + λ = 0. (6)

Taking the derivatives w.r.t. Li and Lj for j 6= i gives us

f ′′(pi)
∂pi
∂Li

= −1− ∂λ

∂Li

f ′′(pi)
∂pi
∂Lj

= − ∂λ

∂Lj
.

Now note that f ′′ > 0 (f strictly convex) and∇2
ijΦ̃(L) = ∂pi

∂Lj
. The proof will therefore be complete

if we can claim that − ∂λ
∂Li
∈ (0, 1). Let us next prove this claim. We can write (6) as

pi = (f?)′(−λ− Li),
where f? is the Fenchel conjugate of f (and therefore f ′ and (f?)′ are inverses of each other).
Plugging this into the constraint

∑
i pi = 1 gives∑

i

(f?)′(−λ− Li) = 1.

Now differentiating w.r.t. Li gives us

(f?)′′(−λ− Li)
(
− ∂λ

∂Li
− 1

)
+
∑
j 6=i

(f?)′′(−λ− Lj)
(
− ∂λ

∂Li

)
= 0,

which upon rearranging yields

− ∂λ

∂Li
=

(f?)′′(−λ− Li)∑
j(f

?)′′(−λ− Lj)
.

Since f is smooth, f? is strictly convex and therefore (f?)′′ > 0 which proves − ∂λ
∂Li
∈ (0, 1).
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Table 1: The parameter settings for the distributions that provide (1, ε)-differential consistency of
the induced potentials while keeping EZ1,···ZN∼Dmaxi Zi = O(logN/ε) [2]. Distributions marked
with a ∗ have to be modified slightly to ensure the differential consistency.

Distribution D Parameter choice

Gamma(α, β) α = 1, β = 1
Gumbel(µ, β) µ = 0, β = 1

Fréchet (α > 1) α = logN
Weibull∗(λ, k) λ = 1, k = 1
Pareto∗(xm, α) xm = 1, α = logN

Next we prove Proposition 3.5.

Proposition 3.5 (Differential consistency implies one-step differential stability). Suppose Φ̃(L) is of
the form E[minp〈a, p〉 + F (p, Z)] and γ ≥ 1. If Φ̃ is (γ, ε)-differentially consistent and −∇2Φ̃ is
always POD, the GBPA using Φ̃ as potential is DiffStable(D∞,γ , ‖ · ‖∞) at level 2ε.

Proof. First, note that by the POD property, the second derivative vector∇2
i·Φ̃ = (∇2

i1Φ̃, . . . ,∇2
iN Φ̃)

satisfies that the i-th coordinate is non-positive and the rest are non-negative. Next, because the
entries in the gradient sum to a constant (it is a probability vector), we know that the coordinate of
the second derivative vector add up to 0 [1]. From this, we can write ‖∇2

i·Φ̃‖1 = −2∇2
iiΦ̃. Let the

cumulative sum of losses so far be L and the new loss vector be `. For P = ∇Φ̃(L), Q = ∇Φ̃(L+ `),
we want to show that D∞,γ(P,Q) ≤ 2ε‖`‖∞. To this end, fix a subset S ⊆ [N ] and define
qS(u) =

∑
i∈S ∇iΦ̃(L+ `− u`) for u ∈ [0, 1]. Its derivative can be written as

q′S(u) =
∑
i∈S
〈∇2

i·Φ̃(L+ `− u`),−`〉

≤
∑
i∈S
‖∇2

i·Φ̃(L+ `− u`)‖1‖`‖∞ =
∑
i∈S
−2∇2

iiΦ̃(L+ `− u`)‖`‖∞

≤ 2ε‖`‖∞
∑
i∈S

(
∇iΦ̃(L+ `− u`)

)γ
≤ 2ε‖`‖∞

(∑
i∈S
∇iΦ̃(L+ `− u`)

)γ
= 2ε‖`‖∞(qS(u))γ .

The first inequality follows from duality of `1, `∞ norms. The second inequality is from our
differential consistency assumption. The last inequality holds because gradient has non-negative
entries and ‖ · ‖γ ≤ ‖ · ‖1 for γ ≥ 1. It follows that for any u ∈ [0, 1], we have

q′S(u)

(qS(u))γ
=

d

du
logγ(qS(u)) ≤ 2ε‖`‖∞,

and therefore

logγ(P (S))− logγ(Q(S)) = logγ qS(1)− logγ qS(0) =

∫ 1

0

d

du
logγ(qi(u)) du

≤ 2ε‖`‖∞.

Now we are ready to prove the first order bound of FTPL in the experts problem.
Theorem 3.6 (First-order bound for experts via FTPL). For the loss-only experts setting, FTPL with
Gamma, Gumbel, Fréchet , Weibull, and Pareto perturbations, with a proper choice of distribution
parameters, all achieve the optimal O(

√
L∗T logN + logN) expected regret.

Proof. Recall that the FTPL algorithm uses the potential Φ̃D(L) = EZ1,··· ,ZN∼Dmini(Li − Zi).
Abernethy et al. [2] show that all the listed distributions, after suitable scaling, have this potential Φ̃D
(1, ε)-differentially consistent and E‖Z‖∞ = O(logN/ε) at the same time (for parameter choices,
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Algorithm 4 GBPA for multi-armed bandits problem
1: Input: Concave potential Φ̃ : RN → R, with∇Φ̃ ∈ ∆N−1

2: Set L̂0 = 0 ∈ RN
3: for t = 1 to T do
4: Sampling: Choose it ∈ [N ] according to distribution pt = ∇Φ̃(L̂t−1) ∈ ∆N−1

5: Loss: Incur loss `t,it and observe this value
6: Estimation: Compute an estimate of loss vector, ˆ̀

t =
`t,it
pt,it

eit

7: Update: L̂t = L̂t−1 + ˆ̀
t

8: end for

see Table 1). Then Proposition 3.5 provides that FTPL with any of the listed distributions is one-step
differentially stable with respect to ‖ · ‖∞ and D∞ at level 2ε. Using the “be-the-leader lemma” (as
in the proof of Theorem 3.2), we have

E[

T∑
t=1

`t,it+1 ]− L∗T ≤ 2E‖Z‖∞ = O(logN/ε).

Applying Lemma 3.1 with ε = min(
√

logN/L∗T , 1) completes the proof.

C Details and proofs for Section 4

Here we present missing parts in Section 4. We start by presenting the GBPA for multi-armed bandits
in Algorithm 4.

C.1 Proof of Lemma 4.1

We will prove the following slightly more general lemma. Lemma 4.1 follows by setting τ = 0 and
lower bounding F (p0, Z) by minp F (p, Z).

Lemma C.1. Suppose the full information GBPA uses a potential of the form Φ̃(L) = E[minp〈L, p〉+
F (p, Z)] and γ ∈ [1, 2]. If the full information GBPA is DiffStable(D∞,γ ,‖ · ‖∞) at level ε, then the
expected regret of Algorithm 4 can be bounded as

E

[
T∑
t=1

`t,it

]
− L∗T ≤ εE

[
T∑
t=1

ˆ̀2
t,itp

γ
t,it

]
+ E

[
max
p∈∆τ

F (p, Z)− F (p0, Z)

]
+ τNT,

where ∆τ = {p ∈ RN : pi ≥ τ,
∑
i pi = 1}.

We will prove this lemma by proving two helper lemmas (Lemma C.2 and Lemma C.3 below) that,
when combined, immediately yield the desired result.

Lemma C.2. Suppose the full information GBPA uses a potential of the form Φ̃(L) = E[minp〈L, p〉+
F (p, Z)]. Then, we have

E

[
T∑
t=1

`t,it

]
− L∗T ≤ E

[
T∑
t=1

〈pt − pt+1, ˆ̀
t〉

]
+ E

[
max
p∈∆τ

F (p, Z)− F (p0, Z)

]
+ τNT

where ∆τ = {p ∈ RN : pi ≥ τ,
∑
i pi = 1}.

Proof. Fix the source of internal randomness used by Algorithm 4 to sample it ∼ pt. This fixes all
the estimated loss vectors ˆ̀

t. The full information GBPA algorithm will deterministically generate
the same sequence pt of probabilities on this estimated loss sequence using the rule pt = ∇Φ̃(L̂t−1).
We have

T∑
t=1

〈pt, ˆ̀
t〉 =

T∑
t=1

〈pt − pt+1, ˆ̀
t〉+

T∑
t=1

〈pt+1, ˆ̀
t〉. (7)
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Let us focus on the second summation:
T∑
t=1

〈pt+1, ˆ̀
t〉 =

T∑
t=1

〈E[arg min
p
〈L̂t, p〉+ F (p, Z)], ˆ̀

t〉

= E[

T∑
t=1

〈arg min
p
〈L̂t, p〉+ F (p, Z), ˆ̀

t〉]

≤ E[F (p, Z)− F (p0, Z)] +

T∑
t=1

〈p, ˆ̀
t〉, (8)

where the last inequality is true for any p due to the “be-the-leader” argument. Note that the
expectations above are only w.r.t. Z since ˆ̀

t are still fixed. Combining (7) and (8) and taking
expectations over the internal randomness of the bandit algorithm gives, for any p ∈ ∆τ ,

E[

T∑
t=1

〈pt, ˆ̀
t〉] ≤ E[

T∑
t=1

〈pt − pt+1, ˆ̀
t〉] + E[F (p, Z)− F (p0, Z)] + E[

T∑
t=1

〈p, ˆ̀
t〉]

= E[

T∑
t=1

〈pt − pt+1, ˆ̀
t〉] + E[F (p, Z)− F (p0, Z)] +

T∑
t=1

〈p, `t〉

≤ E[

T∑
t=1

〈pt − pt+1, ˆ̀
t〉] + E[max

p∈∆τ

F (p, Z)− F (p0, Z)] +

T∑
t=1

〈p, `t〉.

To finish the proof, note that 〈pt, ˆ̀
t〉 = `t,it and

min
p∈∆τ

T∑
t=1

〈p, `t〉 ≤ min
p

T∑
t=1

〈p, `t〉+ τNT = L∗T + τNT.

because for any p′ ∈ ∆N−1, there is a p ∈ ∆τ such that ‖p′ − p‖1 ≤ τN .

Lemma C.3. Suppose 1 ≤ γ ≤ 2. If the full information GBPA is DiffStable(D∞,γ ,‖ · ‖∞) at level
ε. Then, we have

〈pt − pt+1, ˆ̀
t〉 ≤ εˆ̀2t,itp

γ
t,it
.

Proof. First let us consider the case γ > 1 first. Recall at most one entry of ˆ̀
t is non-zero. Therefore,

〈pt − pt+1, ˆ̀
t〉 = (pt,it − pt+1,it)

ˆ̀
t,it . For the remainder of the proof, let us denote pt,it and pt+1,it

by p and p′ repectively. Also let ˆ̀denote ˆ̀
t,it . Because of the stability assumption, we know that

D∞,γ(pt, pt+1) ≤ ε‖ˆ̀t‖∞ = εˆ̀. Therefore, we have

logγ p− logγ p
′ ≤ εˆ̀

⇒ p1−γ

1− γ
− (p′)1−γ

1− γ
≤ εˆ̀

⇒ p′ ≥ p
(

1 + (γ − 1)εˆ̀pγ−1
)− 1

γ−1

.

Noting that (1 + x)−r ≥ 1− rx for r > 0 and x ≥ 0, we have

p′ ≥ p
(

1− εˆ̀pγ−1
)
,

which proves the lemma for 1 < γ ≤ 2.

Finally note that the lemma also holds in the case γ = 1, because then we have

log p− log p′ ≤ εˆ̀

⇒ p′ ≥ p exp(−εˆ̀) ≥ p(1− εˆ̀).
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C.2 Proof of Theorem 4.2

Theorem 4.2 (Zero-order and first-order regret bounds for multi-armed bandits). Algorithm 4 enjoys
the following bounds when used with different perturbations/regularizers:

1. FTPL with Gamma, Gumbel, Fréchet , Weibull, and Pareto pertubations (with a proper choice of
distribution parameters) all achieve near-optimal expected regret of O(

√
NT logN).

2. FTRL with Tsallis neg-entropy F (p) = −η
∑N
i=1 pi logα(1/pi) for 0 < α < 1 (with a proper

choice of η) achieves optimal expected regret of O(
√
NT ).

3. FTRL with log-barrier regularizer F (p) = −η
∑N
i=1 log pi (with a proper choice of η) achieves

expected regret of O(
√
NL∗T log(NT ) +N log(NT )).

Proof. For each of the three parts, we will show that the full info GBPA is DiffStable(D∞,γ , ‖ · ‖∞)
for an appropriate γ ∈ [1, 2] and then apply Lemma 4.1 (or, in the log-barrier case, the slightly more
general Lemma C.1).

Part 1: As in the proof of Theorem 3.6, these distributions (with proper choice of parameters)
lead to a full information GBPA that is DiffStable(D∞, ‖ · ‖∞) at level 2ε. In the FTPL case when
|F (p, Z)| = |〈p, Z〉| ≤ ‖Z‖∞, we have

E
[
max
p

F (p, Z)−min
p
F (p, Z)

]
≤ 2E‖Z‖∞,

which scales as logN
ε for these distributions. Lemma 4.1 gives the expected regret bound of

2εE

[
T∑
t=1

ˆ̀2
t,itpt,it

]
+ 2E‖Z‖∞. (9)

Since `t,it ∈ [0, 1], we have

E
[
ˆ̀2
t,itpt,it

]
= E

[
`2t,it
p2
t,it

pt,it

]
≤ E

[
1

pt,it

]
= E

[
N∑
i=1

pt,i
1

pt,i

]
= N.

Plugging this into (9) and tuning ε give us Part 1.

Part 2: When F (p) = −η
∑N
i=1 pi logα(1/pi) for α ∈ (0, 1), then Φ̃ is (2 − α, 1/(ηα))-

differentially consistent [2]. By Proposition 3.5, the full information GBPA is DiffStable(D∞,2−α,‖ ·
‖∞) at level 2/(ηα). Also note that F (p) is negative and its minimum value is achieved at the
uniform distribution. Therefore we can show

max
p

F (p)−min
p
F (p) ≤ η

∑N
i=1(1/N)α − 1

1− α
≤ ηN

1−α

1− α
.

Lemma 4.1 gives the expected regret bound of

2

ηα
E

[
T∑
t=1

ˆ̀2
t,itp

2−α
t,it

]
+ η

N1−α

1− α
. (10)

Since `t,it ∈ [0, 1], we have

E
[
ˆ̀2
t,itp

2−α
t,it

]
= E

[
`2t,it
p2
t,it

p2−α
t,it

]
≤ E

[
p−αt,it

]
= E

[
N∑
i=1

p1−α
t,i

]
≤ Nα,

where the last inequality follows from the fact that the function p1−α is concave for α ∈ (0, 1).
Plugging this into (10) and tuning η give us Part 2.

Part 3: When F (p) = −η
∑N
i=1 log pi, then Φ̃ is (2, 1/η)-differentially consistent (see Lemma C.4

below). By Proposition 3.5, the full information GBPA is DiffStable(D∞,2,‖ · ‖∞) at level 2/η. Since
F is non-negative, we have

max
p∈∆τ

F (p)− F (p0) ≤ ηN log(1/τ).
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Lemma C.1 gives the expected regret bound of

2

η
E

[
T∑
t=1

ˆ̀2
t,itp

2
t,it

]
+ ηN log(1/τ) + τNT. (11)

Since `t,it ∈ [0, 1], we have

E
[
ˆ̀2
t,itp

2
t,it

]
= E

[
`2t,it
p2
t,it

p2
t,it

]
≤ E

[
`2t,it

]
≤ E [`t,it ] .

Plugging this into (11) and choosing τ = 1/(NT ), we get the following recursive inequality for the
expected regret RT :

RT ≤
2

η
(RT + L∗T ) + ηN log(NT ) + 1.

If L∗T < 2, set η = 4 to get the bound RT ≤ 8N log(NT ) + 4. If L∗T ≥ 2 then set η =√
2L∗TN log(NT ) and note that η > 2

√
2 if N,T ≥ 2. In this case, the bound becomes RT ≤(

4
√
L∗TN log(NT ) + 1

)
/(
√

2− 1), which completes the proof.

C.3 Differential consistency of GBPA potential with log barrier regularization

Lemma C.4. Let F (p) = −η
∑N
i=1 log pi, Φ̃(L) = minp〈L, p〉 + F (p) and p(L) =

arg minp〈L, p〉+ F (p). Then Φ̃ is (2, 1/η)-differentially consistent.

Proof. We observe that straightforward calculus gives ∇2F (p) = ηdiag(p−2
1 , . . . , p−2

N ). Let
I∆N−1(·) be the indicator function of ∆N−1; that is, I∆N−1(x) = 0 for x ∈ ∆N−1 and
I∆N−1(x) =∞ for x /∈ ∆N−1. It is clear that−Φ̃(−L) is the dual of the function F (x)+ I∆N−1(x),
and moreover we observe that ∇2F (p) is a sub-Hessian of F (·) + I∆N

(·) at p, following the setup
of [30]. Taking advantage of Proposition 3.2 in the latter reference, we conclude that∇−2F (p(−L))

is a super-Hessian of F ∗ = −Φ̃(−L) at L. Hence, we get

−∇2Φ̃(−L) � η−1diag(p2
1(−L), . . . , p2

N (−L))

for any L. What we have stated, indeed, is that Φ̃ is (2, 1/η)-differentially-consistent.

C.4 Bandits with experts

We provide full details for the bandits with experts setting.

C.4.1 Helper lemmas for the analysis

Lemma C.5. Suppose the full information GBPA uses a potential of the form Φ̃(L) = E[minp〈L, p〉+
F (p, Z)]. If the full information GBPA is DiffStable(D∞,‖ · ‖∞) at level ε, then the expected regret
of Algorithm 3 with no clipping can be bounded as

E

[
T∑
t=1

`t,jt

]
− L∗T ≤ εE

[
T∑
t=1

ˆ̀2
t,itqt,jt

]
+ E

[
max
p

F (p, Z)−min
p
F (p, Z)

]
.

We will prove this lemma by proving Lemma C.6 and Lemma C.7 below that, when combined,
immediately yield the desired result.

Lemma C.6. Suppose the full information GBPA uses a potential of the form Φ̃(L) = E[minp〈L, p〉+
F (p, Z)]. Then, we have

E

[
T∑
t=1

`t,it

]
− L∗T ≤ E

[
T∑
t=1

〈pt − pt+1, φt〉

]
+ E

[
max
p

F (p, Z)−min
p
F (p, Z)

]
.
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Proof. Fix the source of internal randomness used by Algorithm 3 (with no clipping) to sample
jt ∼ qt. This fixes all the estimated loss vectors ˆ̀

t and hence φt. The full information GBPA
algorithm will deterministically generate the same sequence pt of probabilities on this estimated loss
sequence using the rule pt = ∇Φ̃(φt−1). We have

T∑
t=1

〈pt, φt〉 =

T∑
t=1

〈pt − pt+1, φt〉+

T∑
t=1

〈pt+1, φt〉.

Proceeding as in the proof of Lemma C.2 gives us, for any p ∈ ∆N−1,

E[

T∑
t=1

〈pt, φt〉] ≤ E[

T∑
t=1

〈pt − pt+1, φt〉] + E[max
p

F (p, Z)−min
p
F (p, Z)] + E[

T∑
t=1

〈p, φt〉].

To finish the proof, first note that

E[

T∑
t=1

〈pt, φt〉] = E

[
T∑
t=1

〈pt, φt(ˆ̀
t)〉

]
= E

[
T∑
t=1

〈ψt(pt), ˆ̀
t)〉

]

= E

[
T∑
t=1

〈qt, ˆ̀
t〉

]
= E

[
T∑
t=1

`t,jt

]
.

Second, note that, by choosing p = ei ∈ RN ,

T∑
t=1

E[〈p, φt〉] =

T∑
t=1

E[〈ei, φt〉] =

T∑
t=1

E[〈ei, φt(ˆ̀
t)〉]

=

T∑
t=1

E
[
〈ψt(ei), ˆ̀

t〉
]

=

T∑
t=1

〈ψt(ei), `t〉 =

T∑
t=1

`t,Ei,t .

Choosing i that makes the last summation equal to L∗T completes the proof.

Lemma C.7. If the full information GBPA is DiffStable(D∞,‖ · ‖∞) at level ε. Then, we have

〈pt − pt+1, φt〉 ≤ εˆ̀2t,jtqt,jt .

Proof. Because of the stability assumption, we know that D∞,γ(pt, pt+1) ≤ ε‖φt‖∞ = ε‖ˆ̀t‖∞ =

εˆ̀t,jt . Therefore, for any i ∈ [N ],

pt+1,i ≥ pt,i exp(−εˆ̀t,jt) ≥ pt,i(1− εˆ̀t,jt).

Now we have

〈pt − pt+1, φt(ˆ̀
t)〉 =

∑
i:Ei,t=jt

(pt,i − pt+1,i)ˆ̀
t,jt ≤

∑
i:Ei,t=jt

(εˆ̀t,jtpt,i)
ˆ̀
t,jt

= εˆ̀2t,jt

∑
i:Ei,t=jt

pt,i = εˆ̀2t,jtqt,jt .

C.4.2 Regret bound and analysis

Theorem 4.3 (Zero-order and first-order regret bounds for bandits with experts). Algorithm 3 enjoys
the following bounds when used with different perturbations such as Gamma, Gumbel, Fréchet ,
Weibull, and Pareto (with a proper choice of parameters).

1. With no clipping, it achieves near optimal expected regret of O(
√
KT logN).

2. With clipping, it achieves expected regret of O
(

(K logN)
1/3

(L∗T )2/3
)

.
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Proof. The proof of Part 1 is very similar to the proof of Part 1 of Theorem 4.2. Part 2 needs a few
more arguments to take care of the effects of clipping.

Part 1: Note that without clipping, i.e., when ρ = 0, we have qt = q̃t for all t. As in the proof of
Theorem 3.6, these distributions (with proper choice of parameters) lead to a full information GBPA
that is DiffStable(D∞, ‖ · ‖∞) at level 2ε. In the FTPL case when |F (p, Z)| = |〈p, Z〉| ≤ ‖Z‖∞, we
have

E
[
max
p

F (p, Z)−min
p
F (p, Z)

]
≤ 2E‖Z‖∞,

which scales as logN
ε for these distributions. Lemma C.5 gives the expected regret bound of

2εE

[
T∑
t=1

ˆ̀2
t,itpt,it

]
+ 2E‖Z‖∞. (12)

Since `t,jt ∈ [0, 1], we have

E
[
ˆ̀2
t,itqt,jt

]
= E

[
`2t,it
q2
t,jt

qt,jt

]
≤ E

[
1

qt,jt

]
= εE

[
K∑
i=1

qt,j
1

qt,j

]
= εK.

Plugging this into (12) and tuning ε gives us Part 1.

Part 2: When there is clipping, i.e. ρ is non-zero, the loss estimate behaves differently from estimate
used in the unclipped version of the algorithm. First, we have the upper bound ‖φt(ˆ̀

t)‖∞ =

‖ˆ̀t‖∞ ≤ 1/ρ. Second, it is unbiased only over the support of q̃t since outside of the support, it is
deterministically zero. Therefore ˆ̀

t, in expectation, now underestimates `t. Crucially, however, we
still have the equality E[〈q̃t, ˆ̀

t〉] = E[`t,jt ].

Lemma C.6 does not directly bound regret in the clipped case. However, examining the proof, it gives
us the bound,

E

[
T∑
t=1

〈pt, φt(ˆ̀
t)〉

]
−

N
min
i=1

T∑
t=1

E
[
〈ψt(ei), ˆ̀

t〉
]

≤ E

[
T∑
t=1

〈pt − pt+1, φt〉

]
+ E

[
max
p

F (p, Z)−min
p
F (p, Z)

]
. (13)

We will now relate the LHS to regret and bound the RHS.

First, note that

E

[
T∑
t=1

〈pt, φt(ˆ̀
t)〉

]
= E

[
T∑
t=1

〈qt, ˆ̀
t〉

]
≥ (1−Kρ)E

[
T∑
t=1

〈q̃t, ˆ̀
t〉

]
= (1−Kρ)E

[
T∑
t=1

`t,jt

]
(14)

where the inequality follows because ˆ̀
t has all non-negative entries and q̃t,j is either 0 or we have

q̃t,j =
qt,j

1−
∑
j′:qt,j′<ρ

qt,j′
≤ qt,j

1−Kρ
.

Second, note that, because ˆ̀
t underestimates `t, we have

E

[
T∑
t=1

φt,i(ˆ̀
t)

]
=

T∑
t=1

E[〈ei, φt(ˆ̀
t)〉] =

T∑
t=1

E
[
〈ψt(ei), ˆ̀

t〉
]
≤

T∑
t=1

〈ψt(ei), `t〉 =

T∑
t=1

`t,Ei,t .

(15)

Third, note that, as in the proof of Theorem 3.6, these distributions (with proper choice of parameters)
lead to a DiffStable(D∞,‖ · ‖∞) full information GBPA at level 2ε. In the FTPL case, when
|F (p, Z)| = |〈p, Z〉| ≤ ‖Z‖∞, we have

E
[
max
p

F (p, Z)−min
p
F (p, Z)

]
≤ 2E‖Z‖∞ ≤

2 logN

ε
. (16)
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Fourth, because of the one-step differential stability of the full information GBPA, we begin as in the
proof of Lemma C.7 but use a slightly different bound towards the end of the following calculation
since we now have q̃t,i ≥ ρ.

E
[
〈pt − pt+1, φt(ˆ̀

t)〉
]

= E

 ∑
i:Ei,t=jt

(pt,i − pt+1,i)ˆ̀
t,jt

 ≤ E

 ∑
i:Ei,t=jt

(2εˆ̀t,jtpt,i)
ˆ̀
t,jt


= E

2εˆ̀2t,jt

∑
i:Ei,t=jt

pt,i

 = E

[
2ε
`2t,jt
q̃2
t,jt

q̃t,jt

]
≤ 2ε

ρ
E [`t,jt ] . (17)

Combining (13), (14), (15), (16), and (17) provides

E

[
T∑
t=1

`t,jt

]
− L∗T ≤

(
2ε

ρ
+Kρ

)
E

[
T∑
t=1

`t,jt

]
+

2 logN

ε
,

where L∗T = minNi=1

∑T
t=1 `t,Ei,t . Denoting the expected regret by RT , we therefore have the bound

RT ≤
(

2ε

ρ
+Kρ

)
(RT + L∗T ) +

2 logN

ε
.

We first set ρ =
√

2ε/K which is a valid choice as long as 2εK < 1. With this choice, we have the
bound

RT ≤ 2
√

2εK(RT + L∗T ) +
2 logN

ε
.

If L∗T ≤ 128K logN , set ε = 1/32K to get a bound of RT ≤ L∗T + 128K logN ≤
256K logN . If L∗T > 128K logN , set ε = (logN)2/3/(K1/3(L∗T )2/3) to get a bound of
O(K1/3(logN)2/3(L∗T )2/3). Note that in this case εK < 1/32.
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