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Abstract

We provide a new analysis framework for the adversarial multi-armed bandit
problem. Using the notion of convex smoothing, we define a novel family of
algorithms with minimax optimal regret guarantees. First, we show that regular-
ization via the Tsallis entropy, which includes EXP3 as a special case, matches
the O(

√
NT ) minimax regret with a smaller constant factor. Second, we show

that a wide class of perturbation methods achieve a near-optimal regret as low
as O(

√
NT logN), as long as the perturbation distribution has a bounded haz-

ard function. For example, the Gumbel, Weibull, Frechet, Pareto, and Gamma
distributions all satisfy this key property and lead to near-optimal algorithms.

1 Introduction

The classic multi-armed bandit (MAB) problem, generally attributed to the early work of Robbins
(1952), poses a generic online decision scenario in which an agent must make a sequence of choices
from a fixed set of options. After each decision is made, the agent receives some feedback in the
form of a loss (or gain) associated with her choice, but no information is provided on the outcomes
of alternative options. The agent’s goal is to minimize the total loss over time, and the agent is thus
faced with the balancing act of both experimenting with the menu of choices while also utilizing
the data gathered in the process to improve her decisions. The MAB framework is not only mathe-
matically elegant, but useful for a wide range of applications including medical experiments design
(Gittins, 1996), automated poker playing strategies (Van den Broeck et al., 2009), and hyperparam-
eter tuning (Pacula et al., 2012).

Early MAB results relied on stochastic assumptions (e.g., IID) on the loss sequence (Auer et al.,
2002; Gittins et al., 2011; Lai and Robbins, 1985). As researchers began to establish non-stochastic,
worst-case guarantees for sequential decision problems such as prediction with expert advice (Little-
stone and Warmuth, 1994), a natural question arose as to whether similar guarantees were possible
for the bandit setting. The pioneering work of Auer, Cesa-Bianchi, Freund, and Schapire (2003) an-
swered this in the affirmative by showing that their algorithm EXP3 possesses nearly-optimal regret
bounds with matching lower bounds. Attention later turned to the bandit version of online linear
optimization, and several associated guarantees were published the following decade (Abernethy
et al., 2012; Dani and Hayes, 2006; Dani et al., 2008; Flaxman et al., 2005; McMahan and Blum,
2004).

Nearly all proposed methods have relied on a particular algorithmic blueprint; they reduce the ban-
dit problem to the full-information setting, while using randomization to make decisions and to
estimate the losses. A well-studied family of algorithms for the full-information setting is Follow
the Regularized Leader (FTRL), which optimizes the objective function of the following form:

arg min
x∈K

L>x+ λR(x) (1)

where K is the decision set, L is (an estimate of) the cumulative loss vector, and R is a regularizer,
a convex function with suitable curvature to stabilize the objective. The choice of regularizer R is
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critical to the algorithm’s performance. For example, the EXP3 algorithm (Auer, 2003) regularizes
with the entropy function and achieves a nearly optimal regret bound when K is the probability sim-
plex. For a general convex set, however, other regularizers such as self-concordant barrier functions
(Abernethy et al., 2012) have tighter regret bounds.

Another class of algorithms for the full information setting is Follow the Perturbed Leader (FTPL)
(Kalai and Vempala, 2005) whose foundations date back to the earliest work in adversarial online
learning (Hannan, 1957). Here we choose a distribution D on RN , sample a random vector Z ∼ D,
and solve the following linear optimization problem

arg min
x∈K

(L+ Z)>x. (2)

FTPL is computationally simpler than FTRL due to the linearity of the objective, but it is analytically
much more complex due to the randomness. For every different choice of D, an entirely new set of
techniques had to be developed (Devroye et al., 2013; Van Erven et al., 2014). Rakhlin et al. (2012)
and Abernethy et al. (2014) made some progress towards unifying the analysis framework. Their
techniques, however, are limited to the full-information setting.

In this paper, we propose a new analysis framework for the multi-armed bandit problem that unifies
the regularization and perturbation algorithms. The key element is a new kind of smoothness prop-
erty, which we call differential consistency. It allows us to generate a wide class of both optimal and
near-optimal algorithms for the adversarial multi-armed bandit problem. We summarize our main
results:

1. We show that regularization via the Tsallis entropy leads to the state-of-the-art adversarial MAB
algorithm, matching the minimax regret rate of Audibert and Bubeck (2009) with a tighter con-
stant. Interestingly, our algorithm fully generalizes EXP3.

2. We show that a wide array of well-studied noise distributions lead to near-optimal regret bounds
(matching those of EXP3). Furthermore, our analysis reveals a strikingly simple and appealing
sufficient condition for achievingO(

√
T ) regret: the hazard rate function of the noise distribution

must be bounded by a constant. We conjecture that this requirement is in fact both necessary and
sufficient.

2 Gradient-Based Prediction Algorithms for the Multi-Armed Bandit

Let us now introduce the adversarial multi-armed bandit problem. On each round t = 1, . . . , T ,
a learner must choose a distribution pt ∈ ∆N over the set of N available actions. The adversary
(Nature) chooses a vector gt ∈ [−1, 0]N of losses, the learner samples it ∼ pt, and plays action it.
After selecting this action, the learner observes only the value gt,it , and receives no information as
to the values gt,j for j 6= it. This limited information feedback is what makes the bandit problem
much more challenging than the full-information setting in which the entire gt is observed.

The learner’s goal is to minimize the regret. Regret is defined to be the difference in the realized
loss and the loss of the best fixed action in hindsight:

RegretT := max
i∈[N ]

T∑
t=1

(gt,i − gt,it). (3)

To be precise, we consider the expected regret, where the expectation is taken with respect to the
learner’s randomization.

Loss vs. Gain Note: We use the term “loss” to refer to g, although the maximization in (3) would
imply that g should be thought of as a “gain” instead. We use the former term, however, as we
impose the assumption that gt ∈ [−1, 0]N throughout the paper.

2.1 The Gradient-Based Algorithmic Template

Our results focus on a particular algorithmic template described in Framework 1, which is a slight
variation of the Gradient Based Prediction Algorithm (GBPA) of Abernethy et al. (2014). Note that
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the algorithm (i) maintains an unbiased estimate of the cumulative losses Ĝt, (ii) updates Ĝt by
adding a single round estimate ĝt that has only one non-zero coordinate, and (iii) uses the gradient
of a convex function Φ̃ as sampling distribution pt. The choice of Φ̃ is flexible but Φ̃ must be a
differentiable convex function and its derivatives must always be a probability distribution.

Framework 1 may appear restrictive but it has served as the basis for much of the published work on
adversarial MAB algorithms (Auer et al., 2003; Kujala and Elomaa, 2005; Neu and Bartók, 2013).
First, the GBPA framework essentially encompasses all FTRL and FTPL algorithms (Abernethy
et al., 2014), which are the core techniques not only for the full information settings, but also for
the bandit settings. Second, the estimation scheme ensures that Ĝt remains an unbiased estimate of
Gt. Although there is some flexibility, any unbiased estimation scheme would require some kind
of inverse-probability scaling—information theory tells us that the unbiased estimates of a quantity
that is observed with only probabilty p must necessarily involve fluctuations that scale as O(1/p).

Framework 1: Gradient-Based Prediction Alg. (GBPA) Template for Multi-Armed Bandit

GBPA(Φ̃): Φ̃ is a differentiable convex function such that∇Φ̃ ∈ ∆N and ∇iΦ̃ > 0 for all i.
Initialize Ĝ0 = 0
for t = 1 to T do

Nature: A loss vector gt ∈ [−1, 0]N is chosen by the Adversary
Sampling: Learner chooses it according to the distribution p(Ĝt−1) = ∇Φt(Ĝt−1)
Cost: Learner “gains” loss gt,it
Estimation: Learner “guesses” ĝt :=

gt,it
pit (Ĝt−1)

eit

Update: Ĝt = Ĝt−1 + ĝt

Lemma 2.1. Define Φ(G) ≡ maxiGi so that we can write the expected regret of GBPA(Φ̃) as

ERegretT = Φ(GT )−
∑T
t=1〈∇Φ̃(Ĝt−1), gt〉.

Then, the expected regret of the GBPA(Φ̃) can be written as:

ERegretT ≤ Φ̃(0)− Φ(0)︸ ︷︷ ︸
overestimation penalty

+Ei1,...,it−1

[
Φ(ĜT )− Φ̃(ĜT )︸ ︷︷ ︸
underestimation penalty

+

T∑
t=1

Eit [DΦ̃(Ĝt, Ĝt−1)|Ĝt−1]︸ ︷︷ ︸
divergence penalty

]
,

(4)
where the expectations are over the sampling of it.

Proof. Let Φ̃ be a valid convex function for the GBPA. Consider GBPA(Φ̃) being run on the loss
sequence g1, . . . , gT . The algorithm produces a sequence of estimated losses ĝ1, . . . , ĝT . Now
consider GBPA-NE(Φ̃), which is GBPA(Φ̃) run with the full information on the deterministic loss
sequence ĝ1, . . . , ĝT (there is no estimation step, and the learner updates Ĝt directly). The regret of
this run can be written as

Φ(ĜT )−
∑T
t=1〈∇Φ̃(Ĝt−1), ĝt〉,

and Φ(GT ) ≤ Φ(ĜT ) by the convexity of Φ. Hence, it suffices to show that the GBPA-NE(Φ̃) has
regret at most the righthand side of Equation 4, which is a fairly well-known result in online learning
literature; see, for example, (Cesa-Bianchi and Lugosi, 2006, Theorem 11.6) or (Abernethy et al.,
2014, Section 2). For completeness, we included the full proof in Appendix A.

2.2 A New Kind of Smoothness

What has emerged as a guiding principle throughout machine learning is that enforcing stability of
an algorithm can often lead immediately to performance guarantees—that is, small modifications of
the input data should not dramatically alter the output. In the context of GBPA, algorithmic stability
is guaranteed as long as the dervative ∇Φ̃(·) is Lipschitz. Abernethy et al. (2014) explored a set of
conditions on∇2Φ̃(·) that lead to optimal regret guarantees for the full-information setting. Indeed,
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this work discussed different settings where the regret depends on an upper bound on either the
nuclear norm or the operator norm of this hessian.

In short, regret in the full information setting relies on the smoothness of the choice of Φ̃. In the
bandit setting, however, merely a uniform bound on the magnitude of ∇2Φ̃ is insufficient to guar-
antee low regret; the regret (Lemma 2.1) involves terms of the form DΦ̃(Ĝt−1 + ĝt, Ĝt−1), where
the incremental quantity ĝt can scale as large as the inverse of the smallest probability of p(Ĝt−1).
What is needed is a stronger notion of the smoothness that bounds∇2Φ̃ in correspondence with∇Φ̃,
and we propose the following definition:

Definition 2.2 (Differential Consistency). For constants γ,C > 0, we say that a convex function
Φ̃(·) is (γ,C)-differentially-consistent if for all G ∈ (−∞, 0]N ,

∇2
iiΦ̃(G) ≤ C(∇iΦ̃(G))γ .

We now prove a useful bound that emerges from differential consistency, and in the following two
sections we shall show how this leads to regret guarantees.

Theorem 2.3. Suppose Φ̃ is (γ,C)-differentially-consistent for constants C, γ > 0. Then diver-
gence penalty at time t in Lemma 2.1 can be upper bounded as:

Eit [DΦ̃(Ĝt, Ĝt−1)|Ĝt−1] ≤ C
N∑
i=1

(
∇iΦ̃(Ĝt−1)

)γ−1

.

Proof. For the sake of clarity, we drop the subscripts; we use Ĝ to denote the cumulative estimate
Ĝt−1, ĝ to denote the marginal estimate ĝt = Ĝt − Ĝt−1, and g to denote the true loss gt.

Note that by definition of Algorithm 1, ĝ is a sparse vector with one non-zero and non-positive
coordinate ĝit = gt,i/∇iΦ̃(Ĝ). Plus, it is conditionally independent given Ĝ. For a fixed it, Let

h(r) := DΦ̃(Ĝ+ rĝ/‖ĝ‖, Ĝ) = DΦ̃(Ĝ+ reit , Ĝ),

so that h′′(r) = (ĝ/‖ĝ‖)>∇2Φ̃
(
Ĝ+ tĝ/‖ĝ‖

)
(ĝ/‖ĝ‖) = e>it∇

2Φ̃
(
Ĝ− teit

)
eit . Now we can

write

Eit [DΦ̃(Ĝ+ ĝ, Ĝ)|Ĝ] =
∑N
i=1 P[it = i]

∫ ‖ĝ‖
0

∫ s
0
h′′(r) dr ds

=
∑N
i=1∇iΦ̃(Ĝ)

∫ ‖ĝ‖
0

∫ s
0
e>i ∇2Φ̃

(
Ĝ− rei

)
ei dr ds

≤
∑N
i=1∇iΦ̃(Ĝ)

∫ ‖ĝ‖
0

∫ s
0
C
(
∇iΦ̃(Ĝ− rei)

)γ
dr ds

≤
∑N
i=1∇iΦ̃(Ĝ)

∫ ‖ĝ‖
0

∫ s
0
C
(
∇iΦ̃(Ĝ)

)γ
dr ds

= C
∑N
i=1

(
∇iΦ̃(Ĝ)

)1+γ ∫ ‖ĝ‖
0

∫ s
0
dr ds

= C
2

∑N
i=1

(
∇iΦ̃(Ĝ)

)γ−1

g2
i ≤ C

∑N
i=1

(
∇iΦ̃(Ĝ)

)γ−1

.

The first inequality is by the supposition and the second inequality is due to the convexity of Φ̃
which guarantees that ∇i is an increasing function in the i-th coordinate. Interestingly, this part
of the proof critically depends on the fact that the we are in the “loss” setting where g is always
non-positive.

3 A Minimax Bandit Algorithm via Tsallis Smoothing

The design of a multi-armed bandit algorithm in the adversarial setting proved to be a challenging
task. Ignoring the dependence on N for the moment, we note that the initial published work on
EXP3 provided only an O(T 2/3) guarantee (Auer et al., 1995), and it was not until the final version
of this work (Auer et al., 2003) that the authors obtained the optimal O(

√
T ) rate. For the more
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general setting of online linear optimization, several sub-optimal rates were achieved (Dani and
Hayes, 2006; Flaxman et al., 2005; McMahan and Blum, 2004) before the desired

√
T was obtained

(Abernethy et al., 2012; Dani et al., 2008).

We can view EXP3 as an instance of GBPA where the potential function Φ̃(·) is the Fenchel con-
jugate of the Shannon entropy. For any p ∈ ∆N , the (negative) Shannon entropy is defined as
H(p) :=

∑
i pi log pi, and its Fenchel conjugate is H?(G) = supp∈∆N

{〈p,G〉 − ηH(p)}. In
fact, we have a closed-form expression for the supremum: H?(G) = 1

η log (
∑
i exp(ηGi)) . By

inspecting the gradient of the above expression, it is easy to see that EXP3 chooses the distribution
pt = ∇H?(G) every round.

The tighter EXP3 bound given by Auer et al. (2003) scaled according to O(
√
TN logN) and the

authors provided a matching lower bound of the form Ω(
√
TN). It remained an open question for

some time whether there exists a minimax optimal algorithm that does not contain the log term un-
til Audibert and Bubeck (2009) proposed the Implicitly Normalized Forecaster (INF). The INF is
implicitly defined via a specially-designed potential function with certain properties. It was not im-
mediately clear from this result how to define a minimax-optimal algorithm using the now-standard
tools of regularization and Bregman divergence.

More recently, Audibert et al. (2011) improved upon Audibert and Bubeck (2009), extending the
results to the combinatorial setting, and they also discovered that INF can be interpreted in terms
of Bregman divergences. We give here a reformulation of INF that leads to a very simple analysis
in terms of our notion of differential consistency. Our reformulation can be viewed as a variation
of EXP3, where the key modification is to replace the Shannon entropy function with the Tsallis
entropy1 for parameter 0 < α < 1:

Sα(p) =
1

1− α

(
1−

∑
pαi

)
.

This particular function, proposed by Tsallis (1988), possesses a number of natural properties. The
Tsallis entropy is in fact a generalization of the Shannon entropy, as one obtains the latter as a special
case of the former asymptotically. That is, it is easy to prove the following uniform convergence:

Sα(·)→ H(·) as α→ 1.

We emphasize again that one can easily show that Tsallis-smoothing bandit algorithm is indeed
identical to INF using the appropriate parameter mapping, although our analysis is simpler due to
the notion of differential consistency (Definition 2.2).
Theorem 3.1. Let Φ̃(G) = maxp∈∆N

{〈p,G〉 − ηSα(p)}. Then the GBPA(Φ̃) has regret at most

ERegret ≤ ηN
1−α − 1

1− α
+
NαT

ηα
. (5)

Before proving the theorem, we note that it immediately recovers the EXP3 upper bound as a special
case α → 1. An easy application of L’Hôpital’s rule shows that as α → 1, N

1−α−1
1−α → logN and

Nα/α → N . Choosing η =
√

(N logN)/T , we see that the right-hand side of (5) tends to
2
√
TN logN . However the choice α → 1 is clearly not the optimal choice, as we show in the

following statement, which directly follows from the theorem once we see that N1−α− 1 < N1−α.

Corollary 3.2. For any α ∈ (0, 1), if we choose η =
√

αN1−2α

(1−α)T then we have

ERegret ≤ 2
√

NT
α(1−α) .

In particular, the choice of α = 1
2 gives a regret of no more than 4

√
NT .

Proof of Theorem 3.1. We will bound each penalty term in Lemma 2.1. Since Sα is non-positive,
the underestimation penalty is upper bounded by 0 and the overestimation penalty is at most
(−minSα). The minimum of Sα occurs at (1/N, . . . , 1/N). Hence,

(overestimation penalty) ≤ − η

1− α

(
1−

N∑
i=1

1

Nα

)
≤ η(N1−α − 1). (6)

1More precisely, the function we give here is the negative Tsallis entropy according to its original definition.
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Now it remains to upper bound the divergence penalty with (ηα)−1NαT . We observe that straight-
forward calculus gives ∇2Sα(p) = ηαdiag(pα−2

1 , . . . , pα−2
N ). Let I∆N

(·) be the indicator function
of ∆N ; that is, I∆N

(x) = 0 for x ∈ ∆N and I∆N
(x) = ∞ for x /∈ ∆N . It is clear that Φ̃(·) is

the dual of the function Sα(·) + I∆N
(·), and moreover we observe that∇2Sα(p) is a sub-hessian of

Sα(·) + I∆N
(·) at p(G), following the setup of Penot (1994). Taking advantage of Proposition 3.2

in the latter reference, we conclude that∇−2Sα(p(G)) is a super-hessian of Φ̃ = S∗α at G. Hence,

∇2Φ̃(G) � (ηα)−1diag(p2−α
1 (G), . . . , p2−α

N (G))

for any G. What we have stated, indeed, is that Φ̃ is (2 − α, (ηα)−1)-differentially-consistent, and
thus applying Theorem 2.3 gives

DΦ̃(Ĝt, Ĝt−1) ≤ (ηα)−1
N∑
i=1

(
pi(Ĝt−1)

)1−α
.

Noting that the 1
α -norm and the 1

1−α -norm are dual to each other, we can apply Hölder’s inequality
to any probability distribution p1, . . . , pN to obtain

N∑
i=1

p1−α
i =

N∑
i=1

p1−α
i · 1 ≤

(
N∑
i=1

p
1−α
1−α
i

)1−α( N∑
i=1

1
1
α

)α
= (1)1−αNα = Nα.

So, the divergence penalty is at most (ηα)−1Nα, which completes the proof.

4 Near-Optimal Bandit Algorithms via Stochastic Smoothing

Let D be a continuous distribution over an unbounded support with probability density function f
and cumulative density function F . Consider the GBPA(Φ̃(G;D)) where

Φ̃(G;D) = E
Z1,...,ZN

iid∼D
max
i
{Gi + Zi}

which is a stochastic smoothing of (maxiGi) function. Since the max function is convex, Φ̃ is also
convex. By Bertsekas (1973), we can swap the order of differentiation and expectation:

Φ̃(G;D) = E
Z1,...,ZN

iid∼D
ei∗ , where i∗ = arg max

i=1,...,N
{Gi + Zi}. (7)

Even if the function is not differentiable everywhere, the swapping is still possible with any sub-
gradient as long as they are bounded. Hence, the ties between coordinates (which happen with
probability zero anyways) can be resolved in an arbitrary manner. It is clear that ∇Φ̃ is in the
probability simplex, and note that

∂Φ̃

∂Gi
= EZ1,...,ZN1{Gi + Zi > Gj + Zj ,∀j 6= i}

= EG̃j∗ [PZi [Zi > G̃j∗ −Gi]] = EG̃j∗ [1− F (G̃j∗ −Gi)] (8)

where G̃j∗ = maxj 6=iGj + Zj . The unbounded support condition guarantees that this partial
derivative is non-zero for all i given anyG. So, Φ̃(G;D) satisfies the requirements of Algorithm 1.

4.1 Connection to Follow the Perturbed Leader

There is a straightforward way to efficiently implement the sampling step of the bandit GBPA (Al-
gorithm 1) with a stochastically smoothed function. Instead of evaluating the expectation of Equa-
tion 7, we simply take a random sample. In fact, this is equivalent to Follow the Perturbed Leader
Algorithm (FTPL) (Kalai and Vempala, 2005) for bandit settings. On the other hand, implementing
the estimation step is hard because generally there is no closed-form expression for∇Φ̃.

To address this issue, Neu and Bartók (2013) proposed Geometric Resampling (GR). GR uses an
iterative resampling process to estimate∇iΦ̃. This process gives an unbiased estimate when allowed
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to run for an unbounded number of iterations. Even when we truncate the resampling process after
M iterations, the extra regret due to the estimation bias is at most NTeM (additive term). Since the
lower bound for the multi-armed bandit problem is O(

√
NT ), any choice of M = O(

√
NT ) does

not affect the asymptotic regret of the algorithm. In summary, all our GBPA regret bounds in this
section hold for the corresponding FTPL algorithm with an extra additive NT

eM term in the bound.

Despite the fact that perturbation-based algorithms provide a natural randomized decision strategy,
they have seen little applications mostly because they are hard to analyze. But one should expect
general results to be within reach: the EXP3 algorithm, for example, can be viewed through the
lens of perturbations, where the noise is distributed according to the Gumbel distribution. Indeed,
an early result of Kujala and Elomaa (2005) showed that a near-optimal MAB strategy comes about
through the use of exponentially-distributed noise, and the same perturbation strategy has more
recently been utilized in the work of Neu and Bartók (2013) and Kocák et al. (2014). However,
a more general understanding of perturbation methods has remained elusive. For example, would
Gaussian noise be sufficient for a guarantee? What about, say, the Weibull distribution?

4.2 Hazard Rate analysis

In this section, we show that the performance of the GBPA(Φ̃(G;D)) can be characterized by the
hazard function of the smoothing distribution D. The hazard rate is a standard tool in survival
analysis to describe failures due to aging; for example, an increasing hazard rate models units that
deteriorate with age while a decreasing hazard rate models units that improve with age (a counter
intuitive but not illogical possibility). To the best of our knowledge, the connection between hazard
rates and design of adversarial bandit algorithms has not been made before.
Definition 4.1 (Hazard rate function). Hazard rate function of a distribution D is

hD(x) :=
f(x)

1− F (x)
For the rest of the section, we assume thatD is unbounded in the direction of +∞, so that the hazard
function is well-defined everywhere. This assumption is for the clarity of presentation and can be
easily removed (Appendix B).

Theorem 4.2. The regret of the GBPA on Φ̃(L) = EZ1,...,Zn∼D maxi{Gi + ηZi} is at most:

N(suphD)

η
T + ηEZ1,...,Zn∼D

[
max
i
Zi

]
Proof. We analyze each penalty term in Lemma 2.1. Due to the convexity of Φ, the underestimation
penalty is non-positive. The overestimation penalty is clearly at most EZ1,...,Zn∼D[maxi Zi], and
Lemma 4.3 proves the N(suphD) upper bound on the divergence penalty.

It remains to provide the tuning parameter η. Suppose we scale the perturbation Z by η > 0, i.e., we
add ηZi to each coordinate. It is easy to see that E[maxi=1,...,n ηXi] = ηE[maxi=1,...,nXi]. For the
divergence penalty, let Fη be the CDF of the scaled random variable. Observe that Fη(t) = F (t/η)
and thus fη(t) = 1

ηf(t/η). Hence, the hazard rate scales by 1/η, which completes the proof.

Lemma 4.3. The divergence penalty of the GBPA with Φ̃(G) = EZ∼Dmaxi{Gi + Zi} is at most
N(suphD) each round.

Proof. Recall the gradient expression in Equation 8. The i-th diagonal entry of the Hessian is:

∇2
iiΦ̃(G) =

∂

∂Gi
EG̃j∗ [1− F (G̃j∗ −Gi)] = EG̃j∗

[
∂

∂Gi
(1− F (G̃j∗ −Gi))

]
= EG̃j∗ f(G̃j∗ −Gi)

= EG̃j∗ [h(G̃j∗ −Gi)(1− F (G̃j∗ −Gi))] (9)

≤ (suph)EG̃j∗ [1− F (G̃j∗ −Gi)]

= (suph)∇i(G)

where G̃j∗ = maxj 6=i{Gj + Zj} which is a random variable independent of Zi. We now apply
Theorem 2.3 with γ = 1 and C = (suph) to complete the proof.
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Distribution supx hD(x) E[maxNi=1 Zi] O(
√
TN logN) Param.

Gumbel(µ = 1, β = 1) 1 as x→ 0 logN + γ0 N/A
Frechet (α > 1) at most 2α N1/αΓ(1− 1/α) α = logN

Weibull*(λ = 1, k ≤ 1) k at x = 0 O(
(

1
k

)
!(logN)

1
k ) k = 1 (Exponential)

Pareto*(xm = 1, α) α at x = 0 αN1/α/(α− 1) α = logN
Gamma(α ≥ 1, β) β as x→∞ logN+(α−1) log logN−

log Γ(α) + β−1γ0

β = α = 1 (Exponential)

Table 1: Distributions that give O(
√
TN logN) regret FTPL algorithm. The parameterization fol-

lows Wikipedia pages for easy lookup. We denote the Euler constant (≈ 0.58) by γ0. Distributions
marked with (*) need to be slightly modified using the conditioning trick explained in Appendix B.2.
The maximum of Frechet hazard function has to be computed numerically (Elsayed, 2012, p. 47)
but elementary calculations show that it is bounded by 2α (Appendix D).

Corollary 4.4. Follow the Perturbed Leader Algorithm with distributions in Table 1 (restricted to a
certain range of parameters), combined with Geometric Resampling (Section 4.1) withM =

√
NT ,

has an expected regret of order O(
√
TN logN).

Table 1 provides the two terms we need to bound. We derive the third column of the table in
Appendix C using Extreme Value Theory (Embrechts et al., 1997). Note that our analysis in the
proof of Lemma 4.3 is quite tight; the only place we have an inequality is when we upper bound the
hazard rate. It is thus reasonable to pose the following conjecture:
Conjecture 4.5. If a distribution D has a monotonically increasing hazard rate hD(x) that does
not converge as x→ +∞ (e.g., Gaussian), then there is a sequence of losses that will incur at least
a linear regret.

The intuition is that if adversary keeps incurring a high loss for the i-th arm, then with high prob-
ability G̃j∗ − Gi will be large. So, the expectation in Equation 9 will be dominated by the hazard
function evaluated at large values of G̃j∗ −Gi.
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Algorithm 2: Gradient-Based Prediction Algorithm (GBPA) for Full Information Setting

Input: Φ̃, a differentiable convex function such that∇Φ̃ ∈ ∆N and∇iΦ̃ > 0 for all i.
Initialize G0 = 0
for t = 1 to T do

Sampling: The learner chooses arm it with probability pi(Ĝt−1) = ∇iΦt(Ĝt−1)
Adversary chooses a loss vector gt ∈ [−1, 0]N and learner pays gt,i
Update Gt = Gt−1 + gt

A Proof of the GBPA Regret Bound (Lemma 2.1)

Lemma A.1. The expected regret of Algorithm 2 can be written as:

ERegret = Φ̃(0)− Φ(0)︸ ︷︷ ︸
overestimation penalty

+ Φ(GT )− Φ̃(GT )︸ ︷︷ ︸
underestimation penalty

+

T∑
t=1

DΦ̃(Gt, Gt−1)︸ ︷︷ ︸
divergence penalty

Proof. Note that since Φ0(0) = 0,

Φ̃(GT ) =
(
Φ̃(0)− Φ0(0)

)︸ ︷︷ ︸
overestimation penalty

+

T∑
t=1

Φ̃(Gt)− Φ̃(Gt−1)

=
(
Φ̃(0)− Φ0(0)

)︸ ︷︷ ︸
overestimation penalty

+

T∑
t=1

〈∇Φ̃(Gt−1), `t)〉+DΦ̃(Gt, Gt−1)

Therefore,

ERegret
def
= E

[
Φ(GT )−

T∑
t=1

〈Φ̃(Gt−1), gt〉

]

= E

(Φ(GT )− Φ̃(GT )
)︸ ︷︷ ︸

underestimation penalty

+Φ̃(GT )−
T∑
t=1

〈Φ̃(Gt−1), gt〉


= E

(Φ(GT )− Φ̃(GT )
)︸ ︷︷ ︸

underestimation penalty

+
(
Φ̃(0)− Φ0(0)

)︸ ︷︷ ︸
overestimation penalty

+DΦ̃(Gt, Gt−1)



B Relaxing Assumptions on the Distribution

B.1 Mirroring trick for extending the support

Let X have support on x > 0 with density f and CDF F . Let us define Y by mirroring the density
of X around zero, i.e., Y has density g(y) = 1

2f(|y|) and CDF G(y) = 1
2 (1 + sign(y)F (|y|)).

Note that |Y | is distributed as X and hence,

E[max
i
Yi] ≤ E[max

i
|Yi|] = E[max

i
Xi].

The hazard hY (y) for y ≥ 0 is f(y)/(1−F (y)) and for y < 0 is f(−y)/(1+F (−y)) ≤ F (−y)/(1−
F (−y)). Therefore,

sup
y
hY (y) = sup

x>0
hX(x).
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This proves the following lemma.

Lemma B.1. If a random variable X has support on the non-negative reals with density f(x) and
we define Y as the mirrored version with density g(y) = 1

2f(|y|). Then, we have

E[max
i
Yi] ≤ E[max

i
Xi],

sup
y
hY (y) = sup

x>0
hX(x)

where hX , hY are hazard rates of X,Y respectively.

B.2 Conditioning trick for unbounded hazard rate near zero

Suppose F (x) is the CDF of a random variableX whose hazard rate is bounded for x ≥ 1 but blows
up near zero. Then define Y as X conditioned on X ≥ 1. That is, Y has CDF, for y > 0:

G(y) = P (X ≥ 1 + y|X > 1) =
F (1 + y)− F (1)

1− F (1)

and density g(y) = f(1 + y)/(1 − F (1)), y > 0. So the hazard rate hY (y) is g(y)/(1 − G(y)) =
f(1 + y)/(1− F (1 + y)) = hX(1 + y). Therefore,

sup
y>0

hY (y) = sup
x>1

hX(x)

which makes the hazard rate of Y now bounded. This we have proved the lemma below.

Lemma B.2. If a hazard function of X is bounded for x > 1 and blows up only for small values
of x then we can condition on X > 1 to define a new random variable whose hazard rate is now
bounded.

The same technique can be applied for any arbitrary constant other than 1, but for the family of
random variables we considered, it suffices to condition on X ≥ 1.

C Detailed derivation of extreme value behavior

C.1 Maximum of iid Gumbel

The CDF of the Gumbel distribution is exp(− exp(−x)) and the expected value is γ0, the Euler
(Euler-Mascheroni) constant. Thus, the CDF of the maximum of n iid Gumbel random variables
is (exp(− exp(−x)))N = exp(− exp(−(x − logN))) which is also Gumbel but with the mean
increased by logN .

C.2 Maximum of iid Frechet

The CDF of Frechet is exp(−x−α) and it has mean Γ(1 − 1
α ) as long as α > 1 (otherwise it is

infinite). Hence, the CDF of the maximum of N iid Frechet random variables is

(exp(−x−α))N = exp(−Nx−α) = exp

(
−
(

x

N
1
α

)−α)

which is also Frechet but with mean scaled by N1/α.

C.3 Maximum of iid Weibull

Let Xi have modified Weibull distribution with CDF 1− exp(−(x+ 1)k + 1). Thus, P (maxiXi >
t) ≤ NP (X1 > t) = N exp(−(t+ 1)k + 1). For non-negative random variable X and any u > 0,
we have,

E[X] =

∫ ∞
0

P (X > x)dx ≤ u+

∫ ∞
u

P (X > x)dx.
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Assume k = 1/m where m ≥ 1 is a positive integer. Therefore,

E[max
i
Xi] ≤ u+

∫ ∞
u

N exp(−(x+ 1)k + 1)dx

≤ u+ 3N

∫ ∞
u

exp(−(x+ 1)k)dx

= u+ 3N

∫ ∞
u+1

exp(−x1/m)dx

= u+ 3NmΓ(m, (1 + u)1/m)dx

where Γ(m,x) is the incomplete Gamma function that for a positive integer m and x > 1 simplifies
to

Γ(m,x) = (m− 1)!e−x
m−1∑
k=0

xk

k!
≤ (m− 1)!e−x

m−1∑
k=0

xm

k!

= (m− 1)!e−xxm
m−1∑
k=0

1

k!
≤ (m− 1)!e−xxm

∞∑
k=0

1

k!

≤ 3(m− 1)!e−xxm.

Plugging this back above, we get, for any u > 0,

E[max
i
Xi] ≤ u+ 9Nm!e−(1+u)1/m(1 + u).

Now choose u = logmN + 1 to get

E[max
i
Xi] ≤ logmN + 9Nm!

logmN

N
≤ 10m! logmN.

C.4 Maximum of iid Gamma

Let Y be the maximum of N iid Gamma(α, β) ramdom variables. Then, Y−dNcN
follows Gumbel

distribution, where cN = β−1 and dN = β−1(logN + (α − 1) log logN − log Γ(α)). In the
language of extreme value theory, Gamma distribution belongs to the maximum domain of attraction
of Gumbel distribution with parameters (Embrechts et al., 1997). As mentioned in Section C.1,
Gumbel distribution has mean γ0.

C.5 Maximum of iid Pareto

Let Xi have modified Pareto distribution with CDF 1 − 1/(1 + x)α. Thus, P (maxiXi > t) ≤
NP (X1 > t) = N/(1 + x)α. For non-negative random variable X and any u > 0, we have,

E[X] =

∫ ∞
0

P (X > x)dx ≤ u+

∫ ∞
u

P (X > x)dx.

Therefore, for α > 1,

E[max
i
Xi] ≤ u+

∫ ∞
u

N

(1 + x)α
dx

= u+
N

(α− 1)(1 + u)α−1
.

Setting u = N1/α − 1 gives the bound

E[max
i
Xi] ≤

α

α− 1
N1/α.
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D Hazard Functions of Modified Distributions and the Frechet Case

D.1 Pareto distribution

Using the conditioning trick, we consider, for α > 1 (otherwise mean is infinite), the modified
Pareto distribution with pdf f(x) = α

(x+1)α+1 supported on (0,∞). Its CDF is 1 − 1/(x + 1)α.
Its hazard function is h(x) = α

x+1 which decreases in x and is bounded by α. Expected maximum
of N iid Pareto random variables is bounded by αN1/α/(α − 1) (see Appendix C.5). This gives a
regret bound of

√
NT

√
α2N1/α/(α− 1).

D.2 Frechet distribution

The CDF of Frechet is exp(−x−α), x > 0 where α > 0 is a shape parameter. The hazard function
of Frechet distribution is h(x) = αx−α−1 exp(−x−α)

1−exp(−x−α) which is hard to optimize analytically but
can be upper bounded, for α > 1, via elementary calculations given below, by 2α. The CDF of the
maximum ofN iid Frechet random variables is exp(−(x/N1/α)−α) which is also Frechet (but with
mean scaled by N1/α) with expected value N1/αΓ(1− 1

α ) (as long as α > 1, otherwise expectation

is infinite). Thus, the regret bound we get is O
(√

NT
√
αN1/αΓ(1− 1

α )
)

. Setting α = logN

makes the regret bound O(
√
TN logN). Our choice of α is larger than 1 as soon as N > 2.

D.2.1 Elementary calculations for bounding Frechet distribution’s hazard rate

For α > 1, we want to show that supx>0 h(x) ≤ 2α where

h(x) = αx−α−1 exp(−x−α)

1− exp(−x−α)
.

First, consider the case x ≥ 1. In this case, define y = xα and note that y ≥ 1. Then, we have

h(x) =
α

xy

exp(−1/y)

1− exp(−1/y)
≤ α

y

exp(−1/y)

1− exp(−1/y)

≤ α

y

1

1− (1− 1/(2y))
= 2α.

The first inequality holds because x ≥ 1. The second holds because exp(−1/y) < 1 and
exp(−1/y) ≤ 1− 1/(2y) for y ≥ 1.

Next, consider the case x < 1. Define y = 1/x and note that y > 1. Then, we have

h(x) =
α

xα+1

exp(−x−α)

1− exp(−x−α)
≤ α

xα+1

exp(−x−α)

1− exp(−1)

=
α

1− e−1
yα+1 exp(−yα) ≤ 2αyα+1 exp(−yα).

To show an upper bound of 2α, it therefore suffices to show that supy>1 g(y) ≤ 1 where g(y) =

yα+1 exp(−yα). We will show this now. Note that

g′(y) = (α+ 1)yα exp(−yα)− yα+1αyα−1 exp(−yα) = yα exp(−yα) ((α+ 1)− αyα) ,

which means that g(y) is monotonically increasing on the interval (1, y0) and monotonically de-
creasing on the interval (y0,+∞) where y0 =

(
α+1
α

)1/α
. We therefore have,

sup
y>1

g(y) = g(y0) =

(
1 +

1

α

)(1+1/α)

exp (−(1 + 1/α)) ≤ 22 exp(−2) = 4/e2 ≤ 1,

where the first inequality above holds because α > 1. Note that, for α > 1, the function α 7→(
1 + 1

α

)(1+1/α)
exp (−(1 + 1/α)) decreases monotonically.
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D.3 Weibull distribution

The CDF of Weibull is 1−exp(−xk) for x > 0 (and 0 otherwise) where k > 0 is a shape parameter.
The density is kxk−1 exp(−xk) and hazard rate is kxk−1. For k > 1, hazard rate monotonically
increases and is therefore unbounded for large x. When k < 1, the hazard rate is unbounded for
small values of x. Note that Weibull includes exponential as a special case when k = 1.

Let k = 1/m for some positive integer m ≥ 1 and using the conditioning trick, consider a modified
Weibull with CDF 1− exp(−(x+ 1)k + 1). Density is k(x+ 1)k−1 exp(−(x+ 1)k + 1) and hazard
is k(x+1)k−1 which is bounded by k. When k < 1 we get tails heavier than the exponential but not
as heavy as a Pareto or a Frechet. The expected value of the maximum of N iid (modified) Weibull
random variables with parameter k = 1/m scales as O(m!(logN)m) (see Appendix C.3). Thus,
we get the regret bound O(

√
NT

√
m!(log n)m). Thus, the entire modified Weibull family yields

O(
√
Npolylog(N)

√
T ) regret bounds. The best bound is obtained when m = 1, i.e. when the

Weibull becomes an exponential.
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