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In this chapter we give a new perspective on so-called perturbation meth-
ods that have been applied in a number of di�erent fields, but in particular
for adversarial online learning problems. We show that the classical algorithm
known as Follow The Perturbed Leader (FTPL) can be viewed through the lens
of stochastic smoothing, a tool that has proven popular within convex opti-
mization. We prove bounds on regret for several online learning settings, and
provide generic tools for analyzing perturbation algorithms. We also consider
the so-called bandit setting, where the feedback to the learner is significantly
constrained, and we show that near-optimal bounds can be achieved as long
as a simple condition on the perturbation distribution is met.

1.1 Introduction

In this chapter we will study the problem of online learning with the goal
of minimizing regret. A learner must iteratively play a sequence of actions,
where each action is based on the data received up to the previous iteration.
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We consider learning in a potentially adversarial environment, where we avoid
making any stochastic assumptions about the sequence of data. The goal of
the learner is to su�er as little regret as possible, where regret is defined as
the di�erence between the learner’s loss and the loss of the best fixed action in
hindsight. The key to developing optimal algorithms is regularization, which
may be interpreted either as hedging against bad future events, or similarly
can be seen as avoiding overfitting to the observed data. In this paper, we
focus on regularization techniques for online linear optimization problems
where the learner’s action is evaluated on a linear reward function.

In the present chapter, we will mostly focus on learning settings where our
learner’s decisions are chosen from a convex subset of RN , and where the
“data” we observe arrives in the form of a (bounded) vector g œ RN , and
the costs/gains will be linear in each. Specifically, the gain (equiv., reward)
received on a given round, when the learner plays action w and Nature chooses
vector g, is the inner product Èw, gÍ. Generally we will use the the symbol G
to refer to the cumulative gain vector up to a particular time period.

The algorithm commonly known as Follow the Regularized Leader (FTRL)
selects an action w on a given round by solving an explicit optimization
problem, where the objective combines a “data fitness” term along with a
regularization via penalty function. More precisely, FTRL selects an action
by optimizing argmax

w

Èw, GÍ ≠ R(w) where R is a strongly convex penalty
function; a well-studied choice for R is the well-known ¸

2

-regularizer Î·Î2

2

. The
regret analysis of FTRL reduces to the analysis of the second-order behavior of
the penalty function (Shalev-Shwartz, 2012), which is well-studied due to the
powerful convex analysis tools. In fact, regularization via penalty methods for
online learning in general are very well understood. Srebro et al. (2011) proved
that Mirror Descent, a regularization via penalty method, achieves a nearly
optimal regret guarantee for a general class of online learning problems, and
McMahan (2011) showed that FTRL is equivalent to Mirror Descent under
some assumptions.

Follow the Perturbed Leader (FTPL), on the other hand, uses implicit
regularization via perturbations. At every iteration, FTPL selects an action
by optimizing argmax

w

Èw, G+zÍ where G is the observed data and z is some
random noise vector, often referred to as a “perturbation” of the input. The
early FTPL analysis tools lacked a generic framework and relied substantially
on clever algebra tricks and heavy probabilistic analysis (Kalai and Vempala,
2005; Devroye et al., 2013; van Erven et al., 2014). This was in contrast to
the elegant and simple convex analysis techniques that provided the basis for
studying FTRL and proving tight bounds.

This book chapter focuses on giving a new perspective on perturbation
methods and on providing a new set of analysis tools for controlling the
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regret of FTPL. In particular, we show that the results hinge on certain
second-order properties of stochastically-smoothed convex functions. Indeed,
we show that both FTPL and FTRL naturally arise as smoothing operations
of a non-smooth potential function and the regret analysis boils down to
understanding the smoothness as defined in Section 1.3. This new unified
analysis framework recovers known (near-)optimal regret bounds and provides
tools for controlling regret.

An interesting feature of our analysis framework is that we can directly
apply existing techniques from the optimization literature, and conversely,
our new findings in online linear optimization may apply to optimization
theory. In Section 1.4, a straightforward application of the results on Gaussian
smoothing by Nesterov and Spokoiny (2011) and Duchi et al. (2012) gives
a generic regret bound for an arbitrary online linear optimization problem.
In Section 1.5 and 1.6, we improve this bound for the special cases that
correspond to canonical online linear optimization problems; we analyze the
so-called “experts setting” (Section 1.5) and we also look at the case where
the decision set is the Euclidean ball (Section 1.6). Finally, in Section 1.7,
we turn our attention to the bandit setting where the learner has limited
feedback. For this case, we show that the perturbation distribution has to be
chosen quite carefully, and indeed we show that near-optimal regret can be
obtained as long as the perturbation distribution has a bounded hazard rate
function.

1.2 Preliminaries

1.2.1 Convex Analysis

For this preliminary discussion, assume we are given an arbitrary norm Î · Î.
Throughout the chapter we will utilize various norms, such as the ¸

1

, ¸
2

, ¸Œ,
and the spectral norm of a matrix. In addition, we will often use Î ·Îú to refer
to the dual norm of Î · Î, defined as ÎzÎú = maxy:ÎyÎÆ1

Èy, zÍ.
Assume we are given f a di�erentiable, closed, and proper convex function

whose domain is dom f ™ RN . We say that f is L-Lipschitz with respect to
a norm Î · Î when f satisfies |f(x) ≠ f(y)| Æ LÎx ≠ yÎ for all x, y œ dom(f).

The Bregman divergence D
f

(y, x) is the gap between f(y) and the linear ap-
proximation of f(y) around x. Formally, D

f

(y, x) = f(y)≠f(x)≠ÈÒf(x), y≠
xÍ. We say that f is —-strongly convex with respect to a norm Î ·Î if we have
D

f

(y, x) Ø —

2

Îy ≠xÎ2 for all x, y œ dom f . Similarly, f is said to be —-strongly
smooth with respect to a norm Î · Î if we have D

f

(y, x) Æ —

2

Îy ≠ xÎ2 for all
x, y œ dom f .
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The Bregman divergence measures how fast the gradient changes, or equiv-
alently, how large the second derivative is. In fact, we can bound the Bregman
divergence by analyzing the local behavior of Hessian, as the following adap-
tation of Abernethy et al. (2013, Lemma 4.6) shows.

Lemma 1.1. Let f be a twice-di�erentiable convex function with dom f ™
RN . Assume that the eigenvalues of Ò2f(x) all lie in the range [a, b] for every
x œ dom f . Then, aÎvÎ2/2 Æ D

f

(x+v, x) Æ bÎvÎ2/2 for any x, x+v œ dom f .

The Fenchel conjugate of f is defined as fı(G) = sup
wœdom(f)

{Èw, GÍ ≠
f(w)}, and it is a dual mapping that satisfies f = (fı)ı. If f is di�erentiable
and strictly convex we also have Òfı œ dom(f). One can also show that the
notions of strong convexity and strong smoothness are dual to each other.
That is, f is —-strongly convex with respect to a norm Î ·Î if and only if fı is
1

—

-strongly smooth with respect to the dual norm Î · Î
ı

. For more details and
proofs, readers are referred to an excellent survey by Shalev-Shwartz (2012).

1.2.2 Online Linear Optimization

Let X and Y be convex and closed subsets of RN . The online linear optimiza-
tion (OLO) is defined to be the following repeated game between two entities
that we call the learner and the adversary:

On round t = 1, . . . , T ,

the learner plays w
t

œ X;
the adversary reveals g

t

œ Y;
the learner receives a reward1 Èw

t

, g
t

Í.

We say X is the decision set and Y is the reward set. Let G
t

= q
t

s=1

g
s

be the
cumulative reward. The learner’s goal is to minimize the (external) regret,
defined as:

Regret = max
wœX

Èw, G
T

Í
¸ ˚˙ ˝

baseline potential

≠
Tÿ

t=1

Èw
t

, g
t

Í. (1.1)

The baseline potential function �(G) := max
wœXÈw, GÍ is the comparator

term against which we define the regret, and it coincides with the support
function of X. For a bounded compact set X, the support function of X is

1. Our somewhat less conventional choice of maximizing the reward instead of minimizing
the loss was made so that we directly analyze the convex function max(·) without
cumbersome sign changes.
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positively homogeneous, subadditive, and Lipschitz continuous with respect
to any norm Î · Î, where the Lipschitz constant is equal to sup

xœX ÎxÎú. For
more details and proofs, readers are referred to Rockafellar (1997, Section 13)
or Molchanov (2005, Appendix F).

1.3 Gradient-Based Prediction Algorithm

Follow the Leader (FTL) style algorithms select the next action w
t

œ X

via an optimization problem: given the cumulative reward vector G
t≠1

, an
FTL style algorithm selects w

t

= argmax
wœX f(w, G

t≠1

). The most simple
algorithm, FTL, does not incorporate any perturbation or regularization into
the optimization, and uses the objective f(w, G) = Èw, GÍ. Unfortunately
FTL does not enjoy non-trivial regret guarantees in many scenarios, due to
the inherent instability of vanilla linear optimization—that is, since the the
optimal solution can fluctuate with small changes in the input. There are
a couple of ways to induce stability in FTL. Follow the Regularized Leader
(FTRL) sets f(w, G) = Èw, GÍ≠R(w) where R is a strongly convex regularizer
providing stability to the solution. Follow the Perturbed Leader (FTPL) sets
f(w, G) = Èw, G + zÍ where z is a random vector. The randomness in z
imparts stability to the (expected) move of the FTPL algorithm.

We now proceed to show that a common property shared by all such
algorithms is that the action w

t

is exactly the gradient of some scalar-valued
potential function Â�

t

evaluated at G
t≠1

. (For the remainder of the paper we
will use the notation Â� to refer to a modification of the baseline potential
�). This perspective gives rise to what we call the Gradient-based Prediction
Algorithm (GBPA), presented in Algorithm 1. In the following Section we give
a full regret analysis of this algorithm. We note that Cesa-Bianchi and Lugosi
(2006, Theorem 11.6) presented a similar algorithm, but our formulation
eliminates all dual mappings.

Algorithm 1: Gradient-Based Prediction Algorithm (GBPA)
Input: X,Y ™ RN

Require: convex potentials Â�1, . . . , Â�
T

: RN æ R, with ÒÂ�
t

(G) œ X, ’G
Initialize: G0 = 0
for t = 1 to T do

The learner plays w
t

= ÒÂ�
t

(G
t≠1)

The adversary reveals g
t

œ Y
The learner receives a reward of Èw

t

, g
t

Í
Update the cumulative gain vector: G

t

= G
t≠1 + g

t
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1.3.1 GBPA Analysis

We begin with a generic result on the regret of GBPA in the full-information
setting.

Lemma 1.2 (GBPA Regret). Let � be the baseline potential function for an
online linear optimization problem. The regret of the GBPA can be decomposed
as follows:

Regret =
Tÿ

t=1

3 !Â�
t

(G
t≠1

) ≠ Â�
t≠1

(G
t≠1

)
"

¸ ˚˙ ˝
overestimation penalty

+ DÂ
�

t

(G
t

, G
t≠1

)
¸ ˚˙ ˝
divergence penalty

4

+ �(G
T

) ≠ Â�
T

(G
T

)
¸ ˚˙ ˝
underestimation penalty

, (1.2)

where Â�
0

© �.

Proof. We note that since Â�
0

(0) = 0,

Â�
T

(G
T

) = q
T

t=1

Â�
t

(G
t

) ≠ Â�
t≠1

(G
t≠1

)

= q
T

t=1

1!Â�
t

(G
t

) ≠ Â�
t

(G
t≠1

)
"

+
!Â�

t

(G
t≠1

) ≠ Â�
t≠1

(G
t≠1

)
"2

= q
T

t=1

1!
ÈÒÂ�

t

(G
t≠1

), g
t

Í + DÂ
�

t

(G
t

, G
t≠1

))
"

+
!Â�

t

(G
t≠1

) ≠ Â�
t≠1

(G
t≠1

)
"2

,

where the last equality holds because:

Â�
t

(G
t

) ≠ Â�
t

(G
t≠1

) = ÈÒÂ�
t

(G
t≠1

), g
t

Í + DÂ
�

t

(G
t

, G
t≠1

).

We now have

Regret := �(G
T

) ≠
Tÿ

t=1

Èw
t

, g
t

Í

= �(G
T

) ≠
q

T

t=1

ÈÒÂ�
t

(G
t≠1

), g
t

Í
= �(G

T

) ≠ Â�
T

(G
T

) + q
T

t=1

DÂ
�

t

(G
t

, G
t≠1

) + Â�
t

(G
t≠1

) ≠ Â�
t≠1

(G
t≠1

),

which completes the proof.

We point out a couple of important facts about Lemma 1.2:

1. If Â�
1

© · · · © Â�
T

, then the overestimation penalty sums up to Â�
1

(0) ≠
Â�(0) = Â�

T

(0) ≠ Â�(0).
2. If Â�

t

is —-strongly smooth with respect to Î · Î, the divergence penalty at
t is at most —

2

Îg
t

Î2.
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One source of regret is the Bregman divergence of Â�
t

; since g
t

is not known
until playing w

t

, the GBPA always ascends along the gradient that is one
step behind. The adversary can exploit this and play g

t

to induce a large gap
between Â�

t

(G
t

) and the linear approximation of Â�
t

(G
t

) around G
t≠1

. The
learner can reduce this gap by choosing a smooth Â�

t

whose gradient changes
slowly.

The learner, however, cannot achieve low regret by choosing an arbitrarily
smooth Â�

t

, because the other source of regret is the di�erence between Â�
t

and �. In short, the GBPA achieves low regret if the potential function Â�
t

gives a favorable tradeo� between the two sources of regret. This tradeo� is
captured by the following definition of smoothing parameters, adapted from
Beck and Teboulle (2012, Definition 2.1).

Definition 1.1. Let f be a closed proper convex function. A collection of
functions {f̃

÷

: ÷ œ R
+

} is said to be an ÷-smoothing of f with smoothing
parameters (–, —, Î · Î), if for every ÷ > 0:

1. There exists –
1

(underestimation bound) and –
2

(overestimation bound)
such that

sup
Gœdom(f)

f(G) ≠ f̃
÷

(G) Æ –
1

÷ and sup
Gœdom(f)

f̃
÷

(G) ≠ f(G) Æ –
2

÷

with –
1

+ –
2

= –.
2. f̃

÷

is —

÷

-strongly smooth with respect to Î · Î.

We say – is the deviation parameter, and — is the smoothness parameter.

A straightforward application of Lemma 1.2 gives the following statement:

Corollary 1.3. Let � be the baseline potential for an online linear opti-
mization problem. Suppose {Â�

÷

} is an ÷-smoothing of � with parameters
(–, —, Î · Î). Then, the GBPA run with Â�

1

© · · · © Â�
T

© Â�
÷

enjoys the
following regret bound,

Regret Æ –÷ + —

2÷

Tÿ

t=1

Îg
t

Î2.

Choosing ÷ to optimize the bound gives Regret Æ
Ò

2–—
q

T

t=1

Îg
t

Î2.

In OLO, we often consider the settings where the reward vectors g
1

, . . . , g
t

are constrained in norm, i.e., Îg
t

Î Æ r for all t. In such settings, the regret
grows in O(r

Ô
–—T ) for the optimal choice of ÷. The product –— of the

devation and smoothness parameters is, therefore, at the core of the GBPA
regret analysis.
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An important smoothing technique for this chapter is stochasting smooth-
ing, which is the convolution of a function with a probability density function.

Definition 1.2 (Stochastic Smoothing). Let f : RN æ R be a function. We
define f̃(·;D

÷

) to be the stochastic smoothing of f with distribution D and
scaling parameter ÷ > 0. The function value at G is obtained as:

f̃(G;D
÷

) := E
z

Õ≥D
÷

[f(G + zÕ)] = E
z≥D[f(G + ÷z)],

where we adopt the convention that if z has distribution D then the distribu-
tion of ÷z is denoted by D

÷

.

Notes on estimation penalty If the perturbation used has mean zero, it fol-
lows from Jensen’s inequality that the stochastic smoothing will overestimate
the convex function �. Hence, for mean zero perturbations, the underestima-
tion penalty is always non-positive. When the scaling parameter ÷

t

changes
every iteration, the overestimation penalty becomes a sum of T terms. The
following lemma shows that we can collapse them into one since the baseline
potential � in OLO problems is sub-additive: �(G + H) Æ �(G) + �(H).

Lemma 1.4. Let � : RN æ R be a baseline potential function of an OLO
problem. Let D be a continuous distribution with zero mean and support
RN . Consider the GBPA with Â�

t

(G) = Â�(G;D
÷

t

) for t = 0, . . . , T where
(÷

1

, . . . , ÷
T

) is a non-decreasing sequence of non-negative numbers. Then the
overestimation penalty has the following upper bound,

Tÿ

t=1

Â�
t

(G
t≠1

) ≠ Â�
t≠1

(G
t≠1

) Æ ÷
T

E
u≥D[�(u)],

and the underestimation penalty is non-positive which gives gives a regret
bound of

Regret Æ ÷
T

E
u≥D[�(u)] +

Tÿ

t=1

DÂ
�

t

(G
t

, G
t≠1

). (1.3)

Proof. By virtue of the fact that � is a support function, it is also subadditive
and satisfies the triangle inequality. Hence we can see that, for any 0 < ÷Õ Æ ÷,

Â�(G;D
÷

) ≠ Â�(G;D
÷

Õ) = E
u≥D[�(G + ÷u) ≠ �(G + ÷Õu)]

Æ E
u≥D[�((÷ ≠ ÷Õ)u)] = (÷ ≠ ÷Õ)E

u≥D[�(u)],

where the final line follows from the positive homogeneity of �. Since we
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implicitly assume that Â�
0

© � we can set ÷
0

= 0. We can then conclude that
Tÿ

t=1

Â�
t

(G
t≠1

)≠ Â�
t≠1

(G
t≠1

) Æ
A

Tÿ

t=1

÷
t

≠ ÷
t≠1

B

E
u≥D[�(u)] = ÷

T

E
u≥D[�(u)],

which completes the proof.

1.3.2 Understanding Follow the Perturbed Leader via Stochastic
Smoothing

The technique of stochastic smoothing has been well-studied in the optimiza-
tion literature for gradient-free optimization algorithms (Glasserman, 1991;
Yousefian et al., 2010) and accelerated gradient methods for non-smooth op-
timizations (Duchi et al., 2012).

One very useful property of stochastic smoothing is that as long as D has
a support over RN and has a di�erentiable probability density function µ, f̃
is always di�erentiable. To see this, we use the change of variable technique:

f̃(G;D) =
⁄

f(G + z)µ(z) dz =
⁄

f(G̃)µ(G̃ ≠ G) dG̃,

and it follows that

Ò
G

f̃(G;D) = ≠
⁄

f(G̃)Ò
G

µ(G̃ ≠ G) dG̃,

Ò2

G

f̃(G;D) =
⁄

f(G̃)Ò2

G

µ(G̃ ≠ G) dG̃. (1.4)

This change of variable trick leads to the following useful expressions for
the first and second derivatives of f̃ in case the density µ(G) is proportional
to exp(≠‹(G)) for a su�ciently smooth ‹.

Lemma 1.5 (Exponential Family Smoothing). Suppose D is a distribu-
tion over RN with a probability density function µ of the form µ(G) =
exp(≠‹(G))/Z for some normalization constant Z. Then, for any twice-
di�erentiable ‹, we have

Òf̃(G) = E[f(G + z)Ò
z

‹(z)], (1.5)
Ò2f̃(G) = E[f(G + z)

1
Ò

z

‹(z)Ò
z

‹(z)T ≠ Ò2

z

‹(z)
2
].

Furthermore, if f is convex, we have

Ò2f̃(G) = E[Òf(G + z)Ò
z

‹(z)T ].

Proof. If ‹ is twice-di�erentiable, Òµ = ≠µ·Ò‹ and Ò2µ =
!
Ò‹Ò‹T ≠ Ò2‹

"
µ.

Plugging these in (1.4) and using the substitution z = G̃ ≠ G immediately
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gives the first two claims of the lemma. For the last claim, we first directly
di�erentiate the expression for Òf̃ in (1.5) by swapping the expectation and
gradient. This is justified because f is convex (and is hence di�erentiable
almost everywhere) and µ is absolutely continuous w.r.t. Lebesgue measure
everywhere (Bertsekas, 1973, Proposition 2.3).

Let D be a probability distribution over RN with a well-defined density
everywhere. Consider the GBPA run with a stochastic smoothing of the
baseline potential:

’t, Â�
t

(G) = Â�(G;D
÷

t

) = E
z≥D

Ë
max
wœX

Èw, G + ÷
t

zÍ
È
. (1.6)

Then, from the convexity of G ‘æ max
wœXÈw, G + ÷

t

zÍ (for any fixed z), we
can swap the expectation and gradient (Bertsekas, 1973, Proposition 2.2) and
evaluate the gradient at G = G

t≠1

to obtain

ÒÂ�
t

(G
t≠1

) = E
z≥D

Ë
argmax

wœX
Èw, G

t≠1

+ ÷
t

zÍ
È
. (1.7)

Taking a single random sample of argmax inside expectation is equivalent
to the decision rule of FTPL (Hannan, 1957; Kalai and Vempala, 2005); the
GBPA on a stochastically smoothed potential can thus be seen as playing
the expected action of FTPL. Since the learner gets a linear reward in online
linear optimization, the regret of the GBPA on a stochastically smoothed
potential is equal to the expected regret of FTPL. For this reason, we will use
the terms FTPL and GBPA with stochastic smoothing interchangably.

1.3.3 Connection between FTPL and FTRL via Duality

We have been discussing a method of smoothing out an objective (potential)
function by taking the average value of the objective over a set of nearby
“perturbed” points. Another more direct method of smoothing the objective
function is via a regularization penalty. We can define the regularized potential
as follows:

Â�(G) = Rı(G) = max
wœX

{Èw, GÍ ≠ R(w)} (1.8)

where R : X æ R is some strictly convex function. This technique has been
referred to as “inf-conv” smoothing of � with Rú. The connection between
regularization and smoothing is further developed by Abernethy et al. (2014),
and the terminology draws from the work of Beck and Teboulle (2012) among
others. The class of FTRL algorithms can be viewed precisely as an instance
of GBPA where the potential is chosen according to Eqn. (1.8). This follows
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because of the following fact, which is a standard result of Fenchel duality:

Òfı(◊) = arg max
x

Èx, ◊Í ≠ f(x),

under the condition that f is di�erentiable and strictly convex (Rockafellar,
1997). In other words, if we consider f(·) to be the regularizer for an FTRL
function, then solution to the FTRL objective corresponds directly with the
gradient of the potential function fı(·).

Now that we have see that FTRL and FTPL can be viewed as a certain
type of smoothing operation, a natural question one might ask is: to what
extent are stochastic smoothing and inf-conv smoothing related? That is, can
we view FTRL and FTPL as really two sides of the same coin? The answer
here is “partially yes” and “partially no”:

1. When X is 1-dimensional then (nearly) every instance of FTRL can be
seen as a special case of FTPL, and vice versa. In other words, stochastic
smoothing and inf-conv smoothing are e�ectively one and the same, and we
describe this equivalence in detail below.
2. For problems of dimension larger than 1, every instance of FTPL can be
described as an instance of FTRL. More precisely, if we have a distribution D

÷

which leads to a stochastically smoothed potential Â�(·) = Â�(·;D
÷

), then we
can always write the gradient of Â�(·) as the solution of an FTRL optimization.
That is,

ÒÂ�(G,D
÷

) = arg max
xœX

Èx, ◊Í ≠ R(x) where R(x) := Â�ı(x),

and we recall that Â�ı denotes the Fenchel Conjugate. In other words, the
perturbation D induces an implicit regularizer defined as the cojugate of
E

z≥D[max
gœXÈg, GÍ]

3. In general, however, stochastic smoothing is not as general as inf-conv
smoothing. FTPL is in some sense less general than FTRL, as there are
examples of regularizers that can not be “induced” via a specific perturbation.
One particular case is given by Hofbauer and Sandholm (2002).

We now given a brief description of the equivalence between stochastic
smoothing and inf-conv smoothing for the 1-dimensional case.

On the near-equivalence between FTRL and FTPL in one dimension.
Consider a one-dimensional online linear optimization prediction problem
where the player chooses an action w

t

from X = [0, 1] and the adversary
chooses a reward g

t

from Y = [0, 1]. This can be interpreted as a two-expert
setting; the player’s action w

t

œ X is the probability of following the first
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expert and g
t

is the net excess reward of the first expert over the second. The
baseline potential for this setting is Â�(G) = max

wœ[0,1]

wG.
Let us consider an instance of FTPL with a continuous distribution D whose

cumulative density function (cdf) is FD. Let Â� be the smoothed potential
function (Equation 1.6) with distribution D. Its derivative is

Â�Õ(G) = E[argmax
wœY

w(G + u)] = P[u > ≠G] (1.9)

because the maximizer is unique with probability 1. Notice, crucially, that
the derivative Â�Õ(G) is exactly the expected solution of our FTPL instance.
Moreover, by di�erentiating it again, we see that the second derivative of Â�
at G is exactly the pdf of D evaluated at (≠G).

We can now precisely define the mapping from FTPL to FTRL. Our
goal is to find a convex regularization function R such that P(u > ≠G) =
arg max

wœX (wG≠R(w)). Since this is a one-dimensional convex optimization
problem, we can di�erentiate for the solution. The characterization of R is:

R(w) ≠ R(0) = ≠
⁄

w

0

F ≠1

D (1 ≠ z)dz. (1.10)

Note that the cdf FD(·) is indeed invertible since it is a strictly increasing
function.

The inverse mapping is just as straightforward. Given a regularization func-
tion R well-defined over [0, 1], we can always construct its Fenchel conjugate
Rı(G) = sup

wœXÈw, GÍ ≠ R(w). The derivative of Rı is an increasing convex
function, whose infimum is 0 at G = ≠Œ and supremum is 1 at G = +Œ.
Hence, Rı defines a cdf, and an easy calculation shows that this perturbation
distribution exactly reproduces FTRL corresponding to R.

1.4 Generic Bounds

In this section, we show how the general result in Corollary 1.3, combined
with stochastic smoothing results from the existing literature, painlessly yield
regret bounds for two generic settings: one in which the learner/adversary sets
are bounded in ¸

1

/¸Œ norms and another in which they are bounded in the
standard Euclidean (i.e., ¸

2

) norm.

1.4.1 ¸1/¸Œ Geometry

With slight abuse of notation, we will use ÎXÎ to denote sup
xœX ÎxÎ where

Î · Î is a norm and X is a set of vectors.
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Theorem 1.6. Consider GBPA run with a potential Â�
t

(G) = Â�(G;D
÷

)
where D is the uniform distribution on the unit ¸Œ ball. Then we have,

Regret Æ 1
2÷

TÎXÎŒÎYÎ2

1

+ ÷
ÎXÎŒN

2 .

Choosing ÷ to optimize the bound gives Regret Æ ÎXÎŒÎYÎ
1

Ô
NT .

Proof. The baseline potential function � is ÎXÎŒ-Lipschitz with respect to
Î · Î

1

. Also note that Îg
t

Î
1

Æ ÎYÎ
1

. Now, by Corollary 1.3, it su�ces to prove
that the stochastic smoothing of � with the uniform distribution on the unit
¸Œ ball is an ÷-smoothing with parameters

3ÎXÎŒN

2 , ÎXÎŒ, Î · Î
1

4
.

These smoothing parameters have been shown to hold by Duchi et al. (2012,
Lemma E.1).

FTPL with perturbations drawn from the uniform distribution over the
hypercube was considered by Kalai and Vempala (2005). The above theorem
gives essentially the same result as their Theorem 1.1(a). The proof above
not only uses our general smoothing based analysis but also yields better
constants.

1.4.2 Euclidean Geometry

In this section, we will use a generic property of Gaussian smoothing to derive
a regret bound that holds for any arbitrary online linear optimization problem.

Theorem 1.7. Consider GBPA run with a potential Â�
t

(G) = Â�(G;D
÷

)
where D is the uniform distribution on the unit ¸

2

ball. Then we have,

Regret Æ 1
2÷

T
Ô

NÎXÎ
2

ÎYÎ2

2

+ ÷ÎXÎ
2

.

If we choose D to be the standard multivariate Gaussian distribution, then we
have,

Regret Æ 1
2÷

TÎXÎ
2

ÎYÎ2

2

+ ÷
Ô

NÎXÎ
2

.

In either case, optimizing over ÷ we get Regret Æ ÎXÎ
2

ÎYÎ
2

N1/4

Ô
2T .

Proof. The baseline potential function � is ÎXÎ
2

-Lipschitz with respect to
Î ·Î

2

. Also note that Îg
t

Î
2

Æ ÎYÎ
2

. Duchi et al. (2012, Lemma E.2) show that
the stochastic smoothing of � with the uniform distribution on the Euclidean
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unit ball is an ÷-smoothing with parameters
1
ÎXÎ

2

, ÎXÎ
2

Ô
N, Î · Î

1

2
.

Further, Duchi et al. (2012, Lemma E.3) shows that the stochastic smooth-
ing of � with the standard Gaussian distribution is an ÷-smoothing with
parameters

1
ÎXÎ

2

Ô
N, ÎXÎ

2

, Î · Î
1

2
.

The result now follows from Corollary 1.3.

We are not aware of a previous result for FTPL of generality comparable
to Theorem 1.7 above. However, Rakhlin et al. (2012) prove a regret bound
for 4

Ô
2
Ô

T when X,Y are unit balls of the ¸
2

norm. Their FTPL algorithm,
however, draws T ≠ t samples from the uniform distribution over the unit
sphere. In contrast, we will show that, for this special case, a dimension
independent O(

Ô
T ) bound can be obtained via an FTPL algorithm using

a single Gaussian perturbation per time step (see Theorem 1.10 below).

1.5 Experts setting

Now we apply the GBPA analysis framework to the classical online learning
problem of the hedge setting, or often referred to as prediction with expert
advice2. Here we assume a learner is presented with a set of fixed actions, and
on each round must (randomly) select one such action. Upon commiting to
her choice, the learner then receives a vector of gains (or losses), one for each
action, where the ith gain (loss) value is the reward (cost) for selecting action
i. The learner’s objective is to continually update the sampling distribution
over actions in order to accumulate an expected gain (loss) that is not much
worse than the gain (loss) of the optimal fixed action.

The important piece to note about this setting is that it may be cast as
an instance of an OLO problem. To see this, we set X = �N

def= {w œ RN :q
i

w
i

= 1, w
i

Ø 0 ’i}, the N -dimensional probability simplex, and we set
Y = {g œ RN : ÎgÎŒ Æ 1}, a set of bounded gain vectors. We may define the

2. The use of the term “expert” is historical and derives from an early version of the
problem where one was given advice (a prediction) from a set of experts (Littlestone and
Warmuth, 1994), and the learner’s goal is to aggregate this advice. In the version we
discuss here, proposed by Freund (1997), a more appropriate intuition is to imagine the
task of choosing among a set of “actions” that each receive a “gain” or “loss” on every
round.
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baseline potential function therefore as

�(G) = max
wœX

Èw, GÍ = max
i=1,...,N

G
i

= G
i

ú
(G)

where iú(G) := min{i : G
i

= max
j

G
j

} (We need the outer min{·} to define
iú in order to handle possible ties; in such cases we select the lowest index). In
our framework we have used language of maximizing gain, in contrast to the
more common theme of minimizing loss. However, the loss-only setting can
be easily obtained by simply changing the domain Y to contain only vectors
with negative-valued coordinates.

1.5.1 The Exponential Weights Algorithm, and the Equivalence of
Entropy Regularization and Gumbel Perturbation

The most well-known and widely used algorithm in the experts setting is the
Exponential Weights Algorithm (EWA), often referred to as the Multiplicative
Weights Algorithm and strongly related to the classical Weighted Majority
Algorithm (Littlestone and Warmuth, 1994). On round t, EWA specifies a set
of unnormalized weights based on the cumulative gains thus far,

w̃
t,i

:= exp(÷G
t≠1,i

) i = 1, . . . , N,

where ÷ > 0 is a parameter. The learner’s distribution on this round is then
obtained by normalizing w̃

t

w
t,i

:= w̃
t,iq

N

j=1

w̃
t,j

i = 1, . . . , N. (1.11)

More recent perspectives of EWA have relied on an alternative interpreta-
tion via an optimization problem. Indeed the weights obtained in Eqn. 1.11
can be equivalently obtained as follows,

w
t

= argmax
wœ�

N

I

È÷G
t≠1

, wÍ ≠
Nÿ

i=1

w
i

log w
i

J

.

We have cast the exponential weights algorithm as an instance of FTRL where
the regularization function R corresponds to the negative entropy function,
R(w) := q

i

w
i

log w
i

. Applying Lemma 1.2 one can show that EWA obtains
a regret of order

Ô
T log N .

A third interpretation of EWA is obtained via the notion of stochastic
smoothing (perturbations) using the Gumbel distribution:

µ(z) := e≠(z+e

≠z

) is the PDF of the standard Gumbel; and
Pr(Z Æ z) = e≠e

≠z is the CDF of the standard Gumbel.
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The Gumbel distribution has several natural properties, including for exam-
ple that it is max-stable: the maximum value of several Gumbel-distributed
random variables is itself distributed according to a Gumbel distribution3.
But another nice fact is that the distribution of the maximizer of N fixed
values perturbed with Gumbel noise leads to an exponentially-weighted dis-
tribution. Precisely, if we have a values v

1

, . . . , v
N

, and we draw n IID samples
Z

1

, . . . , Z
N

from the standard Gumbel, then a straightforward calculus exer-
cise gives that

Pr
5
v

i

+ Z
i

= max
j=1,...,N

{v
j

+ Z
j

}
6

= exp(v
i

)
q

j=1,...,N

exp(v
j

) i = 1, . . . , N.

What we have just arrived at is that EWA is indeed an instance of FTPL
with Gumbel-distributed noise. This was described by Adam Kalai in personal
communication, and later Warmuth (2009) expanded it into a short note
available online. However, the result appears to be folklore in the area of
probabilistic choice models, and it is mentioned briefly by Hofbauer and
Sandholm (2002).

1.5.2 Experts Bounds via Laplacian, Gaussian, and Gumbel Smoothing

We will now apply our stochastic smoothing analysis to derive bounds on a
class of algorithms for the Experts Setting using three di�erent perturbations:
the Exponential, Gaussian, and Gumbel. The latter noise distribution gener-
ates an algorithm which is equivalent to EWA, as discussed above, but we
prove the same bound using new tools. Note, however that we use a mean-zero
Gumbel whereas the standard Gumbel has mean 1.

The key lemma for the GBPA analysis is Lemma 1.2, which decomposes
the regret into overestimation, underestimation, and divergence penalty. By
Lemma 1.4, the underestimation is less than or equal to 0 and the overesti-
mation penalty is upper-bounded by E

z≥D [max
i=1,...,N

z
i

]. This expectation
for commonly used distributions D is well-studied in extreme value theory.

In order to upper bound the divergence penalty, it is convenient to analyze
the Hessian matrix, which has a nice structure in the experts setting. We will
be especially interested in bounding the trace of this Hessian.

Lemma 1.8. Let � be the baseline potential for the N-experts setting, and D

be a continuous distribution with a di�erentiable probability density function.
We will consider the potential Â�(G) = Â�(G;D

÷

). If for some constant — we

3. Above we only defined the standard Gumbel, but in general the Gumbel has both a
scaling and shift parameter.
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have a bound Tr(Ò2 Â�(G)) Æ —/÷ for every G, then it follows that

DÂ
�

(G + g, G) Æ —ÎgÎ2

Œ/÷. (1.12)

Proof. The Hessian exists because µ is di�erentiable (Equation 1.4). Let H
denote the Hessian matrix of the stochastic smoothing of �, i.e., H(·) =
Ò2 Â�(·;D

÷

). First we claim two properties on H:

1. Diagonal entries are non-negative and o� diagonal entries are non-positive.
2. Each row or column sums up to 0.

All diagonal entries of H are non-negative because Â� is convex. Note that
Ò

i

Â� is the probability that the i-th coordinate of G + z is the maximum
coordinate, and an increase in the j-th of G where j ”= i cannot increase that
probability; hence, the o�-diagonal entries of H are non-positive. To prove
the second claim, note that the gradient ÒÂ� is a probability vector, whose
coordinates always sum up to 1. Thus, each row (or each column) must sum
up to 0.

By Taylor’s theorem in the mean-value form, we have DÂ
�

(G + g, G) =
1

2

gT Ò2 Â�(G̃)g where G̃ is some convex combination on G and G + g. Now we
have

DÂ
�

(G + g, G) Æ 1

2

ÎÒ2 Â�(G̃)ÎŒæ1

ÎgÎ2

Œ,

where ÎMÎŒæ1

:= sup
u ”=0

ÎMvÎ
1

/ÎvÎŒ. Finally note that, for any M ,
ÎMÎŒæ1

Æ
q

i,j

|M
i,j

|. We can now conclude the proof by noting that the
sum of absolute values of the entries of Ò2 Â�(G̃) is upper bounded by twice
its trace given the two properties of the Hessian above.

The above result will be very convenient in proving bounds on the di-
vergence penalty associated with di�erent noise distributions. In particular,
assume we have a noise distribution with exponential form, then IID sample
z = (z

1

, . . . , z
n

) has density µ(z) Ã
r

i

exp(≠‹(z
i

)). Now applying Lemma 1.5
we have a nice expression for the diagonal Hessian values:

Ò2

ii

Â�(G;D
÷

) = 1
÷

E
(z1,...,z

n

)≥µ

5
Ò

i

�(G + ÷z) d

dz
i

‹(z
i

)
6

= 1
÷

E
(z1,...,z

n

)≥µ

5
1{i = iú(G + ÷z)}d‹(z

i

)
dz

i

6
. (1.13)

The above formula now gives us a natural bound on the trace of the Hessian
for the three distributions of interest.

Laplace: For this distribution we have ‹(z) = |z| =∆ d‹(z)

dz

= sign(z),
where the sign function returns +1 if the argument is positive, ≠1 if the
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argument is negative, and 0 otherwise. Then we have

Tr(Ò2 Â�(G)) = 1
÷

E
(z1,...,z

n

)≥µ

Ëq
N

i=1

1{i = iú(G + ÷z)}d‹(z

i

)

dz

i

È

= 1
÷
E
z

Ëq
N

i=1

1{i = iú(G + ÷z)}sign(z
i

)
È

Æ 1
÷
E
z

Ëq
N

i=1

1{i = iú(G + ÷z)}
È

= 1
÷

.

Gumbel: Here, using zero-mean Gumbel, we have ‹(z) = z+1+e≠z≠1 =∆
d‹(z)

dz

= 1 ≠ e≠z≠1. Applying the same arguments we obtain

Tr(Ò2 Â�(G)) = 1
÷
E
z

Ëq
N

i=1

1{i = iú(G + ÷z)}(1 ≠ e≠z

i

≠1)
È

Æ 1
÷
E
z

Ëq
N

i=1

1{i = iú(G + ÷z)}
È

= 1
÷

.

Gaussian: Here we have ‹(z) = z

2

2

=∆ d‹(z)

dz

= z. Bounding the sum of
diagonal Hessian terms requires a slightly di�erent trick:

Tr(Ò2 Â�(G)) = 1
÷
E
z

Ëq
N

i=1

1{i = iú(G + ÷z)}z
i

È

= 1
÷
E
z

Ë
z

i

ú
(G+÷z)

È
Æ 1

÷
E
z

[max
i

z
i

] Æ
Ô

2 log N

÷
.

where the last inequality follows according to moment generating function
arguments given below.

To obtain regret bounds, all that remains is a bound on the overestimation
penalty. As we showed in Lemma 1.4, the overestimation penalty is upper
bounded as ÷E

z≥D[�(z)] = ÷E[max
i

z
i

]. We can bound this quantity using
moment generating functions. Let s > 0 be some parameter and notice

sE[max
i

z
i

] Æ logE[exp(s max
i

z
i

)] Æ log
ÿ

i

E[exp(sz
i

)] Æ log N + log m(s)

where m(s) is the moment generating function4 (mgf) of the distribution D

(or an upper bound thereof). The statement holds for any positive choice of
s in the domain of m(·), hence we have

E
z≥D[�(z)] Æ inf

s>0

log N + log m(s)
s

. (1.14)

Laplace: The mgf of the standard Laplace is m(s) = 1

1≠s

. Choosing s = 1

2

4. The mgf of a distribution D is the function m(s) := E
X≥D[exp(sX)].
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gives us that E[max
i

z
i

] Æ 2 log 2N .
Gumbel: The mgf of the mean-zero Gumbel is m(s) = �(1 ≠ s)e≠s.

Choosing s = 1/2 gives that E[max
i

z
i

] Æ 2 log 2N since m(0.5) < 2.
Gaussian: The mgf of the standard Gaussian is m(s) = exp(s2/2). Choos-

ing s =
Ô

2 log N gives E[max
i

z
i

] Æ
Ô

2 log N .

Theorem 1.9. Let � be the baseline potential for the experts setting. Suppose
we GBPA run with Â�

t

(·) = Â�(·;D
÷

) for all t where the mean-zero distribution
D is such that E

z≥D[�(z)] Æ – and ’G, Tr(Ò2 Â�(G)) Æ —/÷. Then we have

Regret Æ ÷– + —T

÷
.

Choosing ÷ to optimize the bound gives Regret Æ 2
Ô

–—T . In particular, for
Laplace, (mean-zero) Gumbel and Gaussian perturbations, the regret bound
becomes 2

Ô
2T log 2N , 2

Ô
2T log 2N and 2

Ô
2T log N respectively.

Proof. Result follows by plugging in bounds into Lemma 1.2. Mean-zero per-
turbations imply that the underestimation penalty is zero. The overestimation
penalty is bounded by ÷– and the divergence penalty is bounded by —T/÷
because of Lemma 1.8 and the assumption that Îg

t

ÎŒ Æ 1. Our calcula-
tions above showed that for the Laplace, (mean-zero) Gumbel and Gaussian
perturbations, we have – = 2 log 2N , 2 log 2N and

Ô
2 log N respectively.

Furthermore, we have — = 1, 1 and
Ô

2 log N respectively.

1.6 Euclidean Balls Setting

The Euclidean balls setting is where X = Y = {x œ RN : ÎxÎ
2

Æ 1}.
The baseline potential function is �(G) = max

wœXÈw, GÍ = ÎGÎ
2

. We show
that the GBPA with Gaussian smoothing achieves a minimax optimal regret
(Abernethy et al., 2008) up to a constant factor.

Theorem 1.10. Let � be the baseline potential for the Euclidean balls setting.
The GBPA run with Â�

t

(·) = Â�(·;N(0, I)
÷

t

) for all t has regret at most

Regret Æ ÷
T

Ô
N + 1

2

Ô
N

q
T

t=1

1

÷

t

Îg
t

Î2

2

. (1.15)

If the algorithm selects ÷
t

=
Òq

T

s=1

Îg
s

Î2

2

/(2N) for all t, we have

Regret Æ
Ò

2 q
T

t=1

Îg
t

Î2

2

.

If the algorithm selects ÷
t

adaptively according to ÷
t

=
Ò

(1 + q
t≠1

s=1

Îg
s

Î2

2

))/N ,
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we have

Regret Æ 2
Ò

1 + q
T

t=1

Îg
t

Î2

2

Proof. The proof is mostly similar to that of Theorem 1.9. In order to apply
Lemma 1.2, we need to upper bound (i) the overestimation and underestima-
tion penalty, and (ii) the Bregman divergence.

The Gaussian smoothing always overestimates a convex function, so it
su�ces to bound the overestimation penalty. Furthermore, it su�ces to
consider the fixed ÷

t

case due to Lemma 1.1. The overestimation penalty
can be upper-bounded as follows:

Â�
T

(0) ≠ Â�(0) = E
u≥N(0,I)

ÎG + ÷
T

uÎ
2

≠ ÎGÎ
2

Æ ÷
T

E
u≥N(0,I)

ÎuÎ
2

Æ ÷
T

Ò
E

u≥N(0,I)

ÎuÎ2

2

= ÷
T

Ô
N.

The first inequality is from the triangle inequality, and the second inequality
is from the concavity of the square root.

For the divergence penalty, note that the upper bound on max
v

:ÎgÎ2=1

gT (Ò2 Â�)g
is exactly the maximum eigenvalue of the Hessian, which we bound in Lemma
1.11. The final step is to apply Lemma 1.1.

Lemma 1.11. Let � be the baseline potential for the Euclidean balls setting.
Then, for all G œ RN and ÷ > 0, the Hessian matrix of the Gaussian smoothed
potential satisfies

Ò2 Â�(G;N(0, I)
÷

) ∞ 1

÷

Ô
N

I.

Proof. The Hessian of the Euclidean norm Ò2�(G) = ÎGÎ≠1

2

I ≠ ÎGÎ≠3

2

GGT

diverges near G = 0. Expectedly, the maximum curvature is at origin even
after Gaussian smoothing (See Appendix 1.8.1). So, it su�ces to prove

Ò2 Â�(0) = E
u≥N(0,I)

[ÎuÎ
2

(uuT ≠ I)] ∞
Ò

1

N

I,

where the Hessian expression is from Lemma 1.5.
By symmetry, all o�-diagonal elements of the Hessian are 0. Let Y = ÎuÎ2,

which is Chi-squared with N degrees of freedom. So,

Tr(E[ÎuÎ
2

(uuT ≠ I)]) = E[Tr(ÎuÎ
2

(uuT ≠ I))] = E[ÎuÎ3

2

≠ NÎuÎ
2

]
= E[Y 3

2 ] ≠ NE[Y 1
2 ]

Using the Chi-squared moment formula (Simon, 2002, p. 13):

E[Y k] =
2k�(N

2

+ k)
�(N

2

)
,
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the above becomes:

2 3
2 �(3

2

+ N

2

)
�(N

2

)
≠

N2 1
2 �(1

2

+ N

2

)
�(N

2

)
=

Ô
2�(1

2

+ N

2

)
�(N

2

)
. (1.16)

From the log-convexity of the Gamma function,

log �
1

1

2

+ N

2

2
Æ 1

2

1
log �

1
N

2

2
+ log �

1
N

2

+ 1
22

= log �
1

N

2

2 Ò
N

2

.

Exponentiating both sides, we obtain

�
1

1

2

+ N

2

2
Æ �

1
N

2

2 Ò
N

2

,

which we apply to Equation 1.16 and get Tr(Ò2 Â�(0)) Æ
Ô

N . To complete
the proof, note that by symmetry, each entry must have the same expected
value, and hence it is bounded by


1/N .

1.7 The Multi-Armed Bandit Setting

Let us introduce the adversarial multi-armed bandit (MAB) setting. The
MAB problem is a variation of the loss-only experts setting (Section 1.5)
with X = �N and Y = [≠1, 0]N . The two main di�erences are that (a) that
learner is required to playing randomly, sampling an action i

t

œ {1, . . . , N}
according to w

t

and then su�ering loss/gain g
t,i

t

, and (b) the learner then
observes only the scalar value g

t,i

t

, she receives no information regarding the
losses/gains for the unplayed actions, i.e. the values g

t,j

for j ”= i
t

remain
unobserved. Note that, while g

t

is assumed to take only negative values, we
will continue to refer to these quantities as gains.

This limited-information feedback makes the bandit problem much more
challenging than the full-information setting we studied in Section 1.5, where
the learner was given the entire g

t

on each round. In the adversarial MAB
problem the learner is indeed required to play randomly; it can be shown that
a deterministic strategy will lead to linear regret in the worst case. Hence our
focus will be on the expected regret over the learner’s randomization, and we
will assume that the sequence of gains are fixed in advance and thus non-
random. While the present book chapter will explore this area, other work
has considered the problem of obtaining high-probability bounds (Auer et al.,
2003), as well as bounds that are robust to adaptive adversaries (Abernethy
and Rakhlin, 2009).

The MAB framework is not only mathematically elegant, but useful for
a wide range of applications including medical experiment design (Gittins,
1996), automated poker playing strategies (Van den Broeck et al., 2009), and
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hyperparameter tuning (Pacula et al., 2012). For the survey of work on MAB,
see Bubeck and Cesa-Bianchi (2012).

1.7.1 Gradient-Based Prediction Algorithms for the Multi-Armed
Bandit

We give a generic template for constructing MAB strategies in Algorithm 2,
and we emphasize that this template can be viewed as a bandit reduction to
the (full information) GBPA framework. Randomization is used for making
decisions and for estimating the losses via importance sampling.

Algorithm 2: GBPA Template for Multi-Armed Bandits.
Require: fixed convex potential Â� : RN æ R, with ÒÂ� µ interior(�N ).
Require: Adversary selects (hidden) seq. of loss vectors g1, . . . , g

T

œ [≠1, 0]N
Initialize: Ĝ0 = 0
for t = 1 to T do

Sampling: Learner chooses i
t

according to dist. p(Ĝ
t≠1) = ÒÂ�(Ĝ

t≠1)
Cost: Learner “gains” g

t,it , and observes this value
Estimation: Learner produces estimate of gain vector, ĝ

t

:= gt,it

pit (Ĝt≠1) e

it

Update: Ĝ
t

= Ĝ
t≠1 + ĝ

t

Nearly all proposed methods have relied on this particular algorithmic
blueprint. For example, the EXP3 algorithm of Auer et al. (2003) proposed
a more advanced version of the Exponential Weights Algorithm (discussed
in Section 1.5) to set the sampling distribution p(Ĝ

t≠1

), where the only real
modification is to include a small probability of uniformly sampling the arms.5
But EXP3 more or less fits the template we propose in Algorithm 2 when we
select Â�(·) = E

z≥Gumbel

�(G + ÷z). We elaborated on the connection between
EWA and Gumbel perturbations in Section 1.5.

Lemma 1.12. The baseline potential for this setting is �(G) © max
i

G
i

so
that we can write the expected regret of GBPA(Â�) as

ERegret
T

= �(G
T

) ≠ E[qT

t=1

ÈÒÂ�(Ĝ
t≠1

), g
t

Í].

5. One of the conclusions we may draw from this section is that the uniform sampling
of EXP3 is not necessary when we are only interested in expected-regret bounds and we
focus on negative gains (that is, where ĝ

t

œ [≠1, 0]N ). It has been suggested that the
uniform sampling may be necessary in the case of positive gains, although this point has
not been resolved to the authors’ knowledge.
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Then, the expected regret of GBPA(Â�) can be written as:

ERegret
T

ÆE
i1,...,i

T

5
�(Ĝ

T

) ≠ Â�(Ĝ
T

)
¸ ˚˙ ˝

underestimation penalty

+
Tÿ

t=1

E
i

t

[DÂ
�

(Ĝ
t

, Ĝ
t≠1

)|Ĝ
t≠1

]
¸ ˚˙ ˝

divergence penalty

6

+ Â�(0) ≠ �(0)
¸ ˚˙ ˝

overestimation penalty

(1.17)

where the expectations are over the sampling of i
t

, t = 1, . . . , T .

Proof. Let Â� be a valid convex function for GBPA. Consider GBPA(Â�) run on
the loss sequence g

1

, . . . , g
T

. The algorithm produces a sequence of estimated
losses ĝ

1

, . . . , ĝ
T

. Now consider GBPA-FI(Â�), which is GBPA(Â�) run with
the full information on the deterministic loss sequence ĝ

1

, . . . , ĝ
T

(there is no
estimation step, and the learner updates Ĝ

t

directly). The regret of this run
can be written as

�(Ĝ
T

) ≠
q

T

t=1

ÈÒÂ�(Ĝ
t≠1

), ĝ
t

Í (1.18)

and �(G
T

) Æ E[�(Ĝ
T

)] by the convexity of �.

1.7.2 Implementation of Perturbation Methods

It is clear that ÒÂ� is in the probability simplex, and note that

ˆ Â�
ˆG

i

= E
Z1,...,Z

N

1{G
i

+ Z
i

> G
j

+ Z
j

, ’j ”= i}

= E
˜

G

j

ú [P
Z

i

[Z
i

> G̃
j

ú ≠ G
i

]] = E
˜

G

j

ú [1 ≠ F (G̃
j

ú ≠ G
i

)] (1.19)

where G̃
j

ú = max
j ”=i

G
j

+ Z
j

and F is the cdf of Z
i

. The unbounded support
condition guarantees that this partial derivative is non-zero for all i given any
G. So, Â�(G;D) satisfies the requirements of Algorithm 2.

The sampling step of the bandit GBPA (Framework 2) with a stochastically
smoothed function (Equation 1.6) can be implemented e�ciently: we need not
evaluate the full expectation (Equation 1.7) and instead rely on but a single
random sample. On the other hand, the estimation step is challenging since
generally there is no closed-form expression6 for ÒÂ�.

To address this issue, Neu and Bartók (2013) proposed Geometric Resam-
pling (GR). GR uses an iterative resampling process to estimate ÒÂ�. They

6. A case where we find a natural closed form solution occurs when the perturbation is
chosen to be Gumbel, as we know this corresponds to the EXP3 algorithm which relies
on exponential weighting of G̃.
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showed that if we stop after M iterations, the extra regret due to the es-
timation bias is at most NT

eM

(additive term). That is, all our GBPA regret
bounds in this section hold for the corresponding FTPL algorithm with an
extra additive NT

eM

term.. This term, however, does not a�ect the asymptotic
regret rate as long as M =

Ô
NT , because the lower bound for any algorithm

is of the order
Ô

NT .

1.7.3 Di�erential Consistency

Recall that for the full information experts setting, if we have a uniform bound
on the trace of Ò2 Ẫ�, then we immediately have a finite regret bound. In the
bandit setting, however, the regret (Lemma 1.12) involves terms of the form
DÂ

�

(Ĝ
t≠1

+ ĝ
t

, Ĝ
t≠1

), where the incremental quantity ĝ
t

can scale as large as
the inverse of the smallest probability of p(Ĝ

t≠1

). These inverse probabilities
are essentially unavoidable, because unbiased estimates of a quantity that is
observed with only probability p must necessarily involve fluctuations that
scale as O(1/p).

Therefore, we need a stronger notion of smoothness that counters the 1/p

factor in Îĝ
t

Î. We propose the following definition which bounds Ò2 Ẫ� in
correspondence with ÒÂ�.

Definition 1.3 (Di�erential Consistency). For constant C > 0, we say that
a convex function f(·) is C-di�erentially-consistent if for all G œ (≠Œ, 0]N ,

Ò2

ii

f(G) Æ CÒ
i

f(G).

In other words, the rate in which we decrease p
i

should approach 0 as
p

i

approaches 0. This guarantees that the algorithm reduces the rate of
exploration slowly enough. We later show that smoothings obtaining using
perturbations with bounded hazard rate satisfy the di�erential consistency
property introduced above (see Lemma 1.15).

We now prove a generic bound that we will use in the following two sections,
in order to derive regret guarantees.

Theorem 1.13. Suppose Â� is C-di�erentially-consistent for constant C > 0.
Then divergence penalty at time t in Lemma 1.12 can be upper bounded as:

E
i

t

[DÂ
�

(Ĝ
t

, Ĝ
t≠1

)|Ĝ
t≠1

] Æ NC

2 .

Proof. For the sake of clarity, we drop the t subscripts on Ĝ and ĝ; we use Ĝ
to denote the cumulative estimate Ĝ

t≠1

, ĝ to denote the marginal estimate
ĝ

t

= Ĝ
t

≠ Ĝ
t≠1

, and g to denote the true loss g
t

.
Note that by definition of Algorithm 2, ĝ is a sparse vector with one non-
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zero (and negative) coordinate with value ĝ
i

t

= g
t,i

t

/Ò
i

t

Â�(Ĝ). Plus, i
t

is
conditionally independent given Ĝ. Now we can expand the expectation as

E
i

t

[DÂ
�

(Ĝ + ĝ, Ĝ)|Ĝ] =
ÿ

i

P[i
t

= i]E[DÂ
�

(Ĝ + ĝ, Ĝ)|Ĝ, i
t

= i]

=
ÿ

i

Ò
i

Â�(Ĝ)E[DÂ
�

(Ĝ + ĝ, Ĝ)|Ĝ, i
t

= i]. (1.20)

For each term in the sum on the right hand side, the conditional expectation
given Ĝ is now,

E[DÂ
�

(Ĝ+ĝ, Ĝ)|Ĝ, i
t

= i] = DÂ
�

A

Ĝ + g
i

Ò
i

Â�(Ĝ)
e

i

, Ĝ

B

= g2

i

2(Ò
i

Â�(Ĝ))2

Ò2

ii

Â�(J
i

)

where J
i

is some vector on the line segment joining Ĝ and Ĝ + g

i

Ò
i

Â
�(

ˆ

G)

e
i

.
Using di�erential consistency, we have Ò2

ii

Â�(J
i

) Æ CÒ
i

Â�(J
i

). Note that J
i

agrees with Ĝ in all coordinates except coordinate i where it is at most Ĝ
i

.
Note that this conclusion depends crucially on the loss-only assumption that
g

i

Æ 0. Convexity of Â� guarantees that Ò
i

is a non-decreasing function of
coordinate i. Therefore, Ò

i

Â�(J
i

) Æ Ò
i

Â�(Ĝ). This means that

E[DÂ
�

(Ĝ + ĝ, Ĝ)|Ĝ, i
t

= i] Æ C
g2

i

2(Ò
i

Â�(Ĝ))2

Ò
i

Â�(Ĝ) Æ C

2Ò
i

Â�(Ĝ)
,

since g2

i

Æ 1. Plugging this into (1.20), we get

E
i

t

[DÂ
�

(Ĝ + ĝ, Ĝ)|Ĝ] Æ
ÿ

i

Ò
i

Â�(Ĝ) C

2Ò
i

Â�(Ĝ)
= NC

2 .

1.7.4 Hazard Rate analysis

Despite the fact that perturbation-based multi-armed bandit algorithms pro-
vide a natural randomized decision strategy, they have seen little applications
mostly because they are hard to analyze. But one should expect general re-
sults to be within reach: as we mentioned above, the EXP3 algorithm can be
viewed through the lens of perturbations, where the noise is distributed ac-
cording to the Gumbel distribution. Indeed, an early result of Kujala and Elo-
maa (2005) showed that a near-optimal MAB strategy comes about through
the use of exponentially-distributed noise, and the same perturbation strat-
egy has more recently been utilized in the work of Neu and Bartók (2013)
and Kocák et al. (2014). However, a more general understanding of pertur-
bation methods has remained elusive. For example, would Gaussian noise be
su�cient for a guarantee? What about, say, the Weibull distribution?

In this section, we show that the performance of the GBPA(Â�(G;D)) can
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be characterized by the hazard function of the smoothing distribution D. The
hazard rate is a standard tool in survival analysis to describe failures due to
aging; for example, an increasing hazard rate models units that deteriorate
with age while a decreasing hazard rate models units that improve with
age (a counter intuitive but not illogical possibility). To the best of our
knowledge, the connection between hazard rates and design of adversarial
bandit algorithms has not been made before.

Definition 1.4 (Hazard rate function). Assume we are given a distribution
D whose PDF is given by f and whose CDF is given by F . The hazard rate
function of D is

hD(x) := f(x)
1 ≠ F (x) .

We will write sup hD to mean the supremal value obtained by hD on its
domain; we drop the subscript D when it is clear.

For the rest of the section, we assume that F (x) < 1 for all finite x, so
that hD is well-defined everywhere. This assumption is for the clarity of
presentation but is not strictly necessary.

Theorem 1.14. The regret of the GBPA for multi-armed bandits (Algo-
rithm 2) with Â�(G) = E

Z1,...,Z

n

≥D

max
i

{G
i

+ ÷Z
i

} is at most:

÷E
Z1,...,Z

n

≥D

5
max

i

Z
i

6

¸ ˚˙ ˝
overestimation penalty

+ N sup hD

÷
T

¸ ˚˙ ˝
divergence penalty

Proof. Due to the convexity of �, the underestimation penalty is non-positive.
The overestimation penalty is clearly at most E

Z1,...,Z

n

≥D

[max
i

Z
i

], and
Lemma 1.15 proves the N(sup hD) upper bound on the divergence penalty.

It remains to prove the tuning parameter ÷. Suppose we scale the pertur-
bation Z by ÷ > 0, i.e., we add ÷Z

i

to each coordinate. It is easy to see that
E[max

i=1,...,n

÷X
i

] = ÷E[max
i=1,...,n

X
i

]. For the divergence penalty, let F
÷

be
the CDF of the scaled random variable. Observe that F

÷

(t) = F (t/÷) and
thus f

÷

(t) = 1

÷

f(t/÷). Hence, the hazard rate scales by 1/÷, which completes
the proof.

Lemma 1.15. Consider implementing GBPA with potential function

Â�(G) = E
Z1,...,Z

n

≥D

max
i

{G
i

+ ÷Z
i

}.

The divergence penalty on each round is at most N(sup hD).

Proof. Recall the gradient expression in Equation 1.19. We upper bound
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Distribution sup
x

hD(x) E[maxN

i=1 Z
i

] Parameters
Gumbel(µ = 1, — = 1) 1 as x æ 0 log N + “0 N/A
Frechet (– > 1) at most 2– N1/–�(1 ≠ 1/–) – = log N

Weibull(⁄ = 1, k Æ 1) k at x = 0 O(
! 1

k

"
!(log N) 1

k ) k = 1
Pareto(x

m

= 1, –) – at x = 0 –N1/–/(– ≠ 1) – = log N

Gamma(– Ø 1, —) — as x æ Œ log N +(–≠1) log log N ≠
log �(–) + —≠1“0

— = – = 1

Table 1.1: Distributions that give O(
Ô

TN log N) regret FTPL algorithm. The
parameterization follows Wikipedia pages for easy lookup. We denote the Euler
constant (¥ 0.58) by “0. Please see Abernethy et al. (2015) for a full description.

the i-th diagonal entry of the Hessian, as follows. First, let where G̃
j

ú =
max

j ”=i

{G
j

+ Z
j

} which is a random variable independent of Z
i

. Now,

Ò2

ii

Â�(G) = ˆ

ˆG
i

E
˜

G

j

ú [1 ≠ F (G̃
j

ú ≠ G
i

)] = E
˜

G

j

ú

5
ˆ

ˆG
i

(1 ≠ F (G̃
j

ú ≠ G
i

))
6

= E
˜

G

j

ú f(G̃
j

ú ≠ G
i

)
= E

˜

G

j

ú [h(G̃
j

ú ≠ G
i

)(1 ≠ F (G̃
j

ú ≠ G
i

))] (1.21)
Æ (sup h)E

˜

G

j

ú [1 ≠ F (G̃
j

ú ≠ G
i

)]
= (sup h)Ò

i

Â�(G).

We have just established that Â� is di�erentially consistent with parameter
C = sup h. We apply Theorem 1.13 and the proof is complete.

Corollary 1.16. Algorithm 2 run with Â� that is obtained by smoothing �
using any of the distributions in Table 1.1 (restricted to a certain range of
parameters), combined with Geometric Resampling with M =

Ô
NT , has an

expected regret of order O(
Ô

TN log N).

Table 1.1 provides the two terms we need to bound. More details on these
distributions and their relation to stochastic smoothing can be found in
Abernethy et al. (2015).
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Appendix: Detailed Proofs

1.8.1 Proof that the origin is the worst case (Lemma 1.11)

Proof. Let �(G) = ÎGÎ
2

and ÷ be a positive number. By continuity of
eigenvectors, it su�ces to show that the maximum eigenvalue of the Hessian
matrix of the Gaussian smoothed potential Â�(G; ÷,N(0, I)) is decreasing in
ÎGÎ for ÎGÎ > 0.

By Lemma 1.5, the gradient can be written as follows:

Ò�(G; ÷,N(0, I)) = 1
÷
E

u≥N(0,I)

[uÎG + ÷uÎ] (1.22)

Let u
i

be the i-th coordinate of the vector u. Since the standard normal
distribution is spherically symmetric, we can rotate the random variable u
such that its first coordinate u

1

is along the direction of G. After rotation,
the gradient can be written as

1
÷
E

u≥N(0,I)

S

Uu

ı̂ıÙ(ÎGÎ + ÷u
1

)2 +
Nÿ

k=2

÷2u2

k

T

V

which is clearly independent of the coordinates of G. The pdf of standard
Gaussian distribution has the same value at (u

1

, u
2

, . . . , u
n

) and its sign-
flipped pair (u

1

, ≠u
2

, . . . , ≠u
n

). Hence, in expectation, the two vectors cancel
out every coordinate but the first, which is along the direction of G. Therefore,
there exists a function – such that E

u≥N(0,I)

[uÎG + ÷uÎ] = –(ÎGÎ)G.
Now, we will show that – is decreasing in ÎGÎ. Due to symmetry, it su�ces

to consider G = te
1

for t œ R+, without loss of generality. For any t > 0,

–(t) = E[u
1

Ò
(t + ÷u

1

)2 + u2

rest

)]/t

= E
urest [Eu1 [u

1

Ò
(t + ÷u

1

)2 + b2|u
rest

= b]]/t

= E
urest [Ea=÷|u1|[a

1Ò
(t + a)2 + b2 ≠

Ò
(t ≠ a)2 + B

2
|u

rest

= b]]/t

Let g(t) =
1

(t + a)2 + B ≠


(t ≠ a)2 + B
2
/t. Take the first derivative

with respect to t, and we have:

gÕ(t) = 1
t2

AÒ
(t ≠ a)2 + b2 ≠ t(t ≠ a)


(t + a)2 + b2

≠
Ò

(t + a)2 + b2 + t(t ≠ a)


(t + a)2 + b2

B

= 1
t2

A
a2 + b2 ≠ at


(t ≠ a)2 + b2

≠ a2 + b2 + at


(t + a)2 + b2

B
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1
(a2 +b2)≠at

2
2

1
(t+a)2 +b2

2
≠

1
(a2 +b2)+at

2
2

1
(t≠a)2 +b2

2
= ≠4ab2t3 < 0

because t, ÷, uÕ, B are all positive. So, g(t) < 0, which proves that – is
decreasing in G.

The final step is to write the gradient as Ò(Â�; ÷,N(0, I))(G) = –(ÎGÎ)G
and di�erentiate it:

Ò2f
÷

(G) = –Õ(ÎGÎ)
ÎGÎ GGT + –(ÎGÎ)I

The Hessian has two distinct eigenvalues –(ÎGÎ) and –(ÎGÎ) + –Õ(ÎGÎ)ÎGÎ,
which correspond to the eigenspace orthogonal to G and parallel to G,
respectively. Since –Õ is negative, – is always the maximum eigenvalue and it
decreases in ÎGÎ.
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