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Abstract
We present a new optimization-theoretic approach to analyzing Follow-the-Leader style algorithms,
particularly in the setting where perturbations are used as a tool for regularization. We show that
adding a strongly convex penalty function to the decision rule and adding stochastic perturbations
to data correspond to deterministic and stochastic smoothing operations, respectively. We establish
an equivalence between “Follow the Regularized Leader” and “Follow the Perturbed Leader” up to
the smoothness properties. This intuition leads to a new generic analysis framework that recovers
and improves the previous known regret bounds of the class of algorithms commonly known as
Follow the Perturbed Leader.

1. Introduction

In this paper, we study online learning (other names include adversarial learning or no-regret learn-
ing) in which the learner iteratively plays actions based on the data received up to the previous
iteration. The data sequence is chosen by an adversary and the learner’s goal is to minimize the
worst-case regret. The key to developing optimal algorithms is regularization, interpreted as hedg-
ing against an adversarial future input and avoiding overfitting to the observed data. In this paper,
we focus on regularization techniques for online linear optimization problems where the learner’s
action is evaluated on a linear reward function.

Follow the Regularized Leader (FTRL) is an algorithm that uses explicit regularization via
penalty function, which directly changes the optimization objective. At every iteration, FTRL se-
lects an action by optimizing arg maxw f(w,Θ) − R(w) where f is the true objective, Θ is the
observed data, and R is a strongly convex penalty function such as the well-known `2-regularizer
‖ · ‖2. The regret analysis of FTRL reduces to the analysis of the second-order behavior of the
penalty function (Shalev-Shwartz, 2012), which is well-studied due to the powerful convex anal-
ysis tools. In fact, regularization via penalty methods for online learning in general are very well
understood. Srebro et al. (2011) proved that Mirror Descent, a regularization via penalty method,
achieves a nearly optimal regret guarantee for a general class of online learning problems, and
McMahan (2011) showed that FTRL is equivalent to Mirror Descent under some assumptions.

Follow the Perturbed Leader (FTPL), on the other hand, uses implicit regularization via per-
turbations. At every iteration, FTPL selects an action by optimizing arg maxw f(w,Θ + u) where
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Θ is the observed data and u is some random noise vector, often referred to as a “perturbation” of
the input. Unfortunately, the analysis of FTPL lacks a generic framework and relies substantially
on clever algebra tricks and heavy probabilistic analysis (Kalai and Vempala, 2005; Devroye et al.,
2013; van Erven et al., 2014). Convex analysis techniques, which led to our current thorough under-
standing of FTRL, have not been applied to FTPL, partly because the decision rule of FTPL does
not explicitly contain a convex function.

In this paper, we present a new analysis framework that makes it possible to analyze FTPL in
the same way that FTRL has been analyzed, particularly with regards to second-order properties
of convex functions. We show that both FTPL and FTRL naturally arise as smoothing operations
of a non-smooth potential function and the regret analysis boils down to controlling the smoothing
parameters as defined in Section 3. This new unified analysis framework not only recovers the
known optimal regret bounds, but also gives a new type of generic regret bounds.

Prior to our work, Rakhlin et al. (2012) showed that both FTPL and FTRL naturally arise as
admissible relaxations of the minimax value of the game between the learner and adversary. In
short, adding a random perturbation and adding a regularization penalty function are both optimal
ways to simulate the worst-case future input sequence. We establish a stronger connection between
FTRL and FTPL; both algorithms are derived from smoothing operations and they are equivalent
up to the smoothing parameters. This equivalence is in fact a very strong result, considering the fact
that Harsanyi (1973) showed that there is no general bijection between FTPL and FTRL.

This paper also aligns itself with the previous work that studied the connection between explicit
regularization via penalty and implicit regularization via perturbations. Bishop (1995) showed that
adding Gaussian noise to features of the training examples is equivalent to Tikhonov regularization,
and more recently Wager et al. (2013) showed that for online learning, dropout training (Hinton
et al., 2012) is similar to AdagGrad (Duchi et al., 2010) in that both methods scale features by the
Fisher information. These results are derived from Taylor approximations, but our FTPL-FTRL
connection is derived from the convex conjugate duality.

An interesting feature of our analysis framework is that we can directly apply existing techniques
from the optimization literature, and conversely, our new findings in online linear optimization may
apply to optimization theory. In Section 4.3, a straightforward application of the results on Gaussian
smoothing by Nesterov (2011) and Duchi et al. (2012) gives a generic regret bound for an arbitrary
online linear optimization problem. In Section 4.1 and 4.2, we improve this bound for the special
cases that correspond to canonical online linear optimization problems, and these results may be of
interest to the optimization community.

2. Preliminaries

2.1. Convex Analysis

Let f be a differentiable, closed, and proper convex function whose domain is domf ⊆ RN . We
say that f is L-Lipschitz with respect to a norm ‖ · ‖ when f satisfies |f(x)− f(y)| ≤ L‖x− y‖ for
all x, y ∈ dom(f).

The Bregman divergence, denoted Df (y, x), is the gap between f(y) and the linear approxi-
mation of f(y) around x. Formally, Df (y, x) = f(y) − f(x) − 〈∇f(x), y − x〉. We say that
f is β-strongly convex with respect to a norm ‖ · ‖ if we have Df (y, x) ≥ β

2 ‖y − x‖2 for all
x, y ∈ domf . Similarly, f is said to be β-strongly smooth with respect to a norm ‖ · ‖ if we have
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Df (y, x) ≤ β
2 ‖y−x‖

2 for all x, y ∈ domf . The Bregman divergence measures how fast the gradi-
ent changes, or equivalently, how large the second derivative is. In fact, we can bound the Bregman
divergence by analyzing the local behavior of Hessian, as the following adaptation of Abernethy
et al. (2013, Lemma 4.6) shows.

Lemma 1 Let f be a twice-differentiable convex function with domf ⊆ RN . Let x ∈ domf , such
that vT∇2f(x+αv)v ∈ [a, b] (a ≤ b) for all α ∈ [0, 1]. Then, a‖v‖2/2 ≤ Df (x+v, x) ≤ b‖v‖2/2.

The Fenchel conjugate of f is f?(θ) = supw∈dom(f){〈w, θ〉 − f(w)}, and it is a dual mapping
that satisfies f = (f?)? and ∇f? ∈ dom(f). By the strong convexity-strong smoothness duality, f
is β-strongly smooth with respect to a norm ‖ · ‖ if and only if f? is 1

β -strongly smooth with respect
to the dual norm ‖ · ‖?. For more details and proofs, readers are referred to an excellent survey by
Shalev-Shwartz (2012).

2.2. Online Linear Optimization

Let X and Y be convex and closed subsets of RN . The online linear optimization is defined to be
the following iterative process:

On round t = 1, . . . , T ,
• the learner plays wt ∈ X .
• the adversary reveals θt ∈ Y .
• the learner receives a reward1 〈wt, θt〉.

We say X is the decision set and Y is the reward set. Let Θt =
∑t

s=1 θs be the cumulative reward.
The learner’s goal is to minimize the (external) regret, defined as:

Regret = max
w∈X
〈w,ΘT 〉︸ ︷︷ ︸

baseline potential

−
T∑
t=1

〈wt, θt〉. (1)

The baseline potential function Φ(Θ) := maxw∈X 〈w,Θ〉 is the comparator term against which we
define the regret, and it coincides with the support function of X . For a bounded compact set X ,
the support function of X is sublinear2 and Lipschitz continuous with respect to any norm ‖ · ‖ with
the Lipschitz constant supx∈X ‖x‖. For more details and proofs, readers are referred to Rockafellar
(1997, Section 13) or Molchanov (2005, Appendix F).

3. Online Linear Optimization Algorithms via Smoothing

3.1. Gradient-Based Prediction Algorithm

Follow-the-Leader style algorithms solve an optimization objective every round and play an action
of the form wt = arg maxw∈X f(w,Θt−1) given a fixed Θt−1. For example, Follow the Regular-
ized Leader maximizes f(w,Θ) = 〈w,Θ〉 − R(w) where R is a strongly convex regularizer, and
Follow the Perturbed Leader maximizes f = 〈w,Θ + u〉 where u is a random noise. A surprising

1. Our somewhat less conventional choice of maximizing the reward instead of minimizing the loss was made so that
we directly analyze the convex function max(·) without cumbersome sign changes.

2. A function f is sublinear if it is positive homogeneous (i.e., f(ax) = af(x) for all a > 0) and subadditive (i.e.,
f(x) + f(y) ≥ f(x+ y)).
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fact about these algorithms is that there are many scenarios in which the action wt is exactly the
gradient of some scalar potential function Φt evaluated at Θt−1. This perspective gives rise to what
we call the Gradient-based Prediction Algorithm (GBPA), presented below. Note that Cesa-Bianchi
and Lugosi (2006, Theorem 11.6) presented a similar algorithm, but our formulation eliminates all
dual mappings.

Algorithm 1: Gradient-Based Prediction Algorithm (GBPA)

Input: X ,Y ⊆ RN
Initialize Θ0 = 0
for t = 1 to T do

The learner chooses differentiable Φt : RN → R whose gradient satisfies Image(∇Φt) ⊆ X
The learner plays wt = ∇Φt(Θt−1)
The adversary reveals θt ∈ Y and the learner gets a reward of 〈wt, θt〉
Update Θt = Θt−1 + θt

end

Lemma 2 (GBPA Regret) Let Φ be the baseline potential function for an online linear optimiza-
tion problem. The regret of the GBPA can be written as:

Regret = Φ(ΘT )− ΦT (ΘT )︸ ︷︷ ︸
underestimation penalty

+
T∑
t=1

(
(Φt(Θt−1)− Φt−1(Θt−1))︸ ︷︷ ︸

overestimation penalty

+DΦt(Θt,Θt−1)︸ ︷︷ ︸
divergence penalty

)
, (2)

where Φ0 ≡ Φ.

Proof See Appendix A.1.

In the existing FTPL analysis, the counterpart of the divergence penalty is 〈wt+1−wt, θt〉, which
is controlled by analyzing the probability that the noise would cause the two random variables wt+1

and wt to differ. In our framework, wt is the gradient of a function Φt of Θ, which means that if
Φt is twice-differentiable, we can take the derivative of wt with respect to Θ. This derivative is the
Hessian matrix of Φt, which essentially controls 〈wt − wt−1〉 with the help of Lemma 1. Since
we focus on the curvature property of functions as opposed to random vectors, our FTPL analysis
involves less probabilistic analysis than Devroye et al. (2013) or van Erven et al. (2014) does.

We point out a couple of important facts about Lemma 2:
(a) If Φ1 ≡ · · · ≡ ΦT , then the overestimation penalty sums up to Φ1(0)−Φ(0) = ΦT (0)−Φ(0).
(b) If Φt is β-strongly smooth with respect to ‖ · ‖, the divergence penalty at t is at most β2 ‖θt‖

2.

3.2. Smoothability of the Baseline Potential

Equation 2 shows that the regret of the GBPA can be broken into two parts. One source of regret
is the Bregman divergence of Φt; since θt is not known until playing wt, the GBPA always ascends
along the gradient that is one step behind. The adversary can exploit this and play θt to induce
a large gap between Φt(xt) and the linear approximation of Φt(Θt) around Θt−1. Of course, the
learner can reduce this gap by choosing a smooth Φt whose gradient changes slowly. The learner,
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however, cannot achieve low regret by choosing an arbitrarily smooth Φt, because the other source
of regret is the difference between Φt and Φ. In short, the GBPA achieves low regret if the potential
function Φt gives a favorable tradeoff between the two sources of regret. This tradeoff is captured
by the following definition of smoothability.

Definition 3 (Beck and Teboulle, 2012, Definition 2.1) Let Φ be a closed proper convex function.
A collection of functions {Φ̂η : η ∈ R} is said to be an η-smoothing of a smoothable function Φ
with smoothing parameters (α, β, ‖ · ‖), if for every η > 0

(i) There exists α1 (underestimation bound) and α2 (overestimation bound) such that

sup
Θ∈dom(Φ)

Φ(Θ)− Φ̂η(Θ) ≤ α1η and sup
Θ∈dom(Φ)

Φ̂η(Θ)− Φ(Θ) ≤ α2η

with α1 + α2 = α.
(ii) Φ̂η is β

η -strongly smooth with respect to ‖ · ‖.
We say α is the deviation parameter, and β is the smoothness parameter.

A straightforward application of Lemma 2 gives the following statement:

Corollary 4 Let Φ be the baseline potential for an online linear optimization problem. Suppose
{Φ̂η} is an η-smoothing of Φ with parameters (α, β, ‖ · ‖). Then, the GBPA run with Φ1 ≡ · · · ≡
ΦT ≡ Φ̂η has regret at most

Regret ≤ αη +
β

2η

T∑
t=1

‖θt‖2

In online linear optimization, we often consider the settings where the marginal reward vectors
θ1, . . . , θt are constrained by a norm, i.e., ‖θt‖ ≤ r for all t. In such settings, the regret grows in
O(
√
rαβT ) for the optimal choice of α. The product αβ, therefore, is at the core of the GBPA

regret analysis.

3.3. Algorithms

Follow the Leader (FTL) Consider the GBPA run with a fixed potential function Φt ≡ Φ for
t = 1, . . . , T , i.e., the learner chooses the baseline potential function every iteration. At iteration t,
this algorithm plays∇Φt(Θt−1) = arg maxw〈w,Θt−1〉, which is equivalent to FTL (Cesa-Bianchi
and Lugosi, 2006, Section 3.2). FTL suffers zero regret from the over- or underestimation penalty,
but the divergence penalty grows linearly in T in the worst case, resulting in an Ω(T ) regret.

Follow the Regularized Leader (FTRL) Consider the GBPA run with a regularized potential:

∀t,Φt(Θ) = R?(Θ) = max
w∈X
{〈w,Θ〉 − R(w)} (3)

where R : X → R is a β-strongly convex function. At time t, this algorithm plays ∇Φt(Θt−1) =
arg maxw{〈w,Θt−1〉−R(w)}, which is equivalent to FTRL. By the strong convexity-strong smooth-
ness duality, Φt is 1

β -strongly smooth with respect to the dual norm ‖ · ‖?. In Section 5, we give an
alternative interpretation of FTRL as a deterministic smoothing technique called inf-conv smooth-
ing.
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Follow the Perturbed Leader (FTPL) Consider the GBPA run with a stochastically smoothed
potential:

∀t,Φt(Θ) = Φ̃(Θ; η,D)
def
= Eu∼D[Φ(Θ + ηu)] = Eu∼D

[
max
w∈X
{〈w,Θ + ηu〉}

]
(4)

where D is a smoothing distribution with the support RN and η > 0 is a scaling parameter. This
technique of stochastic smoothing has been well-studied in the optimization literature for gradient-
free optimization algorithms (Glasserman, 1991; Yousean et al., 2010) and accelerated gradient
methods for non-smooth optimizations (Duchi et al., 2012). If the max expression inside the ex-
pectation has a unique maximizer with probability one, we can swap the expectation and gradient
(Bertsekas, 1973, Proposition 2.2) to obtain

∇Φt(Θt−1) = Eu∼D
[

arg max
w∈X

{〈w,Θt−1 + ηu〉}
]
. (5)

Each arg max expression is equivalent to the decision rule of FTPL (Hannan, 1957; Kalai and
Vempala, 2005); the GBPA on a stochastically smoothed potential can thus be seen as playing the
expected action of FTPL. Since the learner gets a linear reward in online linear optimization, the
regret of the GBPA on a stochastically smoothed potential is equal to the expected regret of FTPL.

FTPL-FTRL Duality Our potential-based formulation of FTRL and FTPL reveals that a strongly
convex regularizer defines a smooth potential function via duality, while adding perturbations is
a direct smoothing operation on the baseline potential function. By the strong convexity-strong
smoothness duality, if the stochastically smoothed potential function is (1/β)-strongly smooth with
respect to ‖ · ‖?, then its Fenchel conjugate implicitly defines a regularizer that is β-strongly convex
with respect to ‖ · ‖.

This connection via duality is a bijection in the special case where the decision set is one-
dimensional. Previously it had been observed3 that the Hedge Algorithm (Freund and Schapire,
1997), which can be cast as FTRL with an entropic regularization R(w) =

∑
iwi logwi, is equiv-

alent to FTPL with Gumbel-distributed noise. Hofbauer and Sandholm (2002, Section 2) gave a
generalization of this fact to a much larger class of perturbations, although they focused on repeated
game playing where the learner’s decision set X is the probability simplex. The inverse mapping
from FTPL to FTRL, however, does not appear to have been previously published.

Theorem 5 Consider the one-dimensional online linear optimization problem with X = Y =
[0, 1]. Let R : X → R be a strongly convex regularizer. Its Fenchel conjugate R? defines a valid
CDF of a continuous distribution D such that Equation 3 and Equation 4 are equal. Conversely, let
FD be a CDF of a continuous distributionD with a finite expectation. If we defineR to be such that
R(w)−R(0) = −

∫ w
0 F−1

D (1− z)dz, then Equation 3 and Equation 4 are equal.

Proof In Appendix B.1.

3. Adam Kalai first described this result in personal communication and Warmuth (2009) expanded it into a short note
available online. However, the result appears to be folklore in the area of probabilistic choice models, and it is
mentioned briefly in Hofbauer and Sandholm (2002).
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4. Online Linear Optimization via Gaussian Smoothing

Gaussian smoothing is a standard technique for smoothing a function. In computer vision applica-
tions, for example, image pixels are viewed as a function of the (x, y)-coordinates, and Gaussian
smoothing is used to blur noises in the image. We first present basic results on Gaussian smoothing
from the optimization literature.

Definition 6 (Gaussian smoothing) Let Φ : RN → R be a function. Then, we define its Gaussian
smoothing, with a scaling parameter η > 0 and a covariance matrix Σ, as

Φ̃(Θ; η,N (0,Σ)) = Eu∼N (0,Σ)Φ(Θ + ηu) = (2π)−
N
2 det(Σ)−

1
2

∫
RN

Φ(Θ + ηu)e−
1
2
uT Σ−1u du

In this section, when the smoothing parameters are clear from the context, we use a shorthand nota-
tion Φ̃. An extremely useful property of Gaussian smoothing is that Φ̃ is always twice-differentiable,
even when Φ is not. The trick is to introduce a new variable Θ̃ = Θ + ηu. After substitutions, the
variable Θ only appears in the exponent, which can be safely differentiated.

Lemma 7 (Nesterov 2011, Lemma 2, and Bhatnagar 2007, Section 3) Let Φ : RN → R be a
function. For any positive η, Φ̃(· ; η,N (0,Σ)) is twice-differentiable and

∇Φ̃(Θ; η,N (0,Σ)) =
1

η
Eu[Φ(Θ + ηu)Σ−1u] (6)

∇2Φ̃(Θ; η,N (0,Σ)) =
1

η2
Eu
[
Φ(Θ + ηu)

(
(Σ−1u)(Σ−1u)T − Σ−1

)]
(7)

If Φ(Θ + ηu) is differentiable almost everywhere, then we can directly differentiate Equation 6
by swapping the expectation and gradient (Bertsekas, 1973, Proposition 2.2) and obtain an alterna-
tive expression for Hessian:

∇2Φ̃(Θ; η,N (0,Σ)) =
1

η
Eu[∇Φ

(
Θ + ηu)(Σ−1u)T ]. (8)

4.1. Experts Setting (`1-`∞ case)

The experts setting is where X = ∆N def
= {w ∈ RN :

∑
iwi = 1, wi ≥ 0 ∀i}, and Y = {θ ∈

RN : ‖θ‖∞ ≤ 1}. The baseline potential function is Φ(Θ) = maxw∈X 〈w,Θ〉 = Θi∗(Θ), where we
define i∗(z) := min{i : i ∈ arg maxj zj}.

Our regret bound in Theorem 8 is data-dependent, and it is stronger than the previously known
O(
√
T logN) regret bounds of the algorithms that use similar perturbations. In the game theoretic

analysis of Gaussian perturbations by Rakhlin et al. (2012), the algorithm uses the scaling parameter
ηt =

√
T − t, which requires the knowledge of T and does not adapt to data. Devroye et al. (2013)

proposed the Prediction by Random Walk (PRW) algorithm, which flips a fair coin every round and
decides whether to add 1 to each coordinate. Due to the discrete nature of the algorithm, the analysis
must assume the worst case where ‖θt‖? = 1 for all t.
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Theorem 8 Let Φ be the baseline potential for the experts setting. The GBPA run with the Gaussian
smoothing of Φ, i.e., Φt(·) = Φ̃(·; ηt,N (0, I)) for all t has regret at most

Regret ≤
√

2 logN
(
ηT +

∑T
t=1

1
ηt
‖θt‖2∞

)
. (9)

If the algorithm selects ηt =
√∑T

t=1 ‖θt‖2∞ for all t (with the help of hindsight), we have

Regret ≤ 2

√
2
∑T

t=1 ‖θt‖2∞ logN.

If the algorithm selects ηt adaptively according to ηt =
√

2(1 +
∑t−1

s=1 ‖θs‖2∞), we have

Regret ≤ 4

√
(1 +

∑T
t=1 ‖θt‖2∞) logN.

Proof In order to apply Lemma 2, we need to upper bound (i) the overestimation and underesti-
mation penalty, and (ii) the Bregman divergence. To bound (i), first note that due to convexity of
Φ, the smoothed potential Φ̃ is also convex and upper bounds the baseline potential. Hence, the
underestimation penalty is at most 0, and when ηt is fixed for all t, it is straightforward to bound the
overestimation penalty:

ΦT (0)− Φ(0) ≤ Eu∼N (0,I)[Φ(ηTu)] ≤ ηT
√

2 logN. (10)

The first inequality is the triangle inequality. The second inequality is a well-known result and we
included the proof in Appendix C.1 for completeness. For the adaptive ηt, we apply Lemma 10,
which we prove at the end of this section, to get the same bound.

It now remains to bound the Bregman divergence. This is achieved in Lemma 9 where we upper
bound

∑
i,j |∇2

ijΦ|, which is an upper bound on maxθ:‖θ‖∞=1 θ
T (∇2Φ)θ. The final step is to apply

Lemma 1.

The proof of Theorem 8 shows that for the experts setting, the Gaussian smoothing is an η-
smoothing with parameters (O(

√
logN), O(

√
logN), ‖ · ‖). This is in contrast to the Hedge Al-

gorithm (Freund and Schapire, 1997), which is an η-smoothing with parameters (logN, 1, ‖ · ‖)
(See Section 5 for details). Interestingly, the two algorithms obtain the same optimal regret (up to
constant factors) although they have different smoothing parameters.

Lemma 9 Let Φ be the baseline potential for the experts setting. Let the Hessian matrix of the
Gaussian-smoothed baseline potential be denoted H , i.e., H = ∇2Φ̃(Θ; η,N (0, I)). Then,∑

i,j

|Hij | ≤
2
√

2 logN

η
.

Proof With probability one, Φ(Θ + ηu) is differentiable and from Lemma 7, we can write

H =
1

η
E[∇Φ(Θ + ηu)uT ] = E[ei∗(ηu+Θ)u

T ],

where ei ∈ RN is the i-th standard basis vector.

8
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First, we note that all off-diagonals of H are negative and all diagonal entries in H are positive.
This is because the Hessian matrix is the covariance matrix between the probability that i-th coor-
dinate is the maximum and the extra random Gaussian noise added to the j-th coordinate; for any
positive number α, uj = α and uj = −α have the same probability, but the indicator for i = i∗ has
a higher probability to be 1 when ui is positive (hence Hii > 0) and uj is negative for i 6= j (hence
Hij < 0 for i 6= j).

Second, the entries of H sum up to 0, as∑
i,j

Hij =
1

η
E
[∑

j uj
∑

i 1{i = i∗(Θ + u)}
]

=
1

η
E
[∑

j uj

]
= 0.

Combining the two observations, we have∑
i,j

|Hij | =
∑

i,j:Hij>0

Hij +
∑

i,j:Hij<0

−Hij = 2
∑

i,j:Hij>0

Hij = 2Tr(H)

.
Finally, the trace is bounded as follows:

Tr(H) =
1

η
E
[∑

i

ui1{i = i∗(Θ + u)}
]
≤ 1

η
E
[
(max

k
uk)

∑
i

1{i = i∗(Θ + u)}
]

=
1

η
E[max

k
uk] ≤

1

η

√
2 logN,

where the final inequality is shown in Appendix C.1. Multiplying both sides by 2 completes the
proof.

Time-Varying Scaling Parameters When the scaling parameter ηt changes every iteration, the
overestimation penalty becomes a sum of T terms. The following lemma shows that using the
sublinearity of the baseline potential, we can collapse them into one.

Lemma 10 Let Φ : RN → R be a sublinear function, and D be a continuous distribution with
the support RN . Let Φt(Θ) = Φ̃(Θ; ηt,D) for t = 0, . . . , T and choose ηt to be a non-decreasing
sequence of non-negative numbers (η0 = 0 so that Φ0 = Φ). Then, the overestimation penalty in
Equation 2 has the following upper bound:

T∑
t=1

Φt(Θt−1)− Φt−1(Θt−1) ≤ ηTEu∼D[Φ(u)].

Proof See Appendix C.2

4.2. Online Linear Optimization over Euclidean Balls (`2-`2 case)

The Euclidean balls setting is where X = Y = {x ∈ RN : ‖x‖2 ≤ 1}. The baseline potential
function is Φ(Θ) = maxw∈X 〈w,Θ〉 = ‖Θ‖2.

9



ABERNETHY LEE SINHA TEWARI

Theorem 11 Let Φ be the baseline potential for the Euclidean balls setting. The GBPA run with
Φt(·) = Φ̃(·; η,N (0, I)) for all t has regret at most

Regret ≤ ηT
√
N + 1

2
√
N

∑T
t=1

1
ηt
‖θt‖22. (11)

If the algorithm selects ηt =
√∑T

s=1 ‖θs‖22/(2N) for all t (with the help of hindsight), we have

Regret ≤
√

2
∑T

t=1 ‖θt‖22.

If the algorithm selects ηt adaptively according to ηt =
√

(1 +
∑t−1

s=1 ‖θs‖22))/N , we have

Regret ≤ 2

√
1 +

∑T
t=1 ‖θt‖22

Proof The proof is mostly similar to that of Theorem 8. In order to apply Lemma 2, we need to
upper bound (i) the overestimation and underestimation penalty, and (ii) the Bregman divergence.

The Gaussian smoothing always overestimates a convex function, so it suffices to bound the
overestimation penalty. Furthermore, it suffices to consider the fixed ηt case due to Lemma 1. The
overestimation penalty can be upper-bounded as follows:

ΦT (0)− Φ(0) = Eu∼N (0,I)‖Θ + ηTu‖2 − ‖Θ‖2 ≤ ηTEu∼N (0,I)‖u‖2

≤ ηT
√
Eu∼N (0,I)‖u‖22 = ηT

√
N

The first inequality is from the triangle inequality, and the second inequality is from the concavity
of the square root.

For the divergence penalty, note that the upper bound on maxv:‖θ‖2=1 θ
T (∇2Φ̃)θ is exactly the

maximum eigenvalue of the Hessian, which we bound in Lemma 12. The final step is to apply
Lemma 1.

Lemma 12 Let Φ be the baseline potential for the Euclidean balls setting. Then, for all Θ ∈ RN
and η > 0, the Hessian matrix of the Gaussian smoothed potential satisfies

∇2Φ̃(Θ; η,N (0, I)) � 1
η
√
N
I.

Proof The Hessian of the Euclidean norm∇2Φ(Θ) = ‖Θ‖−1
2 I−‖Θ‖−3

2 ΘΘT diverges near Θ = 0.
Expectedly, the maximum curvature is at origin even after Gaussian smoothing (See Appendix C.3).
So, it suffices to prove

∇2Φ(0) = Eu∼N (0,I)[‖u‖2(uuT − I)] �
√

1
N I,

where the Hessian expression is from Equation 8.
By symmetry, all off-diagonal elements of the Hessian are 0. Let Y = ‖u‖2, which is Chi-

squared with N degrees of freedom. So,

Tr(E[‖u‖2(uuT − I)]) = E[Tr(‖u‖2(uuT − I))] = E[‖u‖32 −N‖u‖2] = E[Y
3
2 ]−NE[Y

1
2 ]

10
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Using the Chi-Squared moment formula (Harvey, 1965, p. 20), the above becomes:

2
3
2 Γ(3

2 + N
2 )

Γ(N2 )
−
N2

1
2 Γ(1

2 + N
2 )

Γ(N2 )
=

√
2Γ(1

2 + N
2 )

Γ(N2 )
. (12)

From the log-convexity of the Gamma function,

log Γ
(

1
2 + N

2

)
≤ 1

2

(
log Γ

(
N
2

)
+ log Γ

(
N
2 + 1

))
= log Γ

(
N
2

)√
N
2 .

Exponentiating both sides, we obtain

Γ
(

1
2 + N

2

)
≤ Γ

(
N
2

)√
N
2 ,

which we apply to Equation 12 and get Tr(∇2Φ(0)) ≤
√
N . To complete the proof, note that by

symmetry, each entry must have the same expected value, and hence it is bounded by
√

1/N .

4.3. General Bound

In this section, we will use a generic property of Gaussian smoothing to derive a regret bound that
holds for any arbitrary online linear optimization problem.

Lemma 13 (Duchi et al., 2012, Lemma E.2) Let Φ be a real-valued convex function on a closed
domain which is a subset of RN . Suppose Φ is L-Lipschitz with respect to ‖ · ‖2, and let Φ̂η be the
Gaussian smoothing of Φ with the scaling parameter η and identity covariance. Then, {Φ̂η} is an
η-smoothing of Φ with parameters (L

√
N,L, ‖ · ‖2).

Consider an instance of online linear optimization with decision set X and reward set Y . The
baseline potential function Φ is ‖X‖2-Lipschitz with respect to ‖ ·‖2, where ‖X‖2 = supx∈X ‖x‖2.
From Lemma 13 and Corollary 4, it follows that

Regret ≤ η
√
N‖X‖2 +

‖X‖2
2

T∑
t=1

‖θt‖22,

which isO(N
1
4 ‖X‖2‖Y‖2

√
T ) after tuning η. This regret bound, however, often gives a suboptimal

dependence on the dimension N . For example, it gives O(N
3
4T

1
2

) regret bound for the experts
setting where ‖X‖2 = 1 and ‖Y‖2 =

√
N , and O(

√
NT ) regret bound for the Euclidean balls

setting where ‖X‖2 = ‖Y‖2 = 1.

4.4. Online Convex Optimization

In online convex optimization, the learner receives a sequence of convex functions ft whose domain
is X and its subgradients are in the set Y (Zinkevich, 2003). After the learner plays wt ∈ X , the
reward function ft is revealed. The learner gains ft(wt) and observes ∇ft(wt), a subgradient of ft
at wt.

A simple linearization argument shows that our regret bounds for online linear optimization
generalize to online convex optimization. Let w∗ be the optimal fixed point in hindsight. The
true regret is upper bounded by the linearized regret, as ft(w∗) − ft(wt) ≤ 〈w∗ − wt,∇ft(wt)〉
for any subgradient ∇ft(·), and our analysis bounds the linearized regret. Unlike in the online
linear optimization settings, however, the regret bound is valid only for the GBPA with smoothed
potentials, which plays the expected action of FTPL.

11



ABERNETHY LEE SINHA TEWARI

5. Online Linear Optimization via Inf-conv Smoothing

Beck and Teboulle (2012) proposed inf-conv smoothing, which is an infimal convolution with a
strongly smooth function. In this section, we will show that FTRL is equivalent to the GBPA run
with the inf-conv smoothing of the baseline potential function.

Let (X , ‖ · ‖) be a normed vector space, and (X ?, ‖ · ‖?) be its dual. Let Φ : X ? → R be a
closed proper convex function, and let S be a β-strongly smooth function on X ? with respect to
‖ · ‖?. Then, the inf-conv smoothing of Φ with S is defined as:

Φic(Θ; η,S)
def
= inf

Θ∗∈X ?

{
Φ(Θ∗) + ηS

(
Θ−Θ∗

η

)}
= max

w∈X

{
〈w,Θ〉 − Φ?(w)− ηS?(w)

}
. (13)

The first expression with infimum is precisely the infimal convolution of Φ(·) and ηS( ·η ), and
the second expression with supremum is an equivalent dual formulation. The inf-conv smoothing
Φic(Θ; η,S) is finite, and it is an η-smoothing of Φ (Definition 3) with smoothing parameters(

max
Θ∈X ?

max
w∈∂Φ(Θ)

S?(w), β, ‖ · ‖
)
. (14)

where ∂Φ(Θ) is a set of subgradients of Φ at Θ.

Connection to FTRL Consider an online linear optimization problem with decision set X ⊆ RN .
Then, the dual space X ? is simply RN . LetR be a β-strongly convex function on X with respect to
a norm ‖·‖. By the strong convexity-strong smoothness duality,R? is 1

β -strongly smooth. Consider
the inf-conv smoothing of the baseline potential function Φ with R?, denoted Φic(Θ; η,R?). We
will that the GBPA run with Φic(Θ; η,R?) is equivalent to FTRL withR as the regularizer.

First, note that the baseline potential is the convex conjugate of the null regularizer, i.e., Φ?(w) =
0 for all w ∈ X . The dual formulation of inf-conv smoothing (Equation 13) thus becomes

Φic(Θ; η,S) = max
w∈X

{
〈w,Θ〉 − ηR(w)

}
,

which is identical to Equation 3 except that the above expression has an extra parameter η that
controls the degree of smoothing. To simplify the deviation parameter in Equation 14, note that
the subgradients of Φ always lie in X because of duality. Hence, the two supremum expressions
collapse to one supremum: maxw∈X S?(w). Plugging the smoothing parameters into Corollary 4
gives the well-known FTRL regret bound as in Theorem 2.11 or 2.21 of Shalev-Shwartz (2012):

Regret ≤ ηmax
w∈X
S?(w) +

β

2η

T∑
t=1

‖θt‖2.
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Appendix A. Gradient-Based Prediction Algorithm

A.1. Proof of Lemma 2

Proof We note that since Φ0(0) = 0,

ΦT (ΘT ) =

T∑
t=1

Φt(Θt)− Φt−1(Θt−1)

=

T∑
t=1

((
Φt(Θt)− Φt(Θt−1)

)
+
(
Φt(Θt−1)− Φt−1(Θt−1)

))

The first difference can be rewritten as:

Φt(Θt)− Φt(Θt−1) = 〈∇Φt(Θt−1),Θt)〉+DΦt(Θt,Θt−1)

By combining the above two,

Regret = Φ(ΘT )−
T∑
t=1

〈∇Φt(Θt−1),Θt〉

= Φ(ΘT )− ΦT (ΘT ) +
T∑
t=1

DΦt(Θt,Θt−1) + Φt(Θt−1)− Φt−1(Θt−1)

which completes the proof.

Appendix B. FTPL-FTRL Duality

B.1. Proof of Theorem 5

Proof Consider a one-dimensional online linear optimization prediction problem where the player
chooses an action wt from X = [0, 1] and the adversary chooses a reward θt from Y = [0, 1]. This
can be interpreted as a two-expert setting; the player’s action wt ∈ X is the probability of following
the first expert and θt is the net excess reward of the first expert over the second. The baseline
potential for this setting is Φ(Θ) = maxw∈[0,1]wΘ.

Let us consider an instance of FTPL with a continuous distributionD whose cumulative density
function (cdf) is FD. Let Φ̃ be the smoothed potential function (Equation 4) with distribution D. Its
derivative is

Φ̃′(Θ) = E[arg max
w∈K

w(Θ + u)] = P[u > −Θ] (15)

because the maximizer is unique with probability 1. Notice, crucially, that the derivative Φ̃′(Θ) is
exactly the expected solution of our FTPL instance. Moreover, by differentiating it again, we see
that the second derivative of Φ̃ at Θ is exactly the pdf of D evaluated at (−Θ).

We can now precisely define the mapping from FTPL to FTRL. Our goal is to find a convex
regularization function R such that P(u > −Θ) = arg maxw∈X (wΘ − R(w)). Since this is a
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one-dimensional convex optimization problem, we can differentiate for the solution. The character-
ization ofR is:

R(w)−R(0) = −
∫ w

0
F−1
D (1− z)dz. (16)

Note that the cdf FD(·) is indeed invertible since it is a strictly increasing function.
The inverse mapping is just as straightforward. Given a regularization function R well-defined

over [0, 1], we can always construct its Fenchel conjugate R?(Θ) = supw∈X 〈w,Θ〉 − R(w). The
derivative of R? is an increasing convex function, whose infimum is 0 at Θ = −∞ and supremum
is 1 at Θ = +∞. Hence, R? defines a cdf, and an easy calculation shows that this perturbation
distribution exactly reproduces FTRL corresponding toR.

Appendix C. Gaussian smoothing

C.1. Proof of Equation 10

Let X1, . . . , XN be independent standard Gaussian random variables, and let Z = maxi=1,...,N Xi.
For any real number a, we have

exp(aE[Z]) ≤ E exp(aZ) = E max
i=1,...,N

exp(aXi) ≤
N∑
i=1

E[exp(aXi)] = N exp(a2/2).

The first inequality is from the convexity of the exponential function, and the last equality is by
the definition of the moment generating function of Gaussian random variables. Taking the natural
logarithm of both sides and dividing by a gives

E[Z] ≤ logN

a
+
a

2
.

In particular, by choosing a =
√

2 logN , we have E[Z] ≤
√

2 logN.

C.2. Proof of Lemma 10

Proof By the subadditivity (triangle inequality) of Φ,

Φ̃(Θ; η,N (0, I))− Φ̃(Θ; η′,N (0, I)) = Eu∼N (0,I)[Φ(Θ + ηu)− Φ(Θ + η′u)] (17)

≤ Eu∼N (0,I)[Φ((η − η′)u)] (18)

and the statement follows from the positive homogeneity of Φ.

C.3. Proof that the origin is the worst case (Lemma 12)

Proof Let Φ(Θ) = ‖Θ‖2 and η be a positive number. By continuity of eigenvectors, it suffices
to show that the maximum eigenvalue of the Hessian matrix of the Gaussian smoothed potential
Φ̃(Θ; η,N (0, I)) is decreasing in ‖Θ‖ for ‖Θ‖ > 0.

By Lemma 7, the gradient can be written as follows:

∇Φ̃(Θ; η,N (0, I)) =
1

η
Eu∼N (0,I)[u‖Θ + ηu‖] (19)
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Let ui be the i-th coordinate of the vector u. Since the standard normal distribution is spherically
symmetric, we can rotate the random variable u such that its first coordinate u1 is along the direction
of Θ. After rotation, the gradient can be written as

1

η
Eu∼N (0,I)

u
√√√√(‖Θ‖+ ηu1)2 +

N∑
k=2

η2u2
k


which is clearly independent of the coordinates of Θ. The pdf of standard Gaussian distribution
has the same value at (u1, u2, . . . , un) and its sign-flipped pair (u1,−u2, . . . ,−un). Hence, in
expectation, the two vectors cancel out every coordinate but the first, which is along the direction of
Θ. Therefore, there exists a function α such that Eu∼N (0,I)[u‖Θ + ηu‖] = α(‖Θ‖)Θ.

Now, we will show that α is decreasing in ‖Θ‖. Due to symmetry, it suffices to consider Θ = te1

for t ∈ R+, without loss of generality. For any t > 0,

α(t) = E[u1

√
(t+ ηu1)2 + u2

rest)]/t

= Eurest [Eu1 [u1

√
(t+ ηu1)2 + b2|urest = b]]/t

= Eurest [Ea=η|u1|[a
(√

(t+ a)2 + b2 −
√

(t− a)2 +B
)
|urest = b]]/t

Let g(t) =
(√

(t+ a)2 +B −
√

(t− a)2 +B
)
/t. Take the first derivative with respect to t,

and we have:

g′(t) =
1

t2

(√
(t− a)2 + b2 − t(t− a)√

(t+ a)2 + b2
−
√

(t+ a)2 + b2 +
t(t− a)√

(t+ a)2 + b2

)

=
1

t2

(
a2 + b2 − at√
(t− a)2 + b2

− a2 + b2 + at√
(t+ a)2 + b2

)
(

(a2 + b2)− at
)2(

(t+ a)2 + b2
)
−
(

(a2 + b2) + at
)2(

(t− a)2 + b2
)

= −4ab2t3 < 0

because t, η, u′, B are all positive. So, g(t) < 0, which proves that α is decreasing in Θ.
The final setp is to write the gradient as∇(Φ̃; η,N (0, I))(Θ) = α(‖Θ‖)Θ and differentiate it:

∇2fη(Θ) =
α′(‖Θ‖)
‖Θ‖

ΘΘT + α(‖Θ‖)I

The Hessian has two distinct eigenvalues α(‖Θ‖) and α(‖Θ‖) + α′(‖Θ‖)‖Θ‖, which correspond
to the eigenspace orthogonal to Θ and parallel to Θ, respectively. Since α′ is negative, α is always
the maximum eigenvalue and it decreases in ‖Θ‖.
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